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Abstract. In this paper, a partial differential equation (PDE) model is pro-

posed to explore the transmission dynamics of vector-borne diseases. The
model includes both incubation age of the exposed hosts and infection age of

the infectious hosts which describe incubation-age dependent removal rates in

the latent period and the variable infectiousness in the infectious period, re-
spectively. The reproductive number R0 is derived. By using the method of

Lyapunov function, the global dynamics of the PDE model is further estab-

lished, and the results show that the basic reproduction number R0 determines
the transmission dynamics of vector-borne diseases: the disease-free equilibri-

um is globally asymptotically stable if R0 ≤ 1, and the endemic equilibrium is

globally asymptotically stable if R0 > 1. The results suggest that an effective
strategy to contain vector-borne diseases is decreasing the basic reproduction

number R0 below one.

1. Introduction. Vector-borne diseases are infectious diseases caused by pathogen-
s and parasites in human populations that are transmitted to people by blood-
sucking arthropods, such as mosquitoes, ticks and fleas. They include some of the
world’s most destructive diseases, for instance, malaria, schistosomiasis, plague, and
dengue fever. According to WHO [1], vector-borne diseases account for more than
17% of all infectious diseases, causing more than 1 million deaths annually. In the
past two decades, some vector-borne diseases, such as malaria and schistosomiasis,
have continued to threaten human health. Furthermore, other vector-borne dis-
eases have reemerged and broken out in different parts of the world, such as the
2014 Guangzhou outbreak of dengue fever and the outbreak of West Nile virus in
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North America since 1999. Any outbreak of the vector-borne diseases causes great
harm to public health. As far as the 2014 Guangzhou outbreak of dengue fever is
concerned, the total number of dengue fever cases reached 36, 889 as of October
21st, 2014 [2], according to the provincial health and family planning commission.
Due to the great harm to the public health caused by the vector diseases, it is
imperative to understand the transmission dynamics of the vector-borne diseases
firstly, and then discuss strategies to prevent and contain their outbreaks.

Mathematical modeling has contributed significantly to our understanding of the
epidemiology of infectious diseases [3, 5]. Over the past two decades, there have
been many published mathematical models focused on understanding the transmis-
sion dynamics of the vector-borne diseases ([4, 12, 23, 26, 27, 30] and references
therein). These models provided useful insights into the transmission dynamics of
the vector-borne diseases. Almost all of the above models are described by ordinary
differential equations (ODEs); therefore, some of the assumptions implicitly made
in the formulation of these models [28] include: (1) infectious individuals are equal-
ly infectious during their infectious period; (2) the stage durations of the latent
and infectious periods are exponentially distributed. Although in many cases these
simplifying assumptions may provide a reasonable approximation to the biological
process being modeled, it is important to examine how the model results may be
influenced by these assumptions, which calls for an investigation of models that use
more realistic assumptions [28].

In this paper, we develop an age-structured model to study how transmission
dynamics of the vector-borne diseases are affected by the incubation and infectious
ages. The model studied in the paper incorporates both incubation age of the ex-
posed hosts and infection age of the infectious hosts. Incubation age of the exposed
hosts describes the different removal rates in the latent period, and infection age
of the infectious hosts describes the variable infectiousness in the infectious pe-
riod. Several recent studies [6, 16, 19, 20, 24, 25, 29] on age structured models
have shown that age of infection may play an important role in the transmission
dynamics of infectious diseases. Thieme and Castillo-Chavez [29] studied the ef-
fect of infection-age-independent infectivity on dynamics of HIV transmission, and
showed that undamped oscillations may occur in particular if the variable infectiv-
ity is highly concentrated at certain parts of the incubation period. Lloyd [19, 20]
studied the epidemic model with the inclusion of non-exponential distributions of
infectious periods. The results indicated that the inclusion of more realistic descrip-
tion of the recovery process may cause a significant destabilization of the model,
and less dispersed distributions are seen to have two important epidemiological con-
sequences: (1) less stable behavior is seen within the model; (2) disease persistence
is diminished.

Epidemic models with age of infection are usually described by first order partial
differential equations, whose complexity makes them more difficult to theoretically
analyze, particularly, their global behavior. Most existing studies on age-structured
models focus only on the existence of non-trivial steady states [17, 11] or give lo-
cal stability results [32]. The stability analysis of nonlinear dynamical systems
has always been a topic of both theoretical and practical importance since global
stability is one of the most important issues related to their dynamic behaviors.
However, proving the global stability is a very challenging task, especially for non-
linear systems described by PDEs due to the lack of generically applicable tools.
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The global stability results for the age-structured epidemic models were first ob-
tained in [7, 8, 9]. The method of Lyapunov functions is the most common tool
used to prove the global stability, especially for ODE models [14, 15, 18]. In re-
cent years, Lyapunov function has been also used to study the global stability of
epidemic models with age of infection [21, 22, 31].

In this paper, we also use Lyapunov functions to study the global dynamics of a
vector-borne disease model with incubation age of the exposed hosts and infection
age of the infectious hosts. By using a class of Lyapunov functions we show that the
global dynamics of the system is completely determined by the basic reproduction
number R0: if R0 < 1 the disease-free equilibrium is globally asymptotically stable;
if R0 > 1, a unique endemic equilibrium is globally asymptotically stable.

This paper is organized as follows. In the next section we formulate a vector-
borne epidemic model with incubation age of exposed hosts and infection age of
infectious hosts. The two infection ages describe the different removal rates in the
latent stage and the variable infectiousness in the infectious stage, respectively.
We obtain an explicit formula for the basic reproduction number of system. Then
we discuss the trivial and non-trivial equilibria and their stabilities. In Section
3, the global stability of the infection-free equilibrium of the system is analyzed by
constructing a Lyapunov function. In Section 4, we show uniform strong persistence
of the vector-borne disease ifR0 > 1. In Section 5, we again use a Lyapunov function
to derive the global stability of the epidemic equilibrium. Finally, a brief discussion
is given in Section 6.

2. The vector-borne disease model with two ages of infection and the
local stabilities. To introduce the model, we divide the host population under
consideration into four groups: susceptible hosts at time t, denoted by Sh(t), in-
fected but not infectious individuals Eh(τ, t), infected and infectious individuals
Ih(a, t), and the number of recovered or immune individuals, denoted by Rh(t).
The vector population, on the other hand, is divided into three compartmental
classes: susceptible vector at time t, denoted by Sv(t), the number of recovered or
immune vectors, denoted by Rv(t), and infected/infectious vectors Iv(t).

With the above notation, we study the following infection-age-structured vector-
borne epidemic model:

S′v(t) = Λv − Sv(t)
∫ ∞

0

βv(a)Ih(a, t)da− µvSv(t),

I ′v(t) = Sv(t)

∫ ∞
0

βv(a)Ih(a, t)da− (µv + αv)Iv(t),

R′v(t) = αvIv(t)− µvRv(t),
S′h(t) = Λh − βhSh(t)Iv(t)− µhSh(t),

∂Eh(τ, t)

∂τ
+
∂Eh(τ, t)

∂t
= −(µh +m(τ))Eh(τ, t),

Eh(0, t) = βhSh(t)Iv(t),

∂Ih(a, t)

∂a
+
∂Ih(a, t)

∂t
= −(µh + αh(a) + rh(a))Ih(a, t),

Ih(0, t) =

∫ ∞
0

m(τ)Eh(τ, t)dτ,

R′h(t) =

∫ ∞
0

rh(a)Ih(a, t)da− µhRh(t).

(1)
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In equation (1), Λh is the birth /recruitment rate of the host population. Let
µv, µh be the natural death rate of the vectors and the host, respectively. m(τ)
denotes the removal rate of the infected hosts with age of incubation τ from the
latent period. αh(a) gives the additional disease induced death rate due to vector-
borne disease at age of infection a. αv denotes the recovery rate of the infected
vectors. rh(a) denotes the recovery rate of the infected hosts with age of infection
a. Furthermore, βv(a) is the transmission coefficient of the infected host individuals
at age of infection a, and βh is the transmission coefficient from infected vectors to
healthy host individuals.

To understand the model, notice that susceptible host individuals are recruited at
a rate Λh. Susceptible host individuals can become infected by a bite of an infected
mosquito with disease. Upon infection through biting by infected mosquitoes, the
newly infected individuals move to the latent class, then progress into the infectious
class with the progression rate m(τ). The non-infectious and infectious individuals
infected by disease with age-since-infection equal to zero move to the boundary
condition. The number total recovery rate from the infected class Ih(a, t) is given
by the integral over all ages-since-infection. The susceptible vectors are recruited at
a rate Λv. Susceptible mosquitos can become infected through biting on an infected
individual of any age-since-infection at a specific age-infection transmission rate. As
a consequence, the force of infection of susceptible vectors is given by the integral
over all ages-since-infection. The total recovery rate from the infected vector class
Iv(t) is given by αvIv(t).

