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Abstract: Motif discovery problem (MDP) is one of the well-known problems in biology which tries 

to find the transcription factor binding site (TFBS) in DNA sequences. In one aspect, there is not 

enough biological knowledge on motif sites and on the other side, the problem is NP-hard. Thus, 

there is not an efficient procedure capable of finding motifs in every dataset. Some algorithms use 

exhaustive search, which is very time-consuming for large-scale datasets. On the other side, 

metaheuristic procedures seem to be a good selection for finding a motif quickly that at least has 

some acceptable biological properties. Most of the previous methods model the problem as a single 

objective optimization problem; however, considering multi-objectives for modeling the problem 

leads to improvements in the quality of obtained motifs. Some multi-objective optimization models 

for MDP have tried to maximize three objectives simultaneously: Motif length, support, and 

similarity. In this study, the multi-objective Imperialist Competition Algorithm (ICA) is adopted for 

this problem as an approximation algorithm. ICA is able to simulate more exploration along the 

solution space, so avoids trapping into local optima. So, it promises to obtain good solutions in a 

reasonable time. Experimental results show that our method produces good solutions compared to 

well-known algorithms in the literature, according to computational and biological indicators. 

Keywords: motif discovery; Imperialist Competitive Algorithm; multi-objective optimization; DNA 

sequences; transcription factor binding site 
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1. Introduction 

The information about motifs provides significant knowledge about evolutionary processes and 

the complexities of different organisms simultaneously. Biologists believe that some special proteins 

called Transcription Factors (TFs) bind to some patterns of the DNA substrings called Transcription 

Factor Binding Sites (TFBSs). Then, the process of gene expression initiates [1]. During this process, 

genes are transcribed into RNA and get activated or deactivated. These regulatory sites in DNA 

strings correspond to some conservative sequence patterns which are called motifs. The regulatory 

sites or TFBSs are called occurrences. Finding these regulatory sites or TFBSs seems to be difficult; 

however, discovering them helps molecular biologists to investigate the interaction between DNA 

and proteins, gene regulation, cell development, and cell reaction under physiological and 

pathological conditions. Occurrences have a fixed length, but they have slightly different 

compositions from their own motif. 

This problem is one of the well-known problems in molecular biology and since it has been 

proven to be NP-hard [2], various methods and algorithms have been proposed to solve it. There are 

two classes of procedures for finding motifs: Pattern driven and sample driven approaches. In pattern 

driven procedures, the methods search on all |Σ|𝑙  candidate motifs. In sample-driven approaches 

patterns related to the given instance are only explored [3]. Methods to solve MDP can also be 

classified into two main groups: exact and approximate methods. The exact methods are very time 

consuming while approximate methods give a good result(s) in a reasonable time. Thus, they have 

attracted more attention from research communities. Heuristic procedures (as approximate 

procedures) have been widely used in the literature since they are fast and give a reasonable 

answer(s) [4]. Numerous existing algorithms identify motifs with a given length, but they are either 

not applicable or not efficient when searching motifs with different lengths. Finding motifs with and 

without gapped in the given sequences is the goal of many algorithms. Locating gapped motifs is a 

time-consuming task due to using combinatorial approaches [5]. Our proposed procedure is for a 

fixed-length motif without gap, and we don't study extensible-length motifs here. 

To find real biological motifs, several assumptions which are close to the nature of the motif 

have been considered. Kaya [6] has listed some of these assumptions: 

1. Each DNA sequence has an occurrence. 

2. Each DNA sequence does not have an occurrence. This is more close to the definition of the 

motif in nature. 

3. Sequences in the dataset have more than one occurrence. 

4. There is more than one motif for sequences. 

For each of these assumptions, a suitable algorithm has been proposed, but we are looking for 

an algorithm that behaves more similar to the nature of the motif, indeed. In fact, a composition of 

these assumptions can help us to find a reasonable answer(s). In the literature, the proposed 

procedures for solving MDP have been classified into two main groups: Statistical techniques and 

string-based methods [7]. Some significant statistical algorithms are the expectation maximization 

(EM) algorithm [8] and Gibbs Sampling [9] proposed by Lawrence and Raly which use a greedy 

approach. These algorithms use elaborated statistical techniques for finding motifs. MEME (Multiple 

EM for Motif Elicitation) is an extended EM algorithm for discovering motifs in unaligned 

biopolymer sequences [10]. AlignAce (Aligns Nucleic Acid Conserved Elements) finds occurrences 
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in a set of DNA sequences [11]. This algorithm tries to find profile motif. An important assumption 

taken into account by this procedure is that the motif model is one that is most different from the 

background motif model. Thus, they try to maximize the likelihood ratio of the motif model to the 

background model or the information entropy of the motif model in order to find the answer. In fact, 

log likelihood and information content are two scoring functions which are used for profile motif 

models. In MotifHyades, a novel probabilistic model was proposed and with two derived 

optimization algorithms attempted to find paired motifs in DNA sequences in human cell lines [12]. 

In [13], the k-spectrum modeling was used to catch DNA motif patterns from protein sequences. In 

the algorithm, multiple evaluation metrics gathered on millions of k-mer binding intensities from 92 

proteins across 5 DNA-binding families. 

The second class of algorithms is string-based ones. This kind of algorithms directly tries to find 

a motif through a substring that starts from zero to l. In fact, a tree of depth 𝑙 is constructed where a 

node at depth 𝑘 represents a 𝑘-length prefix of the motif. Some of the algorithms in this category are 

SPELLER [3], Weeder [14], MITRA [15], CENSUS [16], GENMOTIF [17], and RISOTTO [18]. 

Swarm intelligence algorithms are created based on natural phenomena. Genetic, Firefly, artificial 

bee colony and gravitation search algorithms are among the metaheuristic algorithms which are 

inspired by nature. Swarm intelligence deals with a system consisting of a group of individuals who 

move independently, but the group stays together and gradually converges to the optimal solution(s). 

These algorithms are iterative methods in which a single answer tries to improve itself during a 

period. Most of the metaheuristic algorithms in MDP use a single objective function, for example, 

MEME, MITRA, Weeder, and Consensus [19]. Kaya proposed MOGAMOD [6] considering three 

objective functions and demonstrated that considering the problem of MDP as a multi-objective 

optimization problem gives better motifs than the single objective ones. In fact, MOGAMOD 

attempts to optimize the length, support, and similarity of the motif simultaneously. These functions 

are in conflict with each other. Thus finding a solution that optimizes all these objectives at the same 

time is practically impossible and bounds to use the Pareto optimality notion. It is shown that the 

Multi-objective Artificial Bee Colony (MOABC) algorithm obtained the best results for a group of 

datasets among different approaches in the literature [20]. Similar to MOGAMOD, MOABC uses 

three objectives to find motifs. The authors of this paper also proposed a parallel version of this 

algorithm for protein strings [21]. Like all multi-objective optimization problems, it finds multiple 

answers at the end. In fact, this characteristic makes multi-objective algorithms superior to single 

objective ones. In this paper, we propose a multi-objective imperialist competition algorithm (MOICA) 

for MDP considering the three above mentioned objectives. Imperialist Competition Algorithm has 

recently attracted the attention of researchers to solve the optimization problems more efficiently. 

For comparison purposes, we have used several measurements to demonstrate the efficiency of 

MOICA. We used hypervolume [22] which is an indicator that defines the volume of search space 

dominated by Pareto fronts. We also computed biological indicators such as nCC, nPC, nSn, nPPV, 

sSn, sPPV, sASP, and nSp to demonstrate the biological quality of our results [23]. Finally, we 

considered the motifs extracted from the same instances as in [6,7,20]. 

This paper is structured as follows: As you read the first section is the introduction. In Section2, 

we briefly define the motif discovery problem (MDP). Then in Section 3 describes the  

multi-objective version of MDP. Next, in Section 4, we describe the ICA and our algorithm that 

would adjust ICA for the multi-objective version of MDP. Next section shows the experimental 
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results obtained from MOICA and compares the results with some of the already existing 

approximation algorithms. Finally, we present our conclusion in the last section. 

