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Abstract: Flow cytometry is extensively used in cell biology to differentiate cells of interest (mutants)
from control cells (wild-types). For mutant cells characterized by expression of a distinct membrane
surface structure, fluorescent marker probes can be designed to bind specifically to these structures
while the cells are in suspension, resulting in a sufficiently high fluorescence intensity measurement
by the cytometer to identify a mutant cell. However, cell membranes may have relatively weak,
nonspecific binding affinity to the probes, resulting in false positive results. Furthermore, the same
effect would be present on mutant cells, allowing both specific and nonspecific binding to a single
cell. We derive and analyze a kinetic model of fluorescent probe binding dynamics by tracking
populations of mutant and wild-type cells with differing numbers of probes bound specifically and
nonspecifically. By assuming the suspension is in chemical equilibrium prior to cytometry, we use
a two-species Langmuir adsorption model to analyze the confounding effects of non-specific binding
on the assay. Furthermore, we analytically derive an expectation maximization method to infer an
appropriate estimate of the total number of mutant cells as an alternative to existing, heuristic methods.
Lastly, using our model, we propose a new method to infer physical and experimental parameters from
existing protocols. Our results provide improved ways to quantitatively analyze flow cytometry data.

Keywords: FACS; flow cytometry; automatic gating; fluorescing antibodies; Langmuir adsorption;
mixture model; serial dilution

1. Introduction

A common problem in cell biology research is the desire to differentiate cells into categorical
populations based on some defining molecular characteristic. Some examples include the presence or
absence of a particular gene transcript [1,2], cells presenting viral epitopes to indicate infection [3, 4],
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or expression of particular membrane proteins [5,6]. Flow cytometry is an effective tool to count the
number of cells exhibiting the identifying characteristic. The process involves suspending cells of
interest in a sheath fluid that is pressurized and extruded single file past a laser beam [7-9]. Each cell
will scatter the laser’s light towards optical sensors positioned around the stream. Sensors directly in
front of the laser measure the forward scattering about a single cell, and is used to quantify the cell’s
surface area, volume, and shape. Alternatively, side scattering sensors measure photons emitted by
fluorescent markers and dyes excited by the laser. The fluorescent probes are designed a priori to bind
specifically to cell surface proteins and structures that characterize the cell species. Thus, a
sufficiently high fluorescence intensity is an indication the cell is of the desired type.

However, details of the protocol arise that can confound the final count of cells. If we focus on the
example of a population of “mutant” cells, characterized by the expression of a particular membrane
surface receptor, mixed in with a population of “wild-type” cells, we can design a fluorescing probe
that binds specifically to the receptor. If we suspend all cells in a solution containing an excess of
probes, we expect all probes to bind to free receptors. However, each probe-receptor binding event is
a reversible process, allowing some expected proportion of receptors to remain unbound at
equilibrium. Furthermore, variation may exist in the number of receptors expressed, increasing the
ways in which a mutant may escape binding [4, 5]. To combat this measurement of false negatives,
one can increase the probe concentration in the suspension, increasing its excess and driving the
equilibrium towards more bound receptors. Unfortunately, although the probes are designed to bind
specifically to the receptors, they will have a relatively small, but non-zero binding affinity to the rest
of the cell membrane and its other embedded structures [10]. Increasing the probe concentration will
result in a higher nonspecific binding to wild-type cell membranes, allowing false positive counts of
mutants. The equilibrium configuration of probe bindings to all cells, whether specifically or
nonspecifically, will produce a distribution of fluorescence data over a range of intensities. Typically,
cells that exhibit levels of fluorescence below a threshold intensity are ignored in a process known as
“gating.” Setting that gating threshold is often a heuristic procedure, though some methods for
automatic gating based on data clustering have been developed [9, 11]. However, these methods do
not incorporate the underlying chemical kinetics of probe binding and largely ignore the effects of
nonspecific binding.

