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Abstract. Hantavirus, a zoonotic disease carried by wild rodents, is spread
among rodents via direct contact and indirectly via infected rodent excreta in
the soil. Spillover to humans is primarily via the indirect route through inhala-
tion of aerosolized viral particles. Rodent-hantavirus models that include direct
and indirect transmission and periodically varying demographic and epidemio-
logical parameters are studied in this investigation. Two models are analyzed,
a nonautonomous system of differential equations with time-periodic coeffi-
cients and an autonomous system, where the coefficients are taken to be the
time-average. In the nonautonomous system, births, deaths, transmission rates
and viral decay rates are assumed to be periodic. For both models, the basic
reproduction numbers are calculated. The models are applied to two rodent
populations, reservoirs for a New World and for an Old World hantavirus. The
numerical examples show that periodically varying demographic and epidemi-
ological parameters may substantially increase the basic reproduction number.
Also, large variations in the viral decay rate in the environment coupled with
an outbreak in rodent populations may lead to spillover infection in humans.

1. Introduction. Zoonotic diseases carried by wildlife are spread to humans via
direct contact with infectious animals or via indirect contact with pathogens that
may persist in the environment. In humans, the pathogen can be difficult to identify
and hard to control when the indirect method of spread dominates. In wildlife, the
indirect route may be vital to maintenance and persistence of the pathogen in
the host. Seasonal variations or climatic shifts may also impact the spread and
persistence of zoonotic diseases. For example, an abundance of rain and subsequent
vegetative growth in a typically dry area can result in population growth and hence,
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more opportunities for contacts among infectious animals and greater likelihood for
the pathogen to enter and persist in the environment.

Hantavirus, a zoonotic disease carried by wild rodents (e.g., rats and mice), is
spread to humans primarily via an indirect route, through inhalation of aerosolized
viral particles from infected rodent excreta in the soil [24]. Infection in humans
results in a disease known either as hantavirus pulmonary syndrome (HPS) caused
by a New World hantavirus (Americas), or as hemorrhagic fever with renal syndrome
(HFRS), caused by an Old World hantavirus (Europe and Asia) [17, 25, 27, 28]. It
is well known that rodents leave urine markings to identify their environment and
for sexual advertisement [12, 20, 26]. Thus, the longevity of hantavirus viability
outside of the rodent host may be crucial to its spread and persistence in rodent
populations as well as spread to humans. Kallio et al. [17] studied Puumula virus
(an Old World hantavirus) outside the host at different temperatures and mediums,
and found that the virus can live twelve to fifteen days (and up to eighteen days)
at room temperature. In addition, it was shown that Puumula virus in a wet
environment persisted longer than in a dry environment. It was suggested that one
of the reasons for the outbreak of hantavirus in rodents and humans in the Four
Corners Region of the United States (caused by the New World Sin Nombre virus)
was due to an abundance of rain preceding the outbreak [22]. Seasonal variations
in population densities and antibody prevalence have been noted in several rodent
species, hosts for New and Old World hantaviruses (e.g., [13, 22, 23, 27, 28]).

It is the goal of this investigation to study the effects of periodically varying
demographic and epidemiological parameters and indirect transmission on the per-
sistence of the pathogen in the wildlife host. We base our models on the rodent-
hantavirus system but the models may have applications to other wildlife diseases,
where indirect transmission is important. For example, indirect transmission via
environmental contamination has been modeled for feline panleucopenia virus in
cats [11].

In rodent-hantavirus systems, periodically varying parameters or indirect trans-
mission have been studied in various models [3, 27, 28, 37]. The impact of a seasonal
periodic carrying capacity was studied numerically in deterministic and stochastic
SEIR rodent-hantavirus models, where demographic parameters were chosen for the
rice rat (Oryzomys pallustris), carrier of the New World Bayou hantavirus [3]. How-
ever, indirect transmission was not considered in this model. Sauvage and colleagues
[27, 28, 37] included direct and indirect transmission of Puumula virus (carried by
bank voles, Clethrionomys glareolus, in Europe) with seasonal fluctuations in births
and variation in the carrying capacity due to food availability. Infectious rodents
were separated into two classes: newly infectious with a high transmission rate and
chronically infectious with a low transmission rate. Our models are based on these
latter rodent-hantavirus models. Computer simulations and numerical results were
reported in Sauvage et al. [27] but an analysis of the model was not undertaken. We
extend the rodent-hantavirus model of Sauvage et al. [27] (hereafter referred to as
the SLP model) by including periodic variation in the transmission parameters and
viral decay rate and analyze this model. We apply some recent analytical results
[8, 33] to show existence of a basic reproduction number R0 and local stability of the
disease-free state when R0 < 1. Then we consider the model with time-averaged
coefficients, derive an explicit expression for the basic reproduction number, R̂0,
and provide a complete analysis in the case that R̂0 < 1. In particular, we prove
global stability of the disease-free equilibrium when R̂0 < 1 and local asymptotic



MODELS FOR THE SPREAD AND PERSISTENCE OF HANTAVIRUS 197

stability of an endemic equilibrium when R̂0 > 1. We apply the models to two ro-
dent populations, one is a carrier for a New World hantavirus and the other for an
Old World hantavirus. The examples illustrate the impact of indirect transmission
and periodic variations on pathogen persistence in rodent populations and in the
environment that may lead to spillover infection in humans.

2. Model. Hantavirus in the rodent population is assumed to be transmitted di-
rectly from infectious rodents or indirectly from viral-contaminated soil. The ro-
dent population is divided into two infectious stages, newly infectious with high
viral titers and chronically infectious with low viral titers. Infected rodents do not
experience any increased mortality due to the disease. Once infected, they carry
the disease for life; there is no immunity. Thus, the model is of SI-type.

Let S denote the density of susceptible rodents, In the density of newly infectious
and highly contagious rodents, Ic the density of chronically infectious and moder-
ately contagious rodents and G the proportion of viral - contaminated soil. The
total rodent population density is P = S + In + Ic.

