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ABSTRACT. In this paper, a partial differential equation (PDE) model is pro-
posed to explore the transmission dynamics of vector-borne diseases. The
model includes both incubation age of the exposed hosts and infection age of
the infectious hosts which describe incubation-age dependent removal rates in
the latent period and the variable infectiousness in the infectious period, re-
spectively. The reproductive number R is derived. By using the method of
Lyapunov function, the global dynamics of the PDE model is further estab-
lished, and the results show that the basic reproduction number Ry determines
the transmission dynamics of vector-borne diseases: the disease-free equilibri-
um is globally asymptotically stable if Rg < 1, and the endemic equilibrium is
globally asymptotically stable if Rg > 1. The results suggest that an effective
strategy to contain vector-borne diseases is decreasing the basic reproduction
number Rg below one.

1. Imtroduction. Vector-borne diseases are infectious diseases caused by pathogen-
s and parasites in human populations that are transmitted to people by blood-
sucking arthropods, such as mosquitoes, ticks and fleas. They include some of the
world’s most destructive diseases, for instance, malaria, schistosomiasis, plague, and
dengue fever. According to WHO [1], vector-borne diseases account for more than
17% of all infectious diseases, causing more than 1 million deaths annually. In the
past two decades, some vector-borne diseases, such as malaria and schistosomiasis,
have continued to threaten human health. Furthermore, other vector-borne dis-
eases have reemerged and broken out in different parts of the world, such as the
2014 Guangzhou outbreak of dengue fever and the outbreak of West Nile virus in
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North America since 1999. Any outbreak of the vector-borne diseases causes great
harm to public health. As far as the 2014 Guangzhou outbreak of dengue fever is
concerned, the total number of dengue fever cases reached 36,889 as of October
21st, 2014 [2], according to the provincial health and family planning commission.
Due to the great harm to the public health caused by the vector diseases, it is
imperative to understand the transmission dynamics of the vector-borne diseases
firstly, and then discuss strategies to prevent and contain their outbreaks.

Mathematical modeling has contributed significantly to our understanding of the
epidemiology of infectious diseases [3, 5]. Over the past two decades, there have
been many published mathematical models focused on understanding the transmis-
sion dynamics of the vector-borne diseases ([4, 12, 23, 26, 27, 30] and references
therein). These models provided useful insights into the transmission dynamics of
the vector-borne diseases. Almost all of the above models are described by ordinary
differential equations (ODEs); therefore, some of the assumptions implicitly made
in the formulation of these models [28] include: (1) infectious individuals are equal-
ly infectious during their infectious period; (2) the stage durations of the latent
and infectious periods are exponentially distributed. Although in many cases these
simplifying assumptions may provide a reasonable approximation to the biological
process being modeled, it is important to examine how the model results may be
influenced by these assumptions, which calls for an investigation of models that use
more realistic assumptions [28].

In this paper, we develop an age-structured model to study how transmission
dynamics of the vector-borne diseases are affected by the incubation and infectious
ages. The model studied in the paper incorporates both incubation age of the ex-
posed hosts and infection age of the infectious hosts. Incubation age of the exposed
hosts describes the different removal rates in the latent period, and infection age
of the infectious hosts describes the variable infectiousness in the infectious pe-
riod. Several recent studies [6, 16, 19, 20, 24, 25, 29] on age structured models
have shown that age of infection may play an important role in the transmission
dynamics of infectious diseases. Thieme and Castillo-Chavez [29] studied the ef-
fect of infection-age-independent infectivity on dynamics of HIV transmission, and
showed that undamped oscillations may occur in particular if the variable infectiv-
ity is highly concentrated at certain parts of the incubation period. Lloyd [19, 20]
studied the epidemic model with the inclusion of non-exponential distributions of
infectious periods. The results indicated that the inclusion of more realistic descrip-
tion of the recovery process may cause a significant destabilization of the model,
and less dispersed distributions are seen to have two important epidemiological con-
sequences: (1) less stable behavior is seen within the model; (2) disease persistence
is diminished.

Epidemic models with age of infection are usually described by first order partial
differential equations, whose complexity makes them more difficult to theoretically
analyze, particularly, their global behavior. Most existing studies on age-structured
models focus only on the existence of non-trivial steady states [17, 11] or give lo-
cal stability results [32]. The stability analysis of nonlinear dynamical systems
has always been a topic of both theoretical and practical importance since global
stability is one of the most important issues related to their dynamic behaviors.
However, proving the global stability is a very challenging task, especially for non-
linear systems described by PDEs due to the lack of generically applicable tools.
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The global stability results for the age-structured epidemic models were first ob-
tained in [7, 8, 9]. The method of Lyapunov functions is the most common tool
used to prove the global stability, especially for ODE models [14, 15, 18]. In re-
cent years, Lyapunov function has been also used to study the global stability of
epidemic models with age of infection [21, 22, 31].

In this paper, we also use Lyapunov functions to study the global dynamics of a
vector-borne disease model with incubation age of the exposed hosts and infection
age of the infectious hosts. By using a class of Lyapunov functions we show that the
global dynamics of the system is completely determined by the basic reproduction
number Ry: if Ry < 1 the disease-free equilibrium is globally asymptotically stable;
if Rp > 1, a unique endemic equilibrium is globally asymptotically stable.

This paper is organized as follows. In the next section we formulate a vector-
borne epidemic model with incubation age of exposed hosts and infection age of
infectious hosts. The two infection ages describe the different removal rates in the
latent stage and the variable infectiousness in the infectious stage, respectively.
We obtain an explicit formula for the basic reproduction number of system. Then
we discuss the trivial and non-trivial equilibria and their stabilities. In Section
3, the global stability of the infection-free equilibrium of the system is analyzed by
constructing a Lyapunov function. In Section 4, we show uniform strong persistence
of the vector-borne disease if Ry > 1. In Section 5, we again use a Lyapunov function
to derive the global stability of the epidemic equilibrium. Finally, a brief discussion
is given in Section 6.

2. The vector-borne disease model with two ages of infection and the
local stabilities. To introduce the model, we divide the host population under
consideration into four groups: susceptible hosts at time ¢, denoted by Sy (t), in-
fected but not infectious individuals Ej(7,t), infected and infectious individuals
I (a,t), and the number of recovered or immune individuals, denoted by Ry (t).
The vector population, on the other hand, is divided into three compartmental
classes: susceptible vector at time ¢, denoted by S, (¢), the number of recovered or
immune vectors, denoted by R, (t), and infected/infectious vectors I, (¢).

