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Abstract. We consider the model of angiogenesis process proposed by Bodnar

and Foryś (2009) with time delays included into the vessels formation and
tumour growth processes. Originally, discrete delays were considered, while in

the present paper we focus on distributed delays and discuss specific results

for the Erlang distributions. Analytical results concerning stability of positive
steady states are illustrated by numerical results in which we also compare

these results with those for discrete delays.

1. Introduction. In this paper we focus on the process of angiogenesis, which
means formation of new vessels from pre-existing ones. It is a normal and vital
process in growth and development of animal organisms, but it is also essential
in the transition of avascular forms of solid tumours into metastatic ones. Small
tumours (less than 1–2 mm3 of volume) receive nutrients from the outside by simple
diffusion. Then necrotic core starts to grow, which is associated with the secretion
of angiogenic factors by cancer cells. The supply of nutrients allows cancer to
grow further, and moreover vessels form the path for spreading cancer cells in the
organism.

Mathematical modelling of this process is inextricably linked with the idea of
anti-angiogenic treatment first considered by Folkman in 1971 (c.f. [15]). However,
as anti-angiogenic agents were not known that time, it took more than 20 years for
the specific models of angiogenesis and anti-angiogenic treatment appear (c.f. [17]
were one of the best known models of it has been proposed).

Various approaches were used to describe the angiogenesis process in mathemat-
ical language. The simplest approach is based on ordinary differential equations
describing the dynamics of tumour and vasculature, like in the approach of Hah-
nfeldt et al. [17]. This idea was extended by many authors, including d’Onofrio
and Gandolfi [14], Agur et al. [2], Bodnar and Foryś [8], Poleszczuk et al. [21], Pi-
otrowska and Foryś [20, 16]. However, in many cases spatio-temporal dynamics of
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vessels and tumour structure is important. To reflect such a structure one can use
the approach of partial differential equations. First models of that type was based
on reaction-diffusion equations with the process of chemotaxis taken into account;
cf. [12]. Many papers focusing on chemotaxis modelling was published by M. Chap-
lain and coauthors (cf. [12], [19] where also haptotaxis process was considered, [3]
with the influence of external forces). Yet another approach is based on cellular
automata. Models of that type was proposed by Rieger and coauthors (cf. [6, 23]),
while Alarcón et al. [1] considered hybrid cellular automaton in the context of mul-
tiscale modelling. Very nice review of various types of spatio-temporal models of
vasculogenesis and angiogenesis processes could be find in [22], where a list of many
other references on that topic is available.

In this paper we consider the model of tumour angiogenesis proposed in [7] and
studied in [9] in the context of discrete delays. However, discrete delays could be
only an approximation of delays present in real life, and therefore, following [10] we
decided to incorporate distributed delays and compare the results with those for the
discrete case. We mainly focus on the Erlang distributions, however some results for
general distributions are also obtained. Partial results for the distributed delay in
the vessel formation process was presented in [5]. Here, we incorporate distributed
delays both in the vessel formation and tumour growth processes. Thus we consider
the following system of the first order differential equations with distributed delays

Ṅ(t) = αN(t)

(
1− N(t)

1 + f1(h1(Et))

)
,

Ṗ (t) = f2(E(t))N(t)− δP (t),

Ė(t) =

(
f3(h2(Pt))ds− α

(
1− N(t)

1 + f1(h1(Et))

))
E(t),

(1.1)

where N(t), P (t), E(t), α and δ describe the tumour size, the amount of regulating
proteins, the effective vessel density, the tumour proliferation rate and the degra-
dation of proteins, respectively. Both parameters could also include the influence
of treatment.

The functions hi : C((−∞, 0],R), i = 1, 2, are defined as follows

hi(φ) =

∫ ∞
0

ki(s)φ(−s) ds,

and we assume ki(s) : [0,∞)→ [0,∞) are probability densities with finite expecta-
tions, that is∫ ∞

0

ki(s) ds = 1 and 0 <

∫ ∞
0

ski(s) ds <∞, i = 1, 2.

For any φ ∈ C(R,R), the function φt is defined as φt(s) = φ(t+s) for s ∈ (−∞, 0].
Moreover, we assume that the functions fi are locally Lipschitz and there exist

positive constants A2, A3, B1, B3 and m3 such that

(A1) f1 is increasing, f1(0) = 0 and limE→+∞ f1(E) = B1 > 0,
(A2) f2 is decreasing and convex, f2(0) = A2 > 0 and limE→+∞ f2(E) = 0,
(A3) f3 is increasing, f3(0) = −A3 < 0, f3(m3) = 0 and limP→+∞ f3(P ) = B3.