We notice that the equations for the recovered individuals and the recovered
vectors are decoupled from the system and the analysis of system (1) is equivalent
to the analysis of the system

S′v(t) = Λv − Sv(t)
∫ ∞

0

βv(a)Ih(a, t)da− µvSv(t),

I ′v(t) = Sv(t)

∫ ∞
0

βv(a)Ih(a, t)da− (µv + αv)Iv(t),

S′h(t) = Λh − βhSh(t)Iv(t)− µhSh(t),

∂Eh(τ, t)

∂τ
+
∂Eh(τ, t)

∂t
= −(µh +m(τ))Eh(τ, t),

Eh(0, t) = βhSh(t)Iv(t),

∂Ih(a, t)

∂a
+
∂Ih(a, t)

∂t
= −(µh + αh(a) + rh(a))Ih(a, t),

Ih(0, t) =

∫ ∞
0

m(τ)Eh(τ, t)dτ.

(2)

Model (2) is equipped with the following initial conditions:

Sv(0) = Sv0 , Iv(0) = Iv0 , Sh(0) = Sh0
, Eh(τ, 0) = ϕ(τ), Ih(a, 0) = ψ(a).

All parameters are nonnegative, Λv > 0, Λh > 0, and βh > 0, µv > 0, µh > 0. We
make the following assumptions on the parameter-functions.

Assumption 2.1 The parameter-functions satisfy the following.

1. The functions βv(a) is bounded and uniformly continuous. When βv(a) is of
compact support, the support has non-zero Lebesgue measure;

2. The functions m(τ), αh(a), rh(a) belong to L∞(0,∞);
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3. The functions ϕ(τ), ψ(a) are integrable.

Define the space of functions

X = R× R× R× (L1(0,∞))× (L1(0,∞)).

It can be verified that solutions of (2) with nonnegative initial conditions belong to
the positive cone for t ≥ 0. Furthermore, adding the first and the second equations
we have

d

dt

(
Sv(t) + Iv(t)

)
≤ Λv − µv

(
Sv(t) + Iv(t)

)
.

Hence,

lim sup
t

(
Sv(t) + Iv(t)

)
≤ Λv
µv
.

The number of the hosts can be bounded as follows:

d

dt

(
Sh(t)+

∫ ∞
0

Eh(τ, t)dτ +

∫ ∞
0

Ih(a, t)da

)
≤ Λh − µh

(
Sh(t) +

∫ ∞
0

Eh(τ, t)dτ +

∫ ∞
0

Ih(a, t)da

)
.

Hence,

lim sup
t

(
Sh(t) +

∫ ∞
0

Eh(τ, t)dτ +

∫ ∞
0

Ih(a, t)da

)
≤ Λh
µh
.

Therefore, the following set is positively invariant for system

Ω =

{
(Sv, Iv, Sh, Eh, Ih) ∈ X+

∣∣∣∣(Sv(t) + Iv(t)

)
≤ Λv
µv
,(

Sh(t) +

∫ ∞
0

Eh(τ, t)dτ +

∫ ∞
0

Ih(a, t)da

)
≤ Λh
µh

}
.

Finally, since the exit rate of exposed host individuals from the incubation com-
partment is given by µh + m(τ), then the probability of still being latent after τ
time units is given by

π1(τ) = e−µhτe−
∫ τ
0
m(σ)dσ. (3)

The exit rate of infected individuals from the infective compartment is given by
µh + αh(a) + rh(a), thus the probability of still being infectious after a time units
is given by

π2(a) = e−µhae−
∫ a
0

(αh(σ)+rh(σ))dσ. (4)

The reproduction number of disease in system (2) is given by the following expres-
sion

R0 =
βhΛvΛh

µvµh(µv + αv)

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da. (5)

The reproduction number of disease gives the number of secondary infections pro-
duced in an entirely susceptible population by a typical infected individual during
its entire infectious period. R0 gives the strength of vector-borne disease to invade
when rare and alone. In particular, we notice that the reproduction number for
vector-borne diseases is a product of the reproduction numbers of the two trans-
mission processes: human-to-vector Rh and vector-to-human Rv,

Rh =
Λv
µv

∫ ∞
0

βv(a)π2(a)da, Rv =
βhΛh

µh(µv + αv)

∫ ∞
0

m(τ)π1(τ)dτ,
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that is R0 = RvRh. In the next section we compute explicit expressions for the
equilibria and establish their local stability.

System (2) always has a unique disease-free equilibrium E0, which is given by

E0 =

(
S∗v0 , 0, S∗h0

, 0, 0

)
,

where

S∗v0 =
Λv
µv
, S∗h0

=
Λh
µh
.

In addition, for Dengue virus there is a corresponding endemic equilibrium E1 given
by

E1 = (S∗v , I
∗
v , S

∗
h, E

∗
h(τ), I∗h(a)).

We denote by

Λ =
βhΛhΛv

µhµv(µv + αv)
,

b =

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da,

b(λ) =

∫ ∞
0

m(τ)e−λτπ1(τ)dτ

∫ ∞
0

βv(a)e−λaπ2(a)da.

(6)

The non-zero components of the equilibrium E1 are given by

I∗v =
µvµh(R0 − 1)

βh(Λhb+ µv)
, S∗v =

Λv − (µv + αv)I
∗
v

µv
, S∗h =

Λh
βhI∗v + µh

,

E∗h(τ) = E∗h(0)π1(τ), E∗h(0) = βhS
∗
hI
∗
v ,

I∗h(a) = I∗h(0)π2(a), I∗h(0) = E∗h(0)

∫ ∞
0

m(τ)π1(τ)dτ.

(7)

Next, we turn to the linearized equations for the disease-free equilibrium. To in-
troduce the linearization at the disease-free equilibrium E0, we let Sv(t) = S∗v0 +
xv(t), Iv(t) = yv(t), Sh(t) = S∗h0

+ xh(t), Eh(τ, t) = zh(τ, t), Ih(a, t) = yh(a, t).
The linearized system becomes

dxv(t)

dt
= −S∗v0

∫ ∞
0

βv(a)yh(a, t)da− µvxv(t),

dyv(t)

dt
= S∗v0

∫ ∞
0

βv(a)yh(a, t)da− (µv + αv)yv(t),

dxh(t)

dt
= −βhS∗h0

yv(t)− µhxh(t),

∂zh(τ, t)

∂τ
+
∂zh(τ, t)

∂t
= −(µh +m(τ))zh(τ, t),

zh(0, t) = βhS
∗
h0
yv(t),

∂yh(a, t)

∂a
+
∂yh(a, t)

∂t
= −(µh + αh(a) + rh(a))yh(a, t),

yh(0, t) =

∫ ∞
0

m(τ)zh(τ, t)dτ.

(8)
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To study system (2), we look for solutions of the form xv(t) = x̄ve
λt, yv(t) =

ȳve
λt, xh(t) = x̄he

λt, zh(τ, t) = z̄h(τ)eλt and yh(a, t) = ȳh(a)eλt. We obtain the
following eigenvalue problem

λx̄v = −S∗v0

∫ ∞
0

βv(a)ȳh(a)da− µvx̄v,

λȳv = S∗v0

∫ ∞
0

βv(a)ȳh(a)da− (µv + αv)ȳv,

λx̄h = −βhS∗h0
ȳv − µhx̄h,

dz̄h(τ)

dτ
= −(λ+ µh +m(τ))z̄h(τ),

z̄h(0) = βhS
∗
h0
ȳv,

dȳh(a)

da
= −(λ+ µh + αh(a) + rh(a))ȳh(a),

ȳh(0) =

∫ ∞
0

m(τ)z̄h(τ)dτ.

(9)

We notice that the two equations for x̄v and x̄h are decoupled from the equation for
ȳv, z̄h, ȳh. Hence, the equations for x̄v and x̄h are independent from the equations
for ȳv, z̄h, ȳh. Solving the differential equations for z̄h, ȳh, we have

z̄h(τ) = z̄h(0) e−λτπ1(τ) = βhS
∗
h0
ȳv e

−λτπ1(τ),

ȳh(a) = ȳh(0) e−λaπ2(a) = βhS
∗
h0
ȳv e

−λaπ2(a)

∫ ∞
0

m(τ) e−λτπ1(τ)dτ.
(10)

Substituting for ȳh(a) in the second equation of (9), we can obtain the following
equation

λ+ µv + αv = βhS
∗
v0S
∗
h0

∫ ∞
0

m(τ)e−λτπ1(τ)dτ

∫ ∞
0

βv(a)e−λaπ2(a)da. (11)

Now we are ready to establish the following result.

Proposition 1. If

R0 < 1,

then the disease-free equilibrium is locally asymptotically stable. If R0 > 1, it is
unstable.

Proof. Assume

R0 < 1.

We set

LHS
def
= λ+ µv + αv,

RHS
def
= G1(λ) = βhS

∗
v0S
∗
h0

∫ ∞
0

m(τ)e−λτπ1(τ)dτ

∫ ∞
0

βv(a)e−λaπ2(a)da.
(12)
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Consider λ with <λ ≥ 0. For such λ, following from (12), we have that

|LHS| ≥ µv + αv,

|RHS| ≤ G1(<λ) ≤ G1(0) = βhS
∗
v0S
∗
h0

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da

=
βhΛvΛh
µvµh

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da

= R0(µv + αv) < |LHS|.

This gives a contradiction. Hence, we have shown that equation (11) cannot have
any roots with non-negative real parts. Therefore, the disease-free equilibrium E0
depends on the eigenvalues of the equations for xv and xh. It is evident that
λ = −µv and λ = −µh, so the disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1.

Now assume

R0 > 1.

