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1. Introduction

The Shannon capacity of a graph, introduced by Claude Shannon in 1956 [1], is a central concept
bridging zero-error information theory and graph theory. It characterizes the maximum rate of zero-error
communication over a noisy channel when the channel is modeled by a graph whose vertices represent
the input symbols, and two vertices are adjacent if and only if the corresponding symbols can be
confused by the channel with positive probability. This notion establishes a fundamental link between
zero-error problems in information theory and graph theory, as surveyed extensively in [2–6].

The calculation of the Shannon capacity of a graph is notoriously difficult (see, e.g., [7–10]), and
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only the capacity of a some families of graphs are known (e.g., Kneser graphs [11]). The computational
complexity of the Shannon capacity has extended the research towards finding computable bounds on
the capacity and exploring its properties [7, 11, 13–21].

While exploring properties of the Shannon capacity, it is worth keeping in mind the more general
concept of the asymptotic spectrum of graphs, introduced by Zuiddam [20–23], which delineates a space
of graph parameters that remain invariant under graph isomorphisms. This space is characterized by
the following unique properties: additivity under disjoint union of graphs, multiplicativity under strong
product of graphs, normalization for a simple graph with a single vertex, and monotonicity under graph
complement homomorphisms. Building upon Strassen’s theory of asymptotic spectra [24], a novel
dual characterization of the Shannon capacity of a graph is derived in [22], expressed as the minimum
over the elements of its asymptotic spectrum. By confirming that various graph invariants, including
the Lovász ϑ-function [11] and the fractional Haemers’ bound [14], are elements of the asymptotic
spectrum of a graph (spectral points), it can be deduced that these elements indeed serve as upper bounds
on the Shannon capacity of a graph. For further exploration, the comprehensive paper by Wigderson
and Zuiddam [23] provides a survey on Strassen’s theory of the asymptotic spectra and its application
areas, including the Shannon capacity of graphs.

Several further properties of the Shannon capacity have been studied. For example, the recent
work [25] analyzes the Shannon capacity of the distance-k power of a graph using tools from spectral
graph theory and linear optimization methods. Despite this progress, many fundamental questions
remain open. Among the most basic is the determination of the Shannon capacity of odd cycle graphs
of length greater than 5 [11, 20, 26, 27].

This paper addresses several research directions in the study of the Shannon capacity of graphs, and
it is organized as follows.

• Section 2 provides preliminaries that are required for the analysis in this paper. Its focus is on
graph invariants, and classes of graphs that are used throughout this paper.
• Section 3 builds on a recent paper by Schrijver [28], and it explores conditions under which, for a

family of graphs, the Shannon capacity of any polynomial in these graphs equals the corresponding
polynomial of their individual Shannon capacities. This equivalence can substantially simplify the
computation of the Shannon capacity for some of structured graphs. Two sufficient conditions are
presented, followed by a comparison of their differences and illustrative examples of their use.
• Section 4 explores Tadpole graphs. Exact values and bounds on the capacity of Tadpole graphs are

derived, and a direct relation between the capacity of odd-cycles and the capacity of a countably
infinite subfamily of the Tadpole graphs is proved, providing an important property of that
subfamily that is further discussed in the following section.
• Section 5 determines sufficient conditions for the unattainability of the Shannon capacity by the

independence number of any finite strong power of a graph. It first presents in an alternative
streamlined way an approach by Guo and Watanabe [10]. It then introduces two other original
approaches. One of the novelties in this section is the construction of a countably infinite family of
connected graphs whose capacity is unattainable by any finite strong power of these graphs.
• Section 6 determines the Shannon capacity of the q-Kneser graphs in a manner analogous to the

Lovász calculation of the Shannon capacity of the classical Kneser graphs [11]. The derivation
relies on two known results, namely a generalized Erdős–Ko–Rado theorem for finite vector spaces
and characterizations of the spectrum of the q-Kneser graphs. This broadens the class of graphs
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for which the exact Shannon capacity is explicitly determined.
• Section 7 introduces a new inequality that relates the Shannon capacity of the strong product of

graphs to that of their disjoint union, and it identifies several conditions under which equality
is attained. As an illustration of the applicability of this inequality, the section also derives an
alternative proof of a lower bound on the Shannon capacity of the disjoint union of a graph and its
complement, originally due to Alon [7], together with new sufficient conditions for its attainability,
as well as analogous bounds for the Lovász ϑ-function.
• Section 8 outlines directions for future research that are largely related to the results of this paper.

2. Preliminaries

This section provides the preliminaries for our analysis and serves as an accessible introduction to
the relevant topics.

2.1. Basic definitions and graph families

2.1.1. Terminology

Let G = (V,E) be a graph, where V = V(G) is the vertex set of G, and E = E(G) is the edge set of G.

• An undirected graph is a graph whose edges are undirected.
• A self-loop is an edge that connects a vertex to itself.
• A simple graph is a graph having no self-loops and no multiple edges between any pair of vertices.
• A finite graph is a graph with a finite number of vertices.
• The order of a finite graph is the number of its vertices, |V(G)| = n.
• The size of a finite graph is the number of its edges, |E(G)| = m.
• Vertices i, j ∈ V(G) are adjacent if they are the endpoints of an edge in G, which is denoted by
{i, j} ∈ E(G) or i ∼ j.
• An empty graph is a graph without edges, so its size is equal to zero.
• The degree of a vertex v in G is the number of adjacent vertices to v in G, denoted by dv = dv(G).
• A graph is regular if all its vertices have an identical degree.
• A d-regular graph is a regular graph whose all vertices have a fixed degree d.
• A walk is a sequence of vertices in a graph G, where every two consecutive vertices in the sequence

are adjacent in G.
• A path is a walk with no repeated vertices.
• A cycle C is obtained from a path P by adding an edge connecting the two endpoints of P (i.e., an

edge connecting the two degree-1 vertices of P).
• The length of a path or a cycle is equal to its number of edges. A triangle is a cycle of length 3.
• A path on n vertices is denoted by Pn, and its size is equal to n − 1.
• A cycle on n vertices is called an n-cycle, and it is denoted by Cn with an integer n ≥ 3. The order

and size of Cn are both equal to n.
• A connected graph is a graph where every two distinct vertices are connected by a path.
• An r-partite graph is a graph whose vertex set is a disjoint union of r subsets such that no two

vertices in the same subset are adjacent. If r = 2, then G is a bipartite graph (e.g., Cn is a bipartite
graph if and only if n ≥ 4 is even).
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• A complete graph on n vertices, denoted by Kn, is a graph whose all n distinct vertices are pairwise
adjacent. Hence, Kn is an (n − 1)-regular graph of order n.
• A complete r-partite graph, denoted by Kn1,...,nr with n1, . . . nr ∈ N, is an r-partite graph whose

vertex set is partitioned into r disjoint subsets of cardinalities n1, . . . , nr, such that every two
vertices in the same subset are not adjacent, and every two vertices in distinct subsets are adjacent.

Throughout this paper, graphs are finite, simple, and undirected. We also use the standard notation
[n] , {1, . . . , n} for all n ∈ N.

Definition 2.1 (Subgraphs and graph connectivity). A graph F is a subgraph of a graph G, and it is
denoted by F ⊆ G, if V(F) ⊆ V(G) and E(F) ⊆ E(G).

• A spanning subgraph of G is obtained by edge deletions from G, while its vertex set is left
unchanged. A spanning tree in G is a spanning subgraph of G that forms a tree.
• An induced subgraph is obtained by removing vertices from the original graph, followed by the

deletion of their incident edges.

Definition 2.2 (Isomorphic graphs). Graphs G and H are isomorphic if there exists a bijection
f : V(G) → V(H) (i.e., a one-to-one and onto mapping) such that {i, j} ∈ E(G) if and only if
{ f (i), f ( j)} ∈ E(H). It is denoted by G � H, and f is said to be an isomorphism from G to H.

Definition 2.3 (Complement and self-complementary graphs). The complement of a graph G, denoted
by G, is a graph whose vertex set is V(G), and its edge set is the complement set E(G). Every vertex in
V(G) is nonadjacent to itself in G and G, so {i, j} ∈ E(G) if and only if {i, j} < E(G) with i , j. A graph
G is self-complementary if G � G (i.e., G is isomorphic to G).

Example 2.4. It can be verified that P4 and C5 are self-complementary graphs.

2.1.2. Graph operations

This subsection presents the basic graph operations used throughout this paper.

Definition 2.5 (Strong product of graphs). Let G and H be simple graphs. The strong product G � H is
a graph whose vertices set is V(G) × V(H), and two distinct vertices (g1, h1), (g2, h2) are adjacent if, in
each coordinate, they are either equal or adjacent. This means that one of the following three conditions
is needed to be satisfied:

1. g1 = g2 and {h1, h2} ∈ E(H),

2. {g1, g2} ∈ E(G) and h1 = h2,

3. {g1, g2} ∈ E(G) and {h1, h2} ∈ E(H).

The interested reader is referred to [31] for an extensive textbook on graph products and their
properties.

Define the k-fold strong power of G as the strong product of k copies of G:

Gk , G � . . . � G. (2.1)

Throughout this paper, we also use the disjoint union of graphs as the addition operation on graphs.
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Definition 2.6 (Disjoint union of graphs). Let G and H be two simple graphs. The disjoint union G + H
is a graph whose vertices set is V(G) ∪ V(H), and the edges set is E(G) ∪ E(H). Also, for m ∈ N, let

mG , G + . . . + G, (2.2)

which is defined as the disjoint union of m copies of G.

2.1.3. Basic graph invariants under isomorphism

Definition 2.7 (Independent sets). Let G be a simple graph. Define

• A set I ⊆ V(G) is an independent set in G if every pair of vertices in I are nonadjacent in G.
• The set I(G) is the set of independent sets in G.

Now we define the independence number of a graph.

Definition 2.8 (Independence number). The independence number of a graph G, denoted by α(G), is
the order of a largest independent set in G, i.e.,

α(G) , max{| I | : I ∈ I(G)}. (2.3)

Definition 2.9 (Cliques). Let G be a simple graph. Define

• A set C ⊆ V(G) is a clique in G if every pair of vertices in C are adjacent in G.
• The set C(G) is the set of cliques in G.

Definition 2.10 (Clique number). The clique number of a graph G, denoted by ω(G), is the order of a
largest clique in G, i.e.,

ω(G) , max{| C | : C ∈ C(G)}. (2.4)

Definition 2.11 (Chromatic number). The chromatic number of a graph G, denoted by χ(G), is the
smallest cardinality of a partition of the vertex set of G into independent sets. Equivalently, it is the
minimum number of colors needed to color the vertices of G such that the endpoints of every edge
receive distinct colors.

Definition 2.12 (Clique-cover number). The clique-cover number of G, denoted by σ(G), is the smallest
number of cliques needed to cover all the vertices of G. Hence, σ(G) = χ(G).

Next, we provide required properties of the independence number of a graph.

Theorem 2.13. Let G and H be simple graphs. Then,

α(G � H) ≥ α(G)α(H), (2.5)

α(G + H) = α(G) + α(H). (2.6)

Theorem 2.14. Let G be a simple graph, and let H1 and H2 be induced and spanning subgraphs of G,
respectively. Then,

α(H1) ≤ α(G) ≤ α(H2). (2.7)

Furthermore, for every k ∈ N,

α(Hk
1) ≤ α(Gk) ≤ α(Hk

2). (2.8)

AIMS Mathematics Volume 11, Issue 1, 2747–2796.



2752

2.1.4. Fractional invariants of graphs

To properly define four fractional invariants of a graph, the following sets of functions are first
introduced.

Definition 2.15. Let G be a simple graph. Define four sets of functions as follows:

• FI(G) is the set of non-negative functions, f : V(G)→ R, such that for every I ∈ I(G),∑
v∈I

f (v) ≤ 1. (2.9)

• FC(G) is the set of non-negative functions, f : V(G)→ R, such that for every C ∈ C(G),∑
v∈C

f (v) ≤ 1. (2.10)

• GI(G) is the set of non-negative functions, g : I(G)→ R, such that for every v ∈ V(G),∑
I∈I(G): v∈I

g(I) ≥ 1, (2.11)

where the summation is over all independent sets in G that include the vertex v.
• GC(G) is the set of non-negative functions, g : C(G)→ R, such that for every v ∈ V(G),∑

C∈C(G): v∈C

g(C) ≥ 1, (2.12)

where the summation is over all cliques in G that include the vertex v.