2. Materials and methods 

Consider 𝑛 sequences with length 𝑚, which are a composition of the alphabet Σ, are called by 

𝑠𝑖. We defined 𝑠𝑖[𝑘, 𝑙] as a subsequence of 𝑠𝑖 with length 𝑙 that started from 𝑘. Also, let 𝑠𝑖[𝑘] denote 

a single alphabet of 𝑠𝑖  in position 𝑘 . In this paper, we will be using the terms string(s) and 

sequence(s) interchangeably. A motif is obtained in the given input sequences by its occurrences. We 

denoted the occurrences related to one motif as a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 is the starting 

position of an occurrence in the 𝑠𝑖  and 𝑥𝑖 = 0,1,2, … , 𝑚 − 𝑙 + 1 , where 𝑙  is the length of each 

occurrence in the dataset. Let us suppose that each sequence has a probability of selection. Then, we 

indicate 𝑥𝑖 = 0 if we don’t select any occurrence in 𝑠𝑖. As a result, there is not an occurrence in the 

𝑖th sequence with 𝑥𝑖 = 0 (Figure 1). The probability of selection is called rate in our paper. It is clear 

that a sequence with a rate = 40 has less chance for selection than one with a rate = 60. The start of 

metaheuristic algorithms is to create individual populations. Using each of these occurrences as an 

individual, then, we extract occurrences in the sequences regarding the length of motif (Figure 1). 

The length of the motif in our algorithm varies between 7 and 64 as in [24]. In order to obtain a 

consensus motif, we put all of the occurrences under each other (Figure 1). A composition of the 

maximum alphabet frequency for each column results in consensus motif (Figure 1). We define two 

variables to show consensus in a precise way: 𝑤𝑖 = max 𝑓𝑖
Σ is the maximum alphabet frequency, and 

the corresponding alphabet for 𝑤𝑖 is denoted by 𝑐𝑤𝑖
, both of them extracted from the 𝑖th column of 

the occurrence matrix. Then, the consensus motif is expressed through 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥) =
𝑐𝑤1

𝑐𝑤2
… 𝑐𝑤𝑛

. 

After finding the consensus motif, we find concordance of each occurrence; it is a normalized 

value that shows the resemblance between the consensus motif and the occurrence (Figure 1). 

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑥𝑖) =
𝑙 − 𝑑𝐻(𝑠𝑖[𝑥𝑖, 𝑙], 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥))

𝑙
,   𝑖 = 1,2, … , 𝑛, 𝑥𝑖 ≠ 0 

Where 𝑑𝐻 is the Hamming distance between two sequences with equal length, i.e., the number 

of positions where the two sequences differ. Furthermore, same as other algorithms in the literature, 

the threshold of our algorithm for concordance is 0.5. It means that if the concordance of 𝑖 th 

occurrence is less than 0.5, we let 𝑥𝑖 = 0. The number of 𝑥𝑖 > 0 is the support of the motif which 

depends on its occurrences. The mathematical notation of it can be written in the following way: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) = ∑ 𝑢𝑥𝑖

𝑛

𝑖=1

 

Where 𝑢𝑥𝑖
= {

1 𝑥𝑖 > 0
0 𝑥𝑖 = 0

. In our example of Figure 1, a single motif occurrence exists in each 

sequence at most, but in reality, it can be more than one. On the other side, we make a limitation on 

the support, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) ≥ 𝛿, 𝛿 = {
2 𝑛 ≤ 4
3 𝑛 > 4

. Next, concept similarity is employed, which involve 

the maximum value from the 𝑖th column of the position weight matrix. 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥) =
∑

wi

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)

𝑙
𝑖=1

𝑙
 

Then, the similarity is the average of maximum frequency for a potential motif with length 𝑙 

(Figure 1). 

 

Figure 1. An example which represents an individual 𝑥 =

[308, 6, 314, 0, 468, 371, 184, 238, 391, 447] in a given ten sequences. As shown, nine 

of ten sequences have occurrence. Consensus motif is the maximum alphabet frequency 

in the ith column of occurrences. Seven occurrences from nine occurrences obtained the 

threshold of 50% in the concordance; i.e., 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) = 7. We computed the position 

weight matrix and similarity. Then we reported the results: Length, support, and 

similarity. 

We computed the similarity of the example motif in Figure 1. A concept that we used in our 

algorithm is Complexity based on Fogel [25]. The complexity of a string with length 𝑙 in |Σ| different 

alphabets is computed as follows: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖) = log|Σ|

𝑙!

𝑛𝑖,1! 𝑛𝑖,2 … 𝑛𝑖,|Σ|!
,   𝑖 = 1,2, … , 𝑛 
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Where 𝑛𝑖,𝑗 is the number of the jth alphabet from Σ in the selected sequence 𝑥𝑖 and |Σ| = 4 in 

DNA. As an example, the complexity of string “AAAAAAA’ is log4
7!

7!0!0!0!
= 0, and the complexity 

of string “AAATAAA” is log4
7!

6!1!0!0!
= 1.40. These short strings are somehow useless in biology 

since 𝑛𝐴 = 7,6. The complexity of an individual 𝑥 is the average complexity value of each sequence. 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥) =
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖)

𝑛
𝑖=1

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)
 

The complexity of two strings “AAAAAAA” and “AAATAAA” is 
0+1.40

2
= 0.70 . The 

complexity depends on the length of the motif, which we normalize it based on the elicited motif 

length. In our algorithm, we took a minimum threshold of 0.5 (50%) for the complexity. 

Our goal in this paper is to maximize the length, support, and similarity of the motif 

simultaneously while avoiding falls in low complexity result(s). In fact, these three values (length, 

support, and similarity) are our objectives. Fitness value of an individual is assessed based on its 

length, support, and similarity. We also have used the fitness value of each individual to compute the 

fitness value of a group of individuals. These two values help us to find the weakest and the most 

likehood individuals and the groups of individuals in our method. 

We gathered all the variables and functions to define the problem in Table 1, again. The 

definition of each one also is illustrated. 

Table 1. Notations and definitions. 

Variable Definition 

𝒏 Number of sequences 

𝒎 Length of each sequence 

𝒍 length of motif 

𝒔𝒊 𝑖th sequence with length m which is a composition of the alphabet Σ 

𝒔𝒊[𝒌, 𝒍] A subsequence from 𝑠𝑖 with length 𝑙 that started from 𝑘 

𝒔𝒊[𝒌] A single alphabet of 𝑠𝑖 in position k 

𝒙𝒊 The starting position of an occurrence in the 𝑠𝑖 and 𝑥𝑖 = 0,1,2, … , 𝑚 − 𝑙 + 1 

𝒙 An individual, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

𝒇𝒊
𝚺 Frequency of Σ in the 𝑖th column of the occurrence matrix 

𝒘𝒊 𝑤𝑖 = max 𝑓𝑖
Σ 

𝒄𝒘𝒊
 The corresponding alphabet for 𝑤𝑖 

𝒏𝒊,𝒋 Number of the jth alphabet from Σ in the selected sequence 𝑥𝑖 

𝒖𝒙𝒊
 𝑢𝑥𝑖

= {
1 𝑥𝑖 > 0
0 𝑥𝑖 = 0

 

𝜹 𝛿 = {
2 𝑛 ≤ 4
3 𝑛 > 4

 

𝒄𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔(𝒙) 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥) = 𝑐𝑤1
𝑐𝑤2

… 𝑐𝑤𝑛
 

Continued on next page 

Variable Definition 

𝒄𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒄𝒆(𝒙𝒊) 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑥𝑖) =
𝑙 − 𝑑𝐻(𝑠𝑖[𝑥𝑖 , 𝑙], 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑥))

𝑙
,   𝑖 = 1,2, … , 𝑛, 𝑥𝑖 ≠ 0 
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𝒔𝒖𝒑𝒑𝒐𝒓𝒕(𝒙) 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) = ∑ 𝑢𝑥𝑖

𝑛

𝑖=1

 

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚(𝒙) 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥) =
∑

wi

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)
𝑙
𝑖=1

𝑙
 

𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚(𝒙𝒊) 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖) = log|Σ|

𝑙!