The incident rates for newly and chronically infected rodents are βnInS and
βcIcS, where βj ≡ βj(P (t), t), j = n, c. We assume that the incidence rate is either
of the form

βj(P (t), t) = λj(t), (1)

known as mass action incidence (or density-dependent transmission) or

βj(P (t), t) =
λj(t)

P (t)
, (2)

known as standard incidence (or frequency-dependent transmission), respectively.
The function λj(t) is a nonnegative, periodic and continuous function. Sauvage
et al. [28] assumed the newly infectious rate of infection was density-dependent,
whereas the chronically infectious rate of infection was frequency-dependent. Other
rodent-hantavirus models have assumed one of these two forms for the incidence
rate ([1, 2, 3, 4, 5, 6, 21, 28, 36]). The term ǫ(t)GS is the rate susceptible ani-
mals become infected via contact with viral-contaminated soil, frequency-dependent
transmission. The transmission ǫ(t) may also be periodic. Soil contamination is nor-
malized to a maximum of one, i.e., 0 ≤ G ≤ 1. The per capita birth, death and
density-dependent death rates of the rodents are b(t), m(t) and k(t), respectively.
Parameter τ(t) is the rate newly infectious rodents become chronically infectious.
The expressions φn(t)(1 − G) and φc(t)(1 − G) are the per capita rates at which
soil becomes contaminated by a newly or chronically infectious rodent, respectively.
The parameter d(t) corresponds to the decay rate of the hantavirus in the soil. In
the SLP model [27], all parameters are constant, with the exception of the birth
rate and density-dependent death rate. We extend our model to include period-
icity for all coefficients, since seasonality may be present for all parameters. A
compartmental diagram is given in Figure 1.

Based on the preceding assumptions, the rodent-hantavirus model takes the fol-
lowing form:

Ṡ = b(t)P − [βn(P, t)In + βc(P, t)Ic + ǫ(t)G] S − [m(t) + k(t)P ] S

İn = [βn(P, t)In + βc(P, t)Ic + ǫ(t)G] S − [τ(t) + m(t) + k(t)P ]In

İc = τ(t)In − [m(t) + k(t)P ]Ic

Ġ = [φn(t)In + φc(t)Ic](1 − G) − d(t)G,

(3)
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Figure 1. A compartmental diagram for the rodent-hantavirus
model (3), where α(t) = βn(P, t)In + βc(P, t)Ic + ǫ(t)G, δ(t) =
m(t)+k(t)P and Φ(t) = φn(t)In+φc(t)Ic. Dashed arrows represent
indirect transmission via ground contamination. The compartment
1 − G represents the proportion of soil not contaminated by han-
tavirus.

where the total population density satisfies

Ṗ = P [b(t) − m(t) − k(t)P ], P (0) > 0. (4)

Initial values of S, In, Ic and G are nonnegative and 0 ≤ G(0) ≤ 1. The transmission
parameters βj(P, t) take one of the two forms, (1) or (2).

We make the following assumption regarding the time-periodic parameters.

(A1) The parameters b(t), m(t), k(t), τ(t), ǫ(t), d(t), λj(t) and φj(t), j = n, c,
are periodic, nonnegative (not identically zero), continuous and bounded with
common minimal period T > 0.

Assumption (A1) allows for some of the coefficients to be positive constants but not
all of them since T > 0.

First, we analyze the nonautonomous model (3) and show the existence of a basic
reproduction number R0. Then we consider the special case where the coefficients in
(3) are replaced by their average values, an autonomous model. For the autonomous

model, an explicit formula is calculated for the basic reproduction number R̂0 and
a more complete analysis performed.

2.1. Nonautonomous model. We make several additional assumptions regarding
the average value of the demographic parameters. Denote the average values of b(t)
and m(t) by b̄ and m̄, respectively. For example, the average value of b(t) is

b̄ =
1

T

∫ T

0

b(t) dt.

Assume

(A2) b̄ − m̄ > 0.
(A3) 0 < kmin < k(t) < kmax < ∞.

If assumptions (A1)-(A3) are satisfied, then it can be shown that the solution
P (t) to the differential equation (4) converges uniformly to a continuous, positive
and bounded periodic solution of period T (Theorem 2.2, [35]). Denote this periodic

solution as P̃ (t). The disease-free state (DFS) of model (3) is the periodic solution,

where S(t) = P̃ (t) and the remaining states equal zero. For model (3), we show
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the existence of a basic reproduction number R0. Only in special cases for the
nonautonomous model can an explicit formula be calculated (in terms of model
parameters) for the basic reproduction number [19, 33, 35].

To verify the existence of the basic reproduction number R0 and local stability
of the DFS for model (3), we apply recent results from Bacaer and Guernaoui [8]
and Wang and Zhao [33]. Existence of R0 and stability results for more general
nonautonomous systems of differential equations can be found in [30]. First, the
variables in (3) are ordered according to the infectious states and then by other
states as follows: X = (In, Ic, G, S)T . The terms in each of the differential equa-

tions are separated into new infections and other transitions, that is, Ẋ = F − V .
Computing the Jacobian matrix of F and V at the DFS, we obtain

DF =

(

F (t) O
O 0

)

and DV =

(

V (t) O
J(t) −M(t)

)

, (5)

where matrices O are zero matrices, M(t) = b(t) − m(t) − 2k(t)P̃ (t),

F (t) =





βn(P̃ (t), t)P̃ (t) βc(P̃ (t), t)P̃ (t) ǫ(t)P̃ (t)
0 0 0

φn(t) φc(t) 0



 (6)

and

V (t) =





τ(t) + m(t) + k(t)P̃ (t) 0 0

−τ(t) m(t) + k(t)P̃ (t) 0
0 0 d(t)



 . (7)

The transmission coefficients βj(P̃ (t), t) = λj(t) in the case of mass action incidence

and βj(P̃ (t), t) = λj(t)/P̃ (t) in the case of standard incidence, j = n, c. Matrix
F (t) is periodic and nonnegative and matrix −V (t) is periodic and cooperative
(off-diagonal elements of −V (t) are nonnegative).

