
Mathematical Biosciences and Engineering, 16 (3): 1575–1596.

DOI: 10.3934/mbe.2019075

Received: 22 November 2018

Accepted: 27 January 2019

Published: 26 February 2019

http://www.aimspress.com/journal/MBE

Research article

A multi-objective imperialist competitive algorithm (MOICA) for

finding motifs in DNA sequences

Saeed Alirezanejad Gohardani1, Mehri Bagherian1,* and Hamidreza Vaziri2

1 Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan,

Rasht, Iran
2 Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran

* Correspondence: Email: mbagherian@guilan.ac.ir; Tel: +98-912-126-8190; Fax: +98-133-333-

3509.

Abstract: Motif discovery problem (MDP) is one of the well-known problems in biology which tries

to find the transcription factor binding site (TFBS) in DNA sequences. In one aspect, there is not

enough biological knowledge on motif sites and on the other side, the problem is NP-hard. Thus,

there is not an efficient procedure capable of finding motifs in every dataset. Some algorithms use

exhaustive search, which is very time-consuming for large-scale datasets. On the other side,

metaheuristic procedures seem to be a good selection for finding a motif quickly that at least has

some acceptable biological properties. Most of the previous methods model the problem as a single

objective optimization problem; however, considering multi-objectives for modeling the problem

leads to improvements in the quality of obtained motifs. Some multi-objective optimization models

for MDP have tried to maximize three objectives simultaneously: Motif length, support, and

similarity. In this study, the multi-objective Imperialist Competition Algorithm (ICA) is adopted for

this problem as an approximation algorithm. ICA is able to simulate more exploration along the

solution space, so avoids trapping into local optima. So, it promises to obtain good solutions in a

reasonable time. Experimental results show that our method produces good solutions compared to

well-known algorithms in the literature, according to computational and biological indicators.

Keywords: motif discovery; Imperialist Competitive Algorithm; multi-objective optimization; DNA

sequences; transcription factor binding site

mailto:mbagherian@guilan.ac.ir

1576

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

1. Introduction

The information about motifs provides significant knowledge about evolutionary processes and

the complexities of different organisms simultaneously. Biologists believe that some special proteins

called Transcription Factors (TFs) bind to some patterns of the DNA substrings called Transcription

Factor Binding Sites (TFBSs). Then, the process of gene expression initiates [1]. During this process,

genes are transcribed into RNA and get activated or deactivated. These regulatory sites in DNA

strings correspond to some conservative sequence patterns which are called motifs. The regulatory

sites or TFBSs are called occurrences. Finding these regulatory sites or TFBSs seems to be difficult;

however, discovering them helps molecular biologists to investigate the interaction between DNA

and proteins, gene regulation, cell development, and cell reaction under physiological and

pathological conditions. Occurrences have a fixed length, but they have slightly different

compositions from their own motif.

This problem is one of the well-known problems in molecular biology and since it has been

proven to be NP-hard [2], various methods and algorithms have been proposed to solve it. There are

two classes of procedures for finding motifs: Pattern driven and sample driven approaches. In pattern

driven procedures, the methods search on all |Σ|𝑙 candidate motifs. In sample-driven approaches

patterns related to the given instance are only explored [3]. Methods to solve MDP can also be

classified into two main groups: exact and approximate methods. The exact methods are very time

consuming while approximate methods give a good result(s) in a reasonable time. Thus, they have

attracted more attention from research communities. Heuristic procedures (as approximate

procedures) have been widely used in the literature since they are fast and give a reasonable

answer(s) [4]. Numerous existing algorithms identify motifs with a given length, but they are either

not applicable or not efficient when searching motifs with different lengths. Finding motifs with and

without gapped in the given sequences is the goal of many algorithms. Locating gapped motifs is a

time-consuming task due to using combinatorial approaches [5]. Our proposed procedure is for a

fixed-length motif without gap, and we don't study extensible-length motifs here.

To find real biological motifs, several assumptions which are close to the nature of the motif

have been considered. Kaya [6] has listed some of these assumptions:

1. Each DNA sequence has an occurrence.

2. Each DNA sequence does not have an occurrence. This is more close to the definition of the

motif in nature.

3. Sequences in the dataset have more than one occurrence.

4. There is more than one motif for sequences.

For each of these assumptions, a suitable algorithm has been proposed, but we are looking for

an algorithm that behaves more similar to the nature of the motif, indeed. In fact, a composition of

these assumptions can help us to find a reasonable answer(s). In the literature, the proposed

procedures for solving MDP have been classified into two main groups: Statistical techniques and

string-based methods [7]. Some significant statistical algorithms are the expectation maximization

(EM) algorithm [8] and Gibbs Sampling [9] proposed by Lawrence and Raly which use a greedy

approach. These algorithms use elaborated statistical techniques for finding motifs. MEME (Multiple

EM for Motif Elicitation) is an extended EM algorithm for discovering motifs in unaligned

biopolymer sequences [10]. AlignAce (Aligns Nucleic Acid Conserved Elements) finds occurrences

1577

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

in a set of DNA sequences [11]. This algorithm tries to find profile motif. An important assumption

taken into account by this procedure is that the motif model is one that is most different from the

background motif model. Thus, they try to maximize the likelihood ratio of the motif model to the

background model or the information entropy of the motif model in order to find the answer. In fact,

log likelihood and information content are two scoring functions which are used for profile motif

models. In MotifHyades, a novel probabilistic model was proposed and with two derived

optimization algorithms attempted to find paired motifs in DNA sequences in human cell lines [12].

In [13], the k-spectrum modeling was used to catch DNA motif patterns from protein sequences. In

the algorithm, multiple evaluation metrics gathered on millions of k-mer binding intensities from 92

proteins across 5 DNA-binding families.

The second class of algorithms is string-based ones. This kind of algorithms directly tries to find

a motif through a substring that starts from zero to l. In fact, a tree of depth 𝑙 is constructed where a

node at depth 𝑘 represents a 𝑘-length prefix of the motif. Some of the algorithms in this category are

SPELLER [3], Weeder [14], MITRA [15], CENSUS [16], GENMOTIF [17], and RISOTTO [18].

Swarm intelligence algorithms are created based on natural phenomena. Genetic, Firefly, artificial

bee colony and gravitation search algorithms are among the metaheuristic algorithms which are

inspired by nature. Swarm intelligence deals with a system consisting of a group of individuals who

move independently, but the group stays together and gradually converges to the optimal solution(s).

These algorithms are iterative methods in which a single answer tries to improve itself during a

period. Most of the metaheuristic algorithms in MDP use a single objective function, for example,

MEME, MITRA, Weeder, and Consensus [19]. Kaya proposed MOGAMOD [6] considering three

objective functions and demonstrated that considering the problem of MDP as a multi-objective

optimization problem gives better motifs than the single objective ones. In fact, MOGAMOD

attempts to optimize the length, support, and similarity of the motif simultaneously. These functions

are in conflict with each other. Thus finding a solution that optimizes all these objectives at the same

time is practically impossible and bounds to use the Pareto optimality notion. It is shown that the

Multi-objective Artificial Bee Colony (MOABC) algorithm obtained the best results for a group of

datasets among different approaches in the literature [20]. Similar to MOGAMOD, MOABC uses

three objectives to find motifs. The authors of this paper also proposed a parallel version of this

algorithm for protein strings [21]. Like all multi-objective optimization problems, it finds multiple

answers at the end. In fact, this characteristic makes multi-objective algorithms superior to single

objective ones. In this paper, we propose a multi-objective imperialist competition algorithm (MOICA)

for MDP considering the three above mentioned objectives. Imperialist Competition Algorithm has

recently attracted the attention of researchers to solve the optimization problems more efficiently.

For comparison purposes, we have used several measurements to demonstrate the efficiency of

MOICA. We used hypervolume [22] which is an indicator that defines the volume of search space

dominated by Pareto fronts. We also computed biological indicators such as nCC, nPC, nSn, nPPV,

sSn, sPPV, sASP, and nSp to demonstrate the biological quality of our results [23]. Finally, we

considered the motifs extracted from the same instances as in [6,7,20].

This paper is structured as follows: As you read the first section is the introduction. In Section2,

we briefly define the motif discovery problem (MDP). Then in Section 3 describes the

multi-objective version of MDP. Next, in Section 4, we describe the ICA and our algorithm that

would adjust ICA for the multi-objective version of MDP. Next section shows the experimental

1578

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

results obtained from MOICA and compares the results with some of the already existing

approximation algorithms. Finally, we present our conclusion in the last section.