With the above notation, we study the following infection-age-structured vector-
borne epidemic model:

S (1) = Ay — Su(®) /O (@) (0, t)da — i So(t),

I(t) = 5,(t) / Bo(@) (@, )da — (jty + )L, (1),
R;(t) = Iy (t) — po Ry (1),

S, (t) = A — BpSh(t)1,(t) — urSn(t),

aEh(T, t) + 8Eh(7, t)

o = —(pn +m(7))Ep(7, 1), (1)
Eh(O,t) = 6hSh(t)Iv(t)’

6Ih5‘(27t) + (llh{g‘?, t) = —(uh + ah(a) + Th(a))lh(aa t)’

1h(0,4) = /OOO m(r)En(r, t)dr,

Ri(t) = / ra@) I (a, t)da — i R (1),
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In equation (1), Aj is the birth /recruitment rate of the host population. Let
Ly, pip, be the natural death rate of the vectors and the host, respectively. m(7)
denotes the removal rate of the infected hosts with age of incubation 7 from the
latent period. «y(a) gives the additional disease induced death rate due to vector-
borne disease at age of infection a. «, denotes the recovery rate of the infected
vectors. rp(a) denotes the recovery rate of the infected hosts with age of infection
a. Furthermore, §,(a) is the transmission coefficient of the infected host individuals
at age of infection a, and 8 is the transmission coefficient from infected vectors to
healthy host individuals.

To understand the model, notice that susceptible host individuals are recruited at
a rate Ajy. Susceptible host individuals can become infected by a bite of an infected
mosquito with disease. Upon infection through biting by infected mosquitoes, the
newly infected individuals move to the latent class, then progress into the infectious
class with the progression rate m(7). The non-infectious and infectious individuals
infected by disease with age-since-infection equal to zero move to the boundary
condition. The number total recovery rate from the infected class Ij,(a,t) is given
by the integral over all ages-since-infection. The susceptible vectors are recruited at
a rate A,. Susceptible mosquitos can become infected through biting on an infected
individual of any age-since-infection at a specific age-infection transmission rate. As
a consequence, the force of infection of susceptible vectors is given by the integral
over all ages-since-infection. The total recovery rate from the infected vector class
I,,(t) is given by a,I,(t).

We notice that the equations for the recovered individuals and the recovered
vectors are decoupled from the system and the analysis of system (1) is equivalent
to the analysis of the system

S;(t) =A, — Sv<t) /OOO 6v(a)lh(a’t)da - /J/US’U(t)a

I1(t) = 5.1 / " Bu(@)Inla, t)da — (s + o) Lu(1),
Sh(t) = A — BrSn(t) I, (t) — pnSk(t),

8E’é§7-7 2o BE%(Z’ Y — (i + m(e) En(r.) ®

Eh(07 t) = 5h5h(t)-[v (t)a

8Ih(a, t) + BIh (CL, t)
da ot

10(0,) = /O () B (7 )

= —(up + ap(a) +rp(a))n(a,t),

Model (2) is equipped with the following initial conditions:

Su(0) = Suy,  1y(0) = Luy,  Sp(0) = Shes  En(7,0) = (1), In(a,0) =(a).
All parameters are nonnegative, A, > 0, Ay > 0, and B, > 0, u, >0, up > 0. We
make the following assumptions on the parameter-functions.

Assumption 2.1 The parameter-functions satisfy the following.

1. The functions B,(a) is bounded and uniformly continuous. When [,(a) is of
compact support,  the support has non-zero Lebesgue measure;
2. The functions m(t1), ap(a), rn(a) belong to L>(0,00);
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3. The functions ¢(7), ¥ (a) are integrable.

Define the space of functions
X =R xR xR x (L0,00)) x (L*(0,0)).

It can be verified that solutions of (2) with nonnegative initial conditions belong to
the positive cone for t > 0. Furthermore, adding the first and the second equations

o (8.0 10) <880+ 1.0).

Hence,

A,
t

v

The number of the hosts can be bounded as follows:

% (Sh(t)+ /OOO Ey (7, t)dr + /OOO Ii(a, t)da)
< Ap — pn (S’h(t) + /000 Ep(r,t)dr + /OOC Ih(a,t)da).

Hence,

o o0 A
lim sup (Sh(t) +/ Ep(r, t)dT+/ Ih(a7t)da) < Zh
t 0 0

Hh
Therefore, the following set is positively invariant for system

(5.0 +1.0) < 2.

o

(sh(tw/om Eh(T,t)dT+/()oo Ih(a,t)da) < 2:}

Finally, since the exit rate of exposed host individuals from the incubation com-
partment is given by uj + m(7), then the probability of still being latent after 7
time units is given by

Q= {(S’U)I’UvshuEhv-[h) € X+

m(r) =e #rTe” Jo mio)do (3)

The exit rate of infected individuals from the infective compartment is given by

wn + ap(a) + rp(a), thus the probability of still being infectious after a time units
is given by

ma(a) = eHrae™ Jo'(an(@)Fra(o)do, (4)

The reproduction number of disease in system (2) is given by the following expres-

sion A - -

Wih(u: e /0 m(r)m (r)dr /0 By (@) (a)da. (5)
The reproduction number of disease gives the number of secondary infections pro-
duced in an entirely susceptible population by a typical infected individual during
its entire infectious period. R gives the strength of vector-borne disease to invade
when rare and alone. In particular, we notice that the reproduction number for
vector-borne diseases is a product of the reproduction numbers of the two trans-
mission processes: human-to-vector R; and vector-to-human R,,

_ A, _ B [T
Ry = E/o Bo(a)ma(a)da, R, = Mh(uv+04v)/o m(7)m1(7)dT,

Ro =
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that is Rg = RyRp. In the next section we compute explicit expressions for the
equilibria and establish their local stability.
System (2) always has a unique disease-free equilibrium &, which is given by

SO = (511:07 Oa 5207 07 O)a

where
* A U * Ah
S’Ug = 71, Sho - —.
Ho Hh
In addition, for Dengue virus there is a corresponding endemic equilibrium £; given
by
& = (557 I3, She E;:(T)’ I;:(a))
We denote by
BrAnAy

,Uh,ub (,Um + 041;

b:/o (e dT/ Bu(a)ma(a (6)
b()\):A m(r)e m dT/ By(a)e™ 1y (a)da.

The non-zero components of the equilibrium &; are given by

* _ Mth(RO — 1) * A’U B (IU’U + aU>I: * Ah
I, = ———, S = , Sp=
Bn (Ahb + /Lv) 2% ﬂh + ,Uh
En(7) = Ep(0)mi(7),  ER(0) = BrSily, (7)

Iy(a) = I;(0)ma(a),  1;(0) = E3(0) /OOO m(7)my (7)dr.

Next, we turn to the linearized equations for the disease-free equilibrium. To in-
troduce the linearization at the disease-free equilibrium &, we let S, (t) = Sy +
Ty (t), Lu(t) = yu(t), Sn(t) = Si, + xn(t), En(r,t) = 2n(7,t), In(a,t) = yu(a,t).
The linearized system becomes

dz, N

xdt( —S / Bv yh(a t)da - ﬂvxv( )
0 / Bu(@)yn(a,t)da — (1, + )y (1),
d

xgt( ) _ —BrSho Yo (t) — pnzn(t),

azha(: 2 + aZha(tT, ) = —(pn +m(7))zn(7, 1),

Zh (0, t) = ﬂhsitoyv (t)v
Oyn(a,t)  Oyn(a,t)
Oda ot

yn(0,t) = /000 m(7)zp (7, t)dT.