We rewrite the characteristic equation (11) in the form

(λ+ µv + αv)− βhS∗v0S
∗
h0

∫ ∞
0

m(τ)e−λτπ1(τ)dτ

∫ ∞
0

βv(a)e−λaπ2(a)da = 0.

(13)
We denote

G2(λ) = (λ+ µv + αv)− βhS∗v0S
∗
h0

∫ ∞
0

m(τ)e−λτπ1(τ)dτ

∫ ∞
0

βv(a)e−λaπ2(a)da.

(14)
Thus equation (13) has turned into the following characteristic equation

G2(λ) = 0. (15)

For λ real we have

G2(0) = (µv + αv)− βhS∗v0S
∗
h0

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da

= (µv + αv)(1−R0) < 0.

Furthermore, limλ→∞ G2(λ) = +∞. Hence, the characteristic equation (15) has a
real positive root. Therefore, the endemic equilibrium E0 is unstable. This concludes
the proof.

Now we turn to the local stability of the endemic equilibrium E1 if R0 > 1. The
result on local stability of the equilibrium E1 is summarized below

Proposition 2. Assume R0 > 1, then the endemic equilibrium E1 is locally asymp-
totically stable.

Proof. We study the linearized equation around the endemic equilibrium E1. We
introduce the following notation for the perturbations Sv(t) = S∗v + xv(t), Iv(t) =
I∗v+yv(t), Sh(t) = S∗h+xh(t), Eh(τ, t) = E∗h(τ)+zh(τ, t), Ih(a, t) = I∗h(a)+yh(a, t).
The system for the perturbations becomes (16)
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

dxv(t)

dt
= −S∗v

∫ ∞
0

βv(a)yh(a, t)da− xv(t)
∫ ∞

0

βv(a)I∗h(a)da− µvxv(t),

dyv(t)

dt
= S∗v

∫ ∞
0

βv(a)yh(a, t)da+ xv(t)

∫ ∞
0

βv(a)I∗h(a)da− (µv + αv)yv(t),

dxh(t)

dt
= −βhS∗hyv(t)− βhxh(t)I∗v − µhxh(t),

dzh(τ)

dτ
= −(λ+ µh +m(τ))zh(τ, t),

zh(0, t) = βhS
∗
hyv(t) + βhxh(t)I∗v ,

dyh(a)

da
= −(λ+ µh + αh(a) + rh(a))yh(a, t),

yh(0, t) =

∫ ∞
0

m(τ)zh(τ, t)dτ.

(16)
An approach similar to [8] (see Appendix B in [8]) can show that the linear stability
of the system is in fact determined by the eigenvalues of the linearized system (16).
To investigate the point spectrum, we look for exponential solutions (see the case
of the disease-free equilibrium) and obtain a linear eigenvalue problem.

λxv = −S∗v
∫ ∞

0

βv(a)yh(a)da− xv
∫ ∞

0

βv(a)I∗h(a)da− µvxv,

λyv = S∗v

∫ ∞
0

βv(a)yh(a)da+ xv

∫ ∞
0

βv(a)I∗h(a)da− (µv + αv)yv,

λxh = −zh(0)− µhxh,

dzh(τ)

dτ
= −(λ+ µh +m(τ))zh(τ),

zh(0) = βhS
∗
hyv + βhI

∗
vxh,

dyh(a)

da
= −(λ+ µh + αh(a) + rh(a))yh(a),

yh(0) =

∫ ∞
0

m(τ)zh(τ)dτ.

(17)

Solving the differential equation, we have

zh(τ) = zh(0) e−λτπ1(τ),

yh(a) = yh(0) e−λaπ2(a) = zh(0) e−λaπ2(a)

∫ ∞
0

m(τ) e−λτπ1(τ)dτ.

Substituting for yh in the second equation of (17), we can obtain the following
equation

(λ+ µv +

∫ ∞
0

βv(a)I∗h(a)da)xv + S∗vb(λ)zh(0) = 0,

−xv
∫ ∞

0

βv(a)I∗h(a)da+ (λ+ µv + αv)yv − S∗vb(λ)zh(0) = 0,

(λ+ µh)xh + zh(0) = 0,

−βhI∗vxh − βhS∗hyv + zh(0) = 0.

(18)



1168 YAN-XIA DANG, ZHI-PENG QIU, XUE-ZHI LI AND MAIA MARTCHEVA

By direct calculation, we obtain the following characteristic equation:

(λ+ µv +

∫ ∞
0

βv(a)I∗h(a)da)(λ+ µv + αv)(λ+µh + βhI
∗
v )

=βhS
∗
hS
∗
vb(λ)(λ+ µv)(λ+ µh).

(19)

We divide both sides by (λ+µv)(λ+µh), then we introduce the following notation.

G3(λ) =
(λ+ µv +

∫∞
0
βv(a)I∗h(a)da)(λ+ µv + αv)(λ+ µh + βhI

∗
v )

(λ+ µv)(λ+ µh)
,

G4(λ) = βhS
∗
hS
∗
vb(λ) = βhS

∗
hS
∗
v

∫ ∞
0

m(τ)e−λτπ1(τ)dτ

∫ ∞
0

βv(a)e−λaπ2(a)da.

(20)
Thus (19) can be expressed as the the equation

G3(λ) = G4(λ). (21)

If λ is a root with <λ ≥ 0, it follows from equation (20) that

|G3(λ)| > |λ+ µv + αv| ≥ µv + αv.
(22)

From system (2), we have

βhS
∗
vS
∗
h

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da = µv + αv.

Hence,

|G4(λ)| ≤ |G4(<λ)| ≤ G4(0) = βhS
∗
vS
∗
h

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da

= µv + αv < |G3(λ)|.
(23)

This leads to contradiction. Hence, for <λ ≥ 0, (21) has no solutions. Thus, the
characteristic equation (19) has only solutions with negative real parts. Therefore,
the endemic equilibrium E1 is locally asymptotically stable ifR0 > 1. This concludes
the proof.

3. Global stability of the disease-free equilibrium. In the previous section,
we have established that equilibria are locally stable, that is, given the conditions
on the parameters, if the initial conditions are close enough to the equilibrium, the
solution will converge to that equilibrium. In this section our objective is to extend
these results to global results. That is, given the conditions on the parameters,
convergence to the equilibrium occurs independently of the initial conditions.

As a first step, we establish the global stability of the disease-free equilibrium.
We will use a Lyapunov function to approach the problem. We need to integrate
the differential equation along the characteristic lines. Denote the initial condition
by BE(t), BI(t):

BE(t) = Eh(0, t), BI(t) = Ih(0, t).

Integrating along the characteristic lines, we obtain
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Eh(τ, t) =


BE(t− τ)π1(τ), t > τ,

ϕ(τ − t) π1(τ)

π1(τ − t)
, t < τ,

Ih(a, t) =


BI(t− a)π2(a), t > a,

ψ(a− t) π2(a)

π2(a− t)
, t < a.

(24)

Theorem 3.1. Assume

R0 ≤ 1.

Then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. We will use a Lyapunov function. We adopt the Volterra-type function used
in [7, 10, 13]. Define

f(x) = x− 1− lnx.

We note that f(x) ≥ 0 for all x > 0. f(x) achieves its global minimum at one, with
f(1) = 0. Let

q(a) =

∫ ∞
a

βv(s)e
−

∫ s
a

(µh+αh(σ)+rh(σ))dσds,

p(τ) =
βhΛhΛv

µhµv(µv + αv)
q(0)

∫ ∞
τ

m(s)e−
∫ s
τ

(µh+m(σ))dσds.

(25)

We notice that

p(0) = R0.

Differentiating (25) first, we obtain

q′(a) = −βv(a) + (µh + αh(a) + rh(a))q(a),

p′(τ) = − βhΛhΛv
µhµv(µv + αv)

q(0)m(τ) + (µh +m(τ))p(τ).
(26)

According to (26), we have Λ = βhΛhΛv
µhµv(µv+αv) . So we define the following Lyapunov

function:

U1(t) = U11(t) + U12(t) + U13(t) + U14(t) + U15(t), (27)

where

U11(t) = Λf(
Sv
S∗v0

), U12(t) =
Λ

S∗v0
Iv(t), U13(t) = S∗h0

f(
Sh
S∗h0

),

U14
(t) =

∫ ∞
0

p(τ)Eh(τ, t)dτ, U15
(t) = Λ

∫ ∞
0

q(a)Ih(a, t)da.
.

Because of the complexity of the expressions, we take the derivative of each com-
ponent of the Lyapunov function separately

U ′11
(t) =

Λ

S∗v0

(
1−

S∗v0
Sv

)(
Λv − Sv

∫ ∞
0

βv(a)Ih(a, t)da− µvSv
)

=
Λ

S∗v0

(
1−

S∗v0
Sv

)(
µvS

∗
v0 − µvSv − Sv

∫ ∞
0

βv(a)Ih(a, t)da

)
= −

Λµv(Sv − S∗v0)2

SvS∗v0
− Λ

S∗v0
Sv

∫ ∞
0

βv(a)Ih(a, t)da+ Λ

∫ ∞
0

βv(a)Ih(a, t)da.

(28)
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U ′12
(t) =

Λ

S∗v0
[Sv

∫ ∞
0

βv(a)Ih(a, t)da− (µv + αv)Iv]

=
Λ

S∗v0
Sv

∫ ∞
0

βv(a)Ih(a, t)da− βhS∗h0
Iv.