2. Materials and methods

Consider 𝑛 sequences with length 𝑚, which are a composition of the alphabet Σ, are called by

𝑠𝑖. We defined 𝑠𝑖[𝑘, 𝑙] as a subsequence of 𝑠𝑖 with length 𝑙 that started from 𝑘. Also, let 𝑠𝑖[𝑘] denote

a single alphabet of 𝑠𝑖 in position 𝑘 . In this paper, we will be using the terms string(s) and

sequence(s) interchangeably. A motif is obtained in the given input sequences by its occurrences. We

denoted the occurrences related to one motif as a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 is the starting

position of an occurrence in the 𝑠𝑖 and 𝑥𝑖 = 0,1,2, … , 𝑚 − 𝑙 + 1 , where 𝑙 is the length of each

occurrence in the dataset. Let us suppose that each sequence has a probability of selection. Then, we

indicate 𝑥𝑖 = 0 if we don’t select any occurrence in 𝑠𝑖. As a result, there is not an occurrence in the

𝑖th sequence with 𝑥𝑖 = 0 (Figure 1). The probability of selection is called rate in our paper. It is clear

that a sequence with a rate = 40 has less chance for selection than one with a rate = 60. The start of

metaheuristic algorithms is to create individual populations. Using each of these occurrences as an

individual, then, we extract occurrences in the sequences regarding the length of motif (Figure 1).

The length of the motif in our algorithm varies between 7 and 64 as in [24]. In order to obtain a

consensus motif, we put all of the occurrences under each other (Figure 1). A composition of the

maximum alphabet frequency for each column results in consensus motif (Figure 1). We define two

variables to show consensus in a precise way: 𝑤𝑖 = max 𝑓𝑖
Σ is the maximum alphabet frequency, and

the corresponding alphabet for 𝑤𝑖 is denoted by 𝑐𝑤𝑖
, both of them extracted from the 𝑖th column of

the occurrence matrix. Then, the consensus motif is expressed through 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥) =
𝑐𝑤1

𝑐𝑤2
… 𝑐𝑤𝑛

.

After finding the consensus motif, we find concordance of each occurrence; it is a normalized

value that shows the resemblance between the consensus motif and the occurrence (Figure 1).

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑥𝑖) =
𝑙 − 𝑑𝐻(𝑠𝑖[𝑥𝑖, 𝑙], 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥))

𝑙
, 𝑖 = 1,2, … , 𝑛, 𝑥𝑖 ≠ 0

Where 𝑑𝐻 is the Hamming distance between two sequences with equal length, i.e., the number

of positions where the two sequences differ. Furthermore, same as other algorithms in the literature,

the threshold of our algorithm for concordance is 0.5. It means that if the concordance of 𝑖 th

occurrence is less than 0.5, we let 𝑥𝑖 = 0. The number of 𝑥𝑖 > 0 is the support of the motif which

depends on its occurrences. The mathematical notation of it can be written in the following way:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) = ∑ 𝑢𝑥𝑖

𝑛

𝑖=1

Where 𝑢𝑥𝑖
= {

1 𝑥𝑖 > 0
0 𝑥𝑖 = 0

. In our example of Figure 1, a single motif occurrence exists in each

sequence at most, but in reality, it can be more than one. On the other side, we make a limitation on

the support, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) ≥ 𝛿, 𝛿 = {
2 𝑛 ≤ 4
3 𝑛 > 4

. Next, concept similarity is employed, which involve

the maximum value from the 𝑖th column of the position weight matrix.

1579

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥) =
∑

wi

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)

𝑙
𝑖=1

𝑙

Then, the similarity is the average of maximum frequency for a potential motif with length 𝑙

(Figure 1).

Figure 1. An example which represents an individual 𝑥 =

[308, 6, 314, 0, 468, 371, 184, 238, 391, 447] in a given ten sequences. As shown, nine

of ten sequences have occurrence. Consensus motif is the maximum alphabet frequency

in the ith column of occurrences. Seven occurrences from nine occurrences obtained the

threshold of 50% in the concordance; i.e., 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) = 7. We computed the position

weight matrix and similarity. Then we reported the results: Length, support, and

similarity.

We computed the similarity of the example motif in Figure 1. A concept that we used in our

algorithm is Complexity based on Fogel [25]. The complexity of a string with length 𝑙 in |Σ| different

alphabets is computed as follows:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖) = log|Σ|

𝑙!

𝑛𝑖,1! 𝑛𝑖,2 … 𝑛𝑖,|Σ|!
, 𝑖 = 1,2, … , 𝑛

1580

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

Where 𝑛𝑖,𝑗 is the number of the jth alphabet from Σ in the selected sequence 𝑥𝑖 and |Σ| = 4 in

DNA. As an example, the complexity of string “AAAAAAA’ is log4
7!

7!0!0!0!
= 0, and the complexity

of string “AAATAAA” is log4
7!

6!1!0!0!
= 1.40. These short strings are somehow useless in biology

since 𝑛𝐴 = 7,6. The complexity of an individual 𝑥 is the average complexity value of each sequence.

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥) =
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖)

𝑛
𝑖=1

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)

The complexity of two strings “AAAAAAA” and “AAATAAA” is
0+1.40

2
= 0.70 . The

complexity depends on the length of the motif, which we normalize it based on the elicited motif

length. In our algorithm, we took a minimum threshold of 0.5 (50%) for the complexity.

Our goal in this paper is to maximize the length, support, and similarity of the motif

simultaneously while avoiding falls in low complexity result(s). In fact, these three values (length,

support, and similarity) are our objectives. Fitness value of an individual is assessed based on its

length, support, and similarity. We also have used the fitness value of each individual to compute the

fitness value of a group of individuals. These two values help us to find the weakest and the most

likehood individuals and the groups of individuals in our method.

We gathered all the variables and functions to define the problem in Table 1, again. The

definition of each one also is illustrated.

Table 1. Notations and definitions.

Variable Definition

𝒏 Number of sequences

𝒎 Length of each sequence

𝒍 length of motif

𝒔𝒊 𝑖th sequence with length m which is a composition of the alphabet Σ

𝒔𝒊[𝒌, 𝒍] A subsequence from 𝑠𝑖 with length 𝑙 that started from 𝑘

𝒔𝒊[𝒌] A single alphabet of 𝑠𝑖 in position k

𝒙𝒊 The starting position of an occurrence in the 𝑠𝑖 and 𝑥𝑖 = 0,1,2, … , 𝑚 − 𝑙 + 1

𝒙 An individual, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)

𝒇𝒊
𝚺 Frequency of Σ in the 𝑖th column of the occurrence matrix

𝒘𝒊 𝑤𝑖 = max 𝑓𝑖
Σ

𝒄𝒘𝒊
 The corresponding alphabet for 𝑤𝑖

𝒏𝒊,𝒋 Number of the jth alphabet from Σ in the selected sequence 𝑥𝑖

𝒖𝒙𝒊
 𝑢𝑥𝑖

= {
1 𝑥𝑖 > 0
0 𝑥𝑖 = 0

𝜹 𝛿 = {
2 𝑛 ≤ 4
3 𝑛 > 4

𝒄𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔(𝒙) 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥) = 𝑐𝑤1
𝑐𝑤2

… 𝑐𝑤𝑛

Continued on next page

Variable Definition

𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒄𝒆(𝒙𝒊) 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑥𝑖) =
𝑙 − 𝑑𝐻(𝑠𝑖[𝑥𝑖 , 𝑙], 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥))

𝑙
, 𝑖 = 1,2, … , 𝑛, 𝑥𝑖 ≠ 0

1581

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

𝒔𝒖𝒑𝒑𝒐𝒓𝒕(𝒙) 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) = ∑ 𝑢𝑥𝑖

𝑛

𝑖=1

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚(𝒙) 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥) =
∑

wi

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)
𝑙
𝑖=1

𝑙

𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚(𝒙𝒊) 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖) = log|Σ|

𝑙!

𝑛𝑖,1! 𝑛𝑖,2 … 𝑛𝑖,|Σ|!
, 𝑖 = 1,2, … , 𝑛

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚(𝒙) 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥) =
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖)𝑛

𝑖=1

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)

We can express the problem mathematically as:

3. Multi-objective problems

A single-objective optimization problem is defined as:

𝑀𝑎𝑥 𝑓(𝑥)

s.t

𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽

ℎ𝑘(𝑥) = 0, 𝑘 ∈ 𝐾

Where 𝑓(𝑥) is a single function and 𝑔𝑗(𝑥), ℎ𝑘(𝑥) are its constraints. In multi-objective

optimization problems (MOOP), we have a vector of functions which has to be optimized. In such

problems, the aim is to find the best value for all components, though the components of

multi-objective function may be in conflict with each other, such that increasing in one component

may causes decreasing in some other component(s).