= —(pun + an(a) +rp(a))yn(a,t),
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To study system (2), we look for solutions of the form z,(t) = Z,e, y,(t) =

goert, mp(t) = TpeMt, 2 (1,t) = Zu(1)eM and yp(a,t) = gn(a)eM. We obtain the
following eigenvalue problem

AT, = —S;O/ Bu(a)yn(a)da — (i, Ty,
0
«WU=S;/‘BA®%@Ma—U%+aM%,
0
AT = _BhS}togv — WhTh,
—(A+ pn +m(7)) 2R (1), (9)

z1(0) = BrSp, Yo,

~

dyn, (a
da

gn(0) = /000 m(7)zp(7)dr.

= —(A+ pn + an(a) + ri(a)yn(a),

We notice that the two equations for z,, and Zj, are decoupled from the equation for
Yu, Zn, Yn- Hence, the equations for Z, and Z; are independent from the equations
for ¥y, Zn, Yn- Solving the differential equations for z;, 75, we have

zZp (1) = Z1(0) e‘”m(r) = BnSh, Yo e_)‘Tﬂ'l(T),

o0 10
gn(a) = gr(0) e_>‘“7rg(a) = BuSh, Vo 6_)\@71—2(04)/0 m(7) e_’\Tm(T)dT. (10)

Substituting for g, (a) in the second equation of (9), we can obtain the following
equation

A+uv+avzgh5;05;;0/ m(r)e dT/ Bo(a)e M ms(a)da. (1)
0

Now we are ready to establish the following result.
Proposition 1. If
Ro < 1,

then the disease-free equilibrium is locally asymptotically stable. If Ro > 1, it is
unstable.

Proof. Assume
Ro < 1.
We set

LHS “ )\ 4y + an,

o (12)
RHS = B,5* S e (7)d (a)e 7y (a)da.
<>mm%é m(r) T/ﬁ 2(a)da
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Consider A with RA > 0. For such A, following from (12), we have that
|LHS‘ Z Ho =+ Ay
RHS| <G < 610) = 55,55, [ minm(r dT/ Bulayma(a

:M/ )m(r d’l’/ Bo(a)ma(a
Holbh 0

=Ro(po + ) < |LHS|.

This gives a contradiction. Hence, we have shown that equation (11) cannot have
any roots with non-negative real parts. Therefore, the disease-free equilibrium &
depends on the eigenvalues of the equations for x, and x;. It is evident that
A= —pu, and A = —puyp, so the disease-free equilibrium & is locally asymptotically
stable if Rg < 1.

Now assume

Ro > 1.

We rewrite the characteristic equation (11) in the form

(A + o + o) — BuSy, Sk, / m(r)e Mm dr/ By(a)e g (a)da = 0.
0

(13)

We denote

Go(A) = (A + po + o) — BaSy, Si, / m(r)e Nx dT/ By, (a)e " my(a)da.
0

(14)

Thus equation (13) has turned into the following characteristic equation

Ga2(A) = 0. (15)

For A real we have

Go(0) = (jto + cv0) — B ST SE. /O  n(rym (r)dr /O ~ 8y (a)ms(a)da
= (uy + ) (1 — Rp) < 0.

Furthermore, limy_, o G2(A) = 400. Hence, the characteristic equation (15) has a
real positive root. Therefore, the endemic equilibrium & is unstable. This concludes
the proof. O

Now we turn to the local stability of the endemic equilibrium &; if Ry > 1. The
result on local stability of the equilibrium &; is summarized below

Proposition 2. Assume Rg > 1, then the endemic equilibrium & is locally asymp-
totically stable.

Proof. We study the linearized equation around the endemic equilibrium & . We
introduce the following notation for the perturbations S, (t) = S* + x,(¢), I,(t) =
Il +y,(t), Su(t) = Sp+an(t), En(r,t) = Ef(1)+2n(1,t), In(a,t) = I} (a)+yn(a,t).
The system for the perturbations becomes (16)
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dmv / Bo(@)yn(a, t)da — z,(t / Bu(a) I}, (a)da — poy (),
% _ S’t/o ﬂv(a)yh(a’t)da+mv(t)/o Bu(a) I} (a)da — (puy + o)y (1),
dxgt(t) = —BS;ye(t) — Bran(O) I — pnwn(t),

dz;f) — (AN + pn +m(7))zn (1, 1),

20 (0,t) = BrSpyo(t) + Brxn(t) I,

dy;é“) = —(A + pn + anla) + rn(a)yn(a, t),

yn(0,t) = /O00 m(7)zn (T, t)dT.

(16)
An approach similar to [8] (see Appendix B in [8]) can show that the linear stability
of the system is in fact determined by the eigenvalues of the linearized system (16).
To investigate the point spectrum, we look for exponential solutions (see the case
of the disease-free equilibrium) and obtain a linear eigenvalue problem.

_S*/ Bv yh da_mv/ Bv Ih — HuTy,
Ayvfs::/O B.(a)yn(a )dam/ Bo(a) I} (a)da — (10 + )y,

Az, = —2,(0) — prn,

) — 0kt (o) ()
zn(0) = BrSryy + Brlsx,
WD (3t s+ na) + ru(@)na),

yn(0) = / m(7)zp(7)dT.
0
Solving the differential equation, we have
zn(1) = 2(0) e My (7),
yr(a) = yn(0) e_>‘“772(a) = z,(0) e_’\“ﬂg(a)/ m(T) e M (T)dr.
0

Substituting for y;, in the second equation of (17), we can obtain the following
equation

At + / " 8@ I} ()da)z, + STHA)z(0) = 0,

oo [ B@I@Mat Ot g 0 = SO0 =0, (1

(A + pr)zn + 2,(0) = 0,
—,Bhffjl‘h — ﬂhS;“Lyv + Zh(O) =0.
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By direct calculation, we obtain the following characteristic equation:

(st [ @B @d)A+ o+ ) Ok + Bu;)
0

=BnSpSb(A) (A + po) (A + i)
We divide both sides by (A4 y) (A =+ pr), then we introduce the following notation.

(A + po + fooo Bu(a)l}(a)da)(A + pv + o) (A + pn + Brly)
(A + po) (A + )

(19)

Gz(\) =

)

Ga(\) = BnS;Sib(\) = BrS;S: / h m(r)e Ny (1)dr / b By (a)e my(a)da.
0 0

Thus (19) can be expressed as the the equation
Gs(A) = Ga(N). (21)
If A is a root with A > 0, it follows from equation (20) that

1Gs(N)] > [A+ po + | > 10 + .

From system (2), we have

ﬂhS:SZ/ m(7)m (T)dT/ Bu(a)ma(a)da = py + oy,
0 0
Hence,

Ga(W)] < [Ga(RN)] < Ga(0) = BnS, S}, /Ooo m(7)m (7)dr /Ooo Bu(a)my(a)da

=y +ay < |g3(/\)|
(23)
This leads to contradiction. Hence, for R\ > 0, (21) has no solutions. Thus, the
characteristic equation (19) has only solutions with negative real parts. Therefore,
the endemic equilibrium & is locally asymptotically stable if Ry > 1. This concludes
the proof. O

3. Global stability of the disease-free equilibrium. In the previous section,
we have established that equilibria are locally stable, that is, given the conditions
on the parameters, if the initial conditions are close enough to the equilibrium, the
solution will converge to that equilibrium. In this section our objective is to extend
these results to global results. That is, given the conditions on the parameters,
convergence to the equilibrium occurs independently of the initial conditions.