We develop a kinetic model for both specific and nonspecific binding of probes to cells. We
employ a variant on the Langmuir adsorption model [12] with two competing types of binding sites:
receptors and a discretization of the cell membrane. Here, the concentration of initially added probes
applies the “partial pressure” driving probe binding to the cell surfaces. We will show the isotherm of
fractional binding site occupancy to exhibit two regimes in which the receptor and membrane binding
sites become saturated at different rates. We discuss how the interface between the two regimes is the
ideal concentration of probes to include in the assay and how the model can inform optimal
experimental design. We then present a probabilistic model for the expected number density of cells
over possible numbers of probe bindings. Employing this model, we develop a variant on the
expectation-maximization (EM) mixture model [13] to estimate the total number of mutant cells
without heuristic gating. Furthermore, we propose a method for inferring the probe binding affinity
and the receptor number distribution using a serial dilution protocol. Finally, we discuss potential
applications and problems of using our method for the fluorescence activated cell sorting (FACS)
assay. It should be noted that throughout this paper we continue using the example of “mutant cells”
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expressing surface receptors, but our models and analyses extend to all physiological applications of
flow cytometry with fluorescing surface markers.

2. Materials and method

2.1. Kinetic model

Let Cr be the total number of cells in a suspension also containing Nt probe molecules. We assume
Cr is precisely counted by the forward scattering measurement to differentiate cells from free probes
or debris. Let M and W = Cp — M be the number of mutant cells and wild-type cells, respectively.
By definition, mutants are the only cells that express the surface receptors. Let N be the number
of free, unbound fluorescing probes designed to specifically target the receptors with association and
dissociation rates p, and p_. Alternatively, for both mutants and wild-types, probes can bind and
dissociate nonspecifically to the cell membrane itself with rates ¢, and ¢_. Since, the on-rates p, and
q. are likely to be comparable in magnitude, we expect probes bound nonspecifically to dissociate
significantly more rapidly so that g_ > p_.

The total number of receptors / on a mutant cell varies across all cells with distribution f(/) and
mean (/). The exact distribution f will depend on the details of the receptor and its expression and
recycling pathways. A simple model for receptor expression is a production and degradation process
with constant rates @ and p, respectively. The steady-state receptor number of such an immigration-
death model follows a Poisson distribution

I 1 ,—I)
f) = < > T (2.1)

where (/) = a/u. We use this form of f(/) in the simulations we perform in this paper; however, the
full models we derive are independent of the choice for f. Thus, we denote the total number of mutant
cells that carry exactly I receptors as M.

Furthermore, we consider the the total surface area A of the cell membrane and partition the binding
region around a single receptor as A;. We define this region as that which a probe fated to adsorb to
the cell surface is more likely to bind to the associated receptor than directly to the membrane. We can
partition the remaining cell surface into J = £+ — I discrete effective binding sites for the membrane.
We expect the binding region of a receptor to be relatively small compared to the total surface area,
making J > [.

To accurately model the kinetic flows from one bound state of a mutant to another, it becomes
necessary to track populations of cells indexed by both the number of probes bound specifically and
nonspecifically. As shown in Figure 1, we define MI as the number of mutant cells with exactly i
probes bound to a maximum of / specific binding sites and exactly j probes adsorbed nonspecifically.
For wild-type cells, probes can only attach nonspecifically, so we define W; as the number of wild-type
cells with exactly j adsorbed probes. We thus have the chemical rate equations

- l)p+ MI J)q+ J - ])fI+

, M’ +N Ly Wt N=—=
Grhp.  h Gebg. It (41

M’ + N —

Wi (2.2)
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° »‘ Mgy M | Total mutants
\ ,v W | Total wild-types
- “‘\ N | Total unbound probes
,’ X I | Specific binding sites per cell
[ 4 \ J | Nonspecific binding sites per cell
I W Wild-type cells } N firee probes M;; | Mutants with i specific and
“ W b \ nonspecific bindings
\* ,I ° K, | Specific dissociation constant
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Figure 1. Cartoon of probe molecules binding to wild-type W and mutant M cells used in a
typical flow cytometry assay. Wild-type cells are assumed to bind probes only nonspecifically
while each mutant cell expresses I receptors to which probes specifically bind. The variables
defining all quantities in the kinetic mass-action model analyzed in this paper are given in
the table.