The general form of a MOOP can be written as:

𝑀𝑎𝑥 𝑓(𝑥) = (𝑓𝑖(𝑥)), 𝑖 = 1, … , 𝑛

s.t

𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽

ℎ𝑘(𝑥) = 0, 𝑘 ∈ 𝐾

Where 𝑓(𝑥) is a vector with 𝑛 components and 𝑔𝑗(𝑥), ℎ𝑘(𝑥) are its constraints. After solving a

MOOP, we obtain multiple solutions which may not be better than other solutions. We call such

solutions as non-dominated solutions. In fact, the value of 𝑥 dominates the value of 𝑦, which we

Max 𝑓(𝑥) = (𝑙, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥), 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥))

s.t.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) ≥ 𝛿

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥) ≥ 0.5

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑥𝑖) ≥ 0.5, 𝑖 = 1,2, . . , 𝑛, 𝑥𝑖 ≠ 0

𝑥𝑖 = 0, 1, 2, … , 𝑚 − 𝑙 + 1, 𝑖 = 1,2, … , 𝑛

𝑙 = 7, 8, … , 64

1582

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

indicate as 𝑓(𝑥) ≻ 𝑓(𝑦) if and only if 𝑓(𝑥) is better than 𝑓(𝑦) in at least one component, which may

also be not worse than the other components. We say 𝑥 is pareto- optimal or non-dominated optimal

if there is no 𝑦 in feasible space such that 𝑓(𝑦) dominates 𝑓(𝑥). We call a set of pareto-optimal

solutions or non-dominated optimal solutions as pareto-optimal set. In fact, after solving a MOOP,

we have a pareto-optimal set [26]. We also call the value of the pareto-optimal set as pareto fronts.

Our goal is to find the best pareto fronts.

A lot of metaheuristic algorithms based on natural phenomena have been defined to solve

optimization problems like genetic algorithm inspired by gene evolution, ant colony algorithm

mimiced by ant search behavior, fish swarm optimization based on fish behavior looking for food.

Among the metaheuristic algorithms, ICA has attracted the researchers’ attention due to its ability to

find good solutions for NP-hard problems. In the next section, we explain the ICA in detail. This is

the main part of our paper.

In swarm algorithms, a group of individuals work collaboratively to solve a problem. To start

the algorithm, initial individuals (countries) are created randomly. The cost of each individual

(country) is calculated on the basis of its objective function value. We can refer to ICA ability to

simulate a wider exploration during the solution searching space as an advantage.

4. The MOICA algorithm

The Imperialist Competition Algorithm proposed by Atashpaz et al. in 2007 [27] was inspired

by the intelligent behaviour of imperialist competition in the real world. This algorithm has some

simple parameters such as the number of countries, the number of imperialists, and the maximum

number of iterations. To solve multi-objective MDP, we propose a new algorithm based on the

Imperialist Competition Algorithm. Similar to the other evolutionary algorithms, the first part of this

algorithm is the creation of initial population. Then, all countries are classified into two groups:

Imperialists and colonies. In fact, some of the best countries are selected as imperialists and the rest

of them are called colonies. Colonies are divided by imperialists on the basis of their power. Thus, a

group of empires are created which challenge each other to catch more countries. Two main

processes occur after this assimilation process: Intra competition and extra completion. In intra

competition, each colony moves towards its own imperialist and the imperialist tries also to increase

its power. During this process, a colony replaces its own imperialist if it has more power. The next

process is extra competition. In this process, the algorithm finds the weakest colony in the weakest

empire and adds it to one of the strongest empires. The total power of an empire depends on the

power of its imperialist and a percentage of the mean power of its colonies.

These two main processes would repeat in a reasonable time until the empires gradually

collapse and finally all countries converge into one empire.

In this work, a particular intelligent behaviour which causes countries to rise or collapse is

considered. Individuals in this algorithm are similar to MOGAMOD [6] and MOABC [20]. The main

steps of the algorithm are given below:

Algorithm MOICA:

1. Input: 𝑛 sequences, the selection probability (rate), the number of Population (nPop), the

number of Empires (nEmp), and the Maximum Iteration (MaxIt).

2. Create nPop countries with a fixed length 𝑙 ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥] and compute support and similarity

for each of them.

1583

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

3. Use non-dominated sorting to sort all Motifs (countries).

4. Assimilation: Select nEmp of best Motifs (countries) as imperialists and divide the other nCol

countries between them based on imperialists’ positions in Step 3.

5. Intra Competition: Make a revolution in colonies and imperialists in each empire and replace

each imperialist by a colony if it is better.

6. Use non-dominated sorting to sort all Motifs (countries).

7. Compute the fitness function of each empire and find the weakest.

8. Extra competition: Select the weakest Motif (country) from the weakest empire and give it to

the empire that has the most likehood to possess it.

9. Repeat 5–8 MaxIt times.

10. Output: Non-dominated set.

MaxIt, 𝑛 sequences, rate, nPop, and nEmp are given as input. We should know the minimum

and maximum length of motifs, 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 respectively to search within this range. To start the

algorithm, we create and evaluate the initial countries (item 2). This step repeats for each motif

length. Here, we add two propositions to our algorithm in this line. The first proposition is that the

support of each individual (country) cannot be less than 2 for 𝑛 = 2,3 and it cannot be less than 3

for 𝑛 ≥ 4. The second proposition is that we don’t let an individual (country) with low complexity

get produced. In fact, we require the program to reproduce a new individual instead of a previous one

which didn’t satisfy our two propositions. The main process of MOICA starts after item 2.

After non-dominate sorting (in item 3), all the countries assimilate into nEmp countries which

are selected after the sorting process (in item 4). We can divide the rest of algorithm into three

blocks: Intra competition, non-dominate sorting, and extra competition. In intra competition block,

we create colonies on the basis of their distances from their own imperialists and also create a new

imperialist (we explain the way of mutation and crossover at the end of this section). We replace the

imperialist by each of its colonies or create a new imperialist if its support and similarity is better

than the imperialist based on the dominant concept and if its complexity is not low (item 5). In the

second block, we do non-dominated sorting to find the rank between all countries (item 6). Hence,

we calculate the fitness value of each country by:

(𝑛𝑃𝑜𝑝 − 1)𝑟𝑎𝑛𝑘, 𝑟𝑎𝑛𝑘 = 1,2, … , 𝑛𝑃𝑜𝑝.

We use the fitness value of each country to calculate the fitness (total power) of an empire. The

fitness value of an empire is the fitness value of its imperialist added to a 𝜁 percent of average fitness

value of its colonies. In our proposal, we take 𝜁 = 30%.

In the last block, we do an extra competition to find the weakest colony in the weakest empire

to add it to one of the strongest empires (items 7 and 8). We find both of them based on their fitness,

the fitness value of empire, and the fitness value of each country. Finally, we repeat this process

Maximum Iteration (MaxIt) times to reach to some non-dominated imperialists. Then, we report

them as motifs.

At the end of this section, we explain how we make new colonies move towards an imperialist.

We also explain how we mutate a country (imperialist or colony). Let 𝐼𝑚𝑝 = (𝑎1, 𝑎2, … , 𝑎𝑛) and

𝐶𝑜𝑙 = (𝑏1, 𝑏2, … , 𝑏𝑛). First of all, in order to make a 𝐶𝑜𝑙 move towards an 𝐼𝑚𝑝 for the creation of a

new colony (𝑏1
′ , 𝑏2

′ , … , 𝑏𝑛
′) we do as follows:

1584

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

𝑏𝑖
′ = {

0 𝑎𝑖 = 0, 𝜂 < 𝑝𝑟𝑒𝑣

𝑏𝑖 𝑎𝑖 = 0, 𝜂 > 𝑝𝑟𝑒𝑣

𝑎𝑖 𝑎𝑖 ≠ 0, 𝑏𝑖 = 0

𝑏𝑖 + ⌈𝛽𝜂(𝑎𝑖 − 𝑏𝑖)⌉ 𝑎𝑖 ≠ 0, 𝑏𝑖 ≠ 0

,

Where 𝜂~𝑈(0,1) that is a uniform number between 0 and 1. We take 𝛽 = 2 and 𝑝𝑟𝑒𝑣 = 10% in

MOICA. We also notice that if 𝑎𝑖 ≠ 0, 𝑏𝑖 ≠ 0 then we don’t let 𝑏′𝑖 < 1 or 𝑏′𝑖 > 𝑚 − 𝑙 + 1. If 𝑏𝑖 <

1 or 𝑏𝑖 > 𝑚 − 𝑙 + 1, we replace it with one and 𝑚 − 𝑙 + 1, respectively.