As a first step, we establish the global stability of the disease-free equilibrium.
We will use a Lyapunov function to approach the problem. We need to integrate
the differential equation along the characteristic lines. Denote the initial condition
by Bg(t), Bi(t):

Bi(t) = En(0,),  Bi(t) = I(0.1).

Integrating along the characteristic lines, we obtain
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Bg(t — 1)m (1), t >,
En(r,t) = m1(7)

(T —1)—/—————, t<T,

By (t — a)ma(a), t>a,
Ih(a7 t) = 7'(2(0,)

—t)—————— t
vla )Wg(a—t)’ <
Theorem 3.1. Assume
Ro < 1.

Then the disease-free equilibrium &y is globally asymptotically stable.

Proof. We will use a Lyapunov function. We adopt the Volterra-type function used
in [7, 10, 13]. Define

fz)=z—1-Inz.
We note that f(z) > 0 for all > 0. f(x) achieves its global minimum at one, with
f(1) =0. Let

qm%=/wﬂm@aﬂﬁ%+%“””wwww

(25)
Brhnhe /Oo — [ (Am())d
p(r) = —7F——q(0 m(s)e” Jr WrTmla))eT dg
( ) Mhﬂv(uv+av) ( ) T ( )
‘We notice that
Differentiating (25) first, we obtain
q'(a) = =Bu(a) + (un + anla) + ra(a))q(a),
BrnAnAy (26)
/
p(1) = ————F——q(0)m(7) + +m(7))p(7).
(1) uhuv(qurav)() (1) + (. +m(7))p(7)
According to (26), we have A = % So we define the following Lyapunov
function:
Ur (t) = Ull(t) + U12 (t) + U13 (t) + U14 (t) + Uls (t)v (27)
where
Sv A * S
Un () = Af(Gr). Unlt) = g Tu(h), Un,(t) = Si, f( ).

Sto TS, Sha
U, (t) = / p(T)En(r,t)dr, U (t) = A/ q(a)Iy(a,t)da.
0 0

Because of the complexity of the expressions, we take the derivative of each com-
ponent of the Lyapunov function separately

vl (0= 2 (1= S Av—Sv/ Bu(@)In(a, £)da — j1uSs
s:\'7 s, ;

S* o0
= A 1— 22 ) pSh — 1Sy — Sv/ Bu(a)Iy(a,t)da
Sy Sy 0 0

Apty(Sy — % )2 > >
_ _“(—*vo) _ A*Sv/ By(a)In(a, t)da +A/ Bu(a)In(a, t)da.
SvSvo Svo 0 0
(28)
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UL () = Si*[sv / Bu(@)In(a, t)da — (1o + aw)L,]
S,;';OS / ﬁv Ih(a t) 6hSh

Noting that Ep(0,t) = 8,511, we have

S*
Ui, (t) = (1 -3 ) (Ah = BrSnly — MhSh)
h

S*
(1 TS, ) (uhSZO — 1Sy — ﬁh5h1v> (30)

S, — S 2
=1 IS 0,0+ i 1

() Enr 0] ar
[ prTdEh 0+ | w(uwmv»pv)Eh(m)dT]
[za(r En(r 0l / By (r,t)dp(r) + / w(uﬁm(f))p(f)Eh(T,wdT]

=p(0)EL(0,t) — Ag(0) /000 m(7)En (7, t)dr
=RoEn(0,1t) — Aq(O)[h(O, t).

(31)
Similarly to (31), we obtain
oIn(a,t
Ui, () = _A/ { Ma,h) + (b + an(a) + ru(a))In(a, t)}d@
(32)
= Ag(0)I(0,%) — A/ Bu(a)In(a,t)da.
0
Now differentiating (27) we have
A v SU _ S* 2 A e} e’}
Uity = —u — —Sv/ ﬁv(a)lh(a,t)da—i—A/ Bu(a)In(a,t)da
SuSy, St Jo 0
A o0
o5 / Bu(a)Tn(a, t)da — BuSE, I,
Vo 0
S, — % 2
0 ST 0.0 4 5185, T+ RoEL(0.1) — Ag(O)1,(0.0)
h
FAOI0.0) = A [ Bu(@)h(at)da
0
(33)
Canceling all terms that cancel, we simplify the above expression:
Api (S, — SF )2 Sy — S; )2
(1) = — 2l w® S = Sh ) ro B0, (34)

8,8y, - S,
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The last inequality follows from the fact that Ry < 1. Notice that U] equals zero
implies that S, = S, S, =S}, , En(0,t) =0. We define a set

01 = {<Sv’lvvsh7Eh7[h) € Q‘U{(t) = 0}.

LaSalle’s Invariance Principle [9] implies that the bounded solutions of (2) converge
to the largest compact invariant set of ©;. We will show that this largest compact
invariant set is the singleton given by the disease-free equilibrium. First, we notice
that equality in (34) occurs if and only if S, = S}, S, = S}, En(0,t) = 0. Thus,
from the solution for the equation along the characteristic line (24), we have that
Ep(7,t) = ER(0,t —7)m1(7) = 0 for all ¢ > 7. Hence, lim;_,oc Ey(7,t) =0 for ¢ > 7.
Noting that

[oe]
In(0,t) = / m(T)E(T,t)dr.
0
So we have lim I;(0,¢) = 0. Thus, we have
t—o00
tlggolh(a,t) =0, t>a.

Therefore, we conclude that the disease-free equilibrium is globally stable. This
completes the proof. O

Our next step is to show the global asymptotic stability of the epidemic equilib-
rium in system (2)

4. The uniform strong persistence of the vector-borne disease. In the pre-
vious section, we saw that if the reproduction number is less or equal to one, The
vector-borne disease dies out. In this section, we assume that for Rg > 1,we will
show that the vector-borne disease persists.

From Proposition 2 we know that under the specified conditions the equilibrium
&1 is locally asymptotically stable. It remains to be established that & is globally
stable. We expect to show this result using a Lyapunov function, similar to the one
used in [7, 10, 13]. With f(z) = 2 — 1 — Inz, we define the following Lyapunov
function

Us(t) = Ua, () + Uz, (t) + Uzy () + Uz, (t) + Uz, () + Uz, (1) + Uz, (t) + Uz, (1),

(35)
where . 5
Un ) = oy = mmm o (?)
1 w o f Lo
V(0 = @ T mmm mar ! <T>
Uy (1) = s;f(gg),
00 == | oo () ) am .
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One difficulty with the Lyapunov function U, above is that the component Us, is
not defined if S, = 0, the component Us, is not defined if I, = 0, the component
Us,, Us, is not defined if Sj, = 0, the component Us, is not defined if Ej(7,t) = 0,
and the component Us, is not defined if I;(a,t) = 0. To show that the Lyapunov
function above is valid, we need to show that the vector borne disease persists both
in the hosts and in the vectors. For this to be the case, we need to guarantee that
the initial conditions we start from are non-trivial, that is, the initial conditions
are such that they lead to new infections of individuals and vectors either initially
or at some future point. Mathematically speaking this means that the support of
the initial density of latent individuals ¢(7) intersects the support of m(7) or the
support of the initial density of infectious individuals ¥ (a) intersects the support of
By (a) either initially or at some future point. Thus, we define the following set

Oy = {gp € L1 (0,00)

ds>0: /OOO m(T + s)e(T)dr > O},

Oy = {zp € L} (0,00)

d5s>0: /000 Bu(a+ s)y(a)da > O}.