Let v be the volume of the cell suspension containing all cells and probes. Normalizing the cell and
probe counts by v, we have the relevant concentrations [M l’ j], [W;], and [N]. We can now derive the
mass-action equations as

diM! ]
—3— =~ U= DpAM{IINI = ( = DguIMiJINT + (i + Dp- (M, 1+ (i + Dg-[M; ;]
+(I =i+ Dp IML, JINT+(J = j+ Da M| 1IN,

d[W;

[dt]] == = PN [WIIN] + (j+ Dg_[W;i,1] + (J = j + Dg.[W,;_1][N],

d[N 1 J-1 I1-1

— =4 Z JMLY+ p > iAME) = 0 Y (T = DIME1 = pa > (U =DM ). (2.3)

i=1 j=0 i=0

At equilibrium, we expect detailed balance in each of Eq 2.2. For specific and nonspecific binding
respectively, we can define the dissociation constants
[NIIM:;1  p-

[NIIM;;] g

CAELaalI e K, and ——— =— =K., (2.4)

(M 1] q+ (M. ] P+
One might interpret these constants as the probe concentration’s resistance to binding and are
parameters that will shape the entire dynamics of the model. Using inductive reasoning, we can
characterize the mutant populations solely with the concentration of unbound cells:

N N1V
w22
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By the conservation of total mutant cells with I binding sites, we use the binomial expansion to derive

1 J I J
= 1 [NV] [N]
=3 > a= g1+ ) (145 .6
Using very similar arguments, we derive the concentration of unbound wild-types as
N1\
[Wol = [W](l + % ) (2.7)

Next, we find the following result:
1 1 J
DN+ pIMLT = DN i+ M) ( )( ) ( )( )

I-1 1 J-1
(S ) R 0
’ KS KS Kn Ks Kn

= [Mj] (1 " @) (1 . [N]) [I[NMKH + D) + JINIK, + [N])]
* : K, (K, + IND(Ky + [ND
IINI(Ky + [ND) + JINI(K, + [ND)
(K + IND(Ky + [N

= [MI][

(2.8)

Using the conservation of the total concentration of initial probes [Nt] and (I) = ;- I f(I), we derive

J J 1 J
[Nt = N1+ DLW+ > 3T i+ M}

=0 1=0 i=0 j=0

L (INY b (NI, + N + JINKK, + [ND
- “;J[WO](J')(KH) " [ (K. + IND(K, + [N
_ iy DIMIN] JECHIN 09)

[N1+K;  [N]+Kn

It is possible to solve Eq 2.9 for [N] analytically as the roots of a cubic polynomial with [M], [W],
[N1], [K], [Ku], [J], and (I) as parameters. However, in the next section, we will show how this kinetic
model may be used to quantify the optimal total probe concentration [Nt] to use when performing the
assay.

2.2. Two species Langmuir adsorption model

If we define 61 as the fractional occupancy of total binding sites across all cells, using Eq 2.9 we
have

O AV A S 2.10
R TS R W ANTe N]+1+[N] =

Each of the two terms resemble a Langmuir isotherm which measures the fractional occupancy of
binding sites on a surface substrate [12]. Framed in the Langmuir adsorption picture, the
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concentration of free probes [N] is directly analogous to the partial pressure of adsorbing gas. As
shown in Figure 2(a), the fraction of occupied binding sites grows as you add more free probes, but
eventually saturates.

€)) 1 Kn_f__l_(_)l

: '/""-

L O/ _ 2
£os [ Ka = 10

L 'I'

!