Mutation is to make a revolution in the country (imperialist or colony). We produce a new

country (𝑎1
′ , 𝑎2

′ , … , 𝑎𝑛
′) as follows:

𝑎𝑖
′ = {

0 𝑎𝑖 = 0

𝑎𝑖 + ⌈𝜎𝜃⌉ 𝑎𝑖 ≠ 0

Here we take 𝜃~𝑈(−1,1) and 𝜎 = 0.1(𝑚 − 𝑙 + 1). We also notice that if 𝑎𝑖 ≠ 0, then we don’t

let 𝑎′𝑖 < 1 or 𝑎′𝑖 > 𝑚 − 𝑙 + 1. If 𝑎′𝑖 < 1 or 𝑎′𝑖 > 𝑚 − 𝑙 + 1, we replace it with one and 𝑚 − 𝑙 + 1,

respectively.

5. Experimental results

In this section, we compare our algorithm with other significant algorithms in the literature. In

order to show the efficiency of our algorithm, we performed some experiments as in Kaya [6] and

Gonzalez et al. [7,20], and on real dataset as TRANSFAC database [23]. We compare our algorithm

with some previous significant methods in the literature such as, MEME [10], Weeder [14],

AlignACE [11], MOABC [20], MO-VNS [28], DEPT [24], MO-FA [29], MO-GSA [30],

SPEA2 [31], and NSGA-II [32]. The comparison is made according to three metrics: Hypervolume

indicator, biological indicators, and motif finding. Our proposed algorithm is written in C++1. The

computation has been performed on a laptop computer with an Intel(R) Core(TM) i3 CPU M 330

(2.13 GHz) and 4.0 GB memory.

One important performance measure for comparing MOICA with other multi-objective

algorithms for finding TFBs is hypervolume indicator [22]. Hypervolume was used by Gonzalez [20]

to show that MOABC mostly produces better results than the other algorithms in the literature.

Hypervolume is an indicator that indicates the volume of search space covered by the result of

algorithm. To calculate the hypervolume, (0,0,0) is selected as the worst point. In order to obtain

more accurate results, we ran our algorithm 31 times for each instance to show its statistical

significance and reported its average and standard deviation in Table 3. Reference volume in each

instance depends on the number of sequences, the maximum length of each sequence, and the

maximum similarity that is 1 (100%). For example, a dataset with 4 sequences will have the

reference volume of 4 × 64 × 1. Since other source codes are not available, to compare MOICA with

algorithms of [6,7], we have approximately used the same runtimes. To assure the power of our

algorithm, we selected a composition of 54 real, generic, and Markov chain from TRANSFAC

dataset [23] (called as ending in “r”, “g”, and “m” respectively) with different sequence numbers

and lengths.

1 The source code would be available upon request.

1585

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

The dataset specifications, algorithm parameters for each instance, and runtime(s) are reported

in Table 2. The total size of each data is equal to the product of the number of sequence and the

length of sequence. As it is seen, MOICA has 4 parameters: the probability of selection of each

sequence (rate), the Maximum Iteration (MaxIt), the number of Population (nPop), and the number

of Empires (nEmp). To reach the best result, we ran the program several times to find the best

parameters for MOICA and reported all of them in Table 2.

Table 2. MOICA parameters and runtime for each instance.

Time(sec.) nCol nEmp nPop MaxIt rate Len. Seq. Dataset

15 110 50 160 390 55% 500 3 yst05r

15 110 50 160 390 55% 500 4 yst02g

20 110 50 160 390 55% 1000 5 yst10m

20 110 50 160 390 55% 500 6 yst07m

20 110 50 160 390 55% 500 7 yst06g

25 110 50 160 390 55% 500 8 yst03m

25 110 50 160 390 55% 1000 9 yst01g

30 110 50 160 390 55% 1000 11 yst08r

30 100 35 135 330 55% 1000 16 yst09g

25 110 50 160 390 70% 1000 7 yst04r

25 110 50 160 390 70% 500 8 yst03r

30 90 35 125 300 70% 1000 16 yst09g

30 110 50 160 400 60% 500 12 mus11r

15 110 50 160 400 75% 1500 4 mus07r

30 130 50 180 470 60% 3000 7 hm16r

40 110 50 160 400 60% 2000 13 hm04r

15 110 50 160 390 55% 1500 3 dm07m

15 120 50 170 420 80% 2000 3 dm08m

15 120 50 170 420 80% 2000 3 dm03m

15 110 50 160 390 55% 2500 3 dm05g

20 120 50 170 420 80% 1500 4 dm01g

20 120 50 170 420 80% 2000 4 dm04g

15 120 50 170 420 90% 500 2 hm12r

15 120 50 170 420 90% 500 2 hm25g

15 120 50 170 420 90% 1000 2 hm14r

15 120 50 170 420 80% 1000 3 hm05r

20 120 50 170 420 80% 500 4 hm23r

15 110 50 160 390 55% 2000 4 hm15r

20 110 50 160 390 55% 500 5 hm19g

20 110 50 160 390 55% 500 5 hm21g

20 110 50 160 390 55% 1000 5 hm07m

20 110 50 160 390 55% 3000 5 hm18m

20 110 50 160 390 55% 500 6 hm22m

Continued on next page

Time(sec.) nCol nEmp nPop MaxIt rate Len. Seq. Dataset

20 110 50 160 390 55% 500 6 hm10m

1586

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

20 110 50 160 390 55% 1000 6 hm13r

20 110 45 155 350 55% 3000 7 hm16g

20 110 40 150 345 55% 500 8 hm24m

20 110 40 150 345 55% 1000 8 hm11g

20 110 40 150 345 55% 500 9 hm06g

20 110 40 150 345 55% 1000 9 hm26m

20 110 40 150 345 55% 1000 9 hm02r

30 110 50 160 390 55% 1500 10 hm03r

30 110 50 160 390 55% 1500 10 hm09g

30 110 50 160 390 55% 500 11 hm17g

30 100 40 140 340 55% 2000 13 hm04m

30 100 35 135 330 55% 500 15 hm08m

30 100 30 130 300 55% 2000 18 hm01g

30 90 20 110 190 55% 2000 35 hm20r

10 110 50 160 390 55% 500 2 mus09r

15 110 50 160 390 55% 500 3 mus01r

15 110 50 160 390 55% 500 3 mus12m

15 110 50 160 390 55% 500 3 mus06g

15 110 50 160 390 55% 1500 3 mus08m

15 110 50 160 390 55% 500 4 mus05r

15 110 50 160 390 55% 1500 4 mus07g

20 110 50 160 390 55% 500 5 mus03g

20 110 45 155 350 55% 1000 7 mus04m

20 110 40 150 345 55% 1000 9 mus02r

30 110 40 150 345 55% 500 12 mus11m

30 100 40 140 340 55% 1000 13 mus10g

20 110 50 160 450 95% 2500 5 dm05r

25 150 50 200 450 80% 2000 4 dm04r

15 110 50 160 400 75% 1500 4 dm01r

Hypervolume indicator is the first indicator used to compare MOICA with MOABC [20],

MO-VNS [28], DEPT [24], MO-FA [29], MO-GSA [30], SPEA2 [31], and NSGA-II [32].