Next, four basic fractional invariants of graphs are defined by using linear programming.

Definition 2.16 (Fractional invariants of graphs). For a finite, undirected, and simple graph G, fractional
invariants of graphs are defined as follows.

• The fractional independence number of G is

αf(G) = sup
{ ∑

v∈V(G)

f (v) : f ∈ FC(G)
}
. (2.13)

Namely, αf(G) is the supremum of the total weight assigned to the vertices of G, where nonnegative
real weights are assigned so that for every clique of G, the sum of the weights of the vertices in
that clique is at most 1.
• The fractional clique-cover number of G is

σf(G) = inf
{ ∑
C∈C(G)

g(C) : g ∈ GC(G)
}
. (2.14)

Namely, σf(G) is the infimum of the total weight assigned to the cliques of G, where nonnegative
real weights are assigned so that for every vertex of G, the sum of the weights of all cliques
containing that vertex is at least 1.
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• The fractional clique number of G is

ωf(G) = sup
{ ∑

v∈V(G)

f (v) : f ∈ FI(G)
}
. (2.15)

Namely, ωf(G) is the supremum of the total weight assigned to the vertices of G, where nonnegative
real weights are assigned so that for every independent set of G, the sum of the weights of the
vertices in that independent set is at most 1.
• The fractional chromatic number of G, denoted by χf(G), is given by

χf(G) = inf
{ ∑
I∈I(G)

g(I) : g ∈ GI(G)
}
. (2.16)

Namely, χf(G) is the infimum of the total weight assigned to the independent sets of G, where
nonnegative real weights are assigned so that for every vertex of G, the sum of the weights of all
independent sets containing that vertex is at least 1.

The next theorem follows from strong duality in linear programming.

Theorem 2.17. [37] Let G be a simple graph. Then,

αf(G) = σf(G), (2.17)
χf(G) = ωf(G). (2.18)

From now on, we will primarily use the fractional independence number and the fractional chromatic
number. When computing these quantities, we will use both of their equivalent linear programming
formulations.

Another useful property, which is immediate from Definition 2.16, is given next.

Theorem 2.18. [37] For a simple graph G, the following holds:

αf(G) = σf(G) = χf(G) = ωf(G). (2.19)

Some properties of the fractional independence number are presented next.

Theorem 2.19. [32] Let G and H be simple graphs. Then,

αf(G � H) = αf(G)αf(H), (2.20)

α(G � H) ≤ αf(G)α(H). (2.21)

2.1.5. Graph spectrum

Definition 2.20 (Adjacency matrix). Let G be a simple undirected graph on n vertices. The adjacency
matrix of G, denoted by A = A(G), is an n×n symmetric matrix A = (Ai, j) where Ai, j = 1 if {i, j} ∈ E(G),
and Ai, j = 0 otherwise (so, the entries in the principal diagonal of A are zeros).

Definition 2.21 (Graph spectrum). Let G be a simple undirected graph on n vertices. The spectrum of
G is defined as the multiset of eigenvalues of the adjacency matrix of G.
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2.1.6. Some structured families of graphs

Vertex- and edge-transitivity, defined as follows, play an important role in characterizing graphs.

Definition 2.22 (Automorphism). An automorphism of a graph G is an isomorphism from G to itself.

Definition 2.23 (Vertex-transitivity). A graph G is said to be vertex-transitive if for every two vertices
i, j ∈ V(G), there is an automorphism f : V(G)→ V(G) such that f (i) = j.

Definition 2.24 (Edge-transitivity). A graph G is edge-transitive if for every two edges e1, e2 ∈ E(G),
there is an automorphism f : V(G)→ V(G) that maps the endpoints of e1 to the endpoints of e2.

Definition 2.25 (Kneser graphs). Let [n] be the set with natural numbers from 1 to n, and let 1 ≤ r ≤ n.
The Kneser graph K(n, r) is the graph whose vertex set is composed of the different r-subsets of [n], and
every two vertices u, v are adjacent if and only if the respective r-subsets are disjoint.

Kneser graphs are vertex- and edge-transitive.

Definition 2.26 (Perfect graphs). A graph G is perfect if for every induced subgraph H of G,

ω(H) = χ(H). (2.22)

Definition 2.27 (Universal graphs). A graph G is universal if for every graph H,

α(G � H) = α(G)α(H). (2.23)

Lemma 2.28. If G is a universal graph, then Gk is universal for all k ∈ N.

Proof. This follows easily by Definition 2.27 and mathematical induction on k. �

A corollary by Hales [32] regarding the connection between the graph universality and fractional
independence number is presented next.

Theorem 2.29. [32] A graph G is universal if and only if α(G) = αf(G).

Definition 2.30 (Strongly regular graphs). A graph G is strongly regular with parameters srg(n, d, λ, µ)
if it satisfies the following:

• The order of G is n.
• G is d-regular.
• Every pair of adjacent vertices has exactly λ common neighbors.
• Every pair of distinct, nonadjacent vertices has exactly µ common neighbors.

Definition 2.31 (Paley graphs). Let q = pn be a prime power with p prime, n ∈ N, and q ≡ 1 mod 4.
The Paley graph of order q, denoted by P(q), is defined as follows:

• The vertex set of P(q) is Fq = {0, 1, . . . , q − 1}.
• Two distinct vertices a, b ∈ Fq are adjacent if a − b is a square in Fq.

Theorem 2.32. [33] Let q ≡ 1 mod 4 be a prime power, and let P(q) be a Paley graph. Then, the
following hold:

• P(q) is a self-complementary graph.
• P(q) is strongly regular with parameters srg(q, q−1

2 ,
q−5

4 ,
q−1

4 ).
• P(q) is vertex-transitive.
• P(q) is edge-transitive.
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2.2. The Shannon capacity of graphs

The Shannon capacity of a graph G was introduced in [1] as a measure of the largest effective
alphabet size permitting zero-error communication over a given noisy channel. A discrete memoryless
channel (DMC) with finite input and output alphabets is specified by a finite input set X, a finite output
set Y, and a non-empty fan-out set Sx ,

{
y ∈ Y : pY |X(y|x) > 0

}
for each x ∈ X. In each channel use,

the sender transmits an input x ∈ X, and the receiver observes an arbitrary output in the corresponding
fan-out set Sx. The channel can be represented by a confusion graph G that is defined as follows:

• V(G) = X represents the set of symbols of the channel’s input alphabet.
• E(G) is the edge set of G, where two distinct vertices are adjacent if the corresponding two input

symbols from X are not distinguishable by the channel, i.e., they can produce an identical output
symbol with positive probability. In other words, two vertices in G are adjacent if the fan-out sets
of the corresponding input symbols intersect, so

E(G) =
{
{x, x′} : x, x′ ∈ X, x , x′, Sx ∩ Sx′ , ∅

}
. (2.24)

The largest cardinality of a set of input symbols that can be communicated without error in a single
use of the channel equals the independence number α(G). Indeed, in this single-use setting, the sender
and the receiver agree in advance on an independent set I of a maximum size α(G), the sender transmits
only inputs in I, every received output is in the fan-out set of exactly one input in I, and the receiver
can correctly determine the transmitted input.

Consider the transmission of k-length strings over a channel, where the channel is used k ≥ 1
times. The sender transmits a sequence x1, . . . , xk, and the receiver observes an output sequence
y1, . . . , yk, where yi ∈ Sxi for all i ∈ [k]. In this setup, k uses of the channel are viewed as a single
use of a super-channel whose input alphabet is Xk, its output alphabet is Yk, and the fan-out set of
(x1, . . . , xk) ∈ Xk is given by the Cartesian product Sx1 × . . . × Sxk . Note that two distinct sequences
(x1, . . . , xk), (x′1, . . . , x

′
k) ∈ X

k are distinguishable by the channel if and only if

S xi ∩ S x′i = ∅ (2.25)

for some index i ∈ [k]. Thus, it is possible to represent the super-channel by the kth confusion graph
that is defined as the k-fold strong power of G. Using the kth confusion graph, the largest amount of
information that can be sent by k uses of the channel with error-free communication is given by the
independence number of the kth confusion graph, i.e., it is equal to α(Gk). The maximum information
rate per symbol that is achieved by k uses of the channel, and with zero-error communication, is equal to

1
k

logα(Gk) = log k
√
α(Gk), k ∈ N. (2.26)

Finally, by omitting the logarithm (as a monotonically increasing function) and supremizing over k ∈ N,
the Shannon capacity of the graph G is defined as follows.

Definition 2.33 (Shannon capacity). Let G be a simple graph. The Shannon capacity of G is defined as

Θ(G) , sup
k∈N

k
√
α(Gk) (2.27)

= lim
k→∞

k
√
α(Gk), (2.28)

where equality (2.28) holds by inequality (2.5) and Fekete’s lemma.
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Next, we provide several properties of the Shannon capacity, which are used throughout this paper.

Theorem 2.34. Let G be a simple graph and let m ∈ N. Then,

Θ(Gm) = Θ(G)m. (2.29)

Proof. Equality (2.29) holds by (2.28). �

Theorem 2.35. Let G1 and G2 be simple graphs. Then,

Θ(G1 � G2) ≥ Θ(G1) Θ(G2). (2.30)

Theorem 2.36 (Shannon’s inequality). [1] Let G1 and G2 be simple graphs. Then,

Θ(G1 + G2) ≥ Θ(G1) + Θ(G2). (2.31)

Proof. An elegant proof of Shannon’s inequality (2.31) is presented in [28]. �

In light of Definition 2.6, if G and H are the confusion graphs of two channels, then their disjoint
union represents the sum of the channels corresponding to the situation where either one of the two
channels may be used, a new choice being made for each transmitted symbol. The Shannon capacity
of the disjoint union of graphs may be strictly larger than the sum of their capacities [7], disproving
Shannon’s conjecture in the following strong sense.

Theorem 2.37 (The Shannon capacity of disjoint union of graphs). [7, Theorem 1.1] For every k ∈ N,
there is a graph G so that the Shannon capacity of the graph and that of its complement G satisfy
Θ(G) ≤ k and Θ(G) ≤ k, whereas

Θ(G + G) ≥ k(1+o(1)) ln k
8 ln ln k , (2.32)

and the o(1)-term tends to zero as we let k tend to infinity.

The following known result is central in this paper, so its short and nice proof from [28] is included
here.

Theorem 2.38 (Duality theorem). [23, 28] Let G and H be simple graphs. Then,

Θ(G + H) = Θ(G) + Θ(H) ⇐⇒ Θ(G � H) = Θ(G) Θ(H). (2.33)

Proof. See Appendix A. �

Theorem 2.39. Let G be a simple graph and let m ∈ N. Then,

Θ(mG) = m Θ(G). (2.34)

Proof. Equality (2.34) follows from Theorem 2.38 by relying on equality (2.29). �

Theorem 2.40. Let G be a simple graph, and let H1 and H2 be induced and spanning subgraphs of G,
respectively. Then,

Θ(H1) ≤ Θ(G) ≤ Θ(H2). (2.35)

Proof. This holds by the definitions of induced and spanning subgraphs, together with (2.27). �
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2.3. The Lovász ϑ-function of graphs

Before we present the Lovász ϑ-function of graphs, we define an orthogonal representation of a
graph [11] (see also [12, Chapter 11]).

Definition 2.41 (Orthogonal representations). Let G be a simple graph. An orthogonal representation
of G in Rd assigns each vertex i ∈ V(G) to a nonzero vector ui ∈ R

d such that, for every distinct
nonadjacent vertices i, j ∈ V(G), the vectors ui, u j are orthogonal. An orthogonal representation is called
an orthonormal representation if all the representing vectors of G have a unit length.

In an orthogonal representation of a graph G, distinct nonadjacent vertices are mapped to orthogonal
vectors, but adjacent vertices may not be necessarily mapped to non-orthogonal vectors. If the latter
condition also holds, then it is called a faithful orthogonal representation.