(29)

Noting that Eh(0, t) = βhShIv, we have

U ′13
(t) =

(
1−

S∗h0

Sh

)(
Λh − βhShIv − µhSh

)
=

(
1−

S∗h0

Sh

)(
µhS

∗
h0
− µhSh − βhShIv

)
= −

µh(Sh − S∗h0
)2

Sh
− Eh(0, t) + βhS

∗
h0
Iv.

(30)

U ′14
(t) =

∫ ∞
0

p(τ)
∂Eh(τ, t)

∂t
dτ

= −
∫ ∞

0

p(τ)

[
∂Eh(τ, t)

∂τ
+ (µh +m(τ))Eh(τ, t)

]
dτ

= −
[ ∫ ∞

0

p(τ)dEh(τ, t) +

∫ ∞
0

(µh +m(τ))p(τ)Eh(τ, t)dτ

]
= −

[
p(τ)Eh(τ, t)|∞0 −

∫ ∞
0

Eh(τ, t)dp(τ) +

∫ ∞
0

(µh +m(τ))p(τ)Eh(τ, t)dτ

]
= p(0)Eh(0, t)− Λq(0)

∫ ∞
0

m(τ)Eh(τ, t)dτ

= R0Eh(0, t)− Λq(0)Ih(0, t).
(31)

Similarly to (31), we obtain

U ′15
(t) = −Λ

∫ ∞
0

q(a)

[
∂Ih(a, t)

∂a
+ (µh + αh(a) + rh(a))Ih(a, t)

]
da

= Λq(0)Ih(0, t)− Λ

∫ ∞
0

βv(a)Ih(a, t)da.

(32)

Now differentiating (27) we have

U ′1(t) = −
Λµv(Sv − S∗v0)2

SvS∗v0
− Λ

S∗v0
Sv

∫ ∞
0

βv(a)Ih(a, t)da+ Λ

∫ ∞
0

βv(a)Ih(a, t)da

+
Λ

S∗v0
Sv

∫ ∞
0

βv(a)Ih(a, t)da− βhS∗h0
Iv

−
µh(Sh − S∗h0

)2

Sh
− Eh(0, t) + βhS

∗
h0
Iv +R0Eh(0, t)− Λq(0)Ih(0, t)

+Λq(0)Ih(0, t)− Λ

∫ ∞
0

βv(a)Ih(a, t)da.

(33)
Canceling all terms that cancel, we simplify the above expression:

U ′1(t) = −
Λµv(Sv − S∗v0)2

SvS∗v0
−
µh(Sh − S∗h0

)2

Sh
+ (R0 − 1)Eh(0, t). (34)



GLOBAL DYNAMICS OF A VECTOR-HOST EPIDEMIC MODEL 1171

The last inequality follows from the fact that R0 ≤ 1. Notice that U ′1 equals zero
implies that Sv = S∗v0 , Sh = S∗h0

, Eh(0, t) = 0. We define a set

Θ1 =

{
(Sv, Iv, Sh, Eh, Ih) ∈ Ω

∣∣∣∣U ′1(t) = 0

}
.

LaSalle’s Invariance Principle [9] implies that the bounded solutions of (2) converge
to the largest compact invariant set of Θ1. We will show that this largest compact
invariant set is the singleton given by the disease-free equilibrium. First, we notice
that equality in (34) occurs if and only if Sv = S∗v0 , Sh = S∗h0

, Eh(0, t) = 0. Thus,
from the solution for the equation along the characteristic line (24), we have that
Eh(τ, t) = Eh(0, t− τ)π1(τ) = 0 for all t > τ . Hence, limt→∞Eh(τ, t) = 0 for t > τ .
Noting that

Ih(0, t) =

∫ ∞
0

m(τ)E(τ, t)dτ.

So we have lim
t→∞

Ih(0, t) = 0. Thus, we have

lim
t→∞

Ih(a, t) = 0, t > a.

Therefore, we conclude that the disease-free equilibrium is globally stable. This
completes the proof.

Our next step is to show the global asymptotic stability of the epidemic equilib-
rium in system (2)

4. The uniform strong persistence of the vector-borne disease. In the pre-
vious section, we saw that if the reproduction number is less or equal to one, The
vector-borne disease dies out. In this section, we assume that for R0 > 1,we will
show that the vector-borne disease persists.

From Proposition 2 we know that under the specified conditions the equilibrium
E1 is locally asymptotically stable. It remains to be established that E1 is globally
stable. We expect to show this result using a Lyapunov function, similar to the one
used in [7, 10, 13]. With f(x) = x − 1 − lnx, we define the following Lyapunov
function

U2(t) = U21(t) + U22(t) + U23(t) + U24(t) + U25(t) + U26(t) + U27(t) + U28(t),
(35)

where 

U21(t) =
1

q(0)
∫∞
0
m(τ)π1(τ)dτ

f

(
Sv

S∗v

)
,

U22(t) =
1

S∗vq(0)
∫∞
0
m(τ)π1(τ)dτ

I∗vf

(
Iv
I∗v

)
,

U23(t) = S∗hf

(
Sh

S∗h

)
,

U24(t) =
1

R0

∫ ∞
0

p(τ)E∗h(τ)f

(
Eh(τ, t)

E∗h(τ)

)
dτ,

U25(t) =
1

q(0)
∫∞
0
m(τ)π1(τ)dτ

∫ ∞
0

q(a)I∗h(a)f

(
Ih(a, t)

I∗h(a)

)
da,

U26(t) =

∫ ∞
t

S∗h
Sh(s)

Eh(0, s)ds,

U27(t) =

∫ ∞
t

Sh(s)

S∗h

(E∗h(0))
2

Eh(0, s)
ds,

U28(t) = 2E∗h(0)t.

(36)
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One difficulty with the Lyapunov function U2 above is that the component U21 is
not defined if Sv = 0, the component U22 is not defined if Iv = 0, the component
U23

, U26
is not defined if Sh = 0, the component U24

is not defined if Eh(τ, t) = 0,
and the component U25

is not defined if Ih(a, t) = 0. To show that the Lyapunov
function above is valid, we need to show that the vector borne disease persists both
in the hosts and in the vectors. For this to be the case, we need to guarantee that
the initial conditions we start from are non-trivial, that is, the initial conditions
are such that they lead to new infections of individuals and vectors either initially
or at some future point. Mathematically speaking this means that the support of
the initial density of latent individuals ϕ(τ) intersects the support of m(τ) or the
support of the initial density of infectious individuals ψ(a) intersects the support of
βv(a) either initially or at some future point. Thus, we define the following set

Ω̂1 =

{
ϕ ∈ L1

+(0,∞)

∣∣∣∣∃s ≥ 0 :

∫ ∞
0

m(τ + s)ϕ(τ)dτ > 0

}
,

Ω̂2 =

{
ψ ∈ L1

+(0,∞)

∣∣∣∣∃s ≥ 0 :

∫ ∞
0

βv(a+ s)ψ(a)da > 0

}
.

Define

Ω0 = R+ × R+ × R+ × Ω̂1 × Ω̂2.

Finally, define X0 = Ω ∩ Ω0. We notice that X0 is forward invariant. It is not
hard to see that Ω is a forward invariant. To see that Ω̂2 is forward invariant, let
us assume that the inequality holds for the initial condition. The inequality says
that the condition is such that if the support of βv(a) is transferred s units to the
right, it will intersect the support of the initial condition. But if that happens for
the initial time, it will happen for any other time since the support of the initial
condition only moves to the right. Similarly, Ω̂1 is also forward invariant.

We want to formulate the persistence result for the vector-borne disease which on
one side will justify the use of the Lyapunov functional U2(t), and on the other, will
show that when R0 > 1 the disease persists in the form of the endemic equilibrium.
Consequently, we identify conditions which lead to the prevalence in individuals
and vectors being bounded away from zero. There are many different types of
persistence [21]. We identify here the two that we will be working with.

Definition 4.1. We call the vector-borne disease uniformly weakly persistent if
there exists some γ > 0 independent of the initial conditions such that

lim sup
t→∞

∫ ∞
0

Eh(τ, t)dτ > γ whenever

∫ ∞
0

ϕ(τ)dτ > 0,

lim sup
t→∞

∫ ∞
0

Ih(a, t)da > γ whenever

∫ ∞
0

ψ(a)da > 0,

and

lim sup
t→∞

Iv(t) > γ whenever Iv0 > 0.

for all solutions of model (2).

One of the important implications of uniform weak persistence of the disease is
that the disease-free equilibrium is unstable.
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Definition 4.2. We call the vector borne diease uniformly strongly persistent if
there exists some γ > 0 independent of the initial conditions such that

lim inf
t→∞

∫ ∞
0

Eh(τ, t)dτ > γ whenever

∫ ∞
0

ϕ(τ)dτ > 0,

lim inf
t→∞

∫ ∞
0

Ih(a, t)da > γ whenever

∫ ∞
0

ψ(a)da > 0,

and

lim inf
t→∞

Iv(t) > γ whenever Iv0 > 0.

for all solutions of model (2).

It is evident from the definitions that, if the disease is uniformly strongly persis-
tent, it is also uniformly weakly persistent. To show uniform strong persistence for
the vector-borne disease, we need to show two components.