The result of this comparison is shown in Table 3. We divide the results in four parts: Datasets

with 𝑛 = 2 sequences, datasets with 𝑛 = 3, 4, 5, 6, 7 sequences, datasets with 𝑛 = 8, 9 sequences,

and datasets with 𝑛 > 9 sequences. In datasets with 𝑛 = 2 sequences, NSGA-II has the best

hypervolume value among all algorithms which is specified in Table 2, though MOABC, MO-GSA

and SPEA2 have a value close to that of NSGA-II. In datasets with 𝑛 = 2, 3, 4, 5, 6, 7 sequences,

MOABC gets the best results in different cases most of the time. MO-VNS, NSGA-II, and SPEA2

have close results in this interval. For example, NSGA-II has the best hypervolume in

dm05g (𝑛 = 2), mus07g (𝑛 = 3), dm01g (𝑛 = 3), and yst04r (𝑛 = 7). On the other hand,

MO-VNS’s hypervolume and SPEA2’s hypervolume decrease quickly for 𝑛 > 5 and 𝑛 > 4 ,

respectively. DEPT, MO-FA, MO-GSA, and MOICA have very weak hypervolume in this interval

in most cases, though MO-FA and MOICA have the best hypervolume for hm16g (𝑛 = 7) and

yst10m (𝑛 = 5), respectively. DEPT, MO-FA and MOICA gets better hypervolume if we increase

the number of sequences.

1587

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

For datasets with 𝑛 = 8, 9 sequences, DEPT has the best hypervolume in most cases. Also,

MOICA and MO-FA have a value close to that of DEPT in this interval, but other algorithms have

very weak results. For datasets with 𝑛 > 9, MOICA has the best results and its hypervolume for

hm10g (𝑛 = 18) and hm20r (𝑛 = 35) is significant. Other algorithms are very weak for datasets with

more than 9 sequences except MO-FA that has a better result just for hm09g (𝑛 = 10).

Table 3. The mean and standard deviation of each Algorithm hypervolume on 54 datasets.