From the differential equation for P (t), equation (4), and the assumptions on

the coefficients it can be shown that exp
(

∫ T

0
M(t) dt

)

< 1. Let P (t) = P̃ (t) in (4),

divide by P̃ (t) and integrate from 0 to T . It follows that
∫ T

0

[b(t) − m(t) − k(t)P̃ (t)] dt = 0 (8)

which implies
∫ T

0
M(t) dt = −

∫ T

0
k(t)P̃ (t) dt < 0.

The monodromy matrix Φ−V (t) of the linear T -periodic system dz/dt = −V (t)z
also satisfies ρ(Φ−V (T )) < 1 (ρ is the spectral radius), since Φ−V (T ) has the form







e−
∫

T

0
[τ(t)+m(t)+k(t)P̃ (t)] dt 0 0

∗ e−
∫

T

0
[m(t)+k(t)P̃ (t)] dt 0

0 0 e−
∫

T

0
d(t) dt






,

where we have applied the identity (8) (the term ∗ in the matrix does not affect the
spectral radius). Thus, the dynamics of the linearized system are determined by
dz/dt = [F (t) − V (t)]z. The basic reproduction number exists and satisfies R0 = 1
(< 1, > 1) if and only if ρ(ΦF−V (T )) = 1 (< 1, > 1) (Theorem 2.2, p. 706, [33]).
In particular, R0 = ρ(L), where L is a linear integral operator, L : CT → CT , CT

are T -periodic continuous functions, φ : R → R
3, and

(Lφ)(t) =

∫ ∞

0

Z(t, t − s)F (t − s)φ(t − s) ds, (9)
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where Z(t, s) is the 3×3 matrix solution of dZ(t, s)/dt = −V (t)Z(t, s), Z(s, s) = I =
identity matrix [33]. Another equivalent expression to (9) was derived by Bacaer
and Guernaoui [8]. The next theorem follows from the previous analysis and from
Theorems 2.1 and 2.2 in Wang and Zhao (pp. 704, 706, [33]).

Theorem 2.1. Suppose the nonautonomous system (3) satisfies conditions (A1)-
(A3). Then there exists a basic reproduction number R0 = ρ(L) for system (3),

where the operator L is defined in (9). If R0 < 1, then the DFS (P̃ (t), 0, 0, 0) of
the nonautonomous system (3) is locally asymptotically stable. If R0 > 1, then the
DFS is unstable.

2.2. Autonomous model. Assume the periodic coefficients in model (3) are re-
placed by their average values. That is, let b(t), m(t), d(t), k(t), τ(t), ǫ(t), φj(t)
and λj(t), j = n, c be replaced by b̄, m̄, d̄, k̄, τ̄ , ǭ, φ̄j and λ̄j , j = n, c, respectively,
in model (3). In this case, the total population density has the form of logistic

growth, Ṗ = P (b̄ − m̄ − k̄P ) with stable equilibrium P̄ = (b̄ − m̄)/k̄. Note that P̄

does not necessarily equal the average of the periodic solution P̃ (t) (see (8)). The
disease-free equilibrium (DFE) for the time-averaged model (3) is

(S̄, Īn, Īc, Ḡ) = (P̄ , 0, 0, 0).

The basic reproduction number is determined by applying the next generation
matrix approach [32]. The basic reproduction number for the autonomous model is

denoted as R̂0. As in the nonautonomous model, we let Ẋ = F − V . Computing
the Jacobian matrix of F and V at the DFE, we obtain matrices in the form of (5),
(6) and (7). However the elements of F (t), V (t) and J(t) are constant, since the

periodic coefficients are replaced by their average values and P̃ (t) is replaced by P̄ .
The next generation matrix is given by

FV −1 =













β̄nP̄ b̄ + β̄cP̄ τ̄

(τ̄ + b̄)b̄

β̄cP̄

b̄

ǭP̄

d̄
0 0 0

φ̄nb̄ + τ̄ φ̄c

(τ̄ + b̄)b̄

φ̄c

b̄
0













,

where β̄j = λ̄j in the case of mass action incidence and β̄j = λ̄j/P̄ in the case
of standard incidence, j = n, c. The basic reproduction number can be calculated
explicitly as the spectral radius of the next generation matrix, ρ(FV −1):

R̂0 =
β̄nP̄ b̄ + β̄cP̄ τ̄

2b̄(τ̄ + b̄)
+

1

2

√

(

β̄nP̄ b̄ + β̄cP̄ τ̄

b̄(τ̄ + b̄)

)2

+
4ǭP̄ (φ̄nb̄ + τ̄ φ̄c)

b̄d̄(τ̄ + b̄)
. (10)

A more convenient expression, equivalent to the reproduction number R̂0 given
in (10), is

R̃0 =
β̄nP̄ b̄ + β̄cP̄ τ̄

b̄(τ̄ + b̄)
+

ǭP̄ (φnb̄ + τ̄ φ̄c)

b̄d̄(τ̄ + b̄)
. (11)

A straightforward algebraic manipulation verifies that R̂0 < 1 (or R̂0 > 1 or R̂0 =

1) if and only if R̃0 < 1 (R̃0 > 1 or R̃0 = 1). The following theorem follows directly
from the preceding analysis and Theorem 2 in [32] (p. 39).

Theorem 2.2. Consider the autonomous system (3) with the periodic coefficients
set identically equal to their positive average values. Suppose (A2) is satisfied. Then

there exists a basic reproduction for system (3) given by (10). If R̂0 < 1, then the
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DFE of the autonomous system (3) is locally asymptotically stable. If R̂0 > 1, then
the DFE is unstable.