Definition 2.42 (Lovász ϑ-function). Let G be a simple graph of order n. The Lovász ϑ-function of G
is defined as

ϑ(G) , min
u,c

max
1≤i≤n

1
(cTui)2 , (2.36)

where the minimum is taken over all orthonormal representations {ui : i ∈ V(G)} of G and all unit vectors
c. The unit vector c attaining the minimum is called the handle of the orthonormal representation.

An orthonormal representation of the pentagon C5, along with its handle c, is shown in Figure 1.
This figure is reproduced, with permission of the author [34], by combining Figures 1.3 and 1.4 in [12].

Figure 1. A 5-cycle graph and its orthonormal representation (Lovász umbrella).

The Lovász ϑ-function can be expressed as a solution of a semidefinite programming (SDP) problem.
To that end, let A = (Ai, j) be the n × n adjacency matrix of G with n , |V(G)|. The Lovász ϑ-function
ϑ(G) can be expressed by the following convex optimization problem:

maximize Tr(B Jn)
subject to

B � 0,
Tr(B) = 1,
Ai, j = 1 ⇒ Bi, j = 0, i, j ∈ [n].

(2.37)
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The SDP formulation in (2.37) yields the existence of an algorithm that computes ϑ(G), for every graph
G, with a precision of r decimal digits, and a computational complexity that is polynomial in n and
r. Thus, the Lovász ϑ-function can be computed in polynomial time in n, and by [11], it is an upper
bound on the Shannon capacity, whose computation requires the computation of an infinite series of
independence number, which is a known NP-hard problem.

Adding the inequality constraints Bi, j ≥ 0 for all i, j ∈ [n] to (2.37) yields the Schrijver ϑ-function of
G, denoted by ϑ′(G), which therefore yields

ϑ′(G) ≤ ϑ(G). (2.38)

In light of (2.38), one may ask whether the Schrijver ϑ-function can serve as a tighter upper bound
on the Shannon capacity of graphs. However, a recent paper by the second author [35] shows that the
Schrijver ϑ-function does not, in general, provide an upper bound on the Shannon capacity: An explicit
graph is constructed whose Shannon capacity is strictly larger than its Schrijver ϑ-value. Nevertheless,
the Schrijver ϑ-function is an upper bound on the independence number, and can therefore be used to
derive an improved bound on the independence number.

Next, we provide an alternative representation of the Lovász ϑ-function of a graph [11].

Theorem 2.43. [11] Let (v1, · · · , vn) range over all orthonormal representations of G, and let d range
over all unit vectors. Then,

ϑ(G) = max
n∑

i=1

(dTvi)2. (2.39)

Next, we provide several properties of the Lovász ϑ-function, regarding graph operations and
subgraphs.

Theorem 2.44. [11] Let G1 and G2 be simple graphs. Then,

ϑ(G1 � G2) = ϑ(G1)ϑ(G2). (2.40)

The following result was first stated and proved by Knuth (Section 18 of [17]). We suggest an
alternative elementary proof in Appendix B.

Theorem 2.45. [17] Let G and H be simple graphs. Then,

ϑ(G + H) = ϑ(G) + ϑ(H). (2.41)

The following result is an easy consequence of Definition 2.42, and it is an analog of Theorem 2.40.

Theorem 2.46. Let G be a simple graph, and let H1 and H2 be induced and spanning subgraphs of G,
respectively. Then,

ϑ(H1) ≤ ϑ(G) ≤ ϑ(H2). (2.42)

Next, we present a few known formulas and bounds on the Lovász function.
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Theorem 2.47. [11, 36] Let G be a simple graph on n vertices. Then,

ϑ(G)ϑ(G) ≥ n, (2.43)

with an equality in (2.43) if G is a vertex-transitive or strongly regular graph.

Theorem 2.48. [11] Let G be a d-regular graph of order n, and let λn be its smallest eigenvalue. Then,

ϑ(G) ≤ −
nλn

d − λn
, (2.44)

with an equality in (2.44) if G is an edge-transitive graph.

2.4. Concluding preliminaries

We provide a useful lower bound for the fractional independence number and the fractional chromatic
number (see [37, Proposition 3.1.1]).

Theorem 2.49. Let G be a simple graph of order n. Then,

αf(G) ≥
n

ω(G)
, (2.45)

χf(G) ≥
n

α(G)
. (2.46)

Both inequalities hold with equality for vertex-transitive graphs.

The following sandwich theorem for the Lovász ϑ-function is remarkable in that it provides a
computable bound on graph invariants that are NP-hard to compute.

Theorem 2.50. Let G be a simple graph. Then,

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ αf(G) ≤ χ(G) = σ(G). (2.47)

In continuation to Definition 2.25, we provide some known invariants of Kneser graphs.

Theorem 2.51. Let G = K(n, r) be a Kneser graph with n ≥ 2r. The invariants of G are

α(G) =

(
n − 1
r − 1

)
, (2.48)

ω(G) =

⌊n
r

⌋
, (2.49)

Θ(G) =

(
n − 1
r − 1

)
, (2.50)

ϑ(G) =

(
n − 1
r − 1

)
, (2.51)

ϑ(G) =
n
r
, (2.52)

αf(G) =

(
n
r

)
⌊

n
r

⌋ , (2.53)
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χf(G) =
n
r
, (2.54)

χ(G) = n − 2r + 2, (2.55)

σ(G) =


(

n
r

)
⌊

n
r

⌋
 . (2.56)

Proof. See [11, Theorem 13], [38], and Theorem 2.49. �

Theorem 2.52. The path P`, for ` ∈ N, is a universal graph with parameters

α(P`) = Θ(P`) = ϑ(P`) = αf(P`) = σ(P`) =

⌈
`

2

⌉
. (2.57)

Theorem 2.53. Let k ≥ 4. Then, the cycle graph Ck has

• If k is an even number, then Ck is a universal graph with

α(Ck) = Θ(Ck) = ϑ(Ck) =
k
2
. (2.58)

• If k ≥ 5 is an odd number, then

α(Ck) =

⌊
k
2

⌋
, ϑ(Ck) =

k
1 + sec π

k

. (2.59)

Lemma 2.54. If G is a universal graph, then Θ(G) = α(G).

Proof. If G is a universal graph, then by Theorems 2.29 and 2.50,

Θ(G) = α(G). (2.60)

�

Remark 2.55. The converse of Lemma 2.54 is in general false, see Example 2.57.

Corollary 2.56. Let G = K(n, r) be a Kneser graph with n ≥ 2r. Then, G is universal if and only if r | n.

Proof. By Theorem 2.51,

αf(G) =

(
n
r

)
⌊

n
r

⌋ . (2.61)

For G to be a universal graph, the equality α(G) = αf(G) should hold (see Theorem 2.29). Thus, G is
universal if and only if (

n − 1
r − 1

)
=

(
n
r

)
⌊

n
r

⌋ , (2.62)

which holds if and only if r | n, as required. �

Example 2.57. The Petersen graph G = K(5, 2) satisfies α(G) = 4 = Θ(G), yet it is not universal by
Corollary 2.56.
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3. The Shannon capacity of polynomials in graphs

The Shannon capacity of the disjoint union of graphs is at least the sum of their individual
capacities [1]; however, it may in fact be significantly larger [7]. This phenomenon is strikingly
demonstrated by a result of Alon [7, Theorem 1.1], which we restate here as Theorem 2.37. Moreover,
Alon showed in [7, Theorem 1.2] that if we let G be the Schläfli graph, then

Θ(G) + Θ(G) ≤ 10 < 2
√

27 ≤ Θ(G + G). (3.1)

We note that the simple counterexample constructed by Haemers [15] plays a key role in this argument
and was later used by Alon [7] to establish (3.1).

We provide sufficient conditions on a sequence of graphs under which the Shannon capacity of
their disjoint union equals the sum of their individual capacities. Our results rely on a recent result by
Schrijver [28], which we include with proof due to its central role (see Theorem 2.38). It states that for
any two simple graphs G and H,

Θ(G � H) = Θ(G) Θ(H) ⇐⇒ Θ(G + H) = Θ(G) + Θ(H). (3.2)

This result was independently proved by Wigderson and Zuiddam [23], with credit to Holzman for
personal communication.

Let N[x1, . . . , x`] be the set of nonzero polynomials in the variables x1, . . . , x` with nonnegative
integer coefficients. A polynomial in graphs, p(G1, . . . ,G`), is defined by interpreting graph addition as
the disjoint union and graph multiplication as the strong product.

In this section, we derive sufficient conditions for a sequence of graphs G1, . . . ,G` to satisfy the
property that, for every polynomial p ∈ N[x1, . . . , x`], the following equality holds:

Θ(p(G1,G2, . . . ,G`)) = p(Θ(G1),Θ(G2), . . . ,Θ(G`)). (3.3)

By a corollary of the duality theorem (Theorem 2.38), which was proved by Schrijver [28], the following
surprising result holds.

Lemma 3.1. Let G1,G2, . . . ,G` be a sequence of simple graphs. Then, equality (3.3) holds for every
p ∈ N[x1, . . . , x`] if and only if

Θ(G1 + G2 + . . . + G`) = Θ(G1) + Θ(G2) + . . . + Θ(G`). (3.4)

By Lemma 3.1 (see [28, Theorem 3]), we focus on finding sufficient conditions for the satisfiability
of (3.4). In this section, we present two main results that provide such sufficient conditions, discuss the
differences between them, and illustrate their application. We start by providing the following result.

Theorem 3.2. Let G1, . . . ,G` be simple graphs, with ` ∈ N. Then, for every p ∈ N[x1, . . . , x`],

p(Θ(G1), . . . ,Θ(G`)) ≤ Θ(p(G1, . . . ,G`)) ≤ p(ϑ(G1), . . . , ϑ(G`)). (3.5)

Proof. By Theorems 2.35 and 2.36,

p(Θ(G1), . . . ,Θ(G`)) ≤ Θ(p(G1, . . . ,G`)), (3.6)
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and by Theorems 2.44 and 2.45,

Θ(p(G1, . . . ,G`)) ≤ ϑ(p(G1, . . . ,G`))
= p(ϑ(G1), . . . , ϑ(G`)). (3.7)

Combining (3.6) and (3.7) gives both inequalities in (3.5). �

Corollary 3.3. Let G1, . . . ,G` be simple graphs, and let p ∈ N[x1, . . . , x`] with ` ∈ N. If Θ(Gi) = ϑ(Gi)
for every i ∈ [`], then

Θ(p(G1, . . . ,G`)) = p
(
ϑ(G1), . . . , ϑ(G`)

)
. (3.8)

Proof. By assumption, it follows that

p(Θ(G1), . . . ,Θ(G`)) = p
(
ϑ(G1), . . . , ϑ(G`)

)
. (3.9)

Thus, equality (3.8) holds by Theorem 3.2. �

The next result readily follows.

Theorem 3.4. Let G1, . . . ,G` be simple graphs, with ` ∈ N. If Θ(Gi) = ϑ(Gi) for every i ∈ [`], then
equality (3.3) holds for every p ∈ N[x1, . . . , x`].

Proof. This holds by Corollary 3.3 upon replacing Θ(Gi) with ϑ(Gi) for all i ∈ [`]. �

Example 3.5. If G1, . . . ,G` are all Kneser graphs or self-complementary vertex-transitive graphs,
then by Theorem 3.4, equality (3.3) holds for every polynomial p ∈ N[x1, . . . , x`]. In particular, if
Gi = K(ni, ri) (with ni ≥ 2ri) for every i ∈ [`], then by Theorem 2.51,

Θ(K(n1, r1) + . . . + K(n`, r`)) =

(
n1 − 1
r1 − 1

)
+ . . . +

(
n` − 1
r` − 1

)
. (3.10)

Similarly, if Gi is a self-complementary and vertex-transitive graph for all i ∈ [`], then by [39,
Theorem 3.26],

Θ(G1 + . . . + G`) =
√

n1 + . . . +
√

n`, (3.11)

where ni is the order of Gi.

Next, we give a second sufficient condition for equality (3.3) to hold.