For detailed derivation of the model described by Eqs. (1.1) we refer to [7, 9].
To close the problem we need to define initial data. Let C = C((−∞, 0],R3)

be the space of continuous functions defined on the interval (−∞, 0] with values
in R3, and as C+ we define the subspace of C that consist of the functions with
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non-negative values. Because the distributions of delays have infinite supports, we
need to control the behaviour of initial functions at infinity (see [18]). To this end,
let define a Banach space Φ in the following way

Φ =

{
φ ∈ C : lim

s→−∞
φ(s)es = 0 and sup

s∈(−∞,0]

|φ(s)es| <∞

}
,

‖φ‖Φ = sup
s∈(−∞,0]

|φ(s)es|,

and we consider initial functions from the set Φ+ = Φ ∩ C+.

2. Analysis of the model. In this section we consider basic properties of sys-
tem (1.1) for general distributions ki(s) and study stability in the case of Erlang
distributions. For all results presented here we assume the functions fi, i = 1, 2, 3,
fulfil conditions (A1)–(A3).

Theorem 2.1. For any arbitrary initial function φ = (φN , φP , φE) ∈ Φ+ there
exists a unique solution of system (1.1) in Φ+ defined on t ∈ [0,+∞). Moreover,
for all t ≥ 0 any solution satisfies the following inequalities

Nmin ≤ N(t) ≤ Nmax ,

0 ≤ P (t) ≤ max

{
A2

δ
Nmax , φ2(0)

}
,

0 ≤ E(t) ≤ φ3(0) exp
(
(B3 + α(Nmax − 1))t

)
,

(2.1)

where

Nmin = min {1, φN (0)} , Nmax = max {φN (0), 1 +B1} .

Proof. It is easy to see that the right-hand side of system (1.1) is locally Lipschitz,
which yields local existence of the solution of (1.1). Non-negativity follows from
the form of this right-hand side. Inequalities (2.1) could be obtained in the same
way as in [9]. Then the global existence of the solutions can be proved by the use
of Theorem 2.7 from [18, Chapter 2].

Now, we turn to steady states. It is obvious that there are at least two steady
states

A = (0, 0, 0) and B =
(

1,
A2

δ
, 0
)
,

compare [9]. Moreover, there can exist positive steady states Di = (N̄i,m3, Ēi),
with N̄i = 1 + f1(Ēi), and Ēi are zeros of the function

g(x) = f2(x)(1 + f1(x))− δm3. (2.2)

Stability of the steady states A and B does not depend on time delays, as in the
discrete case; c.f. [9]. We recall the results without the proof.

Proposition 2.2. The trivial steady state A of system (1.1) exists and is unstable
independently of the model parameters. The semi-trivial steady state B of system
(1.1) is locally asymptotically stable for A2 < δm3 and unstable for A2 > δm3.
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2.1. Stability of positive steady states. In this section, we focus on examining
the stability of the positive steady states Di in the case of distributed delays. First,
we give some general results regarding stability and later we consider Erlang prob-
ability distribution, which is a special type of Gamma distribution with the shape
parameter being a natural number.

In the general case let us define

Ki(λ) =

∫ ∞
0

ki(s)e
−λs ds. (2.3)

Then, the stability matrix of system (1.1) for the steady state Di reads

M(N̄ , P̄ , Ē) =

−α− λ 0 αd1K1(λ)
f2(Ēi) −δ − λ −N̄i d2

αbĒi d3ĒiK2(λ) −αbd1ĒiK1(λ)− λ

 ,

where

b =
1

1 + f1(Ēi)
, d1 = f ′1(Ēi) > 0, d2 = −f ′2(Ēi) > 0, d3 = f ′3(m3) > 0.

Hence, the characteristic quasi-polynomial has the form

W (λ) =λ3 + C1λ
2 + C2λ+ (λ2 + δλ)C3K1(λ)+

+ (λ+ α)C4K2(λ)− C3C5K1(λ)K2(λ),
(2.4)

with

C1 = α+ δ, C2 = αδ, C3 = αβd1, C4 =
βd2d3

b2
, C5 = δd3m3, β = bĒi.

Conditions (A1)–(A3) guarantee positivity of b, β and di, i = 1, 2, 3. Consequently,
Ci > 0 for i = 1, . . . , 5.

Theorem 2.3. If g′(Ēi) > 0, where g is given by (2.2), then the positive steady
state Di = (N̄i,m3, Ēi) is unstable.