SPEA2 MO-GSA MO-FA NSGA-II DEPT MO-VNS MOABC MOICA n, m Dataset

93.35%

0.002

92.92%

0.005

90.36%

0.004

93.46%

0.001

90.95%

0.002

84.79%

0.061

92.95%

0.005

83.12%

0.002
2,500 mus09r

94.59%

0.007

93.88%

0.005

91.14%

0.006

94.71%

0.002

91.50%

0.005

90.69%

0.034

94.29%

0.005

85.12%

0.002
2,500 hm12r

93.82%

0.003

93.20%

0.011

90.24%

0.007

93.94%

0.010

91.30%

0.008

79.92%

0.062

93.66%

0.007

81.93%

0.003
2,500 hm25g

93.96%

0.003

94.11%

0.003

91.03%

0.006

94.40%

0.004

91.40%

0.003

86.77%

0.062

93.88%

0.006

84.07%

0.002
2,1000 hm14r

85.66%

0.004

81.29%

0.020

83.63%

0.014

85.96%

0.010

80.76%

0.021

86.61%

0.007

86.89%

0.007

82.32%

0.004
3,500 yst05r

85.65%

0.004

80.50%

0.022

84.44%

0.017

85.26%

0.011

80.40%

0.017

85.90%

0.007

86.93%

0.006

80.28%

0.004
3,500 mus01r

84.96%

0.004

80.78%

0.018

82.72%

0.010

84.19%

0.012

80.04%

0.018

85.41%

0.006

85.78%

0.006

80.46%

0.004
3,500 mus12m

83.46%

0.003

79.94%

0.017

81.91%

0.008

83.35%

0.010

80.01%

0.020

84.21%

0.007

84.33%

0.006

79.60%

0.003
3,500 mus06g

85.10%

0.005

80.32%

0.015

82.73%

0.009

85.19%

0.012

80.46%

0.019

85.41%

0.007

85.50%

0.009

82.38%

0.005
3,1000 hm05r

85.19%

0.006

80.42%

0.020

83.53%

0.010

85.01%

0.008

81.01%

0.015

85.87%

0.007

86.09%

0.011

81.65%

0.004
3,1500 dm07m

84.60%

0.004

80.48%

0.023

83.10%

0.010

84.52%

0.010

80.85%

0.010

85.11%

0.007

85.77%

0.008

80.71%

0.005
3,1500 mus08m

85.17%

0.004

80.94%

0.017

83.25%

0.010

85.90%

0.007

81.30%

0.015

85.75%

0.007

85.96%

0.008

81.81%

0.003
3,2000 dm08m

85.16%

0.006

80.75%

0.021

83.52%

0.011

84.56%

0.007

81.38%

0.017

85.56%

0.007

86.06%

0.011

81.29%

0.003
3,2000 dm03m

85.59%

0.005

80.30%

0.021

83.67%

0.012

86.69%

0.005

81.55%

0.014

85.88%

0.008

86.39%

0.010

82.18%

0.003
3,2500 dm05g

82.28%

0.005

78.78%

0.012

80.82%

0.011

79.81%

0.007

78.21%

0.016

82.50%

0.007

82.87%

0.010

78.80%

0.003
4,500 yst02g

81.18%

0.005

78.23%

0.013

80.89%

0.011

79.51%

0.007

78.13%

0.018

81.57%

0.007

82.38%

0.007

77.16%

0.002
4,500 hm23r

80.44%

0.004

78.08%

0.013

80.25%

0.008

79.81%

0.006

77.56%

0.019

81.45%

0.006

81.69%

0.008

77.88%

0.003
4,500 mus05r

Continued on next page

SPEA2 MO-GSA MO-FA NSGA-II DEPT MO-VNS MOABC MOICA n, m Dataset

87.73% 79.85% 82.43% 90.43% 80.01% 89.08% 89.21% 85.55% 4,1500 mus07g

1588

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

0.010 0.018 0.015 0.022 0.034 0.015 0.029 0.013

81.74%

0.004

79.03%

0.015

81.62%

0.013

83.77%

0.010

79.66%

0.017

82.95%

0.006

83.24%

0.008

80.91%

0.004
4,1500 dm01g

81.08%

0.005

79.31%

0.014

81.91%

0.014

81.16%

0.006

79.78%

0.018

82.90%

0.008

83.77%

0.014

80.34%

0.003
4,2000 dm04g

85.93%

0.009

80.23%

0.025

83.98%

0.042

85.23%

0.022

80.29%

0.022

85.23%

0.016

88.59%

0.027

82.80%

0.010
4,2000 hm15r

79.74%

0.004

76.81%

0.019

80.08%

0.009

79.33%

0.007

78.71%

0.022

80.35%

0.007

81.37%

0.009

76.76%

0.003
5,500 hm19g

77.31%

0.004

74.58%

0.044

79.67%

0.012

76.48%

0.012

77.61%

0.016

77.39%

0.018

79.84%

0.008

72.74%

0.003
5,500 mus03g

65.38%

0.003

63.39%

0.010

64.99%

0.009

65.24%

0.004

63.49%

0.014

66.08%

0.005

66.67%

0.007

75.53%

0.003
5,1000 yst10m

78.61%

0.004

77.01%

0.019

79.49%

0.010

78.24%

0.008

78.72%

0.012

79.76%

0.007

81.12%

0.010

75.83%

0.002
5,1000 hm21g

78.71%

0.004

77.37%

0.017

79.91%

0.010

79.39%

0.005

78.91%

0.017

79.66%

0.006

81.24%

0.009

74.87%

0.003
5,1000 hm07m

78.58%

0.004

77.39%

0.023

79.97%

0.009

77.58%

0.004

79.80%

0.014

79.38%

0.007

81.31%

0.008

75.16%

0.003
5,3000 hm18m

75.92%

0.005

70.49%

0.038

77.36%

0.008

74.57%

0.013

76.81%

0.012

74.22%

0.032

78.27%

0.008

72.27%

0.003
6,500 yst07m

75.53%

0.005

69.87%

0.047

76.84%

0.009

75.02%

0.030

76.98%

0.011

74.12%

0.028

77.91%

0.007

72.22%

0.003
6,500 hm22m

75.22%

0.005

69.01%

0.038

77.54%

0.009

74.61%

0.020

77.11%

0.014

72.36%

0.034

78.23%

0.011

72.06%

0.003
6,500 hm10m

75.19%

0.005

70.27%

0.040

77.35%

0.008

76.08%

0.010

77.24%

0.008

72.88%

0.031

78.18%

0.010

72.93%

0.003
6,1000 hm13r

73.19%

0.005

68.05%

0.030

75.75%

0.014

73.84%

0.011

74.94%

0.018

72.04%

0.028

75.93%

0.012

74.10%

0.002
7,500 yst06g

71.43%

0.006

68.20%

0.034

73.98%

0.014

77.04%

0.007

73.50%

0.020

72.88%

0.028

75.54%

0.012

75.30%

0.003
7,1000 yst04r

69.43%

0.020

63.99%

0.030

74.24%

0.010

67.86%

0.012

74.31%

0.012

65.49%

0.021

71.10%

0.023

70.02%

0.003
7,1000 mus04m

71.13%

0.023

69.12%

0.043

83.63%

0.051

71.82%

0.015

78.42%

0.044

70.36%

0.026

81.55%

0.055

76.90%

0.015
7,3000 hm16g

68.37%

0.011

62.59%

0.038

72.65%

0.010

66.44%

0.011

73.26%

0.012

65.03%

0.026

69.68%

0.024

69.97%

0.004
8,500 yst03m

68.28%

0.013

59.58%

0.036

72.19%

0.008

65.10%

0.011

72.91%

0.012

62.65%

0.028

67.65%

0.019

69.08%

0.003
8,500 hm24m

69.34%

0.012

60.14%

0.044

73.15%

0.017

69.38%

0.031

74.54%

0.021

63.86%

0.028

69.93%

0.021

72.17%

0.005
8,1000 hm11g

61.24%

0.012

56.60%

0.029

69.37%

0.012

60.06%

0.015

70.68%

0.027

59.43%

0.019

63.21%

0.019

69.52%

0.003
9,500 hm06g

Continued on next page

SPEA2 MO-GSA MO-FA NSGA-II DEPT MO-VNS MOABC MOICA n, m Dataset

63.16% 59.37% 70.14% 62.75% 70.72% 61.48% 65.16% 69.94% 9,1000 yst01g

1589

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

0.013 0.024 0.011 0.013 0.014 0.021 0.025 0.004

62.28%

0.015

58.89%

0.031

70.48%

0.012

60.86%

0.013

70.68%

0.016

60.98%

0.025

64.43%

0.025

68.51%

0.004
9,1000 hm26m

59.09%

0.013

57.57%

0.024

69.88%

0.014

61.50%

0.014

70.85%

0.023

59.04%

0.022

63.45%

0.033

68.68%

0.006
9,1000 hm02r

60.62%

0.012

57.21%

0.025

69.78%

0.015

61.99%

0.013

70.02%

0.019

59.34%

0.025

63.58%

0.024

69.08%

0.005
9,1000 mus02r

53.77%

0.017

58.44%

0.021

69.06%

0.020

51.59%

0.038

65.03%

0.030

58.75%

0.014

60.18%

0.026

69.23%

0.005
10,1500 hm03r

54.79%

0.013

57.51%

0.022

68.71%

0.023

50.71%

0.043

65.20%

0.033

57.72%

0.017

59.23%

0.027

68.28%

0.005
10,1500 hm09g

52.47%

0.012

54.40%

0.024

65.86%

0.030

49.94%

0.037

64.12%

0.033

55.12%

0.019

55.55%

0.023

66.08%

0.006
11,500 hm17g

57.96%

0.014

61.24%

0.030

69.12%

0.019

64.92%

0.028

67.80%

0.048

63.03%

0.030

62.91%

0.023

71.15%

0.006
11,1000 yst08r

48.87%

0.014

49.51%

0.031

62.01%

0.014

45.32%

0.043

58.85%

0.039

49.54%

0.031

51.25%

0.020

62.98%

0.007
12,500 mus11m

47.89%

0.011

52.18%

0.029

62.17%

0.018

45.03%

0.029

60.90%

0.030

52.21%

0.022

53.20%

0.024

63.88%

0.005
13,2000 hm04m

43.94%

0.010

47.05%

0.032

59.25%

0.016

41.73%

0.036

55.34%

0.039

46.22%

0.030

48.92%

0.021

62.64%

0.005
13,1000 mus10g

43.45%

0.011

46.98%

0.037

58.07%

0.015

42.63%

0.028

57.15%

0.046

46.81%

0.037

48.57%

0.023

61.25%

0.009
15,500 hm08m

42.34%

0.011

46.50%

0.029

56.86%

0.021

42.68%

0.022

55.70%

0.056

45.74%

0.037

47.92%

0.022

62.11%

0.007
16,1000 yst09g

34.55%

0.009

37.95%

0.042

49.56%

0.065

33.92%

0.027

42.98%

0.054

34.40%

0.029

42.05%

0.033

59.96%

0.010
18,2000 hm01g

21.91%

0.006

25.68%

0.020

36.43%

0.065

22.89%

0.014

25.33%

0.026

22.67%

0.027

25.08%

0.020

46.70%

0.016
35,2000 hm20r

In biological indicators, we examine the biological properties of our proposal with fifteen

methods in TRANSFAC database. In this assessment, we just ran MOICA 5 times for each dataset to

elicit its properties. This database contains a list of four species with different 𝑛 and 𝑚. We first

define these biological tools based on both the nucleotide level and the site level. Specifically, at the

nucleotide level [33].

• nTP is the number of nucleotide positions in both known sites and predicted sites;

• nFN is the number of nucleotide positions in known sites but not in predicted sites;

• nFP is the number of nucleotide positions not in known sites but in predicted sites;

• nTN is the number of nucleotide positions in neither known sites nor predicted sites.

At the site level [33]:

• sTP is the number of known sites overlapped by predicted sites;

• sFN is the number of known sites not overlapped by predicted sites;

• sFP is the number of predicted sites not overlapped by known sites.

We ran MOICA on the selected TRANSFAC database and found the following results for Fly,

Human, Mouse, and Yeast.

1590

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

Table 4. The result of MOICA in the motif-finding assessment.

MOICA nTP nFP nFN nTN sTP sFP sFN

Fly 177 655 494 41674 11 7 40

Human 1092 4860 4027 277021 53 49 245

Mouse 612 1692 1027 52169 36 14 62

Yeast 339 2349 871 57441 21 23 53

Like Table 4, these parameters were computed for AlignAce, ANN-Spec, Consensus, GLAM,

Improbizer, MEME, MEME3, MITRA, MotifSampler, ologo/dyad-analysis, QuickScore,

SeSiMCMC, Weeder, and YMF. They were reported in Tompa [33].

We need some biological indicators to show the performance of each method on different

species. These biological indicators are defined at the nucleotide (𝑥 = 𝑛) and site (𝑥 = 𝑠) levels as

follows [33]:

• 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: 𝑥𝑆𝑛 =
𝑥𝑇𝑃

𝑥𝑇𝑃+𝑥𝐹𝑁

• 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒: 𝑥𝑃𝑃𝑉 =
𝑥𝑇𝑃

𝑥𝑇𝑃+𝑥𝐹𝑃

• 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦: 𝑛𝑆𝑝 =
𝑛𝑇𝑁

𝑛𝑇𝑁+𝑛𝐹𝑃

• 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡: 𝑛𝑃𝐶 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁+𝑛𝐹𝑃

• 𝑡ℎ𝑒 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡: 𝑛𝐶𝐶 =
𝑛𝑇𝑃.𝑛𝑇𝑁−𝑛𝐹𝑁.𝑛𝐹𝑃

√(𝑛𝑇𝑃+𝑛𝐹𝑁)(𝑛𝑇𝑁+𝑛𝐹𝑃)(𝑛𝑇𝑃+𝑛𝐹𝑃)(𝑛𝑇𝑁+𝑛𝐹𝑁)

• 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒: 𝑠𝐴𝑆𝑃 =
𝑠𝑆𝑛+𝑠𝑃𝑃𝑉

2

Add nTP, nFP, nFN, nTN, sTP, sFP, and sFN over the TRANSFAC database and compute each

indicator based on the top values (Table 3). We can see that our algorithm improves all biological

indicators for Mouse and Fly instances significantly. It also gets best results for Human instances

except for nPPV indicator. We also ran our proposal on Yeast datasets, but its result is weak. Table 4

indicates that Weeder has the best performance on Yeast. These biological indicators show that

MOICA gets good results in most instances. It is important to mention that some biological tools

achieve good results just in some instances but fail to obtain reasonable motifs in others.

Table 5. The comparison of biological indicators (nCC, nSn, sSn, nPC, nPPV, sPPV and

sASP) of Human, Mouse, Yeast and Fly by different algorithms.