𝑛𝑖,1! 𝑛𝑖,2 … 𝑛𝑖,|Σ|!
,   𝑖 = 1,2, … , 𝑛 

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚(𝒙) 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥) =
∑ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥𝑖)𝑛

𝑖=1

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥)
 

We can express the problem mathematically as: 

 

 

 

 

 

 

 

3. Multi-objective problems 

A single-objective optimization problem is defined as: 

𝑀𝑎𝑥 𝑓(𝑥) 

s.t 

𝑔𝑗(𝑥) ≤ 0,  𝑗 ∈ 𝐽 

ℎ𝑘(𝑥) = 0,  𝑘 ∈ 𝐾 

Where 𝑓(𝑥)  is a single function and 𝑔𝑗(𝑥), ℎ𝑘(𝑥)  are its constraints. In multi-objective 

optimization problems (MOOP), we have a vector of functions which has to be optimized. In such 

problems, the aim is to find the best value for all components, though the components of  

multi-objective function may be in conflict with each other, such that increasing in one component 

may causes decreasing in some other component(s). 

The general form of a MOOP can be written as: 

𝑀𝑎𝑥 𝑓(𝑥) = (𝑓𝑖(𝑥)),  𝑖 = 1, … , 𝑛 

s.t 

𝑔𝑗(𝑥) ≤ 0,  𝑗 ∈ 𝐽 

ℎ𝑘(𝑥) = 0,  𝑘 ∈ 𝐾 

Where 𝑓(𝑥) is a vector with 𝑛 components and 𝑔𝑗(𝑥), ℎ𝑘(𝑥) are its constraints. After solving a 

MOOP, we obtain multiple solutions which may not be better than other solutions. We call such 

solutions as non-dominated solutions. In fact, the value of 𝑥 dominates the value of 𝑦, which we 

Max 𝑓(𝑥) = (𝑙, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥), 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥)) 

s.t. 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑥) ≥ 𝛿 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥) ≥ 0.5 

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑥𝑖) ≥ 0.5,   𝑖 = 1,2, . . , 𝑛, 𝑥𝑖 ≠ 0 

𝑥𝑖 = 0, 1, 2, … , 𝑚 − 𝑙 + 1,   𝑖 = 1,2, … , 𝑛 

𝑙 = 7, 8, … , 64 
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indicate as 𝑓(𝑥) ≻ 𝑓(𝑦) if and only if 𝑓(𝑥) is better than 𝑓(𝑦) in at least one component, which may 

also be not worse than the other components. We say 𝑥 is pareto- optimal or non-dominated optimal 

if there is no 𝑦 in feasible space such that 𝑓(𝑦) dominates 𝑓(𝑥). We call a set of pareto-optimal 

solutions or non-dominated optimal solutions as pareto-optimal set. In fact, after solving a MOOP, 

we have a pareto-optimal set [26]. We also call the value of the pareto-optimal set as pareto fronts. 

Our goal is to find the best pareto fronts. 

A lot of metaheuristic algorithms based on natural phenomena have been defined to solve 

optimization problems like genetic algorithm inspired by gene evolution, ant colony algorithm 

mimiced by ant search behavior, fish swarm optimization based on fish behavior looking for food. 

Among the metaheuristic algorithms, ICA has attracted the researchers’ attention due to its ability to 

find good solutions for NP-hard problems. In the next section, we explain the ICA in detail. This is 

the main part of our paper. 

In swarm algorithms, a group of individuals work collaboratively to solve a problem. To start 

the algorithm, initial individuals (countries) are created randomly. The cost of each individual 

(country) is calculated on the basis of its objective function value. We can refer to ICA ability to 

simulate a wider exploration during the solution searching space as an advantage. 

4. The MOICA algorithm 

The Imperialist Competition Algorithm proposed by Atashpaz et al. in 2007 [27] was inspired 

by the intelligent behaviour of imperialist competition in the real world. This algorithm has some 

simple parameters such as the number of countries, the number of imperialists, and the maximum 

number of iterations. To solve multi-objective MDP, we propose a new algorithm based on the 

Imperialist Competition Algorithm. Similar to the other evolutionary algorithms, the first part of this 

algorithm is the creation of initial population. Then, all countries are classified into two groups: 

Imperialists and colonies. In fact, some of the best countries are selected as imperialists and the rest 

of them are called colonies. Colonies are divided by imperialists on the basis of their power. Thus, a 

group of empires are created which challenge each other to catch more countries. Two main 

processes occur after this assimilation process: Intra competition and extra completion. In intra 

competition, each colony moves towards its own imperialist and the imperialist tries also to increase 

its power. During this process, a colony replaces its own imperialist if it has more power. The next 

process is extra competition. In this process, the algorithm finds the weakest colony in the weakest 

empire and adds it to one of the strongest empires. The total power of an empire depends on the 

power of its imperialist and a percentage of the mean power of its colonies. 

These two main processes would repeat in a reasonable time until the empires gradually 

collapse and finally all countries converge into one empire. 

In this work, a particular intelligent behaviour which causes countries to rise or collapse is 

considered. Individuals in this algorithm are similar to MOGAMOD [6] and MOABC [20]. The main 

steps of the algorithm are given below:  

Algorithm MOICA: 

1. Input: 𝑛 sequences, the selection probability (rate), the number of Population (nPop), the 

number of Empires (nEmp), and the Maximum Iteration (MaxIt). 

2. Create nPop countries with a fixed length 𝑙 ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥] and compute support and similarity 

for each of them. 



1583 

Mathematical Biosciences and Engineering  Volume 16, Issue 3, 1575–1596. 

3. Use non-dominated sorting to sort all Motifs (countries). 

4. Assimilation: Select nEmp of best Motifs (countries) as imperialists and divide the other nCol 

countries between them based on imperialists’ positions in Step 3. 

5. Intra Competition: Make a revolution in colonies and imperialists in each empire and replace 

each imperialist by a colony if it is better. 

6. Use non-dominated sorting to sort all Motifs (countries). 

7. Compute the fitness function of each empire and find the weakest. 

8. Extra competition: Select the weakest Motif (country) from the weakest empire and give it to 

the empire that has the most likehood to possess it. 

9. Repeat 5–8 MaxIt times. 

10. Output: Non-dominated set. 

MaxIt, 𝑛 sequences, rate, nPop, and nEmp are given as input. We should know the minimum 

and maximum length of motifs, 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 respectively to search within this range. To start the 

algorithm, we create and evaluate the initial countries (item 2). This step repeats for each motif 

length. Here, we add two propositions to our algorithm in this line. The first proposition is that the 

support of each individual (country) cannot be less than 2 for 𝑛 = 2,3 and it cannot be less than 3 

for 𝑛 ≥ 4. The second proposition is that we don’t let an individual (country) with low complexity 

get produced. In fact, we require the program to reproduce a new individual instead of a previous one 

which didn’t satisfy our two propositions. The main process of MOICA starts after item 2. 

After non-dominate sorting (in item 3), all the countries assimilate into nEmp countries which 

are selected after the sorting process (in item 4). We can divide the rest of algorithm into three 

blocks: Intra competition, non-dominate sorting, and extra competition. In intra competition block, 

we create colonies on the basis of their distances from their own imperialists and also create a new 

imperialist (we explain the way of mutation and crossover at the end of this section). We replace the 

imperialist by each of its colonies or create a new imperialist if its support and similarity is better 

than the imperialist based on the dominant concept and if its complexity is not low (item 5). In the 

second block, we do non-dominated sorting to find the rank between all countries (item 6). Hence, 

we calculate the fitness value of each country by: 

(𝑛𝑃𝑜𝑝 − 1)𝑟𝑎𝑛𝑘,   𝑟𝑎𝑛𝑘 = 1,2, … , 𝑛𝑃𝑜𝑝. 

We use the fitness value of each country to calculate the fitness (total power) of an empire. The 

fitness value of an empire is the fitness value of its imperialist added to a 𝜁 percent of average fitness 

value of its colonies. In our proposal, we take 𝜁 = 30%. 

In the last block, we do an extra competition to find the weakest colony in the weakest empire 

to add it to one of the strongest empires (items 7 and 8). We find both of them based on their fitness, 

the fitness value of empire, and the fitness value of each country. Finally, we repeat this process 

Maximum Iteration (MaxIt) times to reach to some non-dominated imperialists. Then, we report 

them as motifs. 