Proof. We show that the characteristic function (2.4) has at least one positive real
root. In the proof of Theorem 3.4 in [9] it is shown that the sign of W (0) =
αC4 − C3C5 is reverse to the sign of g′(Ēi). Therefore, the assumption g′(Ēi) > 0
implies that W (0) < 0. Further, it is easy to see that W (λ) → +∞ as λ → +∞.
Then there exists at least one real positive eigenvalue, and this implies that Di is
unstable.

Now, we focus on the cases when only one of the considered processes is delayed
and the other is instantaneous. First, we consider k2(s) = δD(s), where δD means
Dirac-delta distribution, that is only the first delay is present in the system.

In the theorem presented below we shall use the following auxiliary polynomials
and positive zeros of these polynomials. Let us define

w1(ω) = −ω3 − C3ω
2 + (C2 + C4 − δC3)ω − C3C5, (2.5)

w3(ω) = −(C1 + C3)ω2 − δC3ω + αC4 − C3C5, (2.6)

and
w4(ω) = −(C1 − C3)ω2 + δC3ω + αC4 + C3C5. (2.7)

To obtain positive zeros of w1 one needs to assume C2 + C4 − δC3 > 0. More-

over, the value at positive extremum, that is at Pmax =
−2C3+

√
4C2

3+12(C2+C4−δC3)

6 ,
must be positive. Hence, it is necessary that w1(Pmax) > 0. In such a case
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there exist two positive zeros P1 < P2 of w1. Next, we easily see that if g′(Ēi)
< 0, that is αC4 − C3C5 > 0, then w3 has exactly one positive zero P3 =
−δC3+

√
δ2C2

3−4(C1+C3)(αC4−C3C5)

2(C1+C3) . Similarly, if C1 > C3, then w4 has exactly one

positive zero

P4 =
δC3 +

√
δ2C2

3 + 4(C1 − C3)(αC4 + C3C2)

2(C1 − C3)
.

In the following, we require P1 < P3 and P4 < P2.

Theorem 2.4. Assume that g′(Ēi) < 0 and Di = (N̄i,m3, Ēi) is a positive steady
state of system (1.1). Assume also that the delay distribution k2 is concentrated at
zero, that is k2(s) = δD(s). If

(i) βd1 < 1 and

2α2b

d2Ēi
< d3 < min

{
b

2d2Ēi

(
δ2 − α2

(
β2d1

2 − 1
))
,

δ

2β2d1
2m3

(
1− β2d1

2
)}

,

or
(ii) C1 > C3, w1(Pmax) > 0 and w1(Pi) > 0 for i = 3, 4, where w1 is defined

by (2.5) and P3, P4 are positive zeros of (2.6) and (2.7), respectively,

then Di is locally asymptotically stable for any distribution k1.

Proof. The steady state Di is stable in the case without delay for g′(Ēi) < 0.
Hence, we need to show that the characteristic function has no purely imaginary
zeros. Therefore, we investigate the behaviour of W (iω).

Let

K1(iω) = η1 − iζ1, η1 =

∞∫
0

k1(s) cos(ωs) ds, ζ1 =

∞∫
0

k1(s) sin(ωs) ds.

Thus

W (iω) = −iω3 − C1ω
2 + i(C2 + C4)ω + ((−ω2 + iδω)C3 − C3C5)(η1 − iζ1) + αC4,

and we have

Re(W (iω)) = −C1ω
2 + αC4 − C3(ω2 + C5)η1 + δC3ωζ1,

Im(W (iω)) = −ω3 + (C2 + C4)ω + δC3ωη1 + C3(ω2 + C5)ζ1.
(2.8)

Assume that there exists ω > 0 such that W (iω) = 0, then(
−C1ω

2 + αC4

)2
+
(
−ω3 + (C2 + C4)ω

)2
=(

−C3(ω2 + C5)η1 + δC3ωζ1
)2

+
(
δC3ωη1 + C3(ω2 + C5)ζ1

)2
.