Fly nSn nPPV nPC nCC sSn sPPV sASP

MOICA 0.263785 0.21274 0.133484 0.223421 0.215686 0.611111 0.413399

1591

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

AlignAce 0 0 0 −0.0063762 0 0 0

ANN-Spec 0.0253353 0.0175258 0.010468 0.0023548 0.0196078 0.009434 0.0145209

Consensus 0 0 0 −0.0110554 0 0 0

GLAM 0.0029806 0.004902 0.001857 −0.0084518 0 0 0

Improbizer 00149031 0.0176056 0.0081367 0.0018679 0.0196078 0.0227273 0.0211676

MEME 0.0417288 0.0421053 0.0214067 0.0267982 0.0588235 0.0555556 0.0571895

MEME3 0.0372578 0.0263713 0.0156838 0.0130431 0.0588235 0.0447761 0.0517998

MITRA 0 0 0 −0.0078616 0 0 0

MotifSampler 0.0044709 0.0082192 0.0029042 −0.0055135 0 0 0

ologo/dyad-

analysis
0 0 0 −0.0149773 0 0 0

QuickScore 0 0 0 −0.0157195 0 0 0

SeSiMCMC 0.1013413 0.0538827 0.0364611 0.0537034 0.0980392 0.125 0.1115196

Weeder 0.0119225 0.0344828 0.0089385 0.0112184 0.0196078 0.0344828 0.0270453

YMF 0 0 0 −0.0138211 0 0 0

Human nSn nPPV nPC nCC sSn sPPV sASP

MOICA 0.213323 0.183468 0.10943 0.182113 0.177852 0.519608 0.34873

AlignAce 0.0392655 0.102551 0.0292236 0.0531478 0.0738255 0.1235955 0.0987105

ANN-Spec 0.090252 0.1031711 0.0505747 0.0812784 0.1644295 0.0983936 0.1314116

Consensus 0 NaN 0 NaN 0 NaN NaN

GLAM 0.0236374 0.0367669 0.0145977 0.0155035 0.0402685 0.06 0.0501342

Improbizer 0.0416097 0.0476084 0.0227079 0.0284205 0.0704698 0.0483871 0.0594284

MEME 0.0380934 0.0603902 0.0239176 0.0343922 0.0604027 0.0810811 0.0707419

MEME3 0.0420004 0.0470975 0.0227057 0.0282219 0.0637584 0.0788382 0.0712983

MITRA 0.0244188 0.0471342 0.0163484 0.0214655 0.0402685 0.046875 0.0435717

MotifSampler 0.0250049 0.0416531 0.015873 0.0188157 0.0469799 0.0430769 0.0450284

ologo/dyad-

analysis
0.0371166 0.213964 0.0326629 0.0825991 0.0604027 0.15 0.1052013

QuickScore 0.0050791 0.0099388 0.0033727 -0.0056328 0 0 0

SeSiMCMC 0.0459074 0.0279962 0.0176984 0.0134837 0.0671141 0.0630915 0.0651028

Weeder 0.0543075 0.2747036 0.047497 0.1154935 0.1073826 0.2580645 0.1827235

YMF 0.0410236 0.0967296 0.029661 0.0521165 0.0738255 0.080292 0.0770587

Mouse nSn nPPV nPC nCC sSn sPPV sASP

MOICA 0.373398 0.265625 0.183729 0.290236 0.367347 0.720000 0.543673

AlignAce 0.028676 0.0490605 0.0184314 0.0152885 0.0306122 0.0361446 0.0333784

ANN-Spec 0.0433191 0.0430564 0.0220703 0.0139802 0.0816327 0.0425532 0.0620929

Consensus 0.0488103 0.1062417 0.0346021 0.0531418 0.1020408 0.1219512 0.111996

GLAM 0.0073215 0.0187793 0.0052957 −0.0068546 0.0102041 0.0153846 0.0127943

Improbizer 0.1079927 0.1219008 0.0607412 0.0894309 0.2244898 0.1605839 0.1925369

MEME 0.0732154 0.1337793 0.0496689 0.0789261 0.1428571 0.175 0.1589286

Continued on next page

Mouse nSn nPPV nPC nCC sSn sPPV sASP

MEME3 0.1061623 0.170088 0.0699357 0.1137754 0.1938776 0.2 0.1969388

MITRA 0.0061013 0.015456 0.0043937 −0.0090299 0.0204082 0.0327869 0.0265975

MotifSampler 0.0445394 0.0913642 0.0308668 0.0441428 0.0816327 0.0952381 0.0884354

ologo/dyad- 0.0268456 0.1067961 0.0219233 0.03947 0.0612245 0.0952381 0.0782313

1592

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

analysis

QuickScore 0.0359976 0.089939 0.0263864 0.0390251 0.0816327 0.0677966 0.0747146

SeSiMCMC 0.0622331 0.0408818 0.0252976 0.0145461 0.1020408 0.0952381 0.0986395

Weeder 0.0616229 0.1753472 0.0477767 0.0882065 0.122449 0.1791045 0.1507767

YMF 0.1012813 0.2017011 0.0722997 0.1247729 0.2040816 0.1818182 0.1929499

Yeast nSn nPPV nPC nCC sSn sPPV sASP

MOICA 0.280165 0.126116 0.0952515 0.163648 0.283784 0.477273 0.380528

AlignAce 0.1855754 0.1849758 0.1020954 0.1684257 0.28 0.2019231 0.2409615

ANN-Spec 0.165316 0.14011099 0.0820595 0.1331542 0.3066667 0.1411043 0.2238855

Consensus 0.0794165 0.2 0.0602706 0.1149074 0.1466667 0.2391304 0.1928986

GLAM 0.0713128 0.0585106 0.0332075 0.0432325 0.1466667 0.0578947 0.1022807

Improbizer 0.1572123 0.0950049 0.0629461 0.0988463 0.2666667 0.1333333 0.2

MEME 0.1928687 0.3801917 0.1467324 0.260354 0.3066667 0.3833333 0.345

MEME3 0.2098865 0.3001159 0.140914 0.2381559 0.32 0.3037975 0.3118987

MITRA 0.1110211 0.1525612 0.0686717 0.1148955 0.16 0.1538462 0.1569231

MotifSampler 0.2560778 0.5039872 0.2045307 0.3501753 0.3866667 0.4915254 0.439096

ologo/dyad-

analysis
0.0899514 0.3303571 0.0760795 0.1639418 0.1866667 0.3043478 0.2455072

QuickScore 0.0534846 0.0613953 0.0294249 0.0391636 0.12 0.0434783 0.0817391

SeSiMCMC 0.1012966 0.0570255 0.0378673 0.0504601 0.0933333 0.0721649 0.0827491

Weeder 0.2925446 0.5340237 0.2330536 0.3863337 0.52 0.5492958 0.5346479

YMF 0.1442464 0.3296296 0.1115288 0.2076962 0.28 0.3387097 0.3093548

We also compared our proposal with MOABC in biological realm. The nTP, nFP, nFN, nTN,

sTP, sFP, and sFN is not available for MOABC except a figure in [7] where nTP, nFP, nFN, nTN,

sTP, sFP, and sFN of all species added up and then all biological indicators computed. We did not

the same rule because it compares the mean results and may be unfair.

The last experiment is accomplished based on motif finding and its non-dominated solutions are

reported in Table 6. We ran our algorithm on four datasets of dm04g, hm22m, mus03g, and yst01g;

hm22m and mus03g have 6 and 5 sequences respectively and the sequence length of each one

is 500 bps, dm04g has 4 sequences, each with length 2000 bps, and yst01g has 9 sequences each with

length 1000 bps. We compared MOICA with MOABC [20], because MOABC almost had the best

performance among all algorithms.

We used the reported results for these four datasets in [7]. We computed length, support,

similarity, and complexity of the reported results for MOABC and compared them with our results.

The comparative results are recorded in Table 6. Our goal and other researchers were not to

maximize complexity, but we report it just to show a fair comparison. In fact, most of algorithms can

find the best results for length, support, and similarity with a low complexity. Table 6 shows that

MOICA has the best results. We almost fixed support, length, and complexity to find a motif with

high similarity. The results confirm that MOICA beats MOABC in motif finding.

Notice that MOABC and MOICA are multi-objective, so we can find alternative answers with

different support and similarity for each length. As we can see in Table 6, MOICA obtained the best

results for all of these datasets.

In this experiment, we ran our algorithm so that only one or two empire(s) remained at the end.

To reach this goal, we fixed the parameters of our algorithm at nPop = 200, nEmp = 50, nCol = 150

1593

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

and MaxIt = 800. We also defined rate based on datasets. The selection probability of each sequence

(rate) depends on the data and the kind of the motif that we want to find. For example, if the support

of the desired motif is close to the number of sequences of the dataset, it is better to take rate from 70

to 100. Moreover, the selection probability of each sequence (rate) changes from 30 to 100.

Table 6. The comparison of the conserved motifs predicted by MOABC and MOICA

methods for dm04g, hm22m, mus03g and yst01g data.