At the end of this section, we explain how we make new colonies move towards an imperialist. 

We also explain how we mutate a country (imperialist or colony). Let 𝐼𝑚𝑝 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 

𝐶𝑜𝑙 = (𝑏1, 𝑏2, … , 𝑏𝑛). First of all, in order to make a 𝐶𝑜𝑙 move towards an 𝐼𝑚𝑝 for the creation of a 

new colony (𝑏1
′ , 𝑏2

′ , … , 𝑏𝑛
′ ) we do as follows: 
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𝑏𝑖
′ = {

0                           𝑎𝑖 = 0, 𝜂 < 𝑝𝑟𝑒𝑣

𝑏𝑖                           𝑎𝑖 = 0, 𝜂 > 𝑝𝑟𝑒𝑣

𝑎𝑖                               𝑎𝑖 ≠ 0, 𝑏𝑖 = 0

𝑏𝑖 + ⌈𝛽𝜂(𝑎𝑖 − 𝑏𝑖)⌉ 𝑎𝑖 ≠ 0, 𝑏𝑖 ≠ 0

, 

Where 𝜂~𝑈(0,1) that is a uniform number between 0 and 1. We take 𝛽 = 2 and 𝑝𝑟𝑒𝑣 = 10% in 

MOICA. We also notice that if 𝑎𝑖 ≠ 0, 𝑏𝑖 ≠ 0 then we don’t let 𝑏′𝑖 < 1 or 𝑏′𝑖 > 𝑚 − 𝑙 + 1. If 𝑏𝑖 <

1 or 𝑏𝑖 > 𝑚 − 𝑙 + 1, we replace it with one and 𝑚 − 𝑙 + 1, respectively. 

Mutation is to make a revolution in the country (imperialist or colony). We produce a new 

country (𝑎1
′ , 𝑎2

′ , … , 𝑎𝑛
′ ) as follows: 

𝑎𝑖
′ = {

0             𝑎𝑖 = 0

𝑎𝑖 + ⌈𝜎𝜃⌉  𝑎𝑖 ≠ 0
 

Here we take 𝜃~𝑈(−1,1) and 𝜎 = 0.1(𝑚 − 𝑙 + 1). We also notice that if 𝑎𝑖 ≠ 0, then we don’t 

let 𝑎′𝑖 < 1 or 𝑎′𝑖 > 𝑚 − 𝑙 + 1. If 𝑎′𝑖 < 1 or 𝑎′𝑖 > 𝑚 − 𝑙 + 1, we replace it with one and 𝑚 − 𝑙 + 1, 

respectively. 

5. Experimental results 

In this section, we compare our algorithm with other significant algorithms in the literature. In 

order to show the efficiency of our algorithm, we performed some experiments as in Kaya [6] and 

Gonzalez et al. [7,20], and on real dataset as TRANSFAC database [23]. We compare our algorithm 

with some previous significant methods in the literature such as, MEME [10], Weeder [14], 

AlignACE [11], MOABC [20], MO-VNS [28], DEPT [24], MO-FA [29], MO-GSA [30],  

SPEA2 [31], and NSGA-II [32]. The comparison is made according to three metrics: Hypervolume 

indicator, biological indicators, and motif finding. Our proposed algorithm is written in C++1. The 

computation has been performed on a laptop computer with an Intel(R) Core(TM) i3 CPU M 330 

(2.13 GHz) and 4.0 GB memory. 

One important performance measure for comparing MOICA with other multi-objective 

algorithms for finding TFBs is hypervolume indicator [22]. Hypervolume was used by Gonzalez [20] 

to show that MOABC mostly produces better results than the other algorithms in the literature. 

Hypervolume is an indicator that indicates the volume of search space covered by the result of 

algorithm. To calculate the hypervolume, (0,0,0) is selected as the worst point. In order to obtain 

more accurate results, we ran our algorithm 31 times for each instance to show its statistical 

significance and reported its average and standard deviation in Table 3. Reference volume in each 

instance depends on the number of sequences, the maximum length of each sequence, and the 

maximum similarity that is 1 (100%). For example, a dataset with 4 sequences will have the 

reference volume of 4 × 64 × 1. Since other source codes are not available, to compare MOICA with 

algorithms of [6,7], we have approximately used the same runtimes. To assure the power of our 

algorithm, we selected a composition of 54 real, generic, and Markov chain from TRANSFAC 

dataset [23] (called as ending in “r”, “g”, and “m” respectively) with different sequence numbers 

and lengths. 

 
1 The source code would be available upon request. 
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The dataset specifications, algorithm parameters for each instance, and runtime(s) are reported 

in Table 2. The total size of each data is equal to the product of the number of sequence and the 

length of sequence. As it is seen, MOICA has 4 parameters: the probability of selection of each 

sequence (rate), the Maximum Iteration (MaxIt), the number of Population (nPop), and the number 

of Empires (nEmp). To reach the best result, we ran the program several times to find the best 

parameters for MOICA and reported all of them in Table 2. 

Table 2. MOICA parameters and runtime for each instance. 

Time(sec.) nCol nEmp nPop MaxIt rate Len. Seq. Dataset 

15 110 50 160 390 55% 500 3 yst05r 

15 110 50 160 390 55% 500 4 yst02g 

20 110 50 160 390 55% 1000 5 yst10m 

20 110 50 160 390 55% 500 6 yst07m 

20 110 50 160 390 55% 500 7 yst06g 

25 110 50 160 390 55% 500 8 yst03m 

25 110 50 160 390 55% 1000 9 yst01g 

30 110 50 160 390 55% 1000 11 yst08r 

30 100 35 135 330 55% 1000 16 yst09g 

25 110 50 160 390 70% 1000 7 yst04r 

25 110 50 160 390 70% 500 8 yst03r 

30 90 35 125 300 70% 1000 16 yst09g 

30 110 50 160 400 60% 500 12 mus11r 

15 110 50 160 400 75% 1500 4 mus07r 

30 130 50 180 470 60% 3000 7 hm16r 

40 110 50 160 400 60% 2000 13 hm04r 

15 110 50 160 390 55% 1500 3 dm07m 

15 120 50 170 420 80% 2000 3 dm08m 

15 120 50 170 420 80% 2000 3 dm03m 

15 110 50 160 390 55% 2500 3 dm05g 

20 120 50 170 420 80% 1500 4 dm01g 

20 120 50 170 420 80% 2000 4 dm04g 

15 120 50 170 420 90% 500 2 hm12r 

15 120 50 170 420 90% 500 2 hm25g 

15 120 50 170 420 90% 1000 2 hm14r 

15 120 50 170 420 80% 1000 3 hm05r 

20 120 50 170 420 80% 500 4 hm23r 

15 110 50 160 390 55% 2000 4 hm15r 

20 110 50 160 390 55% 500 5 hm19g 

20 110 50 160 390 55% 500 5 hm21g 

20 110 50 160 390 55% 1000 5 hm07m 

20 110 50 160 390 55% 3000 5 hm18m 

20 110 50 160 390 55% 500 6 hm22m 

Continued on next page 

Time(sec.) nCol nEmp nPop MaxIt rate Len. Seq. Dataset 

20 110 50 160 390 55% 500 6 hm10m 
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20 110 50 160 390 55% 1000 6 hm13r 

20 110 45 155 350 55% 3000 7 hm16g 

20 110 40 150 345 55% 500 8 hm24m 

20 110 40 150 345 55% 1000 8 hm11g 

20 110 40 150 345 55% 500 9 hm06g 

20 110 40 150 345 55% 1000 9 hm26m 

20 110 40 150 345 55% 1000 9 hm02r 

30 110 50 160 390 55% 1500 10 hm03r 

30 110 50 160 390 55% 1500 10 hm09g 

30 110 50 160 390 55% 500 11 hm17g 

30 100 40 140 340 55% 2000 13 hm04m 

30 100 35 135 330 55% 500 15 hm08m 

30 100 30 130 300 55% 2000 18 hm01g 

30 90 20 110 190 55% 2000 35 hm20r 

10 110 50 160 390 55% 500 2 mus09r 

15 110 50 160 390 55% 500 3 mus01r 

15 110 50 160 390 55% 500 3 mus12m 

15 110 50 160 390 55% 500 3 mus06g 

15 110 50 160 390 55% 1500 3 mus08m 

15 110 50 160 390 55% 500 4 mus05r 

15 110 50 160 390 55% 1500 4 mus07g 

20 110 50 160 390 55% 500 5 mus03g 

20 110 45 155 350 55% 1000 7 mus04m 

20 110 40 150 345 55% 1000 9 mus02r 

30 110 40 150 345 55% 500 12 mus11m 

30 100 40 140 340 55% 1000 13 mus10g 

20 110 50 160 450 95% 2500 5 dm05r 

25 150 50 200 450 80% 2000 4 dm04r 

15 110 50 160 400 75% 1500 4 dm01r 

Hypervolume indicator is the first indicator used to compare MOICA with MOABC [20],  

MO-VNS [28], DEPT [24], MO-FA [29], MO-GSA [30], SPEA2 [31], and NSGA-II [32]. 