(2.9)

For Eq. (2.9) we have

L.H.S = ω6 +
(
C2

1 − 2(C2 + C4)
)
ω4 +

(
(C2 + C4)2 − 2αC1C4

)
ω2 + α2C2

4 ,

R.H.S = C2
3

(
ω4 +

(
δ2 + 2C5

)
ω2 + C2

5

) (
ζ2
1 + η2

1

)
.
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Schwarz inequality yields ∞∫
0

cos(ωs)k1(s) ds

2

=

 ∞∫
0

cos(ωs) d

(∫ s

0

k1(u) du

)2

≤
∞∫

0

cos2(ωs) d

(∫ s

0

k1(u) du

) ∞∫
0

d

(∫ s

0

k1(u) du

)

=

∞∫
0

cos2(ωs)k1(s) ds,

 ∞∫
0

sin(ωs)k1(s) ds

2

≤
∞∫

0

sin2(ωs)k1(s) ds.

Consequently, ζ2
1 + η2

1 ≤ 1. Then, ω satisfying W (iω) = 0 should fulfil

0 = L.R.S.−R.H.S.

ω6+
(
C2

1 − 2C̃2,4

)
ω4 +

((
C̃2,4

)2

− 2αC1C4

)
ω2+

+ α2C2
4 − C2

3

(
ω4 +

(
δ2 + 2C5

)
ω2 + C2

5

)
,

where C̃2,4 = C2 + C4. Let us denote y = ω2 and define the auxiliary function

F (y) = y3 +
(
C2

1 − 2C̃2,4 − C2
3

)
y2 +

((
C̃2,4

)2

− 2αC1C4 − C2
3

(
δ2 − 2C5

))
y+

+ α2C2
4 − C2

3C
2
5 ,

Existence of purely imaginary eigenvalue requires F (y) ≤ 0 for some positive y.
However, all coefficients of this polynomial are positive under the assumptions, and
then purely imaginary eigenvalue i

√
y does not exist.

Clearly, the free term is positive due to g′(Ēi) < 0. Moreover, inequalities (i) are
equivalent to

βd1 < 1, α2 <
β d2d3

2b2
and

δ > max

{√
α2(β2d1

2 − 1) +
2β d2d3

b2
,

2β2d1
2d3m3

1− β2d1
2

}
.

Therefore,

C2
1 − 2(C2 + C4)− C2

3 = δ2 − α2
(
β2d1

2 − 1
)
− 2β d2d3

b2
> 0,

(C2 + C4)2 − 2αC1C4 − δ2C2
3 − 2C2

3C5 =(
α δ +

β d2d3

b2

)2

− 2α (δ + α)β d2d3

b2
− δ2α2β2d1

2 − 2α2β2d1
2δ d3m3 =

((
1− β2d1

2
)
α2δ − 2α2β2d1

2d3m3

)
δ +

β d2d3

b2

(
β d2d3

b2
− 2α2

)
> 0.

Due to the continuous dependance of eigenvalues on the model parameters this
completes the proof of the first part.
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For the proof of the second part, notice that (2.8) implies

Re(W (iω)) ≥− (C1 + C3)ω2 − δC3ω + αC4 − C3C5,

Re(W (iω)) ≤− (C1 − C3)ω2 + δC3ω + αC4 + C3C5,

Im(W (iω)) ≥− ω3 − C3ω
2 + (C2 + C4 − δC3)ω − C3C5.

It is clear that,

Re(W (iω)) > 0 for ω ∈ [0, P3), and Im(W (iω)) > 0 for ω ∈ (P1, P2),

Re(W (iω)) < 0 for ω ∈ (P4,∞).

Inequalities w1(Pi) > 0 for i = 3, 4, imply P1 < P3 and P2 > P4. Moreover,
w3(0) < w4(0) and w′3(ω) < w′4(ω) for ω > 0. Therefore P3 < P4 and there is no
ω ≥ 0 such that W (iω) = 0. This completes the proof of the theorem.

Remark 1. If the second condition of assumption (i) of Theorem 2.4 is satisfied,
then

δ2 > 3α2.

If this inequality holds, we can choose sufficiently small d1 and later we can take
a proper value of d3 such that the condition (i) of Theorem 2.4 holds.

In the following, we shall consider Erlang distributed delays. The density of
Erlang distribution is given by

k(s) =


am(s− σ)m−1

(m− 1)!
e−a(s−σ), s ≥ σ,

0, otherwise,

(2.10)

where a, σ > 0, and a is a scaling parameter. To the case σ = 0 we refer as to the
non-shifted Erlang distribution, while to the case σ > 0 we refer as to the shifted
one. The mean value of the non-shifted Erlang distribution is given by m

a and the
variance is equal to m

a2 . The average delay is equal to this mean, obviously, and
the deviation measures the concentration of the delay about the average value. For
the shifted Erlang distribution the mean value is σ + m

a and the variance is the
same as for the non-shifted one. On the other hand, taking the limit m→ +∞ and
keeping m/a = τ constant we obtain system (1.1) with discrete delay τ . By direct

calculation, it is found that
∫∞

0
k(s)e−λs ds = am

(a+λ)m e−λσ.