Predicted Motif complexity similarity length support Method data

TCAACTGTAAATATAACTTAAAAAGGGAATACT 0.84 0.64 33 3 MOABC dm04g

GTTTGGAAGTGCTTAAATAAACTTGCAAAAAAC 0.85 0.74 33 3 MOICA dm04g

ATGACCCACACCACGCGCACGCATGGCCCGGCC 0.81 0.61 33 4 MOABC hm22m

CCACGCCAGACGGGCGTTGCAAGCCAGACCTACT 0.83 0.68 34 4 MOICA hm22m

AAGGCGTTGCTCAAGTGTTAAGAAAATACTGACAC 0.87 0.58 35 4 MOABC mus03g

TGGATAGAAGAACTACAACCTTCATGTCATACATTT 0.87 0.63 36 4 MOICA mus03g

ATGAAATTAAACCCAA 0.74 0.59 16 4 MOABC yst01g

TACCATAATTCATAGAT 0.74 0.69 17 4 MOICA yst01g

6. Discussion and conclusion

In this paper, we have proposed a metaheuristic algorithm for solving MDP considering a

Multi-objective Imperialist Competition Algorithm (MOICA) based on three optimization functions.

A big contribution of our method is that it gives alternative answers in a single run. Thus, the user

can select useful ones among multiple answers.

In order to assess the performance of our algorithm, we ran MOICA on 54 sequence datasets

from four species with different length and various numbers of sequences and compared the result

with those obtained by previous methods. To facilitate comparing, we used the same criteria as used

in multi-objective algorithms like hypervolume indicator. It is demonstrated that our algorithm gets a

significant average hypervolume indicator in a set of instances with more than nine sequences. We

also computed biological indicators (nCC, nPC, nSn, nPPV, sSn, sPPV, sASP, and nSp) for some

selected instances in the benchmark that were mentioned in previous works. Its biological indicators

have the best results in all instances except yeast. Furthermore, we also found motifs for 4 different

datasets with different number of sequences and lengths. It can be concluded that the solutions found

by our algorithm gives the best results among all algorithms in the literature. In future, we can

modify our algorithm by composing other SI algorithms to make it more realistic with a better

performance. Artificial Bee Colony (ABC) is a metaheuristic procedure which obtained good result

for MDP considering a multi-objective framework.

As future works, we intend to design new approaches to discover common patterns in

sequences. At first, we interest in integrating ICA and ABC to invent a new algorithm to improve

results for a bigger set of the datasets. Other desirable research is directly related to model this

1594

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

problem as an optimization-programming problem to use the existing algorithms for solving it.

Finally, we would like to try to find new methods with the aim of improving both optimization

programming and biological results.

Financial support

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors. The authors appreciate University of Guilan for partial

financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. F. Zare-Mirakabad, H. Ahrabian and M. Sadeghi, et al., Genetic algorithm for dyad pattern

finding in DNA sequences, Genes Genet. Syst., 84 (2009), 81–93.

2. M. Li, B. Ma and L. Wang, Finding similar regions in many sequences, J. Comput. Syst. Sci., 65

(2002), 73–96.

3. M. F. Sagot, Spelling approximate repeated or common motifs using a suffix tree, Springer, 1998.

4. F. W. Glover and G. A. Kochenberger, Handbook of metaheuristics, Springer Science &

Business Media, 2006.

5. E. Czeizler, T. Hirvola and K. Karhu, A graph-theoretical approach for motif discovery in

protein sequences, IEEE/ACM Trans. Comput. Biol. Bioinf., 14 (2017), 121–130.

6. M. Kaya, MOGAMOD: Multi-objective genetic algorithm for motif discovery, Expert. Syst.

Appl., 36 (2009), 1039–1047.

7. D. L. González-Álvarez, M. A. Vega-Rodríguez and Á. Rubio-Largo, Multiobjective

optimization algorithms for motif discovery in DNA sequences, Genet. Program. Evolvable

Mach., 16 (2015), 167–209.

8. C. E. Lawrence and A. A. Reilly, An expectation maximization (EM) algorithm for the

identification and characterization of common sites in unaligned biopolymer sequences,

Proteins, 7 (1990), 41–51.

9. C. E. Lawrence, S. F. Altschul and M. S. Boguski, et al., Detecting subtle sequence signals: A

Gibbs sampling strategy for multiple alignment, Science, 262 (1993), 208–214.

10. T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover

motifs in bipolymers, Proc. Int. Conf. Intell. Syst. Mol. Biol., 2 (1994), 28–36..

11. F. P. Roth, J. D. Hughes and P. W. Estep, et al., Finding DNA regulatory motifs within

unaligned noncoding sequences clustered by whole-genome mRNA quantitation, Nat.

Biotechnol., 16 (1998), 939–945.

12. K. C. Wong, MotifHyades: Expectation maximization for de novo DNA motif pair discovery on

paired sequences, Bioinformatics, 33 (2017), 3028–3035.

13. K. C. Wong, DNA Motif Recognition Modeling from Protein Sequences, iScience, 7 (2018),

198–211.

1595

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

14. G. Pavesi, P. Mereghetti and G. Mauri, et al., Weeder Web: Discovery of transcription factor

binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res., 32 (2004),

W199–W203.

15. E. Eskin and P. A. Pevzner, Finding composite regulatory patterns in DNA sequences,

Bioinformatics, 18 (2002), S354–S363.

16. P. A. Evans and A. D. Smith, Toward optimal motif enumeration, Springer, 2003.

17. J. Serra, A. Matic and A. Karatzoglou, et al., A genetic algorithm to discover flexible motifs with

support, IEEE, 2016.

18. N. Pisanti, A. M. Carvalho and L. Marsan, et al., RISOTTO: Fast extraction of motifs with

mismatches, Springer, 2006.

19. G. Z. Hertz and G. D. Stormo, Identifying DNA and protein patterns with statistically

significant alignments of multiple sequences, Bioinformatics, 15 (1999), 563–577.

20. D. L. González-Álvarez, M. A. Vega-Rodríguez and J. A. Gómez-Pulido, et al., Finding Motifs in

DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm, Springer,

2011.

21. D. L. González-Álvarez, M. A. Vega-Rodríguez and Á. Rubio-Largo, Searching for common

patterns on protein sequences by means of a parallel hybrid honey-bee mating optimization

algorithm, Parallel. Comput., 76 (2018), 1–17.

22. E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and

the strength Pareto approach, IEEE T. Evolut. Comput., 3 (1999), 257–271.

23. E. Wingender, P, Dietze and H. Karas, et al., TRANSFAC: A database on transcription factors

and their DNA binding sites, Nucleic Acids Res., 24 (1996), 238–241.

24. D. L. González-Álvarez, M. A. Vega-Rodríguez and J. A. Gómez-Pulido, et al., Solving the

motif discovery problem by using differential evolution with pareto tournaments, IEEE, 2010.

25. G. B. Fogel, D. G. Weekes and G. Varga, et al., Discovery of sequence motifs related to coexpression

of genes using evolutionary computation, Nucleic Acids Res., 32 (2004), 3826–3835.

26. E. Zitzler, K. Deb and L. Thiele, Comparison of multiobjective evolutionary algorithms:

Empirical results, Evolut. Comput., 8 (2000), 173–195.

27. E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: An algorithm for

optimization inspired by imperialistic competition, IEEE, 2007.

28. D. L. Gonzalez-Álvarez, M. A. Vega-Rodriguez and J. A. Gomez-Pulido, et al., Predicting DNA motifs

by using evolutionary multiobjective optimization, IEEE. T. Syst. Man. Cy. C., 42 (2012), 913–925.

29. X. S. Yang, Firefly algorithms for multimodal optimization, Springer, 2009.

30. D. L. González-Álvarez, M. A. Vega-Rodríguez and J, A. Gómez-Pulido, et al., Applying a

multiobjective gravitational search algorithm (MO-GSA) to discover motifs, Springer, 2011.

31. E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the strength Pareto evolutionary

algorithm, 2001.

32. K. Deb, A. Pratap and S. Agarwal, et al., A fast and elitist multiobjective genetic algorithm:

NSGA-II, IEEE T. Evolut. Comput., 6 (2002), 182–197.

33. M. Tompa, N. Li and T. L. Bailey, et al., Assessing computational tools for the discovery of

transcription factor binding sites, Nat. Biotechnol., 23 (2005), 137.

1596

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1575–1596.

© 2019 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