Define
QOZR+XR+XR+X§21XQQ.

Finally, define Xg = 2N Qy. We notice that X is forward invariant. It is not
hard to see that €2 is a forward invariant. To see that €5 is forward invariant, let
us assume that the inequality holds for the initial condition. The inequality says
that the condition is such that if the support of 8,(a) is transferred s units to the
right, it will intersect the support of the initial condition. But if that happens for
the initial time, it will happen for any other time since the support of the initial
condition only moves to the right. Similarly, Q) is also forward invariant.

We want to formulate the persistence result for the vector-borne disease which on
one side will justify the use of the Lyapunov functional Us(t), and on the other, will
show that when Ry > 1 the disease persists in the form of the endemic equilibrium.
Consequently, we identify conditions which lead to the prevalence in individuals
and vectors being bounded away from zero. There are many different types of
persistence [21]. We identify here the two that we will be working with.

Definition 4.1. We call the vector-borne disease uniformly weakly persistent if
there exists some v > 0 independent of the initial conditions such that

t—o0

lim sup/ En(7,t)dTr >~ whenever / p(T)dr >0,
0 0

1imsup/ In(a,t)da >~y whenever / P(a)da > 0,
0 0

t—o0
and

limsup I,,(t) >~ whenever I,, > 0.

t—o0

for all solutions of model (2).

One of the important implications of uniform weak persistence of the disease is
that the disease-free equilibrium is unstable.
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Definition 4.2. We call the vector borne diease uniformly strongly persistent if
there exists some v > 0 independent of the initial conditions such that

t—o0

liminf/ Ep(7,t)dT >~ whenever / o(T)dT > 0,
0 0

oo

o0
lim inf In(a,t)da >~ whenever / Y(a)da > 0,
0

t—o0 0
and

liminf I, (t) >~ whenever I,, > 0.

t—o00

for all solutions of model (2).

It is evident from the definitions that, if the disease is uniformly strongly persis-
tent, it is also uniformly weakly persistent. To show uniform strong persistence for
the vector-borne disease, we need to show two components.

1. We have to show that the vector-borne disease is uniformly weakly persistent.
2. We need to show that the solution semiflow of system (2.2) has a global
compact attractor T.

First, we show uniform weak persistence of the vector-borne disease. The follow-
ing proposition states that result.

Proposition 3. Assume Ry > 1. Then, for all initial conditions that belong to Xy,
the vector-borne disease is uniformly weakly persistent, that is, there exists v > 0
such that

lim sup By 1, () > 7, limsup/ m(7)ER(7,t)dr > 7,
t t 0

(o)
limsup/ Bu(a)In(a,t)da > 7.
t 0

Proof. We argue by contradiction. Assume that the vector-borne disease dies out.
In particular, assume that for every € > 0 and an initial condition in Xy we have

limsup Bl (t) < €,lim sup/ m(7)Ex (1, t)dT < £,lim sup/ Bu(a)In(a,t)da < e.
t ¢ 0 t 0

Hence, there exist T' > 0 such that for all ¢t > T', we have

Brl,(t) < e, /000 m(7)Ep(r, t)dr < e, /000 By(a)I}(a,t)da < e.

By shifting the dynamical system we may assume that the above inequality holds
for all ¢ > 0. From the first equation in (2), and taking into account the above
inequality, we have

S;(t) > Av - ES’U - /’("US’L)? S;L(t) > Ah - ESh - ,U/hSh~

Therefore,
limsup S, (¢) > liminf S, () > b limsups (t) > liminf Sy (t) > An
im sup Sy > limi v > , limsu > lim1i > .
t~>oop t—o0 €+ [y t~>oop 4 tmoo €+ lp
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Recall that we are using the following notation Bg(t) = Ex(0,t), Br(t) = In(0,1).
Using the inequality above we obtain
Ap

Bg(t) = En(0,t) = BrSil, > 5h6 . I,

d]v AU l — + « Z
# > ﬁ‘/0 ,Bv(a) h(aa t)da (/”l'v v) v

Now, we apply expression (24) to obtain the following system of inequalities in
Bg(t), Bi(t) and I,(t):

Bi(t) 2 - ﬁ’;h L.
Bi(t) = /O‘X’ m(7)Ep (7, t)dr > /0 m(7)Bg(t — 7)my (7)dr, (38)
dlfu(t) & gﬁvuv /0 Bu(a)Bi(t — a)ma(a)da — (o + )Ly

We will take the Laplace transform of both sides of inequalities (38). Since all
functions above are bounded, their Laplace transform exists for A > 0. We denote
by Bg(\) the Laplace transform of Bg(t), by B;()\) the Laplace transform of By (t),
and by I,(\) the Laplace transform of I,(t). Furthermore,

i) = /0 T m (e Mdr, Ra()) = /0 T Bo(@ma(a)eNda.  (39)

Taking the Laplace transform of inequalities (38) and using the convolution prop-
erty of the Laplace transform, we obtain the following system of inequalities for
Bg(\), Br(M\) and I,(\).

Br(\) > K, (A)BEe(N), (40)

zgf%RﬂMBAM—0%+aﬁEQ>

Eliminating B;(\) and I,(\) from the system above, we obtain

, By AR K1 (M) Ko (N) R BrnAn
Bg(\) > ()\)+(6+/Jh)()\+,uv+0‘v)

% T m) e+ i)+ i+ o) RO

This last inequality should hold for the given € =~ 0 and for any A > 0. But this

is impossible since for € &~ 0 and A = 0, the coefficient in front Bg(A) on the right

hand side is approximately Ry > 1, that is,
ﬂhA'uAh[A(l ()‘)f(2(/\)

(e + o) (e + pn) (AN + pro + )

In addition, there is another positive term on the right side of this equality. This is
a contradiction with our assumption that

~Ry>1.

o0
limsup 1, (t) <e, lim sup/ m(7)Ey (1, t)dr < &,
t t 0

limsup, [;° By(a)In(a,t)da < e. (41)
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Therefore, there exists at least one limit supremum which is bounded below by ~
for any initial condition in Xy and some ~ > 0.
Note that

Ep(0,t) = SpBnly(t) < MBh]v(t)
Hn
15,(0,t) :/0 m(7)Ex (7, t)dr

:/ M(T)Eh(O,tT)7r1(7)d7+/toom(7)¢(7—t)mﬂ(17_(i)t) - )

I, (t)
dt

/ Bu(@) I (a, t)da — (o + ) 1, (£)
/51, IhOt—an da+/ ﬁv a—t)Lm)da

—(po + ) I (t).
Following (42), we get

A
limsup E,(0,¢) < =2 limsup 8,1, (t)
t Mh t

oo
limsup I (0,t) < / m(7)m1(7)dr lim sup Ep (0, t)
t 0 t

< m/ e FrTdr limsup Ey,(0,t) = ™ lim sup E}, (0, t)
0 i Hh t

dl,(t o . .
lim sup dt( ) < / Bu(a)me(a)dalimsup I, (0,t) — (o + o) limsup I, (t)
t 0 t t