Note that the fractions 1/(τ̄ + b̄) and τ̄/[b̄(τ̄ + b̄)] in the expressions for R̂0 in

(10) and R̃0 in (11) are the average infectious periods for newly and chronically
infectious rodents, respectively. The fractions 1/[d̄(τ̄ + b̄)] and τ̄ /[b̄d̄(τ̄ + b̄)] are
the average infectious periods for the ground contamination from newly and chron-
ically infectious rodents. The expression (11) is clearly the sum of three sources
of infection from newly and chronically infectious rodents and from environmental
contamination. If there is no environmental contamination, ǭ = 0, then the basic
reproduction number simplifies to

R̂0|ǭ=0 =
β̄nP̄

τ̄ + b̄
+

β̄cP̄ τ̄

b̄(τ̄ + b̄)
= R̃0|ǭ=0,

the sum of only two sources of infection from newly and chronically infectious ro-
dents. Thus, clearly, indirect transmission, ǭ > 0, increases the possibility of an
outbreak

R̂0|ǭ 6=0 > R̂0|ǭ=0. (12)

To study the global dynamics of the autonomous rodent system (3), we need
to consider the dynamics of the limit system. That is, the autonomous system
(3), where the total population size is constant, P (t) ≡ P̄ . In this case, system
(3) simplifies since S(t) = P̄ − In(t) − Ic(t). Solutions to the limit system are
nonnegative and bounded, and the region

D1 = {(Sn, In, Ic, G)|In ≥ 0, Ic ≥ 0, Sn = P̄ − In − Ic ≥ 0, 0 ≤ G ≤ 1}

is positively invariant [34]. The following proof for global stability of the DFE for
the autonomous model (3) relies on the dynamics of the limit system.

Theorem 2.3. Consider the autonomous system (3) with the periodic coefficients
set identically equal to their positive average values. Suppose (A2) is satisfied. If

R̂0 < 1, then the DFE of the autonomous system (3) is globally asymptotically
stable.

Proof. First, we consider the limit system. Define the Lyapunov function for the
limit system as

V (In, Ic, G) = d̄b̄In + (ǭP̄ φ̄c + d̄β̄cP̄ )Ic + ǭP̄ b̄G.

Function V is nonnegative and equals zero only if In = Ic = G = 0. Using the fact
that S = P̄ − In− Ic and differentiating with respect to t along solution trajectories
for the limit system,

V̇ = d̄b̄
[

(β̄nIn + β̄cIc + ǭG)(P̄ − In − Ic) − (τ̄ + b̄)In

]

+(ǭP̄ φ̄c + d̄β̄cP̄ )
(

τ̄ In − b̄Ic

)

+ ǭP̄ b̄
[

(φ̄nIn + φ̄cIc)(1 − G) − d̄G
]

= d̄b̄β̄nP̄ In + d̄τ̄ β̄cP̄ In + ǭd̄b̄GP̄ − d̄b̄(τ̄ + b̄)In + ǭP̄ b̄φ̄nIn + ǭP̄ φ̄cτ̄ In

−ǭP̄ b̄G[(φ̄nIn + φ̄cIc) + d̄] − d̄b̄
(

β̄nIn + β̄cIc + ǭG
)

(In + Ic)

= d̄b̄(τ̄ + b̄)(R̃0 − 1)In − d̄b̄
(

β̄nIn + β̄cIc + ǭG
)

(In + Ic)

−ǭP̄ b̄G(φ̄nIn + φ̄cIc).

Since R̂0 < 1 is equivalent to R̃0 < 1, it follows that V̇ (t) ≤ 0. The Liapunov-
LaSalle extension theorem [18] implies that solutions in D1 approach the largest

positively invariant subset of the set where V̇ (t) = 0. Hence, solutions tend to
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Īn = Īc = 0. Let ǫ0 > 0, then for t sufficiently large, 0 ≤ φ̄nIn(t) + φ̄cIn(t) < ǫ0.

Hence, Ġ(t) < ǫ0(1 − G(t)) − d̄G(t). Thus, G(t) ≤ ǫ0/(ǫ0 + d̄) and since ǫ0 is arbi-
trary, G(t) → 0. It follows that the limit system satisfies (S(t), In(t), Ic(t), G(t)) →
(P̄ , 0, 0, 0).

The set D1 [containing (P̄ , 0, 0, 0)] is the attractive region for the limit system.
Since P (t) → P̄ for system (3), the ω−limit set of (3) is contained in D1. Thus,
it follows from the theory of asymptotically autonomous systems, Theorem 4.1 in

[29], that if R̂0 < 1, then the ω−limit set of (3) is the DFE.

We now show that there exists a unique positive EE of system (3). Setting the

differential equation İc equal to zero and substituting the values of the population
at the EE, where P̄ = S∗ + I∗n + I∗c , the endemic values for I∗c , G∗ and S∗ can be
expressed in terms of I∗n:

I∗c =
τ̄

b̄
I∗n, (13)

G∗ =
φ̄nI∗n + φ̄cI

∗
c

φ̄nI∗n + φ̄cI∗c + d̄
(14)

and

S∗ = b̄P̄
[

β̄nI∗n + β̄cI
∗
c + ǭG∗ + b̄

]−1
, (15)

where

I∗n =
−γ +

√

γ2 − 4αξ

2α
; (16)

α =

(

β̄n +
β̄cτ̄

b̄

)

(

1 +
τ̄

b̄

)

(

φ̄n +
φ̄cτ̄

b̄

)

γ =

[

(b̄ + ǭ)
(

1 +
τ̄

b̄

)

−

(

β̄n +
β̄cτ̄

b̄

)

P̄

] [

φ̄n +
φ̄cτ̄

b̄

]

+

(

β̄n +
β̄cτ̄

b̄

)

(

1 +
τ̄

b̄

)

d̄

ξ = −

(

β̄n +
β̄cτ̄

b̄

)

d̄P̄ −

(

φ̄n +
φ̄cτ̄

b̄

)

ǭP̄ +
(

b̄ + τ̄
)

d̄.