The result of this comparison is shown in Table 3. We divide the results in four parts: Datasets 

with 𝑛 = 2  sequences, datasets with 𝑛 = 3, 4, 5, 6, 7  sequences, datasets with 𝑛 = 8, 9  sequences, 

and datasets with 𝑛 > 9  sequences. In datasets with 𝑛 = 2  sequences, NSGA-II has the best 

hypervolume value among all algorithms which is specified in Table 2, though MOABC, MO-GSA 

and SPEA2 have a value close to that of NSGA-II. In datasets with 𝑛 = 2, 3, 4, 5, 6, 7 sequences, 

MOABC gets the best results in different cases most of the time. MO-VNS, NSGA-II, and SPEA2 

have close results in this interval. For example, NSGA-II has the best hypervolume in  

dm05g ( 𝑛 = 2 ), mus07g ( 𝑛 = 3 ), dm01g ( 𝑛 = 3 ), and yst04r ( 𝑛 = 7 ). On the other hand,  

MO-VNS’s hypervolume and SPEA2’s hypervolume decrease quickly for 𝑛 > 5  and 𝑛 > 4 , 

respectively. DEPT, MO-FA, MO-GSA, and MOICA have very weak hypervolume in this interval 

in most cases, though MO-FA and MOICA have the best hypervolume for hm16g (𝑛 = 7) and 

yst10m (𝑛 = 5), respectively. DEPT, MO-FA and MOICA gets better hypervolume if we increase 

the number of sequences. 
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For datasets with 𝑛 = 8, 9 sequences, DEPT has the best hypervolume in most cases. Also, 

MOICA and MO-FA have a value close to that of DEPT in this interval, but other algorithms have 

very weak results. For datasets with 𝑛 > 9, MOICA has the best results and its hypervolume for 

hm10g (𝑛 = 18) and hm20r (𝑛 = 35) is significant. Other algorithms are very weak for datasets with 

more than 9 sequences except MO-FA that has a better result just for hm09g (𝑛 = 10). 

Table 3. The mean and standard deviation of each Algorithm hypervolume on 54 datasets. 

SPEA2 MO-GSA MO-FA NSGA-II DEPT MO-VNS MOABC MOICA n, m Dataset 

93.35% 

0.002 

92.92% 

0.005 

90.36% 

0.004 

93.46% 

0.001 

90.95% 

0.002 

84.79% 

0.061 

92.95% 

0.005 

83.12% 

0.002 
2,500 mus09r 

94.59% 

0.007 

93.88% 

0.005 

91.14% 

0.006 

94.71% 

0.002 

91.50% 

0.005 

90.69% 

0.034 

94.29% 

0.005 

85.12% 

0.002 
2,500 hm12r 

93.82% 

0.003 

93.20% 

0.011 

90.24% 

0.007 

93.94% 

0.010 

91.30% 

0.008 

79.92% 

0.062 

93.66% 

0.007 

81.93% 

0.003 
2,500 hm25g 

93.96% 

0.003 

94.11% 

0.003 

91.03% 

0.006 

94.40% 

0.004 

91.40% 

0.003 

86.77% 

0.062 

93.88% 

0.006 

84.07% 

0.002 
2,1000 hm14r 

85.66% 

0.004 

81.29% 

0.020 

83.63% 

0.014 

85.96% 

0.010 

80.76% 

0.021 

86.61% 

0.007 

86.89% 

0.007 

82.32% 

0.004 
3,500 yst05r 

85.65% 

0.004 

80.50% 

0.022 

84.44% 

0.017 

85.26% 

0.011 

80.40% 

0.017 

85.90% 

0.007 

86.93% 

0.006 

80.28% 

0.004 
3,500 mus01r 

84.96% 

0.004 

80.78% 

0.018 

82.72% 

0.010 

84.19% 

0.012 

80.04% 

0.018 

85.41% 

0.006 

85.78% 

0.006 

80.46% 

0.004 
3,500 mus12m 

83.46% 

0.003 

79.94% 

0.017 

81.91% 

0.008 

83.35% 

0.010 

80.01% 

0.020 

84.21% 

0.007 

84.33% 

0.006 

79.60% 

0.003 
3,500 mus06g 

85.10% 

0.005 

80.32% 

0.015 

82.73% 

0.009 

85.19% 

0.012 

80.46% 

0.019 

85.41% 

0.007 

85.50% 

0.009 

82.38% 

0.005 
3,1000 hm05r 

85.19% 

0.006 

80.42% 

0.020 

83.53% 

0.010 

85.01% 

0.008 

81.01% 

0.015 

85.87% 

0.007 

86.09% 

0.011 

81.65% 

0.004 
3,1500 dm07m 

84.60% 

0.004 

80.48% 

0.023 

83.10% 

0.010 

84.52% 

0.010 

80.85% 

0.010 

85.11% 

0.007 

85.77% 

0.008 

80.71% 

0.005 
3,1500 mus08m 

85.17% 

0.004 

80.94% 

0.017 

83.25% 

0.010 

85.90% 

0.007 

81.30% 

0.015 

85.75% 

0.007 

85.96% 

0.008 

81.81% 

0.003 
3,2000 dm08m 

85.16% 

0.006 

80.75% 

0.021 

83.52% 

0.011 

84.56% 

0.007 

81.38% 

0.017 

85.56% 

0.007 

86.06% 

0.011 

81.29% 

0.003 
3,2000 dm03m 

85.59% 

0.005 

80.30% 

0.021 

83.67% 

0.012 

86.69% 

0.005 

81.55% 

0.014 

85.88% 

0.008 

86.39% 

0.010 

82.18% 

0.003 
3,2500 dm05g 

82.28% 

0.005 

78.78% 

0.012 

80.82% 

0.011 

79.81% 

0.007 

78.21% 

0.016 

82.50% 

0.007 

82.87% 

0.010 

78.80% 

0.003 
4,500 yst02g 

81.18% 

0.005 

78.23% 

0.013 

80.89% 

0.011 

79.51% 

0.007 

78.13% 

0.018 

81.57% 

0.007 

82.38% 

0.007 

77.16% 

0.002 
4,500 hm23r 

80.44% 

0.004 

78.08% 

0.013 

80.25% 

0.008 

79.81% 

0.006 

77.56% 

0.019 

81.45% 

0.006 

81.69% 

0.008 

77.88% 

0.003 
4,500 mus05r 

Continued on next page 

SPEA2 MO-GSA MO-FA NSGA-II DEPT MO-VNS MOABC MOICA n, m Dataset 

87.73% 79.85% 82.43% 90.43% 80.01% 89.08% 89.21% 85.55% 4,1500 mus07g 
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0.010 0.018 0.015 0.022 0.034 0.015 0.029 0.013 