1. We have to show that the vector-borne disease is uniformly weakly persistent.
2. We need to show that the solution semiflow of system (2.2) has a global

compact attractor T.

First, we show uniform weak persistence of the vector-borne disease. The follow-
ing proposition states that result.

Proposition 3. Assume R0 > 1. Then, for all initial conditions that belong to X0,
the vector-borne disease is uniformly weakly persistent, that is, there exists γ > 0
such that

lim sup
t

βhIv(t) ≥ γ, lim sup
t

∫ ∞
0

m(τ)Eh(τ, t)dτ ≥ γ,

lim sup
t

∫ ∞
0

βv(a)Ih(a, t)da ≥ γ.

Proof. We argue by contradiction. Assume that the vector-borne disease dies out.
In particular, assume that for every ε > 0 and an initial condition in X0 we have

lim sup
t

βhIv(t) < ε, lim sup
t

∫ ∞
0

m(τ)Eh(τ, t)dτ < ε, lim sup
t

∫ ∞
0

βv(a)Ih(a, t)da < ε.

Hence, there exist T > 0 such that for all t > T , we have

βhIv(t) < ε,

∫ ∞
0

m(τ)Eh(τ, t)dτ < ε,

∫ ∞
0

βv(a)Ih(a, t)da < ε.

By shifting the dynamical system we may assume that the above inequality holds
for all t ≥ 0. From the first equation in (2), and taking into account the above
inequality, we have

S′v(t) ≥ Λv − εSv − µvSv, S′h(t) ≥ Λh − εSh − µhSh.

Therefore,

lim sup
t→∞

Sv(t) ≥ lim inf
t→∞

Sv(t) ≥
Λv

ε+ µv
, lim sup

t→∞
Sh(t) ≥ lim inf

t→∞
Sh(t) ≥ Λh

ε+ µh
.
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Recall that we are using the following notation BE(t) = Eh(0, t), BI(t) = Ih(0, t).
Using the inequality above we obtain

BE(t) = Eh(0, t) = βhShIv ≥ βh
Λh

ε+ µh
Iv,

dIv(t)

dt
≥ Λv
ε+ µv

∫ ∞
0

βv(a)Ih(a, t)da− (µv + αv)Iv.

(37)

Now, we apply expression (24) to obtain the following system of inequalities in
BE(t), BI(t) and Iv(t):

BE(t) ≥ βh
Λh

ε+ µh
Iv,

BI(t) =

∫ ∞
0

m(τ)Eh(τ, t)dτ ≥
∫ t

0

m(τ)BE(t− τ)π1(τ)dτ,

dIv(t)

dt
≥ Λv
ε+ µv

∫ t

0

βv(a)BI(t− a)π2(a)da− (µv + αv)Iv.

(38)

We will take the Laplace transform of both sides of inequalities (38). Since all
functions above are bounded, their Laplace transform exists for λ > 0. We denote
by B̂E(λ) the Laplace transform of BE(t), by B̂I(λ) the Laplace transform of BI(t),

and by Îv(λ) the Laplace transform of Iv(t). Furthermore,

K̂1(λ) =

∫ ∞
0

m(τ)π1(τ)e−λτdτ, K̂2(λ) =

∫ ∞
0

βv(a)π2(a)e−λada. (39)

Taking the Laplace transform of inequalities (38) and using the convolution prop-
erty of the Laplace transform, we obtain the following system of inequalities for
B̂E(λ), B̂I(λ) and Îv(λ).

B̂E(λ) ≥ βh
Λh

ε+ µh
Îv(λ),

B̂I(λ) ≥ K̂1(λ)B̂E(λ),

λÎv(λ)− Iv(0) ≥ Λv
ε+ µv

K̂2(λ)B̂I(λ)− (µv + αv)Îv(λ).

(40)

Eliminating B̂I(λ) and Îv(λ) from the system above, we obtain

B̂E(λ) ≥ βhΛvΛhK̂1(λ)K̂2(λ)

(ε+ µv)(ε+ µh)(λ+ µv + αv)
B̂E(λ) +

βhΛh
(ε+ µh)(λ+ µv + αv)

Iv(0).

This last inequality should hold for the given ε ≈ 0 and for any λ > 0. But this
is impossible since for ε ≈ 0 and λ ≈ 0, the coefficient in front B̂E(λ) on the right
hand side is approximately R0 > 1, that is,

βhΛvΛhK̂1(λ)K̂2(λ)

(ε+ µv)(ε+ µh)(λ+ µv + αv)
≈ R0 > 1.

In addition, there is another positive term on the right side of this equality. This is
a contradiction with our assumption that

lim sup
t

βhIv(t) < ε, lim sup
t

∫ ∞
0

m(τ)Eh(τ, t)dτ < ε,

lim supt
∫∞

0
βv(a)Ih(a, t)da < ε. (41)
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Therefore, there exists at least one limit supremum which is bounded below by γ
for any initial condition in X0 and some γ > 0.

Note that

Eh(0, t) = ShβhIv(t) ≤
Λh
µh
βhIv(t)

Ih(0, t) =

∫ ∞
0

m(τ)Eh(τ, t)dτ

=

∫ t

0

m(τ)Eh(0, t− τ)π1(τ)dτ +

∫ ∞
t

m(τ)ϕ(τ − t) π1(τ)

π1(τ − t)
dτ

dIv(t)

dt
=

∫ ∞
0

βv(a)Ih(a, t)da− (µv + αv)Iv(t)

=

∫ t

0

βv(a)Ih(0, t− a)π2(a)da+

∫ ∞
t

βv(a)ψ(a− t) π2(a)

π2(a− t)
da

−(µv + αv)Iv(t).

(42)

Following (42), we get

lim sup
t

Eh(0, t) ≤ Λh
µh

lim sup
t

βhIv(t)

lim sup
t

Ih(0, t) ≤
∫ ∞

0

m(τ)π1(τ)dτ lim sup
t

Eh(0, t)

≤ m̄
∫ ∞

0

e−µhτdτ lim sup
t

Eh(0, t) =
m̄

µh
lim sup

t
Eh(0, t)

lim sup
t

dIv(t)

dt
≤
∫ ∞

0

βv(a)π2(a)da lim sup
t

Ih(0, t)− (µv + αv) lim sup
t

Iv(t)

≤ m0

∫ ∞
0

e−µhada lim sup
t

Ih(0, t)− (µv + αv) lim sup
t

Iv(t)

=
m0

µh
lim sup

t
Ih(0, t)− (µv + αv) lim sup

t
Iv(t),

(43)
where m̄ = supτ{m(τ)}, m0 = supa{βv(a)}. The last inequality means that

lim sup
t

Iv(t) ≤
m0

µh(µv + αv)
lim sup

t
Ih(0, t).

Thus we obtain that if any inequality in (41) holds, all the three inequalities are
less than a constant×ε. There is another contradiction with the above result that
there exists at least one limit supremum which is bounded below by γ. As a result,
there exists γ > 0 such that for any initial condition in X0, we have

lim sup
t

βhIv(t) ≥ γ, lim sup
t

∫ ∞
0

m(τ)Eh(τ, t)dτ ≥ γ, lim sup
t

∫ ∞
0

βv(a)Ih(a, t)da ≥ γ.

In addition, the differential equation for Iv can be rewritten in the form

dIv
dt
≥ Λvγ

γ + µv
− (µv + αv)Iv,

which in turn, implies a lower bound for Iv. This concludes the proof.

Our next goal is to prove that system (2) has a global compact attractor T. As
a first step, we define the semiflow Ψ of the solutions of system (2)

Ψ

(
t : Sv0 , Iv0 , Sh0

, ϕ(·), ψ(·)
)

=

(
Sv(t), Iv(t), Sh(t), Eh(τ, t), Ih(a, t)

)
.
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Definition 4.3. The semiflow is a mapping Ψ : [0,∞)×X0 → X0. A set T in X0

is called a global compact attractor for Ψ, if T is a maximal compact invariant set
and if for all open sets U containing T and all bounded sets B of X0 there exists
some T > 0 such that Ψ(t,B) ⊆ U, for all t > T .

The following proposition establishes the presence of a global compact attractor.

Proposition 4. Assume R0 > 1. Then, there exists T, a compact subset of X0,
which is a global attractor for the solution semiflow Ψ of (2) in X0. Moreover, T
is invariant under the solution semiflow, that is

Ψ(t, x0) ⊆ T for every x0 ∈ T, ∀t ≥ 0.