(17)

If I∗n = 0, then I∗c = 0, G∗ = 0 and S∗ = P̄ by (13), (14) and (15) which yields the
DFE.

The EE is defined uniquely by the preceding formulas. Since the value α is
positive, there is a unique positive solution for I∗n if and only if ξ < 0. Note that
ξ < 0 in (17) if and only if

β̄nP̄

(τ̄ + b̄)
+

β̄cP̄ τ̄

b̄(τ̄ + b̄)
+

ǭφnP̄

d̄(τ̄ + b̄)
+

ǭφ̄cτ̄ P̄

b̄d̄(τ̄ + b̄)
> 1.

This latter inequality is equivalent to R̃0 > 1 (and R̂0 > 1). Consequently, if I∗n > 0

(R̂0 > 1), the expressions in (13), (14) and (15) imply the EE is positive and unique.
Hence, we have shown that there is a unique positive EE to system (3) if and only

if R̂0 > 1. The next result verifies that this unique EE is locally asymptotically
stable.

Theorem 2.4. Consider the autonomous system (3) with the periodic coefficients
set identically equal to their positive average values. Suppose (A2) is satisfied. If
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R̂0 > 1, then the autonomous system (3) has a unique positive locally asymptotically
stable EE given by (13), (14), (15) and (16).

Proof. To show local asymptotic stability, we rewrite system (3) in an equivalent
form:

Ṗ = P (b̄ − m̄ − k̄P )

İn = (β̄nIn + β̄cIc + ǭG)(P − In − Ic) − (τ̄ + m̄ + k̄P )In

İc = τ̄ In − (m̄ + k̄P )Ic (18)

Ġ = (φ̄nIn + φ̄cIc)(1 − G) − d̄G.

The Jacobian matrix J of system (18) evaluated at the EE is equal to


























−(b̄ − m̄) | 0 | 0 | 0
− − − − − | − − − − − − −− | − − − − − − −− | − − − − − − −−

| β̄n(P̄ − I∗

n
− I∗

c
) − β̄nI∗

n
| β̄c(P̄ − I∗

n
− I∗

c
) | ǭ(P̄ − I∗

n
− I∗

c
)

∗ | | |
| −β̄cI∗

c
− ǭG∗ − τ̄ − b̄ | −β̄nI∗

n
− β̄cI∗

c
− ǭG∗ |

− − − − − | − − − − − − −− | − − − − − − −− | − − − − − − −−
∗ | τ̄ | −b̄ | 0

− − − − − | − − − − − − −− | − − − − − − −− | − − − − − − −−
∗ | φ̄n(1 − G∗) | φ̄c(1 − G∗) | −φ̄nI∗

n
− φ̄cI∗

c
− d̄



























where ∗ denotes matrix entries that are not needed for the stability analysis.
Applying the identity

P̄ − I∗n − I∗c =
(τ̄ + b̄)I∗n

β̄nI∗n + β̄cI∗c + ǭG∗
,

the second, third and fourth entries of the second row of J can be rewritten. Then
applying a similarity transformation with diagonal matrix B = diag(P̄ , I∗n, I∗c , G∗),

a matrix Ĵ = B−1JB similar to J is equal to




































−(b̄ − m̄) | 0 | 0 | 0
− − − − − | − − − − − − −− | − − − − − − −− | − − − − − − −−

|
(τ̄ + b̄)β̄nI∗

n

β̄nI∗

n
+ β̄cI∗

c
+ ǭG∗

|
(τ̄ + b̄)β̄cI∗

c

β̄nI∗

n
+ β̄cI∗

c
+ ǭG∗

|

∗ | −β̄nI∗

n
− β̄cI∗

c
| −(τ̄/b̄)(β̄nI∗

n
+ β̄cI∗

c
) |

ǭ(τ̄ + b̄)G∗

β̄nI∗

n
+ β̄cI∗

c
+ ǭG∗

| −ǭG∗ − τ̄ − b̄ | −(τ̄/b̄)ǭG∗ |
− − − − − | − − − − − − −− | − − − − − − −− | − − − − − − −−

∗ | b̄ | −b̄ | 0
− − − − − | − − − − − − −− | − − − − − − −− | − − − − − − −−

| φ̄nI∗

n
(1 − G∗)G∗−1 | φ̄cI∗

c
(1 − G∗)G∗−1 | −φ̄nI∗

n
− φ̄cI∗

c
− d̄





































.

Finally, making the substitution for G∗, equation (14), in the second and third

entries of the last row of matrix Ĵ , these two entries simplify to

φ̄nd̄I∗n
φ̄nI∗n + φ̄cI∗c

and
φ̄cd̄I∗c

φ̄nI∗n + φ̄cI∗c
,

respectively.
Matrix Ĵ can be expressed in block matrix form as

Ĵ =

(

−(b̄ − m̄) O
S1 S2

)

,

where O is the zero matrix. The eigenvalues of Ĵ are the same as those of J . One
eigenvalue is negative, −(b̄ − m̄) < 0, and the remaining eigenvalues can be found
from matrix S2. We apply the Routh-Hurwitz criteria to show that the eigenvalues
of S2 are negative or have negative real parts. Given the characteristic equation

λ3 + a1λ
2 + a2λ + a3 = 0,
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the Routh-Hurwitz criteria requires that a1 > 0, a3 > 0 and a1a2 − a3 > 0. A
computer algebra system can be used to show that each of the terms a1, a3 and
a1a2 − a3 consist of a sum of positive terms (see the Appendix for details). Since
the Routh-Hurwitz criteria are satisfied, the EE of (3) is locally asympotically
stable.

3. Numerical examples. We apply model (3) to an Old and a New World han-
tavirus. In the first example, we study Puumala virus carried by bank voles in
northern Europe. In the second example, we concentrate on the number of human
HPS cases in an outbreak that occurred in Chile from infection with Andes virus,
carried by the long-tailed rice rat. Time is measured in years.