81.74% 

0.004 

79.03% 

0.015 

81.62% 

0.013 

83.77% 

0.010 

79.66% 

0.017 

82.95% 

0.006 

83.24% 

0.008 

80.91% 

0.004 
4,1500 dm01g 

81.08% 

0.005 

79.31% 

0.014 

81.91% 

0.014 

81.16% 

0.006 

79.78% 

0.018 

82.90% 

0.008 

83.77% 

0.014 

80.34% 

0.003 
4,2000 dm04g 

85.93% 

0.009 

80.23% 

0.025 

83.98% 

0.042 

85.23% 

0.022 

80.29% 

0.022 

85.23% 

0.016 

88.59% 

0.027 

82.80% 

0.010 
4,2000 hm15r 

79.74% 

0.004 

76.81% 

0.019 

80.08% 

0.009 

79.33% 

0.007 

78.71% 

0.022 

80.35% 

0.007 

81.37% 

0.009 

76.76% 

0.003 
5,500 hm19g 

77.31% 

0.004 

74.58% 

0.044 

79.67% 

0.012 

76.48% 

0.012 

77.61% 

0.016 

77.39% 

0.018 

79.84% 

0.008 

72.74% 

0.003 
5,500 mus03g 

65.38% 

0.003 

63.39% 

0.010 

64.99% 

0.009 

65.24% 

0.004 

63.49% 

0.014 

66.08% 

0.005 

66.67% 

0.007 

75.53% 

0.003 
5,1000 yst10m 

78.61% 

0.004 

77.01% 

0.019 

79.49% 

0.010 

78.24% 

0.008 

78.72% 

0.012 

79.76% 

0.007 

81.12% 

0.010 

75.83% 

0.002 
5,1000 hm21g 

78.71% 

0.004 

77.37% 

0.017 

79.91% 

0.010 

79.39% 

0.005 

78.91% 

0.017 

79.66% 

0.006 

81.24% 

0.009 

74.87% 

0.003 
5,1000 hm07m 

78.58% 

0.004 

77.39% 

0.023 

79.97% 

0.009 

77.58% 

0.004 

79.80% 

0.014 

79.38% 

0.007 

81.31% 

0.008 

75.16% 

0.003 
5,3000 hm18m 

75.92% 

0.005 

70.49% 

0.038 

77.36% 

0.008 

74.57% 

0.013 

76.81% 

0.012 

74.22% 

0.032 

78.27% 

0.008 

72.27% 

0.003 
6,500 yst07m 

75.53% 

0.005 

69.87% 

0.047 

76.84% 

0.009 

75.02% 

0.030 

76.98% 

0.011 

74.12% 

0.028 

77.91% 

0.007 

72.22% 

0.003 
6,500 hm22m 

75.22% 

0.005 

69.01% 

0.038 

77.54% 

0.009 

74.61% 

0.020 

77.11% 

0.014 

72.36% 

0.034 

78.23% 

0.011 

72.06% 

0.003 
6,500 hm10m 

75.19% 

0.005 

70.27% 

0.040 

77.35% 

0.008 

76.08% 

0.010 

77.24% 

0.008 

72.88% 

0.031 

78.18% 

0.010 

72.93% 

0.003 
6,1000 hm13r 

73.19% 

0.005 

68.05% 

0.030 

75.75% 

0.014 

73.84% 

0.011 

74.94% 

0.018 

72.04% 

0.028 

75.93% 

0.012 

74.10% 

0.002 
7,500 yst06g 

71.43% 

0.006 

68.20% 

0.034 

73.98% 

0.014 

77.04% 

0.007 

73.50% 

0.020 

72.88% 

0.028 

75.54% 

0.012 

75.30% 

0.003 
7,1000 yst04r 

69.43% 

0.020 

63.99% 

0.030 

74.24% 

0.010 

67.86% 

0.012 

74.31% 

0.012 

65.49% 

0.021 

71.10% 

0.023 

70.02% 

0.003 
7,1000 mus04m 

71.13% 

0.023 

69.12% 

0.043 

83.63% 

0.051 

71.82% 

0.015 

78.42% 

0.044 

70.36% 

0.026 

81.55% 

0.055 

76.90% 

0.015 
7,3000 hm16g 

68.37% 

0.011 

62.59% 

0.038 

72.65% 

0.010 

66.44% 

0.011 

73.26% 

0.012 

65.03% 

0.026 

69.68% 

0.024 

69.97% 

0.004 
8,500 yst03m 

68.28% 

0.013 

59.58% 

0.036 

72.19% 

0.008 

65.10% 

0.011 

72.91% 

0.012 

62.65% 

0.028 

67.65% 

0.019 

69.08% 

0.003 
8,500 hm24m 

69.34% 

0.012 

60.14% 

0.044 

73.15% 

0.017 

69.38% 

0.031 

74.54% 

0.021 

63.86% 

0.028 

69.93% 

0.021 

72.17% 

0.005 
8,1000 hm11g 

61.24% 

0.012 

56.60% 

0.029 

69.37% 

0.012 

60.06% 

0.015 

70.68% 

0.027 

59.43% 

0.019 

63.21% 

0.019 

69.52% 

0.003 
9,500 hm06g 

Continued on next page 

SPEA2 MO-GSA MO-FA NSGA-II DEPT MO-VNS MOABC MOICA n, m Dataset 

63.16% 59.37% 70.14% 62.75% 70.72% 61.48% 65.16% 69.94% 9,1000 yst01g 
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0.013 0.024 0.011 0.013 0.014 0.021 0.025 0.004 

62.28% 

0.015 

58.89% 

0.031 

70.48% 

0.012 

60.86% 

0.013 

70.68% 

0.016 

60.98% 

0.025 

64.43% 

0.025 

68.51% 

0.004 
9,1000 hm26m 

59.09% 

0.013 

57.57% 

0.024 

69.88% 

0.014 

61.50% 

0.014 

70.85% 

0.023 

59.04% 

0.022 

63.45% 

0.033 

68.68% 

0.006 
9,1000 hm02r 

60.62% 

0.012 

57.21% 

0.025 

69.78% 

0.015 

61.99% 

0.013 

70.02% 

0.019 

59.34% 

0.025 

63.58% 

0.024 

69.08% 

0.005 
9,1000 mus02r 

53.77% 

0.017 

58.44% 

0.021 

69.06% 

0.020 

51.59% 

0.038 

65.03% 

0.030 

58.75% 

0.014 

60.18% 

0.026 

69.23% 

0.005 
10,1500 hm03r 

54.79% 

0.013 

57.51% 

0.022 

68.71% 

0.023 

50.71% 

0.043 

65.20% 

0.033 

57.72% 

0.017 

59.23% 

0.027 

68.28% 

0.005 
10,1500 hm09g 

52.47% 

0.012 

54.40% 

0.024 

65.86% 

0.030 

49.94% 

0.037 

64.12% 

0.033 

55.12% 

0.019 

55.55% 

0.023 

66.08% 

0.006 
11,500 hm17g 

57.96% 

0.014 

61.24% 

0.030 

69.12% 

0.019 

64.92% 

0.028 

67.80% 

0.048 

63.03% 

0.030 

62.91% 

0.023 

71.15% 

0.006 
11,1000 yst08r 

48.87% 

0.014 

49.51% 

0.031 

62.01% 

0.014 

45.32% 

0.043 

58.85% 

0.039 

49.54% 

0.031 

51.25% 

0.020 

62.98% 

0.007 
12,500 mus11m 

47.89% 

0.011 

52.18% 

0.029 

62.17% 

0.018 

45.03% 

0.029 

60.90% 

0.030 

52.21% 

0.022 

53.20% 

0.024 

63.88% 

0.005 
13,2000 hm04m 

43.94% 

0.010 

47.05% 

0.032 

59.25% 

0.016 

41.73% 

0.036 

55.34% 

0.039 

46.22% 

0.030 

48.92% 

0.021 

62.64% 

0.005 
13,1000 mus10g 

43.45% 

0.011 

46.98% 

0.037 

58.07% 

0.015 

42.63% 

0.028 

57.15% 

0.046 

46.81% 

0.037 

48.57% 

0.023 

61.25% 

0.009 
15,500 hm08m 

42.34% 

0.011 

46.50% 

0.029 

56.86% 

0.021 

42.68% 

0.022 

55.70% 

0.056 

45.74% 

0.037 

47.92% 

0.022 

62.11% 

0.007 
16,1000 yst09g 

34.55% 

0.009 

37.95% 

0.042 

49.56% 

0.065 

33.92% 

0.027 

42.98% 

0.054 

34.40% 

0.029 

42.05% 

0.033 

59.96% 

0.010 
18,2000 hm01g 

21.91% 

0.006 

25.68% 

0.020 

36.43% 

0.065 

22.89% 

0.014 

25.33% 

0.026 

22.67% 

0.027 

25.08% 

0.020 

46.70% 

0.016 
35,2000 hm20r 

In biological indicators, we examine the biological properties of our proposal with fifteen 

methods in TRANSFAC database. In this assessment, we just ran MOICA 5 times for each dataset to 

elicit its properties. This database contains a list of four species with different 𝑛 and 𝑚. We first 

define these biological tools based on both the nucleotide level and the site level. Specifically, at the 

nucleotide level [33]. 