/ Ky =10’

cK====— -= = R
0 50 100
[V]

Figure 2. Fractional occupancy 6r of available binding sites as a function of the free probe
concentration [N]. (a) The isotherms for large [N] with [Cy] = 100, [M] = 10, K, = 107!,
J =103 (I) = 10, and K, = 10', 10%, and 10°. The cell membrane reaches saturation of
bound probes at a rate dictated by K,,. (b) The isotherms for small [N] values with [Ct] = 100,
[M] =10, K, = 10°, J = 103, (I) = 10, and K, = 107", 1072, and 1073. Due to small K,
the occupancy reaches saturation for all available receptors quickly, then resumes the slower
saturation of non-specific binding to membrane.

Note that the saturation is normalized according to the number of non-specific binding sites J as
we expect it to be much larger than (/). Furthermore, the rate of adsorption is attenuated by the non-
specific dissociation constant K,. For small [N], when the cell membrane is far from saturation, we see
the dynamics of the receptor binding site saturation in Figure 2(b). As K > Kj,, the total occupancy
increases rapidly to saturation relative to that of the more dominant non-specific isotherm. Thus, there
is a critical free probe concentration [N]* such that when [N] is below this threshold, each new probe
introduced into the assay will contribute more to the occupancy of receptors than that of the nonspecific
binding sites. This threshold can be obtained by differentiating the two terms in Eq 2.10 with respect to
[V] and setting them equal to each other. This results in the following critical free probe concentration:

[KDim)
. K Foien — K
[N]* = . (2.11)
[ = [Ksnim)

KnJ[Cr]

Note that [N]* is a monotonically increasing function of the concentration of mutant cells [M], which
is typically unknown. Thus, a conservative recommended concentration [Nt] to use in the cell/probe
suspension would involve setting [M] = [Cr] and evaluating Eq 2.10 with [N]*. Furthermore, to ensure
[N]* is strictly positive, the specific binding affinity of the probe is constrained by

K, < %K (2.12)
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In other words, for probes designed with weaker specific binding affinity than this threshold dictates,
nonspecific binding sites are more likely to adsorb probes before any receptors for all values of [N]

and [M]. Though it is clear that the lowest K possible is ideal for an assay, one may use this upper
bound to decide if an available probe will at all be effective for a specific experiment.

2.3. Cell population mass density

In order to establish a connection between the equilibrium kinetic model and a typical output of a

flow cytometry assay, we define the concentration of cells [C,] with exactly r probes bound, regardless
if they are bound specifically or nonspecifically, as

J  min(r,])
[CA=IW,1+ D> > [Mi]
=0 k=0
~ N1\ (J\ (N1
_ch]—[Mn(l . Kn) ()(K)

J -1 -J k r—k
[NV] [NT\ " (I\(INIY [ J \(IN]
IZ:;‘ - K, K.)] Wk ) \r-k)\ k,

(a)4O:A M = 0.9C, (b)6 1
30,“| —-=-M = 0.1Ct [
L 4
« \ «
S200 S
\
0

Figure 3. Expected population densities of cells C, with exactly r probes bound. (a) Low
concentrations of free probe [N] = 1.2 with Cr = 100, (I) = 10, J = 10, K, = 107", and
K, = 10° for M = 10 and 90 cells. The density will cause clustering of wild-type cells
close to r = 0 and mutants close to r = (I), though the non-specific binding allows some
of the density associated with the mutants to contribute to the lower r values of C,. A clear
boundary exists between the two densities and heuristic gating can partition the populations
sufficiently. (b) Large concentrations of free probe [N] = 60 with Ct = 100, {I) = 10,
J =10°, K, = 107!, and K,, = 10°. The population densities of wild-types and mutants are

now found in similar values of r and overlap extensively, causing difficulty in differentiating
the two clusters as probes saturate the membrane.
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Equation 2.13 informs us of how the distribution of cell data will cluster, as illustrated in
Figure 3(a). At relatively low concentrations of free probe [/N], the binding of receptors can saturate,
but leave the wild-type cells with only nonspecific binding to have significantly lower probe bindings.
This effectively makes the two clusters qualitatively separable and imposing a gating threshold is
straightforward. However, at high levels of free probe, the clusterings overlap and are thus difficult to
differentiate heuristically, as demonstrated in Figure 3(b). Furthermore, these distributions are taken
over the probe binding number r which is not directly measurable. We next show how r and [C,]
relate to the measured fluorescence intensity distribution.