< mo/ e M dalimsup I, (0,t) — (uy + @) limsup I, (¢)
0 t t

Mo limtsup I5,(0,t) — (o + ) hmtsup I,(t),

K,
(43)
where m = sup,.{m(7)}, mo =sup,{B,(a)}. The last inequality means that
. mo .
limsup I, (t) < ———— limsup I (0, t).
t pl()_ﬂh(uv‘i‘av) t p1n(0.1)

Thus we obtain that if any inequality in (41) holds, all the three inequalities are
less than a constantxe. There is another contradiction with the above result that
there exists at least one limit supremum which is bounded below by . As a result,
there exists v > 0 such that for any initial condition in Xg, we have

lim sup By I, (t) > fy,limsup/ m(7)Ep(r,t)dr > v, limsup/ Bv(a)Ip(a,t)da > .
t t 0 t 0

In addition, the differential equation for I,, can be rewritten in the form

dl, _ Ay
> - v + Oy Iva
dt = v+ po (v )
which in turn, implies a lower bound for I,,. This concludes the proof. O

Our next goal is to prove that system (2) has a global compact attractor T. As
a first step, we define the semiflow ¥ of the solutions of system (2)

(4 S L S0, ) = (81000 10,00, B0, 1))
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Definition 4.3. The semiflow is a mapping ¥ : [0,00) x X — Xp. A set T in X
is called a global compact attractor for W, if ¥ is a maximal compact invariant set
and if for all open sets il containing ¥ and all bounded sets B of X there exists
some T > 0 such that ¥(¢,B8) C 4, for all t > T.

The following proposition establishes the presence of a global compact attractor.

Proposition 4. Assume Rg > 1. Then, there exists T, a compact subset of Xy,
which is a global attractor for the solution semiflow ¥ of (2) in Xo. Moreover, ¥
is invariant under the solution semiflow, that is

U(t,2%) C X for every 2°€ T, Vt>0.

Proof. To establish this result, we will apply Lemma 3.1.3 and Theorem 3.4.6 in
[22]. To show the assumptions of Lemma 3.1.3 and Theorem 3.4.6 in [22], we split
the solution semiflow into two components. For an initial condition 2° € X, we have
(t,20) = W(t,2°) + W (t,2°). The splitting is done in such a way that ¥(t,z°) — 0
as t — oo for every z° € Xy, and for a fixed ¢t and any bounded set B in Xy, the
set {W(t,2°) : 20 € B} is precompact. The two components of the semiflow are
defined as follows:

xif(t : svmfvo,sho,so(-),w(d) = (0,0,07Eh<-,t>,fh(-,t>)
44
(2 S s Shon 2, 00) ) = (SO 105100 Bu0). o)), ()

where Ey(7,t) = Ep (7, t)+Ex (7, t), In(a,t) = In(a,t)+Iy(a, t) and Ey(7,t), In(a,t),

Ey(7,t), I, (a, t) are the solutions of the following equations (the remaining equations
are as in system (2)

OF,  0E, -
2t T = —(pn +m(7))En(7,1),

En(0,8) =0, (45)

Eh(T’ 0) = @(T)7

oI, oI .
T T g = Ut on(a) (@)D 1),

n(0,8) = 0, (46)

jh(a’ 0) = ¢(a)7
and ) i
OF OF _
Sk S = (a4 ml) En(r, ),
Eh(oﬂ t) = BhSth, (47)
Eh (7‘, 0) = O,
% + % = —(pn + anla) + Th(a))fh(T, t),
INh(O7 t) = / m(T)Eh (7’7 t)dr,
0

I,(,0) = 0.
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System (45) is decoupled from the remaining equations. Using the formula (24) to
integrate along the characteristic lines, we obtain

0, t>T,

Ey(r,t) = __gm) _ (49)
o t)ﬂ'l(T—t) b
0, t > a,

In(a,t) = ma(a) (50)
P(a — t)m, t <a.

Integrating E), with respect to 7, we obtain:

/too o(r —1t) 77“721 () )dT = /000 @(T)iﬂl (t+7) dr < e #nt /000 o(T)dT — 0,

T—1t m1(T)

as t — +oo. Integrating fh with respect to a, we obtain:

/z/;a—t a_t /w ”2t+)“)d < *Mht/ b(a)da — 0,

as t — 4o0o. This shows the first claim, that is, it shows that ¥(t,2°) — 0 as
t — 400 uniformly for every 20 € B C Xy, where B is a ball of a given radius.

To show the second claim, we need to show compactness. We fix ¢ and let
2% € Xy. Note that X, is bounded. We have to show that for that fixed ¢ the
family of functions defined by

U(t,z°) = (Sv(t),lv(t),Sh(t),Eh(T, t),fh(a,t)),

obtained by taking different initial conditions in X is a compact family of functions.
The family
{W(t,2%)]2° € Xo,t — fixed} C X,

and, therefore, it is bounded. Thus, we have established the boundedness of the
set. To show compactness we first see that the remaining conditions of the Frechet-
Kolmogorov Theorem [19]. The third condition in the Frechet-Kolmogorov Theorem
for compactness in L' is trivially satisfied since Ej, (7,t) = 0 for 7 > t and I, (a,t) = 0
for a > t. To see the second condition of that Theorem, we have to bound by two
constants the L'-norms of OE}, /01 and d1;,/da. To derive that bound, first notice
that

~ BE(t—T)m(T), t >,
En(r,t) = 0, t <,
N (51)
- B (t — a)ma(a), t>a,
In(a,1) = 0, t<a,
where ~
Bg(t) = BrSn(t)L,(t)
(52)
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First, we notice that for z° € Xy, Bp(t) is bounded. We can see that by recalling
that Sp, and I, are bounded. Hence, the Bg(t) satisfies

Bp(t) < k.
Then, we obtain

Bi(t) = /0 m(7)Bg(t — 1) (7)dr < ko /0 Bp(t—7)dr = ko /0 Bp(t)dr < kikst.

Next, we differentiate (51) with respect to 7 and a:

‘8Eh(77t)‘< |Bip(t = 7)|m1(7) + Be(t — )7 (7)], t>,

or 0, t<T,

‘3fh(a,t)‘ _ | By (t = a)|ma(a) + Bi(t — a)lms(a)l, t>a,
da Lo, t<a.

We have to see that |B,(t — 7)|, |B}(t — a)| are bounded. Differentiating (52), we
obtain

By(t) = (sut)fv(t) s <t>),
] ) . (53)
B} (t) = m(t)Bg(0)m1(t) + /0 m(T)B’E(t — 7)my(7)dr.