• nTP is the number of nucleotide positions in both known sites and predicted sites; 

• nFN is the number of nucleotide positions in known sites but not in predicted sites; 

• nFP is the number of nucleotide positions not in known sites but in predicted sites; 

• nTN is the number of nucleotide positions in neither known sites nor predicted sites. 

At the site level [33]: 

• sTP is the number of known sites overlapped by predicted sites; 

• sFN is the number of known sites not overlapped by predicted sites; 

• sFP is the number of predicted sites not overlapped by known sites. 

We ran MOICA on the selected TRANSFAC database and found the following results for Fly, 

Human, Mouse, and Yeast. 
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Table 4. The result of MOICA in the motif-finding assessment. 

MOICA nTP nFP nFN nTN sTP sFP sFN 

Fly 177 655 494 41674 11 7 40 

Human 1092 4860 4027 277021 53 49 245 

Mouse 612 1692 1027 52169 36 14 62 

Yeast 339 2349 871 57441 21 23 53 

Like Table 4, these parameters were computed for AlignAce, ANN-Spec, Consensus, GLAM, 

Improbizer, MEME, MEME3, MITRA, MotifSampler, ologo/dyad-analysis, QuickScore, 

SeSiMCMC, Weeder, and YMF. They were reported in Tompa [33]. 

We need some biological indicators to show the performance of each method on different 

species. These biological indicators are defined at the nucleotide (𝑥 = 𝑛) and site (𝑥 = 𝑠) levels as 

follows [33]: 

• 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: 𝑥𝑆𝑛 =
𝑥𝑇𝑃

𝑥𝑇𝑃+𝑥𝐹𝑁
 

• 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒: 𝑥𝑃𝑃𝑉 =
𝑥𝑇𝑃

𝑥𝑇𝑃+𝑥𝐹𝑃
 

• 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦: 𝑛𝑆𝑝 =
𝑛𝑇𝑁

𝑛𝑇𝑁+𝑛𝐹𝑃
 

• 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡: 𝑛𝑃𝐶 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁+𝑛𝐹𝑃
 

• 𝑡ℎ𝑒 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡: 𝑛𝐶𝐶 =
𝑛𝑇𝑃.𝑛𝑇𝑁−𝑛𝐹𝑁.𝑛𝐹𝑃

√(𝑛𝑇𝑃+𝑛𝐹𝑁)(𝑛𝑇𝑁+𝑛𝐹𝑃)(𝑛𝑇𝑃+𝑛𝐹𝑃)(𝑛𝑇𝑁+𝑛𝐹𝑁)
 

• 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒: 𝑠𝐴𝑆𝑃 =
𝑠𝑆𝑛+𝑠𝑃𝑃𝑉

2
 

Add nTP, nFP, nFN, nTN, sTP, sFP, and sFN over the TRANSFAC database and compute each 

indicator based on the top values (Table 3). We can see that our algorithm improves all biological 

indicators for Mouse and Fly instances significantly. It also gets best results for Human instances 

except for nPPV indicator. We also ran our proposal on Yeast datasets, but its result is weak. Table 4 

indicates that Weeder has the best performance on Yeast. These biological indicators show that 

MOICA gets good results in most instances. It is important to mention that some biological tools 

achieve good results just in some instances but fail to obtain reasonable motifs in others. 

 

 

 

 

Table 5. The comparison of biological indicators (nCC, nSn, sSn, nPC, nPPV, sPPV and 

sASP) of Human, Mouse, Yeast and Fly by different algorithms. 

Fly nSn nPPV nPC nCC sSn sPPV sASP 

MOICA 0.263785 0.21274 0.133484 0.223421 0.215686 0.611111 0.413399 
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AlignAce 0 0 0 −0.0063762 0 0 0 

ANN-Spec 0.0253353 0.0175258 0.010468 0.0023548 0.0196078 0.009434 0.0145209 

Consensus 0 0 0 −0.0110554 0 0 0 

GLAM 0.0029806 0.004902 0.001857 −0.0084518 0 0 0 

Improbizer 00149031 0.0176056 0.0081367 0.0018679 0.0196078 0.0227273 0.0211676 

MEME 0.0417288 0.0421053 0.0214067 0.0267982 0.0588235 0.0555556 0.0571895 

MEME3 0.0372578 0.0263713 0.0156838 0.0130431 0.0588235 0.0447761 0.0517998 

MITRA 0 0 0 −0.0078616 0 0 0 

MotifSampler 0.0044709 0.0082192 0.0029042 −0.0055135 0 0 0 

ologo/dyad-

analysis 
0 0 0 −0.0149773 0 0 0 

QuickScore 0 0 0 −0.0157195 0 0 0 

SeSiMCMC 0.1013413 0.0538827 0.0364611 0.0537034 0.0980392 0.125 0.1115196 

Weeder 0.0119225 0.0344828 0.0089385 0.0112184 0.0196078 0.0344828 0.0270453 

YMF 0 0 0 −0.0138211 0 0 0 

Human nSn nPPV nPC nCC sSn sPPV sASP 

MOICA 0.213323 0.183468 0.10943 0.182113 0.177852 0.519608 0.34873 

AlignAce 0.0392655 0.102551 0.0292236 0.0531478 0.0738255 0.1235955 0.0987105 

ANN-Spec 0.090252 0.1031711 0.0505747 0.0812784 0.1644295 0.0983936 0.1314116 

Consensus 0 NaN 0 NaN 0 NaN NaN 

GLAM 0.0236374 0.0367669 0.0145977 0.0155035 0.0402685 0.06 0.0501342 

Improbizer 0.0416097 0.0476084 0.0227079 0.0284205 0.0704698 0.0483871 0.0594284 

MEME 0.0380934 0.0603902 0.0239176 0.0343922 0.0604027 0.0810811 0.0707419 

MEME3 0.0420004 0.0470975 0.0227057 0.0282219 0.0637584 0.0788382 0.0712983 

MITRA 0.0244188 0.0471342 0.0163484 0.0214655 0.0402685 0.046875 0.0435717 

MotifSampler 0.0250049 0.0416531 0.015873 0.0188157 0.0469799 0.0430769 0.0450284 

ologo/dyad-

analysis 
0.0371166 0.213964 0.0326629 0.0825991 0.0604027 0.15 0.1052013 

QuickScore 0.0050791 0.0099388 0.0033727 -0.0056328 0 0 0 

SeSiMCMC 0.0459074 0.0279962 0.0176984 0.0134837 0.0671141 0.0630915 0.0651028 

Weeder 0.0543075 0.2747036 0.047497 0.1154935 0.1073826 0.2580645 0.1827235 

YMF 0.0410236 0.0967296 0.029661 0.0521165 0.0738255 0.080292 0.0770587 

Mouse nSn nPPV nPC nCC sSn sPPV sASP 

MOICA 0.373398 0.265625 0.183729 0.290236 0.367347 0.720000 0.543673 

AlignAce 0.028676 0.0490605 0.0184314 0.0152885 0.0306122 0.0361446 0.0333784 

ANN-Spec 0.0433191 0.0430564 0.0220703 0.0139802 0.0816327 0.0425532 0.0620929 

Consensus 0.0488103 0.1062417 0.0346021 0.0531418 0.1020408 0.1219512 0.111996 

GLAM 0.0073215 0.0187793 0.0052957 −0.0068546 0.0102041 0.0153846 0.0127943 

Improbizer 0.1079927 0.1219008 0.0607412 0.0894309 0.2244898 0.1605839 0.1925369 

MEME 0.0732154 0.1337793 0.0496689 0.0789261 0.1428571 0.175 0.1589286 

Continued on next page 

Mouse nSn nPPV nPC nCC sSn sPPV sASP 

MEME3 0.1061623 0.170088 0.0699357 0.1137754 0.1938776 0.2 0.1969388 

MITRA 0.0061013 0.015456 0.0043937 −0.0090299 0.0204082 0.0327869 0.0265975 

MotifSampler 0.0445394 0.0913642 0.0308668 0.0441428 0.0816327 0.0952381 0.0884354 

ologo/dyad- 0.0268456 0.1067961 0.0219233 0.03947 0.0612245 0.0952381 0.0782313 
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analysis 