Lemma 3.6. Let G1 and G2 be simple graphs. If Θ(G1) = αf(G1), then

Θ(G1 + G2) = Θ(G1) + Θ(G2). (3.12)

Proof. By Theorem 2.35,

Θ(G1) Θ(G2) ≤ Θ(G1 � G2), (3.13)
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and by Theorem 2.19,

Θ(G1 � G2) = lim
k→∞

k
√
α((G1 � G2)k)

≤ lim
k→∞

k
√
αf(Gk

1)α(Gk
2)

= αf(G1) Θ(G2), (3.14)

where (3.14) holds since the equality αf(G1) =
k
√
αf(Gk

1) is satisfied for all k ∈ N, and by definition

Θ(G2) = lim
k→∞

k
√
α(Gk

2). Combining inequalities (3.13) and (3.14) gives

Θ(G1) Θ(G2) ≤ Θ(G1 � G2)
≤ αf(G1) Θ(G2). (3.15)

Hence, by the assumption,

Θ(G1) Θ(G2) = Θ(G1 � G2), (3.16)

and equality (3.12) follows from Theorem 2.38. �

Theorem 3.7. Let G1,G2, . . . ,G` be simple graphs. If Θ(Gi) = αf(Gi) for (at least) `−1 of these graphs,
then equality (3.3) holds for every p ∈ N[x1, . . . , x`].

Proof. Without loss of generality, assume Θ(Gi) = αf(Gi) for every i ∈ [`−1]. By a recursive application
of Lemma 3.6,

Θ

∑̀
i=1

Gi

 = Θ(G1) + Θ

∑̀
i=2

Gi

 = . . . =
∑̀
i=1

Θ(Gi). (3.17)

Thus, by Lemma 3.1, equality (3.3) holds for every p ∈ N[x1, . . . , x`]. �

It is worth noting that our sufficient conditions for equality (3.3) to hold are less restrictive than those
hinted at in Shannon’s paper [1], which are presented next. The following theorem is derived directly
from Lemma 3.6 and the sandwich theorem. We provide the original proof in Appendix C.

Theorem 3.8. Let G1 and G2 be simple graphs with α(G1) = χ(G1). Then,

Θ(G1 + G2) = Θ(G1) + Θ(G2). (3.18)

Remark 3.9. The sufficient condition in Theorem 3.8 is more restrictive than the one in Lemma 3.6.
This holds since by Theorem 2.50,

α(G) ≤ Θ(G) ≤ αf(G) ≤ χ(G). (3.19)

The next example suggests a family of graphs for which Θ(G) = αf(G) < χ(G) holds for every graph
G in that family, thus showing the possible applicability of Lemma 3.6 in cases where the conditions in
Theorem 3.8 are not satisfied.
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Example 3.10. Let G = K(n, r) be the complement of a Kneser graph where n > 2r, r > 1, and r | n. It
is claimed that the graph G satisfies

Θ(G) = αf(G) < χ(G). (3.20)

Indeed, the invariants of the Kneser graph and its complement are known, and by Theorem 2.51 (since
α(G) = ω(G), where G = K(n, r) with r and n as above),

α(G) =
n
r
, (3.21)

αf(G) =
n
r
, (3.22)

χ(G) = n − 2r + 2. (3.23)

Since the independence number and the fractional independence number coincide and are both equal to
n
r , then Θ(G) = n

r . Hence, the assumption n > 2r implies that

Θ(G) = αf(G) =
n
r
< n − 2r + 2 = χ(G). (3.24)

Remark 3.11. The sufficient conditions provided by Theorems 3.4 and 3.7 do not supersede each other
(see Examples 3.12 and 3.13). More explicitly, for every graph G,

Θ(G) ≤ ϑ(G) ≤ αf(G), (3.25)

so the condition Θ(G) = αf(G) implies that the equality Θ(G) = ϑ(G) holds. Hence, Theorem 3.7
imposes a stronger condition than the one in Theorem 3.4 on ` − 1 of the graphs, while no condition is
imposed on the `th graph.

The next two examples (Examples 3.12 and 3.13) show that neither Theorem 3.4 nor Theorem 3.7
implies the other.

Example 3.12. Let G1, . . . ,G` be Kneser graphs, where

Gi = K(ni, ri), ni ≥ 2ri. (3.26)

For these non-empty graphs, by Theorem 2.51,

α(Gi) = Θ(Gi) = ϑ(Gi) =

(
ni − 1
ri − 1

)
, ∀ i ∈ [`], (3.27)

and

αf(Gi) =

(
ni
ri

)
⌊

ni
ri

⌋ , ∀ i ∈ [`]. (3.28)

If ri - ni, then it follows from (3.27) and (3.28) that

αf(Gi) >

(
ni
ri

)
ni
ri

=

(
ni − 1
ri − 1

)
= Θ(Gi), (3.29)
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so, if ri - ni, then αf(Gi) > Θ(Gi).
Let the parameters n1, . . . , n` and r1, . . . , r` be chosen such that ri - ni for at least two of the Kneser

graphs {Gi}
`
i=1. For each such index i ∈ [`], we have αf(Gi) > Θ(Gi), which violates the sufficient

conditions of Theorem 3.7. By (3.27), it follows from Theorem 3.4 that

Θ(G1 + . . . + G`) =
∑̀
i=1

(
ni − 1
ri − 1

)
, (3.30)

whereas equality (3.30) does not follow from Theorem 3.7.

Example 3.13. Let Gi be a perfect graph for every i ∈ [` − 1], and let G` be the complement of the
Schläfli graph. Then,

• Θ(Gi) = αf(Gi) for every i ∈ [` − 1].
• Θ(G`) < ϑ(G`) (by [15]).

Hence, the sufficient conditions of Theorem 3.7 hold, in contrast to those of Theorem 3.4.

4. The Shannon capacity of Tadpole graphs

The present section explores Tadpole graphs, where exact values and bounds on their Shannon
capacity are derived.

Definition 4.1 (Tadpole graphs). Let k, ` ∈ N with k ≥ 3 and ` ≥ 1. The graph T(k, `), called the
Tadpole graph of order (k, `), is obtained by taking a cycle Ck of order k and a path P` of order `, and
then joining one pendant vertex of P` (i.e., one of its two vertices of degree 1) to a vertex of Ck by an
edge. For completeness, if ` = 0, the Tadpole graph is defined trivially as a cycle graph of order k,
T(k, 0) = Ck.

Every Tadpole graph is a connected graph with

|V(T(k, `))| = |E(T(k, `))| = k + `. (4.1)

The Tadpole graph T(k, `) with ` ≥ 1 is irregular since it has one vertex of degree 3, k + ` − 2 vertices of
degree 2, and one vertex of degree 1 (see Figure 2).

Figure 2. The Tadpole graph T(5, 6).

The motivation for studying Tadpole graphs stems from their similarity to cycle graphs, both as
graphs and in terms of their equivalent DMCs, as illustrated in Figure 3.
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Figure 3. The DMCs of T(k, `) (left plot) and Ck+` (right plot).

Lemma 4.2. Let k ≥ 3 and ` ≥ 0. The independence number of the Tadpole graph T(k, `) is given by

α(T(k, `)) =

⌊
k
2

⌋
+

⌈
`

2

⌉
. (4.2)

Proof. The independence number of Ck is
⌊

k
2

⌋
, and the independence number of P` is

⌈
`
2

⌉
. One can

select a maximal independent set by excluding the vertex of Ck that is adjacent to the vertex of P`, which
gives (4.2). �

Lemma 4.3. Let k ≥ 3 and ` ≥ 0.

1. If one of the following two conditions holds:

• k = 3 or k ≥ 4 is even,
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• k ≥ 5 is odd and ` ≥ 1 is odd,

then

ϑ(T(k, `)) =

⌊
k
2

⌋
+

⌈
`

2

⌉
. (4.3)

2. If k ≥ 5 is odd and ` ≥ 0 is even, then

ϑ(T(k, `)) =
k

1 + sec π
k

+
`

2
. (4.4)

Proof. First, if k = 3, then C3 is a clique of order 3. Since the clique-cover number of P` is
⌈
`
2

⌉
, it

follows that

σ(T(3, `)) = 1 +

⌈
`

2

⌉
. (4.5)

By Lemma 4.2 and Theorem 2.50, the lower and upper bounds on ϑ(T(k, `)) coincide, which gives

ϑ(T(3, `)) = 1 +

⌈
`

2

⌉
. (4.6)

Next, if k > 3, then the clique number of T(k, `) is 2 (since there are no triangles), thus every clique in
T(k, `) is either an edge or a single vertex. In this case, if k is even, it is possible to cover the cycle Ck by
k
2 edges (cliques), the path P` can be covered by

⌈
`
2

⌉
edges, and thus σ(T(k, `)) = k

2 +
⌈
`
2

⌉
. Moreover, if

k and ` are odd, then one can cover T(k, `) by k+`
2 edges (by covering Ck by k−1

2 edges, excluding the
vertex of Ck that is adjacent to a pendant vertex of P`, and then covering the remaining vertices of T(k, `)
by `+1

2 edges). Overall, in both instances we obtain

σ(T(k, `)) =

⌊
k
2

⌋
+

⌈
`

2

⌉
, (4.7)

which gives, by again using the sandwich theorem in (2.47) and Lemma 4.2,

ϑ(T(k, `)) =

⌊
k
2

⌋
+

⌈
`

2

⌉
. (4.8)

Finally, assume that k ≥ 5 is odd and ` ≥ 2 is even (if ` = 0, then T(k, 0) = Ck, and the result follows
from Theorem 2.53). By deleting the edge that connects the cycle Ck with the path P`, it follows that
Ck + P` is a spanning subgraph of T(k, `). On the other hand, by deleting the leftmost vertex of P` (i.e.,
the vertex that is of distance 1 from the cycle Ck), and the two edges that are incident to it in T(k, `), it
follows that Ck + P`−1 is an induced subgraph of T(k, `). Hence, by Theorem 2.46,

ϑ(Ck + P`−1) ≤ ϑ(T(k, `)) ≤ ϑ(Ck + P`). (4.9)

Furthermore, by Theorems 2.52 and 2.53,

ϑ(Ck + P`−1) =
k

1 + sec π
k

+
`

2
= ϑ(Ck + P`). (4.10)
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Thus,

ϑ(T(k, `)) =
k

1 + sec π
k

+
`

2
. (4.11)

�

Theorem 4.4. Let k ≥ 3 and ` ≥ 0 be integers.

1. If one of the following two conditions holds:

• k = 3 or k ≥ 4 is even,
• k ≥ 5 is odd and ` ≥ 1 is odd,

then

Θ(T(k, `)) =

⌊
k
2

⌋
+

⌈
`

2

⌉
. (4.12)

2. If k ≥ 5 is odd and ` ≥ 0 is even, then

Θ(T(k, `)) = Θ(Ck) +
`

2
. (4.13)

Proof. First, if k = 3 or k ≥ 4 is even, or k ≥ 5 is odd and ` ≥ 1 is odd, then by Lemmas 4.2 and 4.3,

Θ(T(k, `)) =

⌊
k
2

⌋
+

⌈
`

2

⌉
. (4.14)

Second, if k ≥ 5 is odd and ` ≥ 0 is even, then by using the same subgraphs of T(k, `) from the proof of
Lemma 4.3, and by Theorem 2.40,

Θ(Ck + P`−1) ≤ Θ(T(k, `)) ≤ Θ(Ck + P`). (4.15)

Furthermore, as path graphs are universal (see Theorem 2.52), it follows from Theorem 3.7 that

Θ(Ck + P`−1) = Θ(Ck) + Θ(P`−1)

= Θ(Ck) +
`

2
= Θ(Ck + P`). (4.16)

Combining (4.15) and (4.16) gives equality (4.13). �

The next result follows from equality (4.13).

Corollary 4.5. Let ` ≥ 0 be an even number and let k ≥ 5 be an odd number.