Proof. To establish this result, we will apply Lemma 3.1.3 and Theorem 3.4.6 in
[22]. To show the assumptions of Lemma 3.1.3 and Theorem 3.4.6 in [22], we split
the solution semiflow into two components. For an initial condition x0 ∈ X0 we have
Ψ(t, x0) = Ψ̂(t, x0)+Ψ̃(t, x0). The splitting is done in such a way that Ψ̂(t, x0)→ 0
as t → ∞ for every x0 ∈ X0, and for a fixed t and any bounded set B in X0, the
set {Ψ̃(t, x0) : x0 ∈ B} is precompact. The two components of the semiflow are
defined as follows:

Ψ̂

(
t : Sv0 , Iv0 , Sh0

, ϕ(·), ψ(·)
)

=

(
0, 0, 0, Êh(·, t), Îh(·, t)

)
Ψ̃

(
t : Sv0 , Iv0 , Sh0 , ϕ(·), ψ(·)

)
=

(
Sv(t), Iv(t), Sh(t), Ẽh(·, t), Ĩh(·, t)

)
,

(44)

where Eh(τ, t) = Êh(τ, t)+Ẽh(τ, t), Ih(a, t) = Îh(a, t)+Ĩh(a, t) and Êh(τ, t), Îh(a, t),

Ẽh(τ, t), Ĩh(a, t) are the solutions of the following equations (the remaining equations
are as in system (2) 

∂Êh
∂t

+
∂Êh
∂τ

= −(µh +m(τ))Êh(τ, t),

Êh(0, t) = 0,

Êh(τ, 0) = ϕ(τ),

(45)


∂Îh
∂t

+
∂Îh
∂a

= −(µh + αh(a) + rh(a))Îh(τ, t),

Îh(0, t) = 0,

Îh(a, 0) = ψ(a),

(46)

and 
∂Ẽh
∂t

+
∂Ẽh
∂τ

= −(µ+m(τ))Ẽh(τ, t),

Ẽh(0, t) = βhShIv,

Ẽh(τ, 0) = 0,

(47)



∂Ĩh
∂t

+
∂Ĩh
∂a

= −(µh + αh(a) + rh(a))Ĩh(τ, t),

Ĩh(0, t) =

∫ ∞
0

m(τ)Ẽh(τ, t)dτ,

Ĩh(τ, 0) = 0.

(48)
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System (45) is decoupled from the remaining equations. Using the formula (24) to
integrate along the characteristic lines, we obtain

Êh(τ, t) =


0, t > τ,

ϕ(τ − t) π1(τ)

π1(τ − t)
, t < τ,

(49)

Îh(a, t) =


0, t > a,

ψ(a− t) π2(a)

π2(a− t)
, t < a.

(50)

Integrating Êh with respect to τ , we obtain:∫ ∞
t

ϕ(τ − t) π1(τ)

π1(τ − t)
dτ =

∫ ∞
0

ϕ(τ)
π1(t+ τ)

π1(τ)
dτ ≤ e−µht

∫ ∞
0

ϕ(τ)dτ → 0,

as t→ +∞. Integrating Îh with respect to a, we obtain:∫ ∞
t

ψ(a− t) π2(a)

π2(a− t)
da =

∫ ∞
0

ψ(a)
π2(t+ a)

π2(a)
da ≤ e−µht

∫ ∞
0

ψ(a)da→ 0,

as t → +∞. This shows the first claim, that is, it shows that Ψ̂(t, x0) → 0 as
t→ +∞ uniformly for every x0 ∈ B ⊆ X0, where B is a ball of a given radius.

To show the second claim, we need to show compactness. We fix t and let
x0 ∈ X0. Note that X0 is bounded. We have to show that for that fixed t the
family of functions defined by

Ψ̃(t, x0) =

(
Sv(t), Iv(t), Sh(t), Ẽh(τ, t), Ĩh(a, t)

)
,

obtained by taking different initial conditions in X0 is a compact family of functions.
The family

{Ψ̃(t, x0)|x0 ∈ X0, t− fixed} ⊆ X0,

and, therefore, it is bounded. Thus, we have established the boundedness of the
set. To show compactness we first see that the remaining conditions of the Frechet-
Kolmogorov Theorem [19]. The third condition in the Frechet-Kolmogorov Theorem

for compactness in L1 is trivially satisfied since Ẽh(τ, t) = 0 for τ > t and Ĩh(a, t) = 0
for a > t. To see the second condition of that Theorem, we have to bound by two
constants the L1-norms of ∂Eh/∂τ and ∂Ih/∂a. To derive that bound, first notice
that

Ẽh(τ, t) =

 B̃E(t− τ)π1(τ), t > τ,

0, t < τ,

Ĩh(a, t) =

 B̃I(t− a)π2(a), t > a,

0, t < a,

(51)

where
B̃E(t) = βhSh(t)Iv(t),

B̃I(t) =

∫ ∞
0

m(τ)Ẽh(τ, t)dτ =

∫ t

0

m(τ)B̃E(t− τ)π1(τ)dτ.
(52)
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First, we notice that for x0 ∈ X0, B̃E(t) is bounded. We can see that by recalling

that Sh and Iv are bounded. Hence, the B̃E(t) satisfies

B̃E(t) ≤ k1.

Then, we obtain

B̃I(t) =

∫ t

0

m(τ)B̃E(t− τ)π1(τ)dτ ≤ k2

∫ t

0

B̃E(t− τ)dτ = k2

∫ t

0

B̃E(τ)dτ ≤ k1k2t.

Next, we differentiate (51) with respect to τ and a:∣∣∣∣∂Ẽh(τ, t)

∂τ

∣∣∣∣ ≤
 |B̃

′
E(t− τ)|π1(τ) + B̃E(t− τ)|π′1(τ)|, t > τ,

0, t < τ,∣∣∣∣∂Ĩh(a, t)

∂a

∣∣∣∣ ≤
 |B̃

′
I(t− a)|π2(a) + B̃I(t− a)|π′2(a)|, t > a,

0, t < a.

We have to see that |B̃′E(t− τ)|, |B̃′I(t− a)| are bounded. Differentiating (52), we
obtain

B̃′E(t) = βh

(
S′h(t)Iv(t) + Sh(t)I ′v(t)

)
,

B̃′I(t) = m(t)B̃E(0)π1(t) +

∫ t

0

m(τ)B̃′E(t− τ)π1(τ)dτ.

(53)

Taking an absolute value and bounding all terms, we can rewrite the above equality
as the following inequality:

|B̃′E(t)| ≤ k3, |B̃′I(t)| ≤ k4.

Putting all these bounds together, we have

‖ ∂τ Ẽh ‖ ≤ k3

∫ ∞
0

π1(τ)dτ + k1(µh + m̄)

∫ ∞
0

π1(τ)dτ < b1,

‖ ∂aĨh ‖ ≤ k4

∫ ∞
0

π2(a)da+ k1k2(µh + ᾱh + r̄h)t

∫ ∞
0

π2(a)da < b2,

where m̄ = supτ{m(τ)}, ᾱh = supa{αh(a)}, r̄h = supa{rh(a)}. To complete the
proof, we notice that∫ ∞

0

|Ẽh(τ + h, t)− Ẽh(τ, t)|dτ ≤‖ ∂τ Ẽh ‖ |h| ≤ b1|h|,∫ ∞
0

|Ĩh(a+ h, t)− Ĩh(a, t)|dτ ≤‖ ∂aĨh ‖ |h| ≤ b2|h|.

Thus, the integral can be made arbitrary small uniformly in the family of functions.
That establishes the second requirement of the Frechét-Kolmogorov Theorem. We
conclude that the family is compact.

Now we have all components to establish the uniform strong persistence. The
next proposition states the uniform strong persistence of Iv, Eh and Ih.

Proposition 5. Assume R0 > 1. Then, for all initial conditions that belong to X0,
The vector-borne disease persists, that is, there exists γ > 0 such that

lim inf
t

βhIv(t) ≥ γ, lim inf
t

∫ ∞
0

m(τ)Eh(τ, t)dτ ≥ γ, lim inf
t

∫ ∞
0

βv(a)Ih(a, t)da ≥ γ.
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Proof. We apply Theorem 2.6 in [29]. We consider the solution semiflow Ψ on X0.
We define three functionals ρj : X0 →R+, j = 1, 2, 3 as follows:

ρ1(Ψ(t, x0)) = βhIv(t),

ρ2(Ψ(t, x0)) =

∫ ∞
0

m(τ)Ẽh(τ, t)dτ,

ρ3(Ψ(t, x0)) =

∫ ∞
0

βv(a)Ĩh(a, t)da.

Proposition 3 implies that the semiflow is uniformly weakly ρ-persistent. Proposi-
tion 4 shows that the solution semiflow has a global compact attractor T. Total
orbits are solutions to the system (2) defined for all times t ∈ R. Since the solution
semiflow is nonnegative, we have that for any s and any t > s

βhIv(t) ≥ βhIv(s)e−(µv+αv)(t−s),

∫∞
0
m(τ)Ẽh(τ, t)dτ = B̃I(t) =

∫ t

0

m(τ)B̃E(t− τ)π1(τ)dτ ≥ k1

∫ t

0

B̃E(t− τ)dτ

= k1

∫ t

0

B̃E(τ)dτ = k1

∫ t

0

βhSh(τ)Iv(τ)dτ

≥ k2

∫ t

0

Iv(τ)dτ = k2

∫ t

0

Iv(s)e
−(µv+αv)(τ−s)dτ

=
k2Iv(s)

µv + αv
e(µv+αv)s(1− e−(µv+αv)t),∫ ∞

0

βv(a)Ĩh(a, t)da =

∫ t

0

βv(a)B̃I(t− a)π2(a)da ≥ k3

∫ t

0

B̃I(t− a)da

= k3

∫ t

0

B̃I(a)da

≥ k2k3Iv(s)

µv + αv
e(µv+αv)s

∫ t

0

(1− e−(µv+αv)a)da.