QuickScore 0.0359976 0.089939 0.0263864 0.0390251 0.0816327 0.0677966 0.0747146 

SeSiMCMC 0.0622331 0.0408818 0.0252976 0.0145461 0.1020408 0.0952381 0.0986395 

Weeder 0.0616229 0.1753472 0.0477767 0.0882065 0.122449 0.1791045 0.1507767 

YMF 0.1012813 0.2017011 0.0722997 0.1247729 0.2040816 0.1818182 0.1929499 

Yeast nSn nPPV nPC nCC sSn sPPV sASP 

MOICA 0.280165 0.126116 0.0952515 0.163648 0.283784 0.477273 0.380528 

AlignAce 0.1855754 0.1849758 0.1020954 0.1684257 0.28 0.2019231 0.2409615 

ANN-Spec 0.165316 0.14011099 0.0820595 0.1331542 0.3066667 0.1411043 0.2238855 

Consensus 0.0794165 0.2 0.0602706 0.1149074 0.1466667 0.2391304 0.1928986 

GLAM 0.0713128 0.0585106 0.0332075 0.0432325 0.1466667 0.0578947 0.1022807 

Improbizer 0.1572123 0.0950049 0.0629461 0.0988463 0.2666667 0.1333333 0.2 

MEME 0.1928687 0.3801917 0.1467324 0.260354 0.3066667 0.3833333 0.345 

MEME3 0.2098865 0.3001159 0.140914 0.2381559 0.32 0.3037975 0.3118987 

MITRA 0.1110211 0.1525612 0.0686717 0.1148955 0.16 0.1538462 0.1569231 

MotifSampler 0.2560778 0.5039872 0.2045307 0.3501753 0.3866667 0.4915254 0.439096 

ologo/dyad-

analysis 
0.0899514 0.3303571 0.0760795 0.1639418 0.1866667 0.3043478 0.2455072 

QuickScore 0.0534846 0.0613953 0.0294249 0.0391636 0.12 0.0434783 0.0817391 

SeSiMCMC 0.1012966 0.0570255 0.0378673 0.0504601 0.0933333 0.0721649 0.0827491 

Weeder 0.2925446 0.5340237 0.2330536 0.3863337 0.52 0.5492958 0.5346479 

YMF 0.1442464 0.3296296 0.1115288 0.2076962 0.28 0.3387097 0.3093548 

We also compared our proposal with MOABC in biological realm. The nTP, nFP, nFN, nTN, 

sTP, sFP, and sFN is not available for MOABC except a figure in [7] where nTP, nFP, nFN, nTN, 

sTP, sFP, and sFN of all species added up and then all biological indicators computed. We did not 

the same rule because it compares the mean results and may be unfair. 

The last experiment is accomplished based on motif finding and its non-dominated solutions are 

reported in Table 6. We ran our algorithm on four datasets of dm04g, hm22m, mus03g, and yst01g; 

hm22m and mus03g have 6 and 5 sequences respectively and the sequence length of each one  

is 500 bps, dm04g has 4 sequences, each with length 2000 bps, and yst01g has 9 sequences each with 

length 1000 bps. We compared MOICA with MOABC [20], because MOABC almost had the best 

performance among all algorithms. 

We used the reported results for these four datasets in [7]. We computed length, support, 

similarity, and complexity of the reported results for MOABC and compared them with our results. 

The comparative results are recorded in Table 6. Our goal and other researchers were not to 

maximize complexity, but we report it just to show a fair comparison. In fact, most of algorithms can 

find the best results for length, support, and similarity with a low complexity. Table 6 shows that 

MOICA has the best results. We almost fixed support, length, and complexity to find a motif with 

high similarity. The results confirm that MOICA beats MOABC in motif finding. 

Notice that MOABC and MOICA are multi-objective, so we can find alternative answers with 

different support and similarity for each length. As we can see in Table 6, MOICA obtained the best 

results for all of these datasets. 

In this experiment, we ran our algorithm so that only one or two empire(s) remained at the end. 

To reach this goal, we fixed the parameters of our algorithm at nPop = 200, nEmp = 50, nCol = 150 
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and MaxIt = 800. We also defined rate based on datasets. The selection probability of each sequence 

(rate) depends on the data and the kind of the motif that we want to find. For example, if the support 

of the desired motif is close to the number of sequences of the dataset, it is better to take rate from 70 

to 100. Moreover, the selection probability of each sequence (rate) changes from 30 to 100. 

Table 6. The comparison of the conserved motifs predicted by MOABC and MOICA 

methods for dm04g, hm22m, mus03g and yst01g data. 

Predicted Motif complexity similarity length support Method data 

TCAACTGTAAATATAACTTAAAAAGGGAATACT 0.84 0.64 33 3 MOABC dm04g 

GTTTGGAAGTGCTTAAATAAACTTGCAAAAAAC 0.85 0.74 33 3 MOICA dm04g 

ATGACCCACACCACGCGCACGCATGGCCCGGCC 0.81 0.61 33 4 MOABC hm22m 

CCACGCCAGACGGGCGTTGCAAGCCAGACCTACT 0.83 0.68 34 4 MOICA hm22m 

AAGGCGTTGCTCAAGTGTTAAGAAAATACTGACAC 0.87 0.58 35 4 MOABC mus03g 

TGGATAGAAGAACTACAACCTTCATGTCATACATTT 0.87 0.63 36 4 MOICA mus03g 

ATGAAATTAAACCCAA 0.74 0.59 16 4 MOABC yst01g 

TACCATAATTCATAGAT 0.74 0.69 17 4 MOICA yst01g 

6. Discussion and conclusion 

In this paper, we have proposed a metaheuristic algorithm for solving MDP considering a 

Multi-objective Imperialist Competition Algorithm (MOICA) based on three optimization functions. 

A big contribution of our method is that it gives alternative answers in a single run. Thus, the user 

can select useful ones among multiple answers. 

In order to assess the performance of our algorithm, we ran MOICA on 54 sequence datasets 

from four species with different length and various numbers of sequences and compared the result 

with those obtained by previous methods. To facilitate comparing, we used the same criteria as used 

in multi-objective algorithms like hypervolume indicator. It is demonstrated that our algorithm gets a 

significant average hypervolume indicator in a set of instances with more than nine sequences. We 

also computed biological indicators (nCC, nPC, nSn, nPPV, sSn, sPPV, sASP, and nSp) for some 

selected instances in the benchmark that were mentioned in previous works. Its biological indicators 

have the best results in all instances except yeast. Furthermore, we also found motifs for 4 different 

datasets with different number of sequences and lengths. It can be concluded that the solutions found 

by our algorithm gives the best results among all algorithms in the literature. In future, we can 

modify our algorithm by composing other SI algorithms to make it more realistic with a better 

performance. Artificial Bee Colony (ABC) is a metaheuristic procedure which obtained good result 

for MDP considering a multi-objective framework. 

As future works, we intend to design new approaches to discover common patterns in 

sequences. At first, we interest in integrating ICA and ABC to invent a new algorithm to improve 

results for a bigger set of the datasets. Other desirable research is directly related to model this 
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problem as an optimization-programming problem to use the existing algorithms for solving it. 

Finally, we would like to try to find new methods with the aim of improving both optimization 

programming and biological results. 
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