1. If k = 5, then

Θ(T(5, `)) =
√

5 +
`

2
. (4.17)
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2. If k ≥ 7, then

k + ` − 1
2

≤ Θ(T(k, `)) ≤
k

1 + sec π
k

+
`

2
. (4.18)

Proof. If k = 5, then Θ(C5) =
√

5 [11], and by Theorem 4.4,

Θ(T(5, `)) = Θ(C5) +
`

2

=
√

5 +
`

2
. (4.19)

If k ≥ 7, then by Theorem 2.53,

k − 1
2

= α(Ck)

≤ Θ(Ck)

≤ ϑ(Ck) =
k

1 + sec π
k

. (4.20)

Thus, by Theorem 4.4,

k + ` − 1
2

≤ Θ(T(k, `))

≤
k

1 + sec π
k

+
`

2
. (4.21)

�

Example 4.6. Let G1 = T(5, 6). Then, by Corollary 4.5,

Θ(T(5, 6)) = 3 +
√

5 = 5.23607 . . . (4.22)

For comparison, using the SageMath software [40] gives the values√
α(G1 � G1) =

√
26 = 5.09902, (4.23)

3
√
α(G1 � G1 � G1) =

3√
136 = 5.14256. (4.24)

Let G2 = T(7, 6). By the lower bound in [26] on the Shannon capacity of the cycle C7,

Θ(C7) ≥
5
√
α(C5

7) ≥
5√
367, (4.25)

which implies by Corollary 4.5 and (4.25) that

6.2578659 . . . =
5√
367 + 3 ≤ Θ(C7) + 3

= Θ(T(7, 6))

≤
7

1 + sec π
7

+ 3 = 6.3176672. (4.26)

The last lower bound on Θ(T(7, 6)) improves the previous lower bound in the leftmost term of (4.18),
thus closing the gap between the upper and lower bounds from 0.3176 to 0.0598.
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The last example shows that the lower bound in Corollary 4.5 is not tight. The following result
provides an improved lower bound.

Theorem 4.7. If k ≥ 5 is odd and ` ≥ 0 is even, then√(
k − 1

2

)2

+

⌊
k − 1

4

⌋
+
`

2
≤ Θ(T(k, `)) ≤

k
1 + sec π

k

+
`

2
. (4.27)

Proof. The upper bound was proved in Corollary 4.5. Next, we prove the improved lower bound. By
Hales’ result [32, Theorem 7.1], if k ≥ 3 is odd, then

α(C2
k) =

(
k − 1

2

)2

+

⌊
k − 1

4

⌋
, (4.28)

which implies that

Θ(Ck) ≥
√
α(C2

k) =

√(
k − 1

2

)2

+

⌊
k − 1

4

⌋
. (4.29)

Thus, by combining (4.29) with Theorem 4.4, it follows that

Θ(T(k, `)) = Θ(Ck) +
`

2

≥

√(
k − 1

2

)2

+

⌊
k − 1

4

⌋
+
`

2
. (4.30)

�

The gap between the upper and lower bounds on Θ(T(k, `)) in (4.27), for an arbitrary odd k ≥ 7 and
even ` ≥ 0, satisfies (

k
1 + sec π

k

+
`

2

)
−


√(

k − 1
2

)2

+

⌊
k − 1

4

⌋
+
`

2


<

k + `

2
−

k + ` − 1
2

(4.31)

=
1
2
,

where inequality (4.31) follows by dropping the term
⌊

k−1
4

⌋
inside the square root of the first line, and

since sec π
k > 1.

Remark 4.8. Theorem 4.7 gives an improved lower bound that relies on a lower bound on the Shannon
capacity of odd cycles that was constructed by Hales (see [32]). Since Hales’ result, better lower bounds
for odd cycles were constructed, and can be used to improve the lower bound in special cases. For better
lower bounds on higher powers of odd cycles see [27, 41]. The next theorem shows an improvement to
the bound in (4.27) for special cases using a result from [27].
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Theorem 4.9. Let n, d ∈ N, let ` ≥ 0 be an even number, and define

k = n2d + 2d−1 + 1. (4.32)

Then,

d

√
nkd−1 +

(
k − 1

2

)
kd−2 +

`

2
≤ Θ(T(k, `)). (4.33)

Proof. By Theorem 4.4,

Θ(T(k, `)) =
`

2
+ Θ(Ck), (4.34)

and, by [27, Theorem 1.4],

Θ(Ck) ≥
d
√
α(Cd

k)

≥
d

√
nkd−1 +

(
k − 1

2

)
kd−2. (4.35)

Finally, combining (4.34) and (4.35) gives (4.33). �

Remark 4.10. The proof of Theorem 4.9 relies on the lower bound on α(Cd
k) given in (4.35), as

presented in [27, Theorem 1.4]. It is worth noting that in [27], Bohman conjectured that the lower bound
is the exact value of the independence number (see [27, Conjecture 1.5]). In a subsequent paper by
Bohman, Holzman, and Natarajan [41], the conjecture was confirmed for a countably infinite subset of
these values. In particular, by substituting d = 3, which gives k = 8n + 5, it was proved in [41] that
if 8n + 5 is a prime number, then the lower bound coincides with the exact value of the independence
number. Specifically, by [41, Theorem 1], the independence number of the strong cubed power of the
cycle graph C8n+5 is given by

α(C3
8n+5) = 1

2 (8n + 5)
[
(2n + 1)(8n + 5) − 1

]
. (4.36)

5. When the graph capacity is not attained by the independence number of any finite power?

In Section 4, we proved that if k = 3, or if k ≥ 4 is even, or if k ≥ 5 and ` ≥ 1 are odd, then the
capacity of the Tadpole graph T(k, `) coincides with its independence number. Additional families
of graphs also share this property; e.g., by [11], the capacities of all Kneser graphs are equal to their
independence numbers. It is, however, well known that not all graphs posses this property; e.g.,

Θ(C5) =

√
α(C2

5) =
√

5 and α(C5) = 2. The property that the Shannon capacity coincides with
the square root of the independence number of the second (strong) power of the graph was proved,
more generally for all self-complementary vertex transitive graphs [11] and for all self-complementary
strongly regular graphs [39], provided that the order of the graph is not a square of an integer. Families of
graphs whose capacity is attained at a finite strong power that is strictly larger than 2 are yet unknown. In
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this section, we explore sufficient conditions on a graph G such that its Shannon capacity is unattainable
by the independence number of any finite strong power of G, i.e.,

Θ(G) > k
√
α(Gk), ∀ k ∈ N. (5.1)

This problem was explored by Guo and Watanabe [10], and a family of disconnected graphs that
satisfies (5.1) was constructed. In this section, we start by presenting the method from [10], and then we
provide two original approaches. The first original approach relies on Dedekind’s lemma in number
theory (see Lemma 5.5), and it uses a similar concept of proof to the one in Example 5.1. The second
original approach uses the result from [10] to construct a countably infinite family of connected graphs
whose capacity is strictly larger than the independence number of any finite (strong) power of the graph.

The following example exhibits a disconnected graph whose capacity is not attained by the
independence number of any strong finite power of the graph. The proof of this example relies
on an important concept that is later employed in our first original approach. This example, appearing
explicitly in [23], was essentially already contained in [10] and was later explicitly pointed out in the
1998 paper on zero-error information theory by Körner and Orlitsky [5] (at the end of Section IV),
where it is attributed to Arikan.

Example 5.1. Let G = C5 + K1. We have C5 � K1 � C5, so

Θ(C5 � K1) = Θ(C5) = Θ(C5) Θ(K1). (5.2)

Consequently, by Theorem 2.38,

Θ(G) = Θ(C5) + Θ(K1) =
√

5 + 1, (5.3)

and, for every k ∈ N,

Θ(G)k =
(√

5 + 1
)k

=

k∑
i=0

(
k
i

)
5

i
2

=
∑

0≤`≤b k
2 c

(
k
2`

)
5` +

∑
0≤`≤b k−1

2 c

(
k

2` + 1

)
5`+

1
2

= ck + dk

√
5 < N, (5.4)

where

ck =

⌊
k
2

⌋∑
`=0

(
k
2`

)
5` ∈ N, (5.5)

and

dk =

⌊
k−1

2

⌋∑
`=0

(
k

2` + 1

)
5` ∈ N. (5.6)

Therefore, it follows that for all k ∈ N, Θ(G)k , α(Gk) since the independence number is an integer.
Consequently, (5.1) holds.
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The interested reader is referred to [42, Section 5], where Example 5.1 is studied in the context of
zero-error variable-length coding.

Next, we consider three approaches for the construction of families of graphs whose Shannon
capacities satisfy the condition in (5.1). The first approach is due to Guo and Watanabe [10] with a
simplified proof (the original proof from [10] is provided in Appendix D), and the second and third
approaches of constructing such graph families are original.

5.1. First approach

Theorem 5.2. [10] Let G be a universal graph (see Definition 2.27), and let H satisfy the inequality
Θ(H) > α(H). Then, the Shannon capacity of K , G + H is not attained at any finite power of K.

We present here a new and shortened proof, while the proof from [10] is presented in Section D.

Proof. Let k ∈ N. By the universality of G,

α((G + H)k) =

k∑
i=0

(
k
i

)
α(Gi � Hk−i)

=

k∑
i=0

(
k
i

)
α(G)i α(Hk−i)

=

k∑
i=0

(
k
i

)
Θ(G)i α(Hk−i), (5.7)

where the last equality holds by Lemma 2.54. Next, by the assumption that Θ(H) > α(H) and since
Θ(Hm) = Θ(H)m ≥ α(H)m for all m ∈ N with strict inequality if m = 1 (by assumption), it follows that
for all k ∈ N,

k∑
i=0

(
k
i

)
Θ(G)i α(Hk−i) <

k∑
i=0

(
k
i

)
Θ(G)i Θ(H)k−i

=
(
Θ(G) + Θ(H)

)k
. (5.8)

Finally, by Shannon’s inequality (see Theorem 2.36),

Θ(G) + Θ(H) ≤ Θ(G + H). (5.9)

Combining (5.7)–(5.9) and raising both sides of the resulting inequality to the power of 1
k gives

k
√
α((G + H)k) < Θ(G + H), (5.10)

thus confirming the satisfiability of the condition in (5.1). �

Corollary 5.3. [10] Let G be a universal graph, and let K = G + C2k+1 with k ≥ 2 be the disjoint union
of a universal graph and an odd cycle of length at least 5. Then, Θ(K) is not attained at any finite strong
power of K.
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Proof. This follows from Theorem 5.2 by showing that Θ(C2k+1) > α(C2k+1). For an odd cycle graph of
length 2k + 1, α(C2k+1) = k. By [32, Theorem 7.1], for all integers j and k such that 2 ≤ j ≤ k,

α(C2 j+1 �C2k+1) = jk +

⌊ j
2

⌋
, (5.11)

which yields

Θ(C2k+1) ≥
√
α(C2

2k+1)

=

√
k2 +

⌊k
2

⌋
> k

= α(C2k+1). (5.12)

�

Remark 5.4. Corollary 5.3 applies in particular to K1 + C5 since K1 is universal.

5.2. Second approach

The next approach is based on a classical number-theoretic lemma established by Dedekind in
1858. The lemma is stated below, and for completeness we present the simple and elegant proof given
in [43, p. 309].

Lemma 5.5. If the square-root of a natural number is rational, then it must be an integer; equivalently,
the square-root of a natural number is either an integer or an irrational number.

Proof. Let m ∈ N be such that
√

m ∈ Q. Let n0 ∈ N be the smallest natural number such that
n0
√

m ∈ N. Suppose that
√

m < N. Then, there exists ` ∈ N such that 0 <
√

m − ` < 1. Define
n1 = n0(

√
m − `). Since n0

√
m ∈ N and n0` ∈ N, it follows that n1 ∈ N, and also 0 < n1 < n0. In

addition, n1
√

m = n0m − `(n0
√

m) ∈ N, which contradicts the minimality of n0. Hence,
√

n ∈ N. �

Next, we show the main result of this subsection.

Theorem 5.6. Let r ≥ 2, and let G1,G2, . . . ,Gr be graphs such that for every ` ∈ [r]:

1. The graph G` is either a Kneser graph, a self-complementary strongly regular graph, or a self-
complementary vertex-transitive graph.

2. There exists a single `0 ∈ [r] such that G`0 is either self-complementary vertex-transitive or
self-complementary strongly regular on n`0 vertices, where n`0 is not the square of an integer.