2.4. Fluorescence intensity

As each cell passes through the cytometer, any bound probes will fluoresce with some strictly
positive light intensity F;. However, some variation in the fluorescence signal arises from molecular
variability and instrumentation noise. We also expect each cell to have some relatively small amount
of auto-fluorescence with intensity F. Then if we define x as the total fluorescence intensity of a given
cell and r as its corresponding number of bound probes, then we expect the probability density of x to
follow

(In(x) — In(Fy + rFy))*

— |
————exp >
X 2770'(2) 20—0

In a typical flow cytometry assay, however, we do not know how many probes are bound to each
cell. Furthermore, we do not know the species b € {0, 1} of the cell, where 0 and 1 denote wild-type
and mutant respectively. Using Eqs 2.13 and 2.14, we derive the marginal density of fluorescence
intensity as

Pr(x|r) =

(2.14)

J J
Pr(x) = Pr(b = 0) Z Pr(x|r)Pr(rlb = 0) + Pr(b = 1) Z Pr(x|r)Pr(r = jlb = 1)

r=0 r=0
1 (C,] [ (ln(x)—ln(F0+rFs))2]
exp|— .

[Cr] r=0 x,/27r0‘%

Considering total number of probes r bound to a cell regardless if they are bound specifically or
nonspecifically is sufficient if each probe fluoresces with an intensity independent of binding.
However, for some probes, the fluorescence may be a product of a conformation change when binding
to the designed target. This means that for nonspecifically bound probes, their conformation change
may be partial and can result in a lower mean fluorescence intensity F,,. We must now consider how
many probes are bound specifically and nonspecifically, making Eq 2.13 insufficient for computing
the marginal density of x. Thus we derive the conditional densities

J

(2.15)

2
20'0

_oy = (1M
Pr(xlb_O)_(l [Cﬂ)(“

b

[N] )" Zjl (J) ( [N] )J' L e [_ (In(x) = In(Fy + jFy))’
X

K JjI\K [ 202
n n 27r0'% 0
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and

M1, NI NI\ <o <o (1) (N1 () (INTY
=0 =1+ ) Srol2) X20E) Q)
1 [ (In(x) — In(Fy + iF + an))Z}
exp |- .

x /270 203

In the next section we will show how these mathematical results can be used to iteratively estimate the
size of the mutant population [M] from data and infer physical parameters such as K and (/).

X

(2.17)

3. Results and Discussion

3.1. EM mixture model estimation of mutant population

Using Eqs 2.16 and 2.17, we propose an iterative algorithm to automatically infer the concentration
of mutant cells [M] without heuristic gating. Let {x;} be a set of data, where x; is the fluorescence
intensity measured for cell £ and let b, € {0, 1} be its corresponding species assignment. Because this
is an iterative method, we will index each numerical step with ¢ € {0, 1,2,---}. Using Bayes rule, we
can compute the probability cell k is a mutant as

[M]VPr(x by = 1, [M]7)

_ Yy —
Pribu= b IMT) = ([Cr] = IM1D)Pr(xi|by = 0, [M1D) + [M]OPr(xilby = 1, [M]D)

(3.1)

where [M]® is the current mutant concentration estimate. The iterative procedure starts with an initial
guess at the concentration of mutant cells [M]© which is used to calculate the probability in Eq 3.1.
The next estimate [M]“*" is then given by

Cr
(M) = 3" Pr(by = 1xi, [M]7). (32)
k=1

This process is repeated until [M]” converges. Note that, though calculating Eq 3.1 for a single
x; can technically be a O(J*) computational operation, some asymptotic arguments can be made to
concatenate summations to terms that are sufficiently close to zero. More importantly, the only value
that changes over all iterations is [M]®. Thus, the more computationally heavy summations in Eqs 2.16
and 2.17 can be done once and stored in a matrix, making all subsequent iterations compute linearly
with the number of cells Cr.