3.1. Old world hantavirus. Parameter values in the SLP model [27] were cho-
sen so that the model behavior mimics the observed dynamical patterns of Pu-
umala virus infection in bank voles (Clethrionomys glareolus) in northern Europe.
Puumula virus infection in humans results in nephropathia epidemica, a type of
HFRS. The newly infectious stage has a density-dependent incidence rate whereas
the chronically infectious stage has a frequency-dependent rate, βn(P (t), t) = λn(t)
and βc(P (t), t) = λc(t)/P (t) [27]. Here, we differ from the SLP model, where λc

and λn were assumed constant, and investigate the effect of periodic transmission
rates. Let

λj(t) = λ̄j [1 + 0.5 sin(2π(t − 0.15))], j = n, c, (19)

where the constant values λ̄j are the values assumed in the SLP model, λ̄n = 0.9
and λ̄c = 5.

The birth and density-dependent death rates are the same as those given for the
SLP model. The births b(t) follow an annual cyclical pattern given by

b(t) = 7.5[| sin(2π(t − 0.15))|+ sin(2π(t − 0.15))]. (20)

Implicit in the birth function b(t) is a six month breeding period from October to
March and a nonbreeding period during the remaining six months. The density-
dependent death rate is periodic but not seasonal (period of three years) given
by

k(t) =
b̄ − m̄

6[10 + (cos(2π(t + 0.35)/3))2 − 8 sin(2π(t + 0.35)/3)]
, (21)

corresponding to rodent population densities in northern Europe, where b̄ = 15/π is
the average birth rate and m̄ = 2.5 = m(t) is the average density-independent death
rate. The average value k̄ = 0.0596. This gives a value of P̄ = (b̄− m̄)/k̄ = 38.2 for
the equilibrium total population size in the autonomous model.

The remaining parameter values are positive constants. They agree with the
parameter values in the SLP model. The average duration of viable Puumala virus
outside the host is approximately 12 days (d(t) ≡ 30, (1/d(t))×365 days ≈ 12 days)
[17]. The duration of the newly infectious stage is 1/τ(t) ≡ 1/12 = one month [10].
On average, rodents frequent every point of the area at least once every 73 days
per year, ǫ(t) ≡ 365/73 = 5/(ha×year) [27]. Newly infectious rodents shed virus
with greater titer than chronically infectious rodents, 0.1 ≡ φc(t) ≤ φn(t) ≡ 0.5.
The rodent-hantavirus model is scaled to the spatial size of one hectare so that the
variables have units of rodents per hectare. The parameter values are summarized
in Table 1 and in equations (19), (20) and (21).
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Table 1. Baseline parameter values and functional forms for the
rodent-hantavirus models; λj(t), j = n, c, are defined in (19).

Parameter Value Parameter Value

m(t) 2.5 βn(P (t), t) λn(t)

τ(t) 12 βc(P (t), t) λc(t)/P (t)

d(t) 30 φn(t) 0.5

ǫ(t) 5 φc(t) 0.1

A practical method for calculating the basic reproduction number for the nonau-
tonomous system is based on the linear periodic system

dw

dt
=

[

F (t)

λ
− V (t)

]

w,

λ ∈ (0,∞) [7, 33]. If W (t, s, λ), t ≥ s is the monodromy matrix for this system,
it follows that R0 = λ0 is the unique solution of ρ(W (T, 0, λ0)) = 1. To calcu-

late the value of R0, first ensure P (t) is close to the periodic solution P̃ (t), then
numerically approximate the 3 × 3 Floquet matrix for T = 3 and fixed λ. Since
ρ(W (T, 0, λ)) is a nonincreasing function of λ, the value of λ0 = R0 is obtained
by successively decreasing λ until ρ(W (T, 0, λ0)) is sufficiently close to one. The
basic reproduction number for the nonautonomous model is R0 = 4.9. If there is
no indirect transmission, ǫ = 0, then R0|ǫ=0 = 4.8.

Figure 2 is a graph of the solutions for the variables over time (years 1-7) for the
nonautonomous model (3). Solutions appear to converge to a periodic solution of
period 3 years, the common period T of b(t), k(t), and λj(t), j = n, c. To show the
existence of a periodic solution is not easy. However, for periodic coefficients with
small amplitude that differ slightly from the average parameter values associated
with the autonomous system, it can be shown that there exists a unique periodic
solution (by applying a Theorem due to Poincaré, [16], p. 415). For example,
Poincaré’s theorem applies when the periodic parameters have a form such as

f(t) = f̄ + αf̂(t),

where α > 0 is sufficiently small, f̄ > 0 is the average value of f(t), and f(t) satisfies
(A1). If stochastic effects are included, solution values may oscillate to very low
values, resulting in disease extinction (see [14, 15]).

Solutions to the autonomous model (3) (graph not shown) tend to a constant
endemic equilibrium (Theorem 2.4, equations (13)-(16)). The stable EE for the
rodent model (3) is

(S∗, I∗n, I∗c , G∗) = (12.6, 7.3, 18.3, 0.15)

in units of rodents per hectare. In this autonomous case, R̂0 = 2.9. If there is no
indirect transmission, ǫ = 0, then R̂0|ǫ=0 = 2.8.