Now, let us consider the first distribution to be Erlang, k1(s) = k(s), while the
other is still k2(s) = δD(s). In this case, if C5 6= a(a − δ), then the characteristic
function (2.4) could be replaced by

WI(λ) = (a+ λ)m
(
λ3 + C1λ

2 +
(
C2 + C4

)
λ+ αC4

)
+

+ am
(
C3λ

2 + δC3λ− C3C5

)
e−λσ.

(2.11)

As the case C5 = a(a− δ) is non-generic, in the following we assume C5 6= a(a− δ),
and consider the simplest possible Erlang distribution with m = 1 and σ = 0.

Theorem 2.5. If m = 1, σ = 0 and g′(Ēi) < 0, then the positive steady state Di

is locally asymptotically stable.

Proof. For this case the characteristic function WI simplifies to

WI(λ) = (a+ λ)
(
λ3 + C1λ

2 +
(
C2 + C4

)
λ+ αC4

)
+ a
(
C3λ

2 + δC3λ− C3C5

)
.
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The Routh-Hurwitz Criterion for WI reads

q1q2q3 > q2
3 + q2

1q4, (2.12)

where

q1 = a+ C1, q2 = a(C1 + C3) + η2, q3 = a(η2 + δC3) + αC4, q4 = aη4,

and
η2 = C2 + C4, η4 = αC4 − C3C5,

Notice that inequality (2.12) is equivalent to

P (a) = a3a
3 + a2a

2 + a1a + a0 > 0,

where

a3 = (C1 + C3)(η2 + δC3)− η4,

a2 = αC4(C1 + C3) + C2(η2 + δC3) + C1(C1 + C3)(η2 + δC3)

+ C4(η2 + δC3)− (η2 + δC3)2 − 2C1η4,

a1 = C1(η2
2 + αC3C4 + δC3η2)− αC4(η2 + 2δC3) + C2

1C3C5,

a0 = αC4(C1η2 − αC4).

Due to the definitions of C1 and ηi we have:

a0 = αC4

((
δ + α

)(
C2 + C4

)
− αC4

)
= αC4

((
δ + α

)
C2 + δC4

)
> 0,

a1 = (α+ δ)
(

(C2 + C4)2 + αC3C4 + δC3(C2 + C4)
)
− αC4(C2 + C4)+

− 2αδC3C4 + C2
1C3C5

= α
(
η2C2 + αC3C4 + δC2C3

)
+ δη2

(
η2 + δC3

)
> 0,

a2 = αC4C3 + C2(η2 + δC3) + (C1(α+ δ) + C1C3)(η2 + δC3) + C4(η2 + δC3)+

− (η2 + δC3)2 − αC1C4 + 2C3C5,

= αC4C3 + (δC1 + (α+ δ)C3)(η2 + δC3) + αC1(C2 + δC3)+

− δC2C3 − δC4C3 − δ2C2
3 + 2C3C5,

= αC4C3 + (δC1 + α)C3(η2 + δC3) + αC1(C2 + δC3) + 2C3C5 > 0,

a3 = (δ + α+ C3)(C2 + C4 + δC3)− αC4 + C3C5

= (δ + C3)(C2 + C4 + δC3) + α(C2 + δC3) + C3C5 > 0.

Hence, P (a) > 0 for every positive a. This means that the condition of stability is
always satisfied.

Remark 2. Although Theorem 2.4 gives condition guaranteeing stability of the
positive steady state for any delay distribution, Theorem 2.5 says that the positive
steady state, if it is stable for the case without delay, cannot lose stability when the
tumour growth process is delayed according to the Erlang distribution.

Now, we switch to the case when k1(s) = δD(s), while the second distribution is
Erlang, that is k2(s) = k(s) described by Eq. (2.10). Note that if αC4 6= C4a+C3C5,
then λ is the eigenvalue defined by (2.4) if and only if λ is zero of

WII(λ) = (a+ λ)m
(
λ3 +

(
C1 + C3

)
λ2 +

(
C2 + δC3

)
λ
)

+

+ am
(
C4λ+ αC4 − C3C5

)
e−λσ.

(2.13)
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Again, because the case αC4 = C4a + C3C5 is non-generic, we do not consider
it here, and in the following we assume αC4 6= C4a + C3C5. Thus, studying the
stability of the positive steady states Di of system (1.1) is equivalent to study zeros
of the polynomial WII defined by (2.13). Below, we again study the simplest case
of Erlang distribution with m = 1 and σ = 0.