Therefore, βhIv(t) > 0,
∫∞

0
m(τ)Ẽh(τ, t)dτ > 0,

∫∞
0
βv(a)Ĩh(a, t)da > 0 for all

t > s, provided Iv(s) > 0. Theorem 2.6 in [29] now implies that the semiflow is
uniformly strongly ρ-persistent. Hence, there exists γ such that

lim inf
t

βhIv(t) ≥ γ, lim inf
t

∫ ∞
0

m(τ)Eh(τ, t)dτ ≥ γ, lim inf
t

∫ ∞
0

βv(a)Ih(a, t)da ≥ γ.

Corollary 1. Assume R0 > 1 . There exists constants ϑ > 0 and M > 0 such that
for each orbit (Sv(t), Iv, Sh(t), Eh(τ, t), Ih(a, t)) of Ψ in T, we have

ϑ ≤ Sv(t) ≤M, ϑ ≤ Sh(t) ≤M, ∀t ∈ R,

and

ϑ ≤ βhIv(t) ≤M,ϑ ≤
∫ ∞
0

m(τ)Eh(τ, t)dτ ≤M,ϑ ≤
∫ ∞
0

βv(a)Ih(a, t)da ≤M,∀t ∈ R.

In the next section we show that the endemic equilibrium E1 is globally stable.
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5. Global stability of the endemic equilibrium. Now we are ready to establish
the global stability of the equilibrium E1. To demonstrate that with the Lyapunov
function defined in (35) we have to establish that U ′2(t) ≤ 0 along the solution
curves of system (2). The following Theorem summarizes the result.

Theorem 5.1. Assume R0 > 1. Then, equilibrium E1 is globally asymptotically
stable, that is, for any initial condition x0 ∈ X0 the solution semiflow converges to
E1.

Proof. Since R0 > 1, for any initial condition x0 ∈ X0 we can find a complete orbit
(Sv(t), Iv(t), Sh(t), Eh(τ, t), Ih(a, t)) of Ψ in T (similarly to the proof of Proposition
4) for which the inequalities in Corollary 1 hold and, consequently, there exist ε1 > 0
and M1 > 0 such that

ε1 ≤
Iv
I∗v
≤M1, ε1 ≤

Eh(τ, t)

E∗h(τ)
≤M1, ε1 ≤

Ih(a, t)

I∗h(a)
≤M1.

This makes the Lyapunov function defined in (35) well defined.
Because of the complexity of the expressions, we make the derivative of each

component of the Lyapunov function separately (see (35)).

U ′21
(t)

=
(1− S∗v

Sv
)(Λv − Sv

∫∞
0
βv(a)Ih(a, t)da− µvSv)

S∗vq(0)
∫∞

0
m(τ)π1(τ)dτ

=
(1− S∗v

Sv
)[S∗v

∫∞
0
βv(a)I∗h(a)da+ µvS

∗
v − Sv

∫∞
0
βv(a)Ih(a, t)da− µvSv]

S∗vq(0)
∫∞

0
m(τ)π1(τ)dτ

=− µv(Sv − S∗v )2

S∗vSvq(0)

∫ ∞
0

m(τ)π1(τ)dτ

+

∫∞
0
βv(a)I∗h(a)(1− S∗v

Sv
− SvIh(a,t)

S∗vI
∗
h(a) + Ih(a,t)

I∗h(a) )da

q(0)
∫∞

0
m(τ)π1(τ)dτ

.

(54)

Next, we need to take the time derivative of U22
.

U ′22
(t) =

(1− I∗v
Iv

)[Sv
∫∞

0
βv(a)Ih(a, t)da− (µv + αv)Iv]

S∗vq(0)
∫∞

0
m(τ)π1(τ)dτ

=
(1− I∗v

Iv
)(Sv

∫∞
0
βv(a)Ih(a, t)da− S∗v

∫∞
0
βv(a)I∗h(a)da

I∗v
Iv)

S∗vq(0)
∫∞

0
m(τ)π1(τ)dτ

=
(1− I∗v

Iv
)S∗v

∫∞
0
βv(a)I∗h(a)(SvIh(a,t)

S∗vI
∗
h(a) −

Iv
I∗v

)da

S∗vq(0)
∫∞

0
m(τ)π1(τ)dτ

=

∫∞
0
βv(a)I∗h(a)(SvIh(a,t)

S∗vI
∗
h(a) −

Iv
I∗v
− SvIh(a,t)I∗v

S∗vI
∗
h(a)Iv

+ 1)da

q(0)
∫∞

0
m(τ)π1(τ)dτ

,

(55)
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and

U ′23
(t) =

(
1− S∗h

Sh

)(
Λh − βhShIv − µhSh

)
=

(
1− S∗h

Sh

)(
E∗h(0) + µhS

∗
h − Eh(0, t)− µhSh

)
= −µh(Sh − S∗h)2

Sh
+

(
E∗h(0)− Eh(0, t)− S∗h

Sh
E∗h(0) +

S∗h
Sh
Eh(0, t)

)
.

(56)
Differentiating U24

(t), we have

U ′24
(t)

=
1

R0

∫ ∞
0

p(τ)E∗h(τ)f ′
(
Eh(τ, t)

E∗h(τ)

)
1

E∗h(τ)

∂Eh(τ, t)

∂t
dτ

= − 1

R0

∫ ∞
0

p(τ)E∗h(τ)

E∗h(τ)
f ′
(
Eh(τ, t)

E∗h(τ)

)(
∂Eh(τ, t)

∂τ
+ (µh +m(τ))Eh(τ, t)

)
dτ

= − 1

R0

∫ ∞
0

p(τ)E∗h(τ)df

(
Eh(τ, t)

E∗h(τ)

)
= − 1

R0

[
p(τ)E∗h(τ)f

(
Eh(τ, t)

E∗h(τ)

)∣∣∣∣∞
0

−
∫ ∞

0

f

(
Eh(τ, t)

E∗h(τ)

)
d

(
p(τ)E∗h(τ)

)]
=

1

R0

[
p(0)E∗h(0)f

(
Eh(0, t)

E∗h(0)

)
− Λq(0)

∫ ∞
0

m(τ)E∗h(τ)f

(
Eh(τ, t)

E∗h(τ)

)
dτ

]

= E∗h(0)f

(
Eh(0, t)

E∗h(0)

)
−

∫∞
0
m(τ)E∗h(τ)f(Eh(τ,t)

E∗h(τ) )dτ∫∞
0
m(τ)π1(τ)dτ

= Eh(0, t)− E∗h(0)− E∗h(0) ln
Eh(0, t)

E∗h(0)
−

∫∞
0
m(τ)E∗h(τ)f(Eh(τ,t)

E∗h(τ) )dτ∫∞
0
m(τ)π1(τ)dτ

.

(57)
The above equality follows from (35) and the fact

p′(τ)E∗h(τ) + p(τ)E′∗h (τ)

=

[
− Λq(0)m(τ) + (µh +m(τ))p(τ)

]
E∗h(τ)− p(τ)(µh +m(τ))E∗h(τ)

=− Λq(0)m(τ)E∗h(τ).

We also have

q′(τ)I∗h(a) + q(a)I ′∗h (a)

=

[
− βv(a) + (µh + αh(a) + rh(a))q(a)

]
I∗h(a)− q(a)(µh + αh(a) + rh(a))I∗h(a)

= −βv(a)I∗h(a).

Similar to the differentiation of U24(t), we have



1182 YAN-XIA DANG, ZHI-PENG QIU, XUE-ZHI LI AND MAIA MARTCHEVA

U ′25(t) =
1

q(0)
∫∞
0
m(τ)π1(τ)dτ

∫ ∞
0

q(a)I∗h(a)f
′
(
Ih(a, t)

I∗h(a)

)
1

I∗h(a)

∂Ih(a, t)

∂t
da

= − 1

q(0)
∫∞
0
m(τ)π1(τ)dτ

∫ ∞
0

q(a)I∗h(a)df

(
Ih(a, t)

I∗h(a)

)
=
q(0)I∗h(0)f(

Ih(0,t)
I∗
h
(0)

)−
∫∞
0
βv(a)I

∗
h(a)f(

Ih(a,t)
I∗
h
(a)

)da

q(0)
∫∞
0
m(τ)π1(τ)dτ

=

∫∞
0
m(τ)E∗h(τ)(

Ih(0,t)
I∗
h
(0)
− 1− ln Ih(0,t)

I∗
h
(0)

)dτ∫∞
0
m(τ)π1(τ)dτ

−

∫∞
0
βv(a)I

∗
h(a)f(

Ih(a,t)
I∗
h
(a)

)da

q(0)
∫∞
0
m(τ)π1(τ)dτ

.

(58)

Finally, we differentiate U26
(t), U27

(t) with respect to t, and we have

U ′26
(t) = −S

∗
h

Sh
Eh(0, t),

U ′27
(t) = −Sh

S∗h

(E∗h(0))2

Eh(0, t)
.