Taking an absolute value and bounding all terms, we can rewrite the above equality
as the following inequality:

|Bp(t)| < ks, |Bi(t)] < ka
Putting all these bounds together, we have

|| &Eh || < ]{73/ 7T1(T)d7'+/€1(,u,h+’l7n)/ 7T1(T)d7’ < by,
0 0

oo

I .1 I < k4/ ma(a)da + ki ko (pp, + ap + Fh)t/ ma(a)da < bay,
0 0

where m = sup,.{m(7)}, an = sup,{an(a)}, 7n = sup,{rn(a)}. To complete the
proof, we notice that

/ \Bn(r + h,t) — By(r.t)|dr <|| 0., || |1 < b,
0

o0
/ (n(a + hyt) — Tn(a, )]dr < ai || |B] < B|h].
0

Thus, the integral can be made arbitrary small uniformly in the family of functions.
That establishes the second requirement of the Frechét-Kolmogorov Theorem. We
conclude that the family is compact. O

Now we have all components to establish the uniform strong persistence. The
next proposition states the uniform strong persistence of I,,, Ep and I},.

Proposition 5. Assume Ry > 1. Then, for all initial conditions that belong to Xy,
The vector-borne disease persists, that is, there exists v > 0 such that

o0 oo
limtinf Brl,(t) >, limtinf/ m(7)Ep (T, t)dr > 7, limtinf/ Bv(a)Ip(a,t)da > .
0 0
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Proof. We apply Theorem 2.6 in [29]. We consider the solution semiflow ¥ on Xj.
We define three functionals p; : Xo =R, 7 =1,2,3 as follows:

pl(\ll(t75(;0)) = ﬂh[v(t)v
pa((t,2°)) = / " () B (. t)dr,

= /OO Bv(a)fh(a,t)da
0

Proposition 3 implies that the semiflow is uniformly weakly p-persistent. Proposi-
tion 4 shows that the solution semiflow has a global compact attractor T. Total
orbits are solutions to the system (2) defined for all times ¢ € R. Since the solution
semiflow is nonnegative, we have that for any s and any ¢t > s

Bh-[v(t) Z Bhlv(s)e_(uv+aU)(t_S)a

[ m(r)Ba(mt)dr = Bt m(r) Bt — 7)m (7)dr > k1/0 Bt — r)dr

0
_kl/BE dT—k/ﬂhSh

0 0
_ k21,(s)
e+ ay

/0 Bo(@)in(a, t)da = /0 Bo(@)Br(t — a)ma(a)da > K /O Bi(t - a)da

eltvtay)s (1 _ e—(uv+arv)t),

t
=% | Bi(a)da
0
21.3 t
Z k“k IU(S) e(uv+av)s/ (1 767(uv+au)a)da.
Ho + Oty 0

Therefore, B,1,(t) > 0, [~m 7)Ey(r,t)dT > 0, 157 Bula VIn(a,t)da > 0 for all
t > s, provided I,(s) > 0. Theorem 2.6 in [29] now implies that the semiflow is
uniformly strongly p-persistent. Hence, there exists v such that

lim 1nfﬁhI (t) > v,lim 1nf/ T)ER (1, t)dT > v,hmlnf/ Bu(a)In(a,t)da > 7.
O

Corollary 1. Assume Rog > 1 . There exists constants ¥ > 0 and M > 0 such that
for each orbit (S, (t), L, Sy (t), En(,t), In(a,t)) of U in T, we have

9 < S,(t) <M, 9<S8,{t)<M, VteR,

and

¥ < Bul,(t) < M9 < / m(r)En(r,t)dr < M, 9 < / Bo(a)In(a,t)da < M,Vt € R.
0 0

In the next section we show that the endemic equilibrium &; is globally stable.
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5. Global stability of the endemic equilibrium. Now we are ready to establish
the global stability of the equilibrium &;. To demonstrate that with the Lyapunov
function defined in (35) we have to establish that Uj(t) < 0 along the solution
curves of system (2). The following Theorem summarizes the result.

Theorem 5.1. Assume Rog > 1. Then, equilibrium & is globally asymptotically
stable, that is, for any initial condition x° € Xy the solution semiflow converges to

&r.

Proof. Since Rg > 1, for any initial condition 2° € X we can find a complete orbit
(Su(t), Iy(t), Sh(t), Ep(7,t), In(a,t)) of ¥ in T (similarly to the proof of Proposition
4) for which the inequalities in Corollary 1 hold and, consequently, there exist 1 > 0
and M; > 0 such that

I, FE t
€1§F<M1, e1 < w(7 )

Ih(a, t)

< M.
Ii(a) =7

This makes the Lyapunov function defined in (35) well defined.
Because of the complexity of the expressions, we make the derivative of each
component of the Lyapunov function separately (see (35)).

a- §§> — S, [y m <a t)da — 1,S.,)
fo T)dT
(- 2—5)[5: S5~ Bula) < )da + 107 = Sy fo Bu(a)Iy(a, t)da — 11, S,
B fo T)dT
oS0 — 52)2 J&° Bula) I (a) (1 — 3= — ng?f?;? + 4t da
5:5.0(0) [ m(r)m(r)ir 10 s mOmindr
0
(54)
Next, we need to take the time derivative of Us,.
S ) I a, t da — v + Ay Iv
Ug(t):( foﬁ h( ) (n )1
2 fo T)dT
* 0o S v n(a)da
=)0 fy Bula)n(a, tyda — MI)
S354(0) fy~ m(r)mi(r)dr
(55)

SyIn(a v
a)(s ;,5 :1) - %)da

( - Iiv S* fo ﬁv (

fo m(7)m
o] * SuIn(a,t v Sylp(a,t)I;

_ Iy~ Bu(a) I} (a)( s;};((a)) - % - S*}*((ai)) +1)da

0) fooo m(7)m (7)dr ’
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S*
(1 - Sh> (Ah — BrSndy — MhSh)
h

S*
= (1 - S:) <E7{(0) + unSy, — En(0,1) — Mm%)

and

Us, (1)

_ _*“1(5’15253)2 + (E;;(o) —E(0,1) - %E;(O) + giEh(O,t))
Differentiating Us, (t), we have o0
Us, (t)
B R
Ry -
o () A8 o)
~ = poE 0 (GG ) ~ 80 [ meEor (7 )]

En(0,t)

Jo© m(r) B (r) f (5T dr
fooo m(7)m (7)dr
En(0,t)  JoT m(m)E; () f(5eEdr
Er(0) [ m(r)m (r)dr

N———

= En(0,t) - E;(0) — E;(0)In

The above equality follows from (35) and the fact
P'(7)E(7) + p(r) B} (7)

=| = Aq(O)m(7) + (un + m(7))p(7) | E},(T) — p(T) (1n + m(7)) E}(7)

=— Ag(0)m(7)E} (7).
We also have
¢'(1)I;(a) + q(a)I}; (a)

= | = Bula@) + (pn + anla) +ra(a))g(a) | Iz (a) = g(a)(pn + anla) + ra(a))1;(a)

= —Bul(a)];(a).