The two reproduction numbers for the autonomous and nonautonomous models
differ significantly, R0 = 4.9 versus R̂0 = 2.9. They also differ in the case that
the direct transmission rates are constant, λj(t) = λ̄j , j = n, c, as in the SLP

model, R0 = 4.3 versus R̂0 = 2.9. Thus, the basic reproduction number for the
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Figure 2. Solution of the nonautonomous model with periodic
transmission rates, equation (19), birth function, equation (20),
and density-dependent death rate, equation (21) (years 1 to 7).
The left graph is the number of rodents that are susceptible, newly
infectious and chronically infectious. The right graph is the au-
tonomous model with P̄ = 38.2; the stable equilibrium values In

and Ic as a function of the basic reproduction number R̂0(p), which
depends on the transmission rates (βn, βc, ǫ) = (β∗

n, β∗
c , ǫ∗)p, where

β∗
n, β∗

c and ǫ∗ are the baseline parameter values in Table 1 (p > 0).

autonomous model with the time-averaged coefficients does not reflect the true
basic reproduction number. For this model, the autonomous model produces an
underestimate of the true value. Wang and Zhao [33] provide examples where R̂0 is
an underestimate or an overestimate of the true value R0. Viral persistence in the
rodent host, as measured by R0, is not so much affected by indirect transmission as it
is by the periodicity in the demographic parameters. Periodic demographics coupled
with periodic transmission and mass action incidence can lead to marked differences
in the two reproduction numbers, R0 versus R̂0 [35]. Whether R0 exceeds R̂0

will most likely depend on many factors, including the amplitude of the periodic
functions and whether the peak values for transmission and population density
coincide.

A bifurcation diagram for the autonomous rodent-hantavirus model (3) is graphed
in Figure 2. The stable equilibrium values for the number of newly and chroni-
cally infectious rodents are graphed as a function of R̂0(p) which depends on the
transmission rates (βn, βc, ǫ) = (β∗

n, β∗
c , ǫ∗)p, where β∗

n, β∗
c and ǫ∗ are the baseline

parameter values in Table 1 (p > 0). For the baseline values (p = 1), R̂0(1) = 2.9.

A transcritical bifurcation occurs at R̂0 = 1.

3.2. New world hantavirus. The rodent reservoir for New World hantaviruses
exhibit less seasonal variation in birth rate, death rate and overall contact behavior
than Old World hantaviruses but the viral decay rate varies according to wet and
dry seasons [17]. Thus, in a model for a New World hantavirus, we assume seasonal
periodicity in the viral decay rate but not in the birth rate, death rate or transmis-
sion rates. We focus on the indirect impact on humans, using data for human cases
due to Andes virus, a hantavirus carried by the long-tailed rice rat (Oligoryzomys
longicaudatus) that is found in Chile and Argentina. The Andes virus was the cause
of the HPS outbreak in southern Chile, recorded from July 1997 through January
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1998. During this period, there were 25 confirmed cases of HPS. Prior to July 1997,
small sporadic cases of HPS occurred throughout the year [31].

We choose parameter values for illustration purposes and focus on the seasonal
viral decay rate outside the host and the impact on humans. For the rodent popu-
lation, we assume the rodent birth rate is constant b(t) ≡ b̄ = 10 and the density-
dependent death rate is constant, k(t) = 0.075. Suppose the seasonal viral decay
rate has the form

d(t) = 375 + 355cos(2πt),

where d̄ = 375. The survival of the virus in the environment varies between 12 hours
and 18 days. These periodic fluctuations in hantavirus persistence correspond to
seasonal dry and wet conditions in the environment, with wet conditions supporting
hantavirus survival [17]. Other parameter values are set equal to the average (or
the constant value) of the parameters given for the Old World hantavirus example,
(see Table 1). The total population size approaches a constant, P (t) → P̄ = 100.

The basic reproduction number for the nonautonomous system is found by apply-
ing the numerical method with T = 1. Thus, R0 = 4.4. An epizootic occurs in the
rodent population. This basic reproduction number R0 does not differ significantly
from the autonomous model with time-averaged viral decay rate, d̄, R̂0 = 4.4.
In this example, unlike the Old World hantavirus example, the birth and death
rates are not periodic which may be the reason for the small difference in the two
reproduction numbers.

In Figure 3 (A), the rodent population is constant year round, with only slight
variation in numbers of susceptible, newly and chronically infectious rodents occur-
ring in the months of May through August. This small change in rodent suscepti-
bility would go undetected, however, the corresponding change in the proportion of
viral contaminated soil is highly significant. The ground contamination is periodic,
a ten-fold increase from less than 0.05 in January to 0.5 in June. The left graph of
Figure 3 (B) displays the bar graph of the actual number of human HPS cases in
southern Chile during 1997. Figure 3 (B) also shows the average annual precipita-
tion values near Valdivia, a representative city in southern Chile [9]. The largest
number of human cases. This example shows that indirect transmission has a weak
impact on rodents but may have a strong impact on humans, especially if human
exposure occurs during peak times in ground contamination.

4. Discussion. Very few human cases of hantavirus pulmonary syndrome or hem-
orrhagic fever with renal syndrome are contracted through direct contact with the
rodent host. Indirect transmission via ground contamination, measured by the pa-
rameter ǫ, increases the basic reproduction number, R0 (e.g., equation (12)), in the
rodent population which may allow for pathogen persistence during times of low ro-
dent densities. In [27] and [28], the persistence of Puumula virus (virus that causes
nephropathia epidemica in humans) outside the host is an important assumption.
Prolonged viral persistence during wet seasons coupled with rodent outbreaks may
increase the likelihood of human exposure to the virus. Indeed, Puumula virus can
survive for long periods of time outside of the host [17]. For other hantaviruses,
few studies have focused on the longevity of hantavirus outside the host. Many
questions about indirect transmission are still unanswered. The data from Chile,
given in Figure 3, provide motivation for more research on indirect transmission
of hantaviruses in wet and dry environments. The Old and New World hantavirus
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Figure 3. (A) Solution of model (3) with seasonal viral decay rate,
constant birth rate, constant transmission rates, and constant car-
rying capacity (year 3-4). The left graph is the number of rodents
that are susceptible, newly infectious and chronically infectious.
The right graph is the proportion of virus present in the forest en-
vironment due to rodents. (B) The left graph is a bar graph of the
number of human cases of HPS in Chile in 1997. The right graph
gives the 2007 average precipitation values for Valdivia, Chile.