(59)

Adding all five components of the Lyapunov function, we have

U ′2(t)

= − µv(Sv − S∗v )2

S∗vSvq(0)
∫∞

0
m(τ)π1(τ)dτ

+
1

q(0)
∫∞

0
m(τ)π1(τ)dτ

∫ ∞
0

βv(a)I∗h(a)

(
1− S∗v

Sv
− SvIh(a, t)

S∗vI
∗
h(a)

+
Ih(a, t)

I∗h(a)

)
da

+

∫∞
0
βv(a)I∗h(a)

(
SvIh(a,t)
S∗vI
∗
h(a) −

Iv
I∗v
− SvIh(a,t)I∗v

S∗vI
∗
h(a)Iv

+ 1

)
da

q(0)
∫∞

0
m(τ)π1(τ)dτ

−µh(Sh − S∗h)2

Sh
+

(
E∗h(0)− Eh(0, t)− S∗h

Sh
E∗h(0) +

S∗h
Sh
Eh(0, t)

)
+Eh(0, t)− E∗h(0)− E∗h(0) ln

Eh(0, t)

E∗h(0)
−

∫∞
0
m(τ)E∗h(τ)f(Eh(τ,t)

E∗h(τ) )dτ∫∞
0
m(τ)π1(τ)dτ

+

∫∞
0
m(τ)E∗h(τ)( Ih(0,t)

I∗h(0) − 1− ln Ih(0,t)
I∗h(0) )dτ∫∞

0
m(τ)π1(τ)dτ

−

∫∞
0
βv(a)I∗h(a)f( Ih(a,t)

I∗h(a) )da

q(0)
∫∞

0
m(τ)π1(τ)dτ

−S
∗
h

Sh
Eh(0, t)− Sh

S∗h

(E∗h(0))2

Eh(0, t)
+ 2E∗h(0).

(60)
Canceling all terms that cancel, we simplify (60):

U ′2(t) = − µv(Sv − S∗v )2

S∗vSvq(0)
∫∞

0
m(τ)π1(τ)dτ

− µh(Sh − S∗h)2

Sh

+

∫∞
0
βv(a)I∗h(a)(3− S∗v

Sv
− Iv

I∗v
− SvIh(a,t)I∗v

S∗vI
∗
h(a)Iv

+ ln Ih(a,t)
I∗h(a) )da

q(0)
∫∞

0
m(τ)π1(τ)dτ

−S
∗
h

Sh
E∗h(0)− Sh

S∗h

(E∗h(0))2

Eh(0, t)
− E∗h(0) ln

Eh(0, t)

E∗h(0)
+ 2E∗h(0)

+

∫∞
0
m(τ)E∗h(τ)( Ih(0,t)

I∗h(0) −
Eh(τ,t)
E∗h(τ) + ln Eh(τ,t)

E∗h(τ)
I∗h(0)
Ih(0,t) )dτ∫∞

0
m(τ)π1(τ)dτ

.

(61)
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Noting that ∫ ∞
0

m(τ)E∗h(τ)

(
Ih(0, t)

I∗h(0)
− Eh(τ, t)

E∗h(τ)

)
dτ = 0,∫ ∞

0

m(τ)E∗h(τ)

(
Eh(τ, t)

E∗h(τ)

I∗h(0)

Ih(0, t)
− 1

)
= 0.

(62)

Indeed, ∫ ∞
0

m(τ)E∗h(τ)

(
Ih(0, t)

I∗h(0)
− Eh(τ, t)

E∗h(τ)

)
dτ

=
Ih(0, t)

I∗h(0)

∫ ∞
0

m(τ)E∗h(τ)dτ −
∫ ∞

0

m(τ)Eh(τ, t)dτ,

=
Ih(0, t)

I∗h(0)
I∗h(0)− Ih(0, t) = 0,∫ ∞

0

m(τ)E∗h(τ)

(
Eh(τ, t)

E∗h(τ)

I∗h(0)

Ih(0, t)
− 1

)
=

I∗h(0)

Ih(0, t)

∫ ∞
0

m(τ)Eh(τ, t)dτ −
∫ ∞

0

m(τ)E∗h(τ)dτ

=
I∗h(0)

Ih(0, t)
Ih(0, t)− I∗h(0) = 0.

(63)

Using (62) to simplify (61) we obtain

U ′2(t) = − µv(Sv − S∗v )2

S∗vSvq(0)
∫∞

0
m(τ)π1(τ)dτ

− µh(Sh − S∗h)2

Sh

−

∫∞
0
βv(a)I∗h(a)[f(

S∗v
Sv

) + f( IvI∗v
) + f(

SvIh(a,t)I∗v
S∗vI
∗
h(a)Iv

)]da

q(0)
∫∞

0
m(τ)π1(τ)dτ

−E∗h(0)

[
f

(
S∗h
Sh

)
+ f

(
Sh
S∗h

E∗h(0)

Eh(0, t)

)]
− 1∫∞

0
m(τ)π1(τ)dτ

∫ ∞
0

m(τ)E∗h(τ)f

(
Eh(τ, t)I∗h(0)

E∗h(τ)Ih(0, t)

)
dτ.

(64)

Hence, U ′2(t) ≤ 0. Define,

Θ2 =

{
(Sv, Iv, Sh, Eh, Ih) ∈ X0

∣∣∣∣U ′2(t) = 0

}
.

We want to show that the largest invariant set in Θ2 is the singleton E1. First, we
notice that equality in (64) occurs if and only if Sv(t) = S∗v , Sh(t) = S∗h, Iv(t) = I∗v ,
and

Ih(a, t)

I∗h(a)
= 1,

E∗h(0)

Eh(0, t)
= 1,

Eh(τ, t)I∗h(0)

E∗h(τ)Ih(0, t)
= 1. (65)

Thus, we obtain

Ih(a, t) = I∗h(a), Eh(0, t) = E∗h(0).

According to (35),

Eh(τ, t) = BE(t− τ)π1(τ) = Eh(0, t− τ)π1(τ) = E∗h(0)π1(τ) = E∗h(τ), t > τ.

Furthermore, we obtain Eh(τ, t) = E∗h(τ). We conclude that the largest invariant
set in Θ2 is the singleton E1. Reasoning similarly to [7] can show that the compact
global attractor T = {E1}.
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6. Discussion. In this paper, we formulate a partial differential equation (PDE)
model describing the transmission dynamics of a vector-borne disease that incorpo-
rates both incubation age of the exposed hosts and infection age of the infectious
hosts. An explicit formula for the basic reproduction number R0 is obtained for
the infection-age structured vector-host epidemic model. We show that if R0 of
system (2) is less or equal to one, the disease-free equilibrium is locally and globally
asymptotically stable. That means the disease dies out while the endemic equilib-
rium is not feasible. On the other hand, we show that if R0 is greater than one,
system (2) is permanent and the endemic equilibrium is globally asymptotically
stable. Therefore the disease becomes endemic. As a result, the global stability
of the equilibria of system (2) is completely determined by its basic reproductive
number R0. Hence, to control the disease, a strategy should be devised to reduce
the reproduction number to below one.

Examining the reproduction number more closely reveals that the relative impact
of the recruitment rate of susceptible vectors Λv, the transmission rate βh and
the specific age-since-infection transmission coefficient βv(a) of the infected host
individuals increases R0. It is easy to see that R0 is an decreasing function of the
death rate of the vector individuals µv and the recovery rate of the infected vector
individuals αv. It is also evident that R0 decreases with the rates rh(a) and αh(a)
that give recovery and disease-induced mortality of infected hosts.

Furthermore, to see the link betweenR0 and the removal rate of the exposed host
individuals with the incubation age τ , we first need to transform the reproduction
number R0. We will use the representation of R0 given in (3) and (5).

R0

=
βhΛvΛh

µvµh(µv + αv)

∫ ∞
0

m(τ)π1(τ)dτ

∫ ∞
0

βv(a)π2(a)da

=
βhΛvΛh

µvµh(µv + αv)

∫ ∞
0

m(τ)e−µhτe−
∫ τ
0
m(σ)dσdτ

∫ ∞
0

βv(a)π2(a)da

=
βhΛvΛh

µvµh(µv + αv)

[
−
∫ ∞

0

(µh − µh −m(τ))e−µhτe−
∫ τ
0
m(σ)dσdτ

] ∫ ∞
0

βv(a)π2(a)da

=
βhΛvΛh

µvµh(µv + αv)

[
1− µh

∫ ∞
0

e−µhτe−
∫ τ
0
m(σ)dσdτ

] ∫ ∞
0

βv(a)π2(a)da.

Denoting by

ρ =

∫ ∞
0

e−µhτe−
∫ τ
0
m(σ)dσdτ.

We obtain

R0 =
βhΛvΛh

µvµh(µv + αv)

∫ ∞
0

βv(a)π2(a)da

(
1− µhρ

)
.

Taking the ρ derivatives of R0

dR0

dρ
= −µh

βhΛvΛh
µvµh(µv + αv)

∫ ∞
0

βv(a)π2(a)da < 0.
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We have that ρ decrease with the increase of m(τ) and R0 decreases with increase
of ρ. Thus we have that increasing m(τ) increases the reproduction number R0.

In conclusion, our model and its analysis suggest that a better strategy of begin-
ning mosquito control is to remove possible breeding grounds, because the larvae
and pupae cycle of the mosquito is aquatic. Mosquitoes lay eggs in stagnant water,
that is to say, larvae need standing water to prosper, so we must remove items that
retain standing water or construct ways to keep the water moving. Furthermore,
we can look for shaded rest areas used by adult mosquitoes and eliminate them.
When we are outside during the day and evening hours, we can wear long sleeves
and pants to prevent the bites of mosquitoes and the transmission of disease. If the
infected host individuals who are in the latent period take an active drug therapy
in time, the total number of the infected hosts with the virus may become small.
At last it is interesting that the disease prevalence will decrease with the increase
of the disease induced death rate αh(a) at the age of infection a.
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