Proposition 2.6. If m = 1, σ = 0, g′(Ēi) < 0 and Q1Q2Q3 > Q2
3 +Q2

1Q4, where

Q1 = C1 + C3 + a, Q2 = C2 + δC3 + a(C1 + C3),

Q3 = a(C2 + C4 + δC3), Q4 = a(αC4 − C3C5),

then the positive steady state Di is locally asymptotically stable.

Proof. For m = 1 and σ = 0, the polynomial WII defined by (2.13) reads

WII(λ) = λ4 + (C1 + C3 + a)λ3 + (C2 + δC3 + a(C1 + C3))λ2+

+ a(C2 + C4 + δC3)λ+ a(αC4 − C3C5),

and the assertion of the proposition comes directly from the Routh-Hurwitz Crite-
rion.

Now, we try to answer the question when the assumptions of Proposition 2.6 are
satisfied. To simplify calculations and shorten notation, let us denote

η1 = C1 + C3, η2 = C2 + δC3, η4 = αC4 − C3C5.

With this notation we have

Q1 = η1 + a, Q2 = η2 + aη1, Q3 = a(η2 + C4), Q4 = aη4,

Qi > 0 for i = 1, . . . , 4.

Now, the Routh-Hurwitz condition is equivalent to

a2
(
η1

(
η2 + C4

)
− η4

)
+ a
((
η2 + C4

)(
η2

1 − C4

)
− 2η1η4

)
+

+ η1

(
η2

(
η2 + C4

)
− η1η4

)
> 0.

(2.14)

Notice that the coefficient of a2 is positive. Clearly, using the definitions of η1, η4

and C1 we have

η1

(
η2+C4

)
−η4 = η1η2+(α+δ+C3)C4−αC4+C3C5 = η1η2+(δ+C3)C4+C3C5 > 0.

Now, we have only three possibilities:

1. η2(η2 + C4) < η1η4 – there exists exactly one critical value of a, below which
the steady state is unstable and above which it is stable (average delay is 1/a
in this case);

2.
(
η2 + C4

)(
η2

1 − C4

)
/2 < η1η4 < η2(η2 + C4) and the discriminant of the

quadratic polynomial is positive – there exist two critical values of a;
3. η1η4 < η2(η2 + 1) and either η1η4 <

(
η2 +C4

)(
η2

1 −C4

)
/2 or the discriminant

of the quadratic polynomial is negative – the steady state is stable for all a.

To obtain two changes of stability, we need to have((
η2+C4

)(
η2

1−C4

)
−2η1η4

)2

> 4η1

(
η2

(
η2+C4

)
−η1η4

)(
η1

(
η2+C4

)
−η4

)
, (2.15)

together with
(η2

1 − C4)(η2 + C4)

2
< η1η4 < η2(η2 + C4).
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Inequality (2.15) is equivalent to(
η2 + C4

)(
η2

1 − C4

)2 − 4η1η4

(
η2

1 − C4

)
− 4η2

1η2

(
η2 + C4

)
+ 4η1η2η4 + 4η3

1η4 > 0,

and collecting terms with η2
1 − C4 we obtain(

η2+C4

)(
η2

1−C4

)2−4η1η4

(
η2

1−C4

)
+4η1

(
η4

(
η2+η2

1

)
−η1η2

(
η2+C4

))
> 0. (2.16)

Notice that the free and linear terms of (2.16) are positive under the assumption

η4 >
η1η2

(
η2 + C4

)
η2 + η2

1

and η2
1 < C4.

We have η2
1 −C4 = (α+ δ+αδ)2−βd2d3/b

2, and it is negative for sufficiently large
d2d3 or sufficiently small b.

Eventually, two stability switches are possible under the assumptions

η1η2

(
η2 + C4

)
η2 + η2

1

< η4 <
η2(η2 + C4)

η1
and η2

1 < C4.

Proposition 2.7. If g′(Ēi) 6= 0 and

(i) Di is unstable for σ = 0, then it is unstable for all σ > 0;
(ii) Di is stable for σ = 0, then there exists σ0 > 0, such that Di is stable for

σ < σ0, and Di is unstable for σ > σ0. Furthermore, if fi ∈ C2, i = 1, 2, 3,
then Hopf bifurcation occurs at σ0.