examples illustrate the significant impact that indirect transmission and periodi-
cally varying demographic and epidemiological parameters may have on infection
in rodents and humans. Periodicity in demographic and epidemiological parameters
may lead to greater hantavirus persistence in wild rodent populations, and indirect
transmission and periodicity in the viral decay rate may lead to spillover infection
in humans.
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Appendix. The following program, written for Maple, checks the three conditions
in the Routh-Hurwitz criteria to show local asymptotic stability of the EE. That is,
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the program checks the conditions on the coefficients of the characteristic polynomial
of matrix S2 (see proof of Theorem 2.4). An equivalent program to check these
conditions can be written for other computer algebra systems, such as Mathematica.
Program comments are shown in brackets for reader’s convenience.

with(linalg):

{The values of the EE and the parameters are assumed positive.}

assume(beta[n]>0,beta[c]>0,epsilon>0,tau>0,b>0,phi[n]>0,phi[c]>0,

I[n]>0,I[c]>0,G>0,d>0);

{Define the 3 by 3 matrix S2.}

S2:=matrix([[-beta[n]*I[n]-beta[c]*I[c]-epsilon*G-(tau+b)*

(beta[n]*I[n])/(beta[n]*I[n]+beta[c]*I[c]+epsilon*G)-tau-b,

-tau/b*(beta[n]*I[n]+beta[c]*I[c]+epsilon*G)+(tau+b)*(beta[c]

*I[c])/(beta[n]*I[n]+beta[c]*I[c]+epsilon*G),(tau+b)*(epsilon*G)

/(beta[n]*I[n]+beta[c]*I[c]+epsilon*G)],[b,-b,0],[phi[n]*I[n]

*d/(phi[n]*I[n]+phi[c]*I[c]),phi[c]*I[c]*d/(phi[n]*I[n]+phi[c]

*I[c]),-phi[n]*I[n]-phi[c]*I[c]-d]]);

{Compute the characteristic polynomial of S2.}

f:=collect(charpoly(S2,lambda),lambda):

a0:=simplify(coeff(f,lambda,3)):

{Divide by a0, the coefficient of x^3, if not equal to one, so that

the characteristic polynomial has the form x^3+a1x^2+a2x+a3.

Then the Routh-Hurwitz criteria is checked: a1>0,a3>0,a1a2>a3.}

a1:=coeff(f,lambda,2)/a0:is(a1>0);

a2:=coeff(f,lambda,1)/a0:is(a2>0);

a3:=coeff(f,lambda,0)/a0:is(a3>0);

is(a1*a2>a3);

REFERENCES

[1] G. Abramson and V. M. Kenkre, Spatiotemporal patterns in hantavirus infection, Phys. Rev.
E, 66 (2002), 1–5, physics/0202035.

[2] G. Abramson, V. M. Kenkre, T. L. Yates and R. R. Parmenter, Traveling waves of infection
in the hantavirus epidemics, Bull. Math. Biol., 65 (2003), 519–534, physics/0203088.

[3] L. J. S. Allen, E. J. Allen and C. B. Jonsson, The impact of environmental variation on
hantavirus infection in rodents, In: Contemporary Mathematics Series, 410, Proceedings
of the Joint Summer Research Conference on Modeling the Dynamics of Human Diseases:
Emerging Paradigms and Challenges. A. B. Gumel, C. Castillo-Chavez, R. E. Mickens and
D. P. Clemence (Eds), (2006), 1–15.

[4] L. J. S. Allen, M. Langlais and C. J. Phillips, The dynamics of two viral infections in a single
host population with applications to hantavirus, Math. Biosci., 186 (2003), 191–217.

[5] L. J. S. Allen, R. K. McCormack and C. B. Jonsson, Mathematical models for hantavirus
infection in rodents, Bull. Math. Biol., 68 (2006), 511–524.

[6] L. J. S. Allen and P. van den Driessche, The basic reproduction number in some discrete-time
epidemic models, J. Difference Eqns. Appl., 14 (2008), 1127–1147.

[7] N. Bacaer, Approximation of the basic reproduction number R0 for vector-borne diseases with
a periodic vector population, Bull. Math. Biol., 69 (2007), 1067–1091.

[8] N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality.
The case of cutaneous leishmaniasis in Chichaoua, Morocco, J. Math. Biol., 53 (2006), 421–
436.

[9] BBC Weather, “BBC Country Guide: Chile,” British Broadcasting Corporation, 2008,
www.bbc.co.uk/weather/world/countryguides/ .

[10] A. D. Bernshtein, N. S. Apekina, T. V. Mikhailova, Y. A. Myasnikov, L. A. Khlyap, Y. S.
Korotkov and I. N. Gavrilovskaya, Dynamics of Puumala hantavirus infection in naturally
infected bank voles (Clethrinomys glareolus), Arch. Virol., 144 (1999), 2415–2428.

http://www.ams.org/mathscinet-getitem?mr=2277878&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2024612&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2224781&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2447189&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2295844&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2251779&return=pdf
www.bbc.co.uk/weather/world/country guides/


210 CURTIS L. WESLEY, LINDA J. S. ALLEN AND MICHEL LANGLAIS

[11] K. Berthier, M. Langlais, P. Auger and D. Pontier, Dynamics of a feline virus with two
transmission modes within exponentially growing host populations, Proc. Roy. Soc. London
B, 267 (2000), 2049–2056.

[12] F. H. Bronson, Urine marking in mice: Causes and effects, In “Mammalian Olfaction,”
Reproductive Processes and Behavior. R. L. Doty (Ed.), (1976), 119–143.

[13] G. Cantoni, P. Padula, G. Calderon, J. Mills, E. Herrero, P. Sandoval, V. Martinez, N. Pini
and E. Larrieu, Seasonal variation in prevalence of antibody to hantaviruses in rodents from
southern Argentina, Trop. Med. & Int’l. Health, 6 (2001), 811–816.
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