Let p ∈ N[x1, . . . , xr] be a polynomial with nonzero coefficients in N such that the following hold:

1. There exists a monomial in p(x1, . . . , xr) whose degree in x`0 is odd.

2. The variable x`0 does not occur in at least one monomial of p(x1, . . . , xr).

Let G = p(G1, . . . ,Gr). Then, the Shannon capacity Θ(G) is not attained at any finite strong power of G
(i.e., condition (5.1) holds).
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Proof. For all ` ∈ [r], Θ(G`) = ϑ(G`) (this follows from the first assumption on G`). Thus, by
Corollary 3.3,

Θ(G) = p
(
ϑ(G1), . . . , ϑ(Gr)

)
. (5.13)

Furthermore, for ` ∈ [r], if G` is a Kneser graph, then ϑ(G`) =
(

n`−1
r`−1

)
∈ N (by [11, Theorem 13]), and

if G` is self-complementary and vertex-transitive or self-complementary and strongly regular, then
ϑ(G`) =

√
n` (by [39, Theorem 3.26]). By the second assumption on the graphs, it follows that if ` , `0,

then ϑ(G`) ∈ N, and ϑ(G`0) < N. Next, by the assumptions of the polynomial p ∈ N[x1, . . . , xr], there
exists a monomial in p whose degree in x`0 is odd, and there exists a monomial in p where the variable
x`0 does not occur. Thus, there exist a, b ∈ N such that

p
(
ϑ(G1), . . . , ϑ(Gr)

)
= a
√

n`0 + b. (5.14)

Similarly to the concept of proof in Example 5.1, for every k ∈ N, it follows from (5.14) that there exist
ck, dk ∈ N such that

p
(
ϑ(G1), . . . , ϑ(Gr)

)k
= ck
√

n`0 + dk. (5.15)

Since √n`0 < N (by assumption), we have √n`0 < Q by Lemma 5.5. By (5.13) and (5.15), it implies
that

Θ(G)k < N, (5.16)

so, for all k ∈ N,

Θ(G) > k
√
α(Gk). (5.17)

This shows that the Shannon capacity of G is not attained by the independence number of any finite
strong power of G. �

Corollary 5.7. Let r ≥ 2, and let G1,G2, . . . ,Gr be graphs such that, for every ` ∈ [r]:

1. The graph G` is self-complementary on n` vertices, and it is either strongly regular or vertex-
transitive.

2. There exists a single `0 ∈ [r] such that n`0 is not a square of an integer.

Then, the Shannon capacity of the disjoint union of these graphs is not attained at any finite strong
power.

Proof. The result is achieved by applying Theorem 5.6 to the linear polynomial

p(x1, . . . , xr) =

r∑
j=1

x j. (5.18)

�

Example 5.8. The special case of G = C5 + K1 (presented earlier) is obtained by selecting in the
previous corollary
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• G1 = C5, which is a self-complementary and vertex-transitive graph.
• G2 = K1, which is a Kneser graph.
• r = 2.

Hence, the Shannon capacity of G is not attained at any finite power of G.

Next, we present an additional example based on Paley graphs.

Example 5.9. Let q1, . . . , q` be integer powers of prime numbers, pi ≡ 1 mod 4 for every i ∈ [`], where
only one of the qi’s is an odd power of the prime pi. Define Gi = P(qi) (where P(q) is the Paley graph
of order q) for every i ∈ [`]. Then, the Shannon capacity of the disjoint union of these graphs,

G = G1 + G2 + . . . + G` (5.19)

is not attained by the independence number of any finite strong power of G. This follows from
Corollary 5.7, as the Paley graphs are self-complementary and strongly regular, and the restrictions on
q1, . . . , q` guarantee that the conditions of Corollary 5.7 hold.

5.3. Third approach

In (4.17), one already observes a novel example of a countably infinite family of connected graphs,
where the Shannon capacity of every such graph is not achieved by the independence number of any
finite strong power. Indeed, this holds since raising the right-hand side of (4.17) to any power k ∈ N
does not result in an integer (similarly to (5.4)). In the present last approach, we build a generalized
family of connected graphs, whose capacity is not attained at any of their finite strong powers. In
particular, we prove that an extended infinite family of Tadpole graphs is not attained at a finite strong
power.

Theorem 5.10. Let H be a graph with α(H) < Θ(H), let ` ≥ 2 be an even number, and let v ∈ V(H)
be an arbitrary vertex in H. Define the graph G as the disjoint union of H and P` with an extra edge
between v and one of the two endpoints of P`. Then, the capacity of G is unattainable by any of its finite
strong powers.

Proof. Since H + P`−1 is an induced subgraph of G, and H + P` is a spanning subgraph of G, it follows
that

Θ(H + P`−1) ≤ Θ(G) ≤ Θ(H + P`). (5.20)

Path graphs are universal, and for an even ` ≥ 2, the capacities of P`−1 and P` coincide (see
Theorem 2.52). The latter holds because path graphs are bipartite and therefore perfect, so their
Shannon capacities coincide with their independence numbers, and also α(P`−1) = `

2 = α(P`) if ` ≥ 2 is
even. By the universality of path graphs, and since the independence numbers of P` and P`−1 coincide
for an even ` ≥ 2 (see Theorem 2.52), for every k ∈ N,

α((H + P`−1)k) =

k∑
i=0

(
k
i

)
α
(
Hi � Pk−i

`−1
)

=

k∑
i=0

(
k
i

)
α(Hi)α(P`−1)k−i

AIMS Mathematics Volume 11, Issue 1, 2747–2796.



2777

=

k∑
i=0

(
k
i

)
α(Hi)α(P`)k−i

= α((H + P`)k). (5.21)

Consequently, by raising both sides of (5.21) to the power 1
k and letting k → ∞, it follows that

Θ(H + P`−1) = Θ(H + P`). Combining the last equality with (5.20), hence gives

Θ(G) = Θ(H + P`). (5.22)

By the same argument that yields (5.20), for all k ∈ N, (H + P`−1)k is an induced subgraph of Gk, and
(H + P`)k is a spanning subgraph of Gk, so

α((H + P`−1)k) ≤ α(Gk) ≤ α((H + P`)k). (5.23)

Thus, by combining (5.21) and (5.23), it follows that for every k ∈ N,

α(Gk) = α
(
(H + P`)k). (5.24)

Finally, by Theorem 5.2 and equalities (5.22) and (5.24), for every k ∈ N,

Θ(G) k =
(
Θ(H + P`)

)k
> α

(
(H + P`)k) = α(Gk), (5.25)

so G is not attained at any of its finite strong powers. �

Corollary 5.11. Let k ≥ 5 be an odd number, and let ` ≥ 2 be an even number. Then, the Shannon
capacity of the Tadpole graph T(k, `) is unattainable by any of its strong powers.

Proof. This follows directly from Theorem 5.10 and Definition 4.1, by selecting H = Ck for an odd
k ≥ 5. In the latter case, α(Ck) < Θ(Ck), as required by Theorem 5.10. �

Remark 5.12. Corollary 5.11 provides a countably infinite set of connected graphs whose Shannon
capacities are unattainable by any of its strong powers. This is the first infinite family of connected
graphs with that property. All previous constructions with that property were disconnected graphs.

6. The Shannon capacity of q-Kneser graphs

In this section, we determine the exact Shannon capacity of the family of q-Kneser graphs. For the
classical Kneser graphs, the Shannon capacity was determined by Lovász [11, Theorem 13] (see (2.50)).

Definition 6.1. Let n, k ∈ N with k ≤ n, let p be a prime, let q = pm be a prime power with m ∈ N, and

let Fq denote the Galois field of order q. The Gaussian coefficient, denoted by
[ n

k

]
q
, is given by

[ n
k

]
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

. (6.1)
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The Gaussian coefficient admits the following combinatorial interpretation. Let V be an n-
dimensional vector space over Fq. Then, the number of distinct k-dimensional subspaces of V is

equal to
[ n

k

]
q
. Consequently, we define

[ 0
0

]
q
, 1.

Letting q vary continuously and taking the limit q→ 1 gives

lim
q→1

[ n
k

]
q

=
n
k
·

n − 1
k − 1

· · ·
n − (k − 1)
k − (k − 1)

=

(
n
k

)
, (6.2)

thus converging to the binomial coefficient.

Definition 6.2 (q-Kneser graphs). Let V(n, q) denote the n-dimensional vector space over the finite
field Fq, where q is a prime power. The q-Kneser graph Kq(n, k) has as its vertices the k-dimensional
subspaces of V(n, q), and any two vertices are adjacent if and only if their intersection is the zero vector.

Some of the properties of the q-Kneser graphs are presented next (see [52, Proposition 3.4]).

Theorem 6.3. Let G = Kq(n, k) be a q-Kneser graph, where n ≥ 2k and q is a prime power. Then, the
following hold:

1. The order of Kq(n, k) is given by

|V(Kq(n, k))| =
[ n

k

]
q
. (6.3)

2. The size of Kq(n, k) is given by

|E(Kq(n, k))| = 1
2 qk2

[ n − k
k

]
q

[ n
k

]
q
. (6.4)

3. Kq(n, k) is d-regular with d = qk2
[ n − k

k

]
q
.

4. Kq(n, k) is vertex-transitive and edge-transitive.

Next, we determine the Shannon capacity of Kq(n, k) in a manner analogous to the Lovász calculation
of the Shannon capacity of the Kneser graph K(n, k) (see [11, Theorem 13]). To that end, we derive the
independence number and the Lovász ϑ-function of the q-Kneser graph and show that they coincide,
thereby yielding the Shannon capacity of the graph.

Lemma 6.4. [29] Let G = Kq(n, k) be a q-Kneser graph, where n ≥ 2k and q is a prime power. Then,

α(Kq(n, k)) =

[ n − 1
k − 1

]
q
. (6.5)
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Proof. By the version of the Erdős-Ko-Rado theorem for finite vector spaces (see [29, Theorem 9.8.1]),
it follows that

α(Kq(n, k)) ≤
[ n − 1

k − 1

]
q
. (6.6)

Moreover, we can construct a family of k-subspaces of V(n, q) containing a fixed 1-dimensional

subspace of V(n, q). This family of subspaces has
[ n − 1

k − 1

]
q

subspaces (see Definition 6.1 and [29,

Theorem 9.8.1]), and it is an independent set in Kq(n, k), thus

α(Kq(n, k)) ≥
[ n − 1

k − 1

]
q
, (6.7)

which proves equality (6.5). �

Lemma 6.5. Let G = Kq(n, k) be a q-Kneser graph, where n ≥ 2k and q is a prime power. Then,

ϑ(Kq(n, k)) =

[ n − 1
k − 1

]
q
. (6.8)

Proof. By Theorem 2.48, and since the q-Kneser graphs are edge-transitive (see Theorem 6.3), it follows
that

ϑ(Kq(n, k)) = −
|V(Kq(n, k))| λmin

λmax − λmin
, (6.9)

where λmax and λmin are, respectively, the largest and smallest eigenvalues of the adjacency matrix of
Kq(n, k). By [30, Theorem 2], these eigenvalues are given by

λmax = qk2
[ n − k

k

]
q

(6.10)

λmin = −qk2−k
[ n − k − 1

k − 1

]
q
. (6.11)

Substituting (6.3), (6.10), and (6.11) into (6.9) gives

ϑ(Kq(n, k)) =

[ n
k

]
q
· qk2−k

[ n − k − 1
k − 1

]
q

qk2
[ n − k

k

]
q

+ qk2−k
[ n − k − 1

k − 1

]
q

=

[ n
k

]
q
·

[ n − k − 1
k − 1

]
q

qk
[ n − k

k

]
q

+

[ n − k − 1
k − 1

]
q

. (6.12)
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This expression can be simplified, based on the following identity:[ m
r

]
q

=
qm − 1
qr − 1

[ m − 1
r − 1

]
q
, (6.13)

where using (6.13) with m = n − k and r = k simplifies the denominator on the right-hand side of (6.12)
to

qk
[ n − k

k

]
q

+

[ n − k − 1
k − 1

]
q

= qk ·
qn−k − 1
qk − 1

·

[ n − k − 1
k − 1

]
q

+

[ n − k − 1
k − 1

]
q

=
qn − 1
qk − 1

·

[ n − k − 1
k − 1

]
q
. (6.14)

Combining (6.12) and (6.14) finally gives the simplified form

ϑ(Kq(n, k)) =

[ n
k

]
q
·

qk − 1
qn − 1

=

[ n − 1
k − 1

]
q
, (6.15)

where (6.15) holds by (6.13). �

Due to the coincidence of the independence number and the Lovász ϑ-function in Lemmas 6.4
and 6.5, their common value is equal to the Shannon capacity of the graph. This gives the following
closed-form expression for the Shannon capacity of q-Kneser graphs.