An example using our algorithm for estimating the mutant cell count from simulated data is shown
in Figure 4(a) where Cr = 100 and M = W = 50. Immediately evident is the wild-type cells’
propensity to be clustered close to the mutants when as little as one probe is bound. When a reasonable
gate threshold is drawn as demonstrated, the 87 cells to the right are counted as mutants, resulting in
27 false positives. Our algorithm accounts for the probability of wild-types having high fluorescence,
resulting in the closer estimate of M = 51. Even for parameter regimes where probe binding to wild-
types are rare, for large numbers of cells Cr, the occasional nonspecific binding event will result in the
gating process invariably over-counting mutants.
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Figure 4. (a) Simulated fluorescence data using parameters Ct = 100, [N] = 1.2, K =
107, K, = 10°, J = 10°, {I) = 5, Fy = 1, F, = F, = 10°, and oy = 0.5. We set
M = 0.5Ct and assign each cell k£ with a number of bound probes r; using Eq 2.13 and
subsequent fluorescence intensity x; using Eq 2.14. At this particular parameter regime, 27
of the 50 wild-type cells managed to bind with at least one probe, increasing their relative
fluorescence and clustering them with the mutants. A typical gating threshold, shown above,
would separate the two clusters and count all 87 cells on the right hand side as mutants;
far larger than the true count of 50. The iterative estimate using Eq 3.2 returns M = 51,
relatively close to the actual count. (b) Probability that a given cell has one or more probes
bound as a function of the dilution number d as we vary the receptor distribution mean (/).
Here [N] =1, K, = 10°, K, = 1073, J = 10%, and dilution factor D = 10.

3.2. Parameter inference using serial dilution

In typical flow cytometry assays, probes designed to bind specifically to the receptors of interest
are often prepared elsewhere. Thus it is not uncommon for an experimentalist to test the affinity of a
probe prior to an assay in order to insure it is sufficiently effective for the planned experiment [5].
This is typically done by preparing a homogeneous suspension of mutant cells with the probes, so that
[M] = [Cr]. The experimentalist will then perform cytometry with a sufficiently high concentration of
free probes [N] and quantify the number of cells that contain any fluorescing probes. The solution of
probes is subsequently diluted by some factor D and the assay is repeated d,,x number of times. This
process, known as serial dilution, arises in many applications from testing antibacterial agents [15] to
quantifying viral infectivity [16]. In this context, it is used to find the characteristic dilution number d.
such that all cells are still bound to at least one probe. The experimentalist can then use the
corresponding probe concentration for the flow cytometry assay. However, having provided a kinetic
model, we can employ this process to infer physical parameters of interest. To do so, we start by using
Eq 2.13 to derive the concentration of the number of cells C* with one or more probes attached as

[C"] = [Cr] = [Co]

(I exp (= (1)) (1+ [N] )"(H [N] )"

=[Crl = [C1] ), D XDl
Ji S n
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N (D gD
1—(1+K[D]d) exp{% : (33)

n 1+KSD‘1

= [Cr]

where d is the dilution number. If we normalize [C*] by the total concentration of cells [Cr], then we
can treat the expression as a probability that a given cell will fluoresce as a function of d, as shown in
Figure 4(b). The placement of the characteristic drop in probability is dictated by the parameters K
and (/). If we consider the data point C}; as the number of cells that fluoresce at dilution d, then we
expect its value to be binomial distributed and we can derive the likelihood function

d -J [N 16 -7 [N \167-Ca
o T (Cr [N] ~Dx [N] —{Dx
L({Cd}): n (C*) 1 _(1 + KDd) eXp Dd+m]:| |:(1 + KDd) ex Dd+m
d=dmin d n K n K
(3.4)

For a given set of data {C}}, the log of the likelihood is a function of the parameters and can be
maximized to solve for maximum likelihood estimates (MLE) of these parameters. As the original
intent of the serial dilution procedure is to quantify the affinity of specific probe binding, K would be
the desired inferred parameter. However, depending on the underlying experiment, one can envision
estimating the expression of surface receptors (/) and its change under differing experimental
environments.