Proof. For the characteristic function WII given by (2.13), we define the auxiliary
function

F (y) = y
(
a2 + y

)m (
y2 + ((C1 + C3)2 − 2(C3δ + C2))y + (C3δ + C2)2

)
−

− a2mC2
4y − a2m(C4α− C3C5)2,

where y = ω2. Notice, that

(C1 + C3)2 − 2(C3δ + C2) = α2(1 + βd1)2 + δ2 > 0.

Clearly, F has at least one positive zero, since the coefficient of y with the highest
power is positive, while the free term is negative. We show that this is the unique
simple positive root. Note, that all coefficients of F are positive with the exception of
the free term which is negative and the coefficient of y, which sign is not determined.
However, in both cases, there exists exactly one change of sign in the coefficients
of the polynomial F , and the Descartes’ Rule of Signs implies that F has a unique
and simple positive root. This, together with Theorem 1 from [13], completes the
proof.

Eventually, we consider both distributions to be Erlang with the same parame-
ters.

Proposition 2.8. If m = 1, σ = 0, g′(Ēi) < 0, q11q22q33 > q2
33 + q2

11q44 and

(q11q44 − q55)(q11q22q33 − q2
33 − q2

11q44) > q55(q11q22 − q33)2 + q11q
2
55,

where

q11 = C1 + 2a , q22 = C2 + 2a C1 + a2 + aC3,

q33 = 2a C2 + a2C1 + a2C3 + aC3δ + aC4,

q44 = a2C2 + a2C3δ + a2C4 + aC4α, q55 = a2C4α− a2C3C5,

then the positive steady state Di is locally stable.
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Proof. For m = 1 and σ = 0, the characteristic function (2.4) reads

W (λ) =
1

(a+ λ)2

( (
λ3 + C1λ

2 + C2λ
)

(a+ λ)2 + a(λ2 + δλ)C3(a+ λ) +

+ a(λ+ α)C4(a+ λ)− a2C3C5

)
.

Hence, we need to study roots of the polynomial

λ5+(C1+2a )λ4+(C2+2a C1+a2+aC3)λ3+(2a C2+a2C1+a2C3+aC3δ+aC4)λ2+

+ (a2C2 + a2C3δ + a2C4 + aC4α)λ+ a2C4α− a2C3C5 = 0.

A direct application of the Routh-Hurwitz Criterion completes the proof.

3. Numerical simulations. For the numerical simulations we choose functions fi
and parameters values proposed in [9], that is

f1(E) =
b1E

n

c1 + En
, f2(E) =

a2c2
c2 + E

, f3(P ) =
b3(P 2 −m2

3)
m2

3b3
a3

+ P 2
,

and

a2 = 0.4, a3 = 1, b1 = 2.3, b3 = 1, c1 = 1.5, c2 = 1, α = 1, δ = 0.34. (3.1)

For these values of parameters there exist three positive steady states:

D1 ≈ (1.04, 1.05, 0.17), D2 ≈ (1.37, 1.05, 0.54), D3 ≈ (2.67, 1.05, 1.99).

Now, we can influence the model dynamics changing the value of δ. This parameter
could reflect an application of some treatment that blocks VEGF activation, which
can be modelled by the increase of clearance rate. Then the steady state D1 exists
for 0.331 < δ < 0.381, D3 for δ < 0.368 and D2 for 0.331 < δ < 0.368. The steady
state D2 is unstable, while D1 and D3 are stable for the case without time delay.

In Table 1 we presented critical values of delay at which the steady states D1

Table 1. Critical values of τ at which the positive steady state
loses stability.

steady state D1 steady state D3

δ 0.332 0.346 0.36 0.368 0.378 0.3 0.332 0.346 0.36 0.368
discrete 66.7 33.4 29.3 43.6 182 4.49 5.89 7.53 13.0 94.0
m = 1 steady state does not lose stability
m = 2 176 54.7 69.1 106.1 460 5.58 9.36 14.4 32.2 284
m = 5 89.9 29.6 37.4 56.6 234 4.03 5.97 8.34 16.6 135

and D3 lose their stability, for some values of parameter δ, in the case of discrete
delay, as well as the critical average delay at which the steady states D1 and D3

lose their stability for the case of the Erlang delay distribution, both in the vessel
formation process, while the process of tumour growth is instantaneous. The average
delay is calculated as m/a. These results are also illustrated in Fig. 1. Numerical
simulations suggest that if δ converges to the limits of the interval of the existence of
the steady stateD1, (average) critical value of delay tends to +∞. Similar behaviour
is observed for critical value of time delay for the steady state D3, however for this
state the interval of existence is bounded only from the right-hand side. It can
be also noticed that for m = 1, the positive steady states do not change their
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Figure 1. Critical average delay, that is m/acr for various values
of m in the dependance on δ in the case when only the process of
tumour growth is delayed; left – graphs for the steady state D1,
right – graphs for the steady state D3.