Theorem 6.6. The Shannon capacity of the q-Kneser graph Kq(n, k), where n ≥ 2k and q is a prime
power, is given by

Θ(Kq(n, k)) =

[ n − 1
k − 1

]
q
. (6.16)

7. A new inequality for the capacity of graphs

The following result provides a relation between the Shannon capacity of any strong product of
graphs, and the capacity of the disjoint union of the component graphs. If these component graphs
are connected, then their strong product is a connected graph on a number of vertices that is equal to
the product of the number of vertices in each component graph, whereas the disjoint union of these
component graphs is a disconnected graph on a number of vertices that is equal to the sum of the orders
of the component graphs (the latter order is typically much smaller than the former). The motivation for
our inequality comes from the following result.

Theorem 7.1 (Unique Prime Factorization for Connected Graphs). Every connected graph has a unique
prime factor decomposition with respect to the strong product.
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The proof of Theorem 7.1 was introduced by Dörfler and Imrich [44], and Mckenzie [45]. See
Section 7.3 in the comprehensive book on graph products [31] (Theorem 7.14). In a paper by
Feigenbaum and Schäffer [46], a polynomial-time algorithm was introduced for finding that unique
prime factorization (with respect to strong products).

Next, we provide and prove the main result of this section.

Theorem 7.2. Let G1,G2, . . . ,G` be simple graphs. Then,

Θ(G1 � . . . � G`) ≤
(
Θ(G1 + . . . + G`)

`

)`
. (7.1)

Furthermore, if Θ(Gi) = ϑ(Gi) for every i ∈ [`], then inequality (7.1) holds with equality if and only if

Θ(G1) = Θ(G2) = . . . = Θ(G`). (7.2)

In particular, if for every i ∈ [`], one of the following statements holds:

• Gi is a perfect graph,
• Gi = K(n, r) for some n, r ∈ N with n ≥ 2r,
• Gi = Kq(n, r) for a prime factor q and some n, r ∈ N with n ≥ 2r,
• Gi is vertex-transitive and self-complementary,
• Gi is strongly regular and self-complementary,

then inequality (7.1) holds with equality if and only if the condition in (7.2) is satisfied.

Proof. Let k ∈ N. By (2.29),

Θ(G1 + . . . + G`)`k

= Θ((G1 + . . . + G`)`k)

= Θ

 ∑
k1,...,k`: k1+...+k`=`k

(
`k

k1, . . . , k`

)
Gk1

1 � . . . � Gk`
`

 . (7.3)

By (2.29) and (2.30),

Θ

 ∑
k1,...,k`: k1+...+k`=`k

(
`k

k1, . . . , k`

)
Gk1

1 � . . . � Gk`
`


≥

∑
k1,...,k`: k1+...+k`=`k

(
`k

k1, . . . , k`

)
Θ
(
Gk1

1 � . . . � Gk`
`

)
≥

(
`k

k, . . . , k

)
Θ
(
Gk

1 � . . . � Gk
`

)
=

(
`k

k, . . . , k

)
Θ
(
G1 � . . . � G`

)k
, (7.4)

thus, by combining (7.3) and (7.4), it follows that(
`k

k, . . . , k

)
Θ(G1 � . . . � G`)k ≤ Θ(G1 + . . . + G`)`k.
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Raising both sides of the inequality to the power of 1
k , and letting k tend to infinity gives

Θ(G1 � . . . � G`) ≤
(
Θ(G1 + . . . + G`)

`

)`
, (7.5)

which holds by the equality

lim
k→∞

k

√(
`k

k, . . . , k

)
= ``, ∀ ` ∈ N. (7.6)

If Θ(Gi) = ϑ(Gi) for every i = 1, . . . , `, then by Theorem 3.4,

Θ(G1 + . . . + G`) = Θ(G1) + . . . + Θ(G`). (7.7)

By (7.7), inequality (7.1) is equivalent to√̀
Θ(G1) . . .Θ(G`) ≤

Θ(G1) + . . . + Θ(G`)
`

, (7.8)

and, by the conditions for equality in the AM-GM inequality, equality holds in (7.8) if and only
if (7.2) holds. Finally, all the graphs that are listed in this theorem (Theorem 7.2) satisfy the equality
Θ(Gi) = ϑ(Gi) for i ∈ [`]. Thus, if Gi is one of these graphs for each i ∈ [`], then inequality (7.1) holds
with equality if and only if the condition in (7.2) is satisfied. �

Remark 7.3. An anonymous reviewer brought to our attention that inequality (7.1) can be related to
Eq. (1) in the preprint [47] for the complementary graph entropy, via the results of [48, Lemma 1]
and [6, Equation (11.2)].

The next result strengthens [7, Theorem 2.1] by identifying several sufficient conditions under which
the inequality holds with equality.

Corollary 7.4. Let G be a graph on n vertices. Then,

Θ(G + G) ≥ 2
√

n, (7.9)

with equality in (7.9) if the graph G is either self-complementary and vertex-transitive, self-
complementary and strongly regular, a conference graph, a Latin square graph, or the complement of
any of these graphs.

Proof. By Theorem 7.2,

Θ(G + G) ≥ 2
√

Θ(G � G). (7.10)

Since
{
(1, 1), . . . , (n, n)

}
is a trivial independent set of G � G, it follows that

Θ(G � G) ≥ α(G � G) ≥ n. (7.11)

Combining inequalities (7.10) and (7.11) yields (7.9). Furthermore, suppose that the graph G is one
of the following: (1) self-complementary and vertex-transitive, (2) self-complementary and strongly
regular, (3) a conference graph, (4) a Latin square graph, or (5) the complement of any of the graphs
in (1)–(4). Then, by Theorem 7.2 and [39, Theorems 3.23, 3.26, and 3.28], inequalities (7.10) and (7.11)
hold with equality, and consequently inequality (7.9) also holds with equality. �
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Remark 7.5. The original proof of inequality (7.9) in [7, Theorem 2.1] is presented in Appendix E. Our
proof of Corollary 7.4 follows a different approach, which enables us to identify sufficient conditions
for equality in (7.9).

By (7.1), some additional inequalities are derived in the next two corollaries.

Corollary 7.6. Let G1, . . . ,G` be simple graphs, let m1, . . . ,m` ∈ N, and let m =
√̀

m1 . . .m`. Then,

Θ(G1 � . . . � G`) ≤ (m`)−` Θ(m1G1 + . . . + m`G`)`. (7.12)

Proof. By (2.34), inequality (7.12) is equivalent to

Θ(m1G1 � . . . � m`G`) ≤ `−` Θ(m1G1 + . . . + m`G`)`. (7.13)

Thus, by Theorem 7.2, inequality (7.12) holds. �

Theorem 7.7. Let G1, . . . ,G` be simple graphs, with some ` ∈ N, and let α = (α1, . . . , α`) be a
probability vector with α j ∈ Q for all j ∈ [`]. Let

K(α) ,
{
k ∈ N : α j k ∈ N, ∀ j ∈ [`]

}
. (7.14)

Then, for all k ∈ K(α),

Θ(Gα1 k
1 � . . . � Gα` k

` ) ≤ exp
(
−k H(α)

)
Θ(G1 + . . . + G`)k, (7.15)

where the entropy function H is given by

H(α) , −
∑̀
j=1

α j logα j, ∀α : α1, . . . , α` ≥ 0,
∑̀
j=1

α j = 1. (7.16)

Proof. Let
A , lcm(α1k, . . . , α`k),

and, for every j ∈ [`], define

n j ,
A
α j k

, (7.17)

a j ,

j∑
i=1

αi k ∈ N, (7.18)

with a0 , 0. For each i ∈ [k], let j ∈ [`] be the index that satisfies

a j−1 + 1 ≤ i ≤ a j, (7.19)

and define

mi , n j, ∀ i ∈ [k]. (7.20)
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By Corollary 7.6 (note that the strong product in the next line involves k graphs),

Θ
(
Gα1k

1 � . . . � Gα`k
`

)
≤ (mk)−k Θ

(
m1G1 + . . . + ma1G1 + . . . + ma`−1+1G` + . . . + mkG`

)k

= (mk)−k Θ
(
(m1 + . . . + ma1) G1 + . . . + (ma`−1+1 + . . . + mk) G`

)k

= (mk)−k Θ(α1 n1 kG1 + . . . + α` n` kG`)k, (7.21)

where the last equality holds since, by (7.17) and (7.18),

m1 = . . . = ma1 = n1, (7.22)
ma1+1 = . . . = ma2 = n2, (7.23)
...

ma`−1+1 = . . . = mk = n`, a` = k. (7.24)

So, for every j ∈ [`],

ma j−1+1 + . . . + ma j = (a j − a j−1) n j

= α j n j k. (7.25)

The calculation of m in the right-hand side of (7.21) gives, by (7.17) and (7.22)–(7.25),

m = k
√

m1 . . .mk

=
k
√

na1−a0
1 . . . na`−a`−1

`

=
k
√

nα1k
1 . . . nα`k`

=
k

√(
A
α1k

)α1k

. . .

(
A
α`k

)α`k

=
A
k

∏̀
i=1

ααik
i

−
1
k

, (7.26)

and also, by (2.34) and (7.17),

Θ(n1α1kG1 + . . . + n`α`kG`)k = Θ(AG1 + . . . + AG`)k

= Ak Θ(G1 + . . . + G`)k. (7.27)

Finally, combining (7.21), (7.26), and (7.27), we get

Θ(Gα1k
1 � . . . � Gα`k

` ) ≤ (mk)−kAk Θ(G1 + . . . + G`)k

=

A

∏̀
i=1

ααik
i

−
1
k

−k

Ak Θ(G1 + . . . + G`)k

=

∏̀
i=1

ααik
i

 Θ(G1 + . . . + G`)k

= exp
(
−k H(α)

)
Θ(G1 + . . . + G`)k. (7.28)

�
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Remark 7.8. Let α j =
p j

q j
with (p j, q j) = 1 for all j ∈ [`]. Then,

K(α) = lcm(q1, . . . , q`)N.

This is true because if we choose k that is not a multiple of lcm(q1, . . . , q`), then there exists i ∈ [`] such
that αi < N.

In analogy to Corollary 7.4, we next derive upper and lower bounds on ϑ(G + G).

Theorem 7.9. For every simple graph G on n vertices

ϑ(G + G) ≥ 2
√

n +
(ϑ(G) −

√
n)2

ϑ(G)
, (7.29)

and for every d-regular graph G, whose eigenvalues are ordered in non-increasing order as

λ1 ≥ λ2 ≥ . . . ≥ λn, (7.30)

the following holds:

2 +
n − d − 1

1 + λ2
−

d
λn
≤ ϑ(G + G) ≤

n(1 + λ2)
n − d + λ2

−
nλn

d − λn
. (7.31)

Furthermore,

1. If G is either vertex-transitive or strongly regular, then inequality (7.29) holds with equality.

2. If both G and G are edge-transitive, or if G is strongly regular, then the right-hand inequality
in (7.31) is attained with equality.