Similar to the differentiation of Uy, (¢), we have
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, B 1 o0 In(a,t)\ 1 0OIu(a,t)
U (1) " O T 7 ), d@n@r (I*(a))f;:(a) o
_ Ih(a,t)
OV mr)m / ( (a))
a(0)7;(0)f (4G fo L ()T (a )f(’h;f?a?)da

N q(0) [ m(r)mi(r)dr
Jy™ m(n) B ()il =1 = In Blhydr f0°° ﬂv )i (a )f(ﬁhf?;;’)da
fooo m(7)m (7)dr fo (r)dr

Finally, we differentiate Us,(t), Us,(t) with respect to ¢, and we have

S*
U§6 (t) = —S—hEh((), t),

h
o S (E(0))? (59)
Uk ) =~ 5 Buo.0)

Adding all five components of the Lyapunov function, we have
Us(t)
i (S —5*)2
S50 fo S* Sulu(at)  In(a,t)
o Svln(a, a,
O Jy m(rymi(r dT/ (15 - e + o Ja
h@w,m(%%w—ﬁ—i%w”+0m
(0) [57m T)dT
+@M%EMM—§ﬁ@ ?mmﬂ
h h
En(0,8) Jo m(T)E ()f(b};; Ldr
Er(0) [75 m(r)m ()dr
e m(r) B (r )(1;520?—1—1 fh<§0§))dr fo /3,, Ii(a)f f;;(“ag))da
Jm T)dT fo m(7)m (7)dT

Sh (E*,( )) .
~S ooyt 217 (0).

+

_pn(Sh — S;)?
Sh

+En(0,1) — E;(0) — E;(0) In

Canceling all terms that cancel, we simplify (60):
Nv(s - 5*) ~ pn(Sh = Sp)?
fO 1 dT Sh
sz o SuIn(a,t)I} (a,
+hﬁv,xm—f—%—s%?—H2%%m
1(T)dr

Si e sw<> B (0, 1)
— B 0) - ;E&w—&U1§w)

foo m(T)Eh( )(Ih(O ,t) _ Ep(7,t) +1 E;L(Tt) 1, (0) )dT

Us(t)

+2E;(0)

0 1;(0) £y (1) By (1) 1n(0,t)

fooo m(7)m(7)dr

+



GLOBAL DYNAMICS OF A VECTOR-HOST EPIDEMIC MODEL 1183

Noting that

OomT % - Ih(O,t) _Eh(T,t) - —
| i i ho Jar=o, "
X (e Ernt) L)
[ moE@ (R o 1) =0
Indeed,
o0 " Ih(07t) _ Eh(T,t) -
A(mfﬁ“”<1ﬂ> By )
AU DOmT *(r)dT — OomT T, t)dr
= S [ B [ meE
= D00 )~ py0.0) =,
= (r.t) 1;(0) (63)
oom . . Eh T, I;; 0
AU”E”<W)(W)Q
I* O o0 (o]
= Ih’ZO7t) ; ( Eh T, t . m dr
= ]i’z((L 1) I,(0,t) — I;:(0) = 0.
Using (62) to simplify (61) we obtain
Us(0) S0 et e
0
_hﬁv Aﬂﬂs) <>+ i%“”n
fo mi(7)d (64)

I
—E;(0) [f(g:) + @h EEth 1 )]T

1 (B DGO
ey, OB (E )
Hence, Uj(t) < 0. Define,
Us(t) = 0}.

We want to show that the largest invariant set in ©s is the singleton &;. First, we
notice that equality in (64) occurs if and only if S, (¢) = S, S, (t) = S, I,(t) = I},
and

Oy = {(Smfv,smEh,fh) € Xo

En(m,)1;(0) _
CEN()I0,t)

(65)
Thus, we obtain
In(a,t) = I (a), En(0,t) = E;(0).
According to (35),
En(r,t) = Bp(t — 7)mi (1) = Ep(0,t — 7)m1(7) = E}(0)m1(7) = Ej(7), t > T.

Furthermore, we obtain Ej(7,t) = E; (7). We conclude that the largest invariant
set in O is the singleton &£;. Reasoning similarly to [7] can show that the compact
global attractor ¥ = {&;}. O
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6. Discussion. In this paper, we formulate a partial differential equation (PDE)
model describing the transmission dynamics of a vector-borne disease that incorpo-
rates both incubation age of the exposed hosts and infection age of the infectious
hosts. An explicit formula for the basic reproduction number R is obtained for
the infection-age structured vector-host epidemic model. We show that if Rqy of
system (2) is less or equal to one, the disease-free equilibrium is locally and globally
asymptotically stable. That means the disease dies out while the endemic equilib-
rium is not feasible. On the other hand, we show that if Ry is greater than one,
system (2) is permanent and the endemic equilibrium is globally asymptotically
stable. Therefore the disease becomes endemic. As a result, the global stability
of the equilibria of system (2) is completely determined by its basic reproductive
number Ry. Hence, to control the disease, a strategy should be devised to reduce
the reproduction number to below one.

Examining the reproduction number more closely reveals that the relative impact
of the recruitment rate of susceptible vectors A,, the transmission rate (; and
the specific age-since-infection transmission coefficient §,(a) of the infected host
individuals increases Ro. It is easy to see that R is an decreasing function of the
death rate of the vector individuals p, and the recovery rate of the infected vector
individuals «,. It is also evident that R decreases with the rates r,(a) and oy (a)
that give recovery and disease-induced mortality of infected hosts.

Furthermore, to see the link between Ry and the removal rate of the exposed host
individuals with the incubation age 7, we first need to transform the reproduction
number Ry. We will use the representation of Ry given in (3) and (5).

Ro

RV
= m(7)my (T)dr ﬁv a)ma(a
.uv.uh Mo + av 0

_ B [ —pnt o= J§ m(e)do
uuhu+a 0m Je e Jo dr 51; )ma(a)da

AL A o
= Bh h { / (tn — pn — m(7))e " Te” Jom d”dT}/ Bu(a)ma(a
Mv/f’/h Mo + av 0

AL A >
_ Bh h |:1 /Lh/ e HhT o™ Jgm do’d,r:| / ﬂv ’/T2
Mv/f’/h Mo + av 0

Denoting by
P:/ e~ HnT e Jo mlo)do g
0

We obtain

AL A
Ro = M/ By (a)ma(a )da(l —uhp>.
Hobh ,u'u +04'u

Taking the p derivatives of Ry

dRo BhA Ah

—_— = —upy——— (@) da < 0.
dp u,uvﬂh//m“f‘av/ /3 2()
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We have that p decrease with the increase of m(7) and Ry decreases with increase
of p. Thus we have that increasing m(7) increases the reproduction number Ry.

In conclusion, our model and its analysis suggest that a better strategy of begin-
ning mosquito control is to remove possible breeding grounds, because the larvae
and pupae cycle of the mosquito is aquatic. Mosquitoes lay eggs in stagnant water,
that is to say, larvae need standing water to prosper, so we must remove items that
retain standing water or construct ways to keep the water moving. Furthermore,
we can look for shaded rest areas used by adult mosquitoes and eliminate them.
When we are outside during the day and evening hours, we can wear long sleeves
and pants to prevent the bites of mosquitoes and the transmission of disease. If the
infected host individuals who are in the latent period take an active drug therapy
in time, the total number of the infected hosts with the virus may become small.
At last it is interesting that the disease prevalence will decrease with the increase
of the disease induced death rate ayp,(a) at the age of infection a.
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