stability, and this result is similar to those obtained when the tumour growth is
delayed according to the Erlang distribution with m = 1. However, in the latter
case the stability does not depend on other model parameters, while in the first
case it depends on the model parameters. Numerical simulations suggest that for δ
close to 0.346 the critical value of delay for the steady state D1 is the smallest one
while it is larger for other δ. The regions below the curves in Fig. 1 are stability
regions. For the state D1 stability regions for Erlang distributions is larger than
in the discrete case, and decreases with increasing m. On the other hand, for the
steady state D3, the critical value of delay seems to be an increasing function of δ.
For some values of δ the region of stability in the case of m = 2 is more than twice
as large as in the discrete case. However, numerical simulations suggest, that for δ
close to 0.3, the stability region for the Erlang distribution with m = 5 is smaller
than for the discrete case, and this is somehow unexpected result.

In Fig. 2 we see exemplary solutions of system (1.1) for parameters given by (3.1)
and τ = 10. For m = 1 the solution converges to the steady state very fast, while
for m = 5 it seems that oscillations are sustained.
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Figure 2. Solutions of system (1.1) for parameters given by (3.1)
and τ = 10, with time delay present only in the vessel formation
term.

For comparison, we present solutions of system (1.1) with Erlang distributed
delay with parameters m = 1 and σ = 0 or discrete delay present only in the
tumour growth process. In this case Theorem 2.5 shows that the steady state is
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stable independently of the model parameters. This is seen in Fig. 3. Eventually,
we present the case of both processes delayed with the same Erlang distribution in
Fig. 4.
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Figure 3. Solutions of system (1.1) for parameters given by (3.1)
and τ = 10, with time delay present only in the tumour growth
term. Here, for Erlang distribution, the steady state is stable, and
solutions for m = 1 and m = 5 are almost identical.
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Figure 4. Solutions of system (1.1) for parameters given by (3.1)
and τ = 5, with time delay present in both terms.

From our numerical analysis it is clear that the most robust is the model with
Erlang distribution with m = 1, while the most sensitive is the model with discrete
delays. Moreover, in the case when the delay is present only in the tumour growth
process, the influence of the magnitude of m is almost not visible. As we expect, for
both delays being present, the behaviour of solutions is much more unpredictable.
However, the result for m = 1 seems to be optimistic. Clearly, Erlang distribu-
tion with m = 1 is the most reasonable, and therefore this means that in reality
oscillatory behaviour should be exception not rule.

4. Conclusions and discussion. In this paper a model of tumour angiogenesis
with distributed delays was considered. We proved basic mathematical properties
of the model showing that solutions are unique, non-negative and well defined on
the whole positive half-line. We formulated conditions on the model parameters
that guarantee lack of change of local stability of a steady state for any distribution
of delays. On the other hand, we proved condition under which stability change can
take place and Hopf bifurcation occurs. We gave more strict conditions in the case
when delays are distributed according to Erlang distributions. Our results indicate
that the model with distributed delays is more stable than with discrete ones. In
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particular, we observe stabilisation of the solution in a steady state value for some
delay distributions while in the same time solutions of the model with discrete
delays exhibit oscillations. In the case of Erlang distributions we observe that the
behaviour of the solution for large shape parameter is closer to the behaviour of the
solution to the model with discrete delays.

The model considered in this paper is an extension of the model proposed earlier
by Agur et. al. [2]. In this paper Agur et al. tried to simplified more complex
computer model of angiogenesis process proposed in [4]. However, this model always
exhibits oscillatory dynamics, which is not realistic. On the other hand, according
to the data presented in [4], such type of the dynamics should be also present in the
model, and therefore they included time delays into their model. Our idea was to
combine the properties of the Hahnfeldt et al. model with the properties of the one
presented in [2]. Here we decided to use distributed delays instead of discrete ones in
order to make the model more realistic comparing to the previous discrete case [7].
Our results show that both type of the model dynamics could be observed for the
model with delays distributed according to Erlang distributions, depending on the
shape parameter, which is good from the point of view of potential applications.
Although we have not validated our model with experimental data, it is done for a
small modification of this model and the results should be published shortly; cf. [11].
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