3.3. Applications in FACS

A very common use of flow cytometry is in fluorescence activated cell sorting (FACS) in which
cells are physically sorted into bins based on their species type [8, 17]. As each cell is sent past the
laser, the intensity measurement informs the computer in real-time which category the cell falls into.
The droplet containing the cell exits an electrically charged ring that induces an electric charge in the
droplet. An electric field controlled by the computer is then used to propel the extruded cell into the
appropriate bin based on the fluorescence measurement. However, the confounding factors previously
discussed can cause incorrect sorting of cells due to non-specific binding and other background
fluorescence. If all parameters are a priori known, then using Eq 3.1 can technically be used to
determine the cell species as the expression quantifies the probability that a cell is a mutant over a
wild-type cell given its fluorescence. A resulting probability larger than 0.5 will indicate a mutant,
making Eq 3.1 a decision function. However, there are two complications. One is that the evaluations
of Eq 3.1 are relatively computationally intensive, especially if the expected number of receptors (/)
is large. The real-time nature of the physical process of FACS requires rapid evaluation, though
increasing computational resources can alleviate the problem. The second, more pertinent issue is
that, though we are assuming all parameters are known, it is unlikely that the concentration of mutants
[M] is a priori known. Biologists typically use cytometry assays after some experiment and the
quantification of [M] is often the primary desired quantity still undetermined. Furthermore, our
method of estimating [M] is a model-based clustering technique that leverages all data collectively,
making real-time analysis problematic.

One potential solution for both problems is to use a two-pass cytometry method. One pass through
the cytometer would be used to quantify the concentration of mutants [M] while also storing the
evaluations of Eq 3.1. All cells would be collected together and reintroduced to the sheath fluid for a
second pass for the FACS step. Though it would be improbable to exactly match each cell with their
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stored evaluation in the first pass, this extra data will act as a prior for more informed statistical
sorting of the cells. Though previously discussed applications of our model use protocols already
practiced by biologists, the potential overhead of using a two-pass cytometry process would be
subject to the specific requirements of each experiment employing the method.

4. Conclusions

In this paper, we have created a full kinetic model of the specific and nonspecific binding dynamics
of a cell/probe suspension at chemical equilibrium. Using a mass-action approach, we derived
expressions for important equilibrium quantities as functions of physical and experimental parameters
of the flow cytometry assay. The total number of afflicted cells, which we refer to as mutants, is often
the primary desired quantity of the protocol as the probes are assumed to attach only to those cells.
However, we show quantitatively how the nonspecific binding of probes to the membranes of both
mutants and wild-type cells can confound the results. Furthermore, using the analogous Langmuir
adsorption isotherm, we demonstrated how to choose probe concentration that will minimize these
confounding effects. For the estimation of the total number of mutants in flow cytometry output,
which is often subject to heuristic gating, we provided an iterative algorithm to obtain this number
without input from the experimentalist. We claim that having a fundamental model for which the
algorithm is based will increase the accuracy over other clustering attempts. Furthermore, we extract
further utility from a serial dilution process often employed to measure the affinity of probes to infer
true physical parameters of the cells. Lastly, we discuss the potential applications and issues with
using our method for fluorescence activated cell sorting (FACS) while proposing a two-pass
cytometry process to alleviate some of the problems.

Our model and analysis approach can be readily extended to include multiple probes, multiple
specifically binding receptors, and more general distribution functions for receptor expression by the
mutant cells. We expect that in such more complex, higher dimensional discrimination assays, our
more systematic and quantitative analysis methods should provide more accurate results. Finally, we
are developing a web based tool that fully implements our flow cytometry analysis procedure so that it
can be applied to experimentally measured data. This will increase the accessibility of our model and
enable quantitative comparisons with existing methods, including heuristic gating.
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