3. If G is strongly regular, then the left-hand inequality in (7.31) is attained with equality.

Proof. Using Theorems 2.45 and 2.47, we get

ϑ(G + G) = ϑ(G) + ϑ(G)

≥ ϑ(G) +
n

ϑ(G)

= 2
√

n +
(ϑ(G) −

√
n)2

ϑ(G)
. (7.32)

In addition, by Theorem 2.47, inequality (7.32) holds with equality if G is vertex-transitive or strongly
regular. Furthermore, if G is a d-regular graph, then by [36, Proposiotion 1],

ϑ(G + G) = ϑ(G) + ϑ(G)

≤
n(1 + λ2)
n − d + λ2

−
nλn

d − λn
, (7.33)

and

ϑ(G + G) = ϑ(G) + ϑ(G)

≥ 2 +
n − d − 1

1 + λ2
−

d
λn
, (7.34)

which proves (7.31). Finally, by [36, Proposition 1], if both G and G are edge-transitive, or if G is
strongly regular, then inequality (7.33) holds with equality. Moreover, if G is strongly regular, then
inequality (7.34) also holds with equality. This completes the proof of the stated sufficient conditions
for the attainability with equality of the two inequalities in (7.31). �
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8. Outlook

This section suggests some potential directions for further research that are related to the findings in
this paper.

1. In Theorem 5.6, a construction of graphs was provided whose Shannon capacity is not attained
by the independence number of any of their finite strong powers. The proof relied on Dedekind’s
lemma from number theory (see Lemma 5.5), showing that the capacity of this construction equals
a value whose finite powers are not natural numbers, and hence cannot correspond to the finite
root of an independence number. This method of proof also applies to rational numbers that are
not integers, since none of their finite powers are natural numbers either. This raises an interesting
question: Does there exist a graph whose Shannon capacity is a rational number that is not an
integer?. At present, no such graphs are known. However, if the answer is positive, it would
immediately follow that these graphs also possess the property of having a Shannon capacity that
is not attained by the independence number of any of their finite strong powers (thus potentially
leading to a fourth approach in Section 5).

2. It was proved in [18] that if the Shannon capacity of a graph is attained at some finite power, then
the Shannon capacity of its Mycielskian is strictly larger than that of the original graph. In view of
the constructions presented in Section 5, which yield graph families whose Shannon capacity is not
attained at any finite power, it would be interesting to determine whether this property also holds
in such cases. If it does not, then the graph constructions from Section 5 could provide potential
candidates for a counterexample.

3. In light of earlier studies on the Shannon capacity of graphs, as well as the present work, it remains
unknown whether there exists a finite, undirected, and simple graph whose Shannon capacity is
attained by the independence number of some finite strong power, but not by that of the first or
second strong powers. Further study of this problem is therefore of interest.

4. By combining Theorems 2.19 and 2.29, the equality α(G � H) = α(G)α(H) holds for every simple
graph H if α(G) = αf(G). Moreover, by Theorem 2.38 and Lemma 3.6, if Θ(G) = αf(G), then
Θ(G � H) = Θ(G) Θ(H) holds for all H. From these results, a natural question arises: Is it true that
the equality Θ(G � H) = Θ(G) Θ(H) holds for all H if and only if Θ(G) = αf(G)?. This question
was already discussed to some extent in [53], showing that

sup
H

Θ(G � H)
Θ(H)

≤ αf(G), (8.1)

while raising a question about a possible gap between the two sides of (8.1).

5. The new inequality in Theorem 7.2 can be viewed as an analogue of the arithmetic–geometric
mean inequality for the Shannon capacity of graphs, relating the Shannon capacity of the strong
product of graphs to that of their disjoint union. Part of the interest in this inequality arises from the
fact that every finite, undirected, simple, and connected graph admits a unique prime factorization
with respect to the strong product (see Theorem 7.1). Several applications of the inequality in
Theorem 7.2 are presented in Section 7, and additional applications are likely to follow.
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6. This last open issue, while not directly related to the results of this paper, is mentioned here
because of its fundamental importance. The random graph G(n, 1

2) is a graph on n vertices in
which each pair of distinct vertices is joined by an edge independently with probability 1

2 . For
sufficiently large n, with high probability, the independence number of such a graph is equal to
2 log2 n + O(log log n) [54, Chapter 11], and its Lovász ϑ-function ranges between

(1
2 + o(1)

)√
n

and
(
2 + o(1)

)√
n [55]. In contrast, a comparable probabilistic result for the Shannon capacity of

G(n, 1
2) is yet unknown. It has been conjectured by Alon that there exists a positive constant b,

independent of n, such that the Shannon capacity of G(n, 1
2) is at most b log2 n almost surely (i.e.,

with probability tending to 1 as n→ ∞) [3, Conjecture 2.4].

This sample of open problems illustrates that, despite the existence of classical results on the Shannon
capacity of graphs and a growing body of recent work, many fundamental avenues of research remain
open.

Appendix

A. Proof of the duality result in Theorem 2.38

By Theorems 2.35 and 2.36, the claim is equivalent to

Θ(G + H) > Θ(G) + Θ(H) ⇐⇒ Θ(G � H) > Θ(G) Θ(H). (A.1)

Next, we prove both directions of the equivalence in (A.1).

1. Assume that Θ(G � H) > Θ(G) Θ(H). By equality (2.29),

Θ(G + H)2 = Θ
(
(G + H)2)

= Θ
(
G2 + 2G � H + H2), (A.2)

where (A.2) holds by the commutative semiring argument in [28]. By Theorems 2.35 and 2.36,

Θ(G2 + 2G � H + H2) ≥ Θ(G)2 + 2Θ(G � H) + Θ(H)2. (A.3)

Using the above assumption, we get

Θ(G)2 + 2Θ(G � H) + Θ(H)2 > Θ(G)2 + 2Θ(G) Θ(H) + Θ(H)2

=
(
Θ(G) + Θ(H)

)2
, (A.4)

which gives Θ(G + H) > Θ(G) + Θ(H).

2. Next, assume Θ(G � H) = Θ(G) Θ(H). Then, for all i, j ∈ N, we get

Θ(Gi � H j) Θ(G) j Θ(H)i = Θ(Gi � H j) Θ(G j) Θ(Hi)
≤ Θ(Gi+ j � Hi+ j)
= Θ(G � H)i+ j

= Θ(G)i+ j Θ(H)i+ j. (A.5)
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Thus, Θ(Gi � H j) ≤ Θ(G)i Θ(H) j, which implies that for all k ∈ N,

α
(
(G + H)k) = α

( k∑
`=0

(
k
`

)
G` � Hk−`

)

=

k∑
`=0

(
k
`

)
α
(
G` � Hk−`)

≤

k∑
`=0

(
k
`

)
Θ
(
G` � Hk−`)

≤

k∑
`=0

(
k
`

)
Θ
(
G`) Θ

(
Hk−`)

=

k∑
`=0

(
k
`

)
Θ(G)` Θ(H)k−`

=
(
Θ(G) + Θ(H)

)k
. (A.6)

Finally, letting k → ∞ gives Θ(G + H) ≤ Θ(G) + Θ(H), and by Theorem 2.36,

Θ(G + H) = Θ(G) + Θ(H). (A.7)

B. A new proof of Theorem 2.45

Theorem B.1. [17] Let G and H be simple graphs. Then,

ϑ(G + H) = ϑ(G) + ϑ(H). (B.1)

Proof. By Theorem 2.43, let (u1, . . . ,un) be an orthonormal representation of G, and let c be a unit
vector such that

ϑ(G) =

n∑
i=1

(cTui)2. (B.2)

Likewise, let (v1, . . . , vr) be an orthonormal representation of H, and let d be a unit vector such that

ϑ(H) =

r∑
i=1

(dTvi)2. (B.3)

Assume without loss of generality that the dimensions of ui, c, v j, and d are identical and equal to m
(if the dimensions are distinct, the vectors of the lower dimension can be padded by zeros). Next, let
A be an orthogonal matrix of order m × m such that Ad = c. Such a matrix A, satisfying ATA = Im,
exists (e.g., the householder matrix defined as A = Im −

2(c−d)(c−d)T

‖c−d‖2 provided that c , d, and A = Im if
c = d). Let w = (w1, . . . ,wr) be defined as wi = Avi for every i ∈ [r]. Since the pairwise inner products
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are preserved under an orthogonal (orthonormal) transformation and (v1, . . . , vr) is an orthonormal
representation of H, so is (w1, . . . ,wr). Likewise, we get

r∑
i=1

(cTwi)2 =

r∑
i=1

((Ad)T(Avi))2 =

r∑
i=1

(dTvi)2 = ϑ(H). (B.4)

Next, the representation (x1, . . . , xn+r) = (u1, . . . ,un,w1, . . . ,wr) is an orthonormal representation of
G + H (since there are no additional non-adjacencies in the graph G + H in comparison to the disjoint
union of the pairs of nonadjacent vertices in G and H). Hence, by Theorem 2.43, the equality

ϑ(G) + ϑ(H) =

n∑
i=1

(cTui)2 +

r∑
i=1

(cTwi)2 =

n+r∑
i=1

(cTxi)2, (B.5)

yields the inequality

ϑ(G) + ϑ(H) ≤ ϑ(G + H). (B.6)

Next, by Theorem 2.43, let (u1, . . . ,un, v1, . . . , vr) be an orthonormal representation of G + H, where
the vectors (u1, . . . ,un) correspond to the vertices of G and the vectors (v1, . . . , vr) correspond to the
vertices of H, and let c be a unit vector such that

ϑ(G + H) =

n∑
i=1

(cTui)2 +

r∑
i=1

(cTvi)2. (B.7)

By definition, since (u1, . . . ,un, v1, . . . , vr) is an orthonormal representation of G + H, it follows that
if i and j are nonadjacent vertices in G, then they are nonadjacent in G + H and thus, uT

i u j = 0.
Hence, (u1, . . . ,un) is an orthonormal representation of G. Similarly, it follows that (v1, . . . , vr) is an
orthonormal representation of H. Thus, by Theorem 2.43,

ϑ(G + H) =

n∑
i=1

(cTui)2 +

r∑
i=1

(cTvi)2 ≤ ϑ(G) + ϑ(H). (B.8)

Combining inequalities (B.6) and (B.8) gives the equality in (2.41). �

C. Proof of Theorem 3.8

Theorem 3.8 is a direct corollary of [1, Theorem 4]. To show this, we define an adjacency-reducing
mapping.

Definition C.1. Let G be a simple graph, and let f : V(G)→ A be a mapping from the vertices of G
to a subset A of V(G). The mapping f is called adjacency-reducing if for every pair of nonadjacent
vertices u, v ∈ V(G), the vertices f (u) and f (v) are also nonadjacent.

Proof. LetU = {u1, u2, . . . , uk} be a maximal independent set of vertices in G1. By assumption, V(G1)
can be partitioned into k cliques. Let C = {C1, . . . ,Ck} be such cliques. Obviously, every ui, u j ∈ U

cannot be in the same clique because they are nonadjacent. So, every clique in C contains exactly one
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vertex fromU. For simplicity, assume thatU and C are ordered in a way that u j ∈ C j for every j ∈ [k].
Next, define the mapping f : V(G1) → U as follows. Let v ∈ V(G1) be a vertex, and let C j be the
clique that has v ∈ C j. Then, f (v) = u j. If v1 and v2 are nonadjacent, then they belong to different
cliques in C. Thus, f (v1) and f (v2) are mapped to different vertices inU. SinceU is an independent
set, f (v1) and f (v2) are nonadjacent. Thus, f is an adjacency-reducing mapping of G1 intoU. Then,
by [1, Theorem 4], equality (3.12) holds. �

D. The original proof from [10] of Theorem 5.2

Theorem D.1. [10] Let G be a universal graph, and let H satisfy Θ(H) > α(H). The Shannon capacity
of K , G + H is not attained at any finite power of K.

Proof. Let G be a universal graph, and let k ∈ N. Then, since G is universal,

α(K2k) =

2k∑
`=0

(
2k
`

)
α(G2k−`)α(H`)

=

2k∑
`=0

∑
0≤i, j≤k;i+ j=`

(
k
i

) (
k
j

)
α(G2k−(i+ j))α(Hi+ j)

=

2k∑
`=0

∑
0≤i, j≤k;i+ j=`

(
k
i

) (
k
j

)
α(G)2k−(i+ j) α(Hi+ j)

=

k∑
i=0

k∑
j=0

(
k
i

) (
k
j

)
α(G)2k−i− j α(Hi+ j). (D.1)

Similarly,

α(Kk)2 =

 k∑
i=0

(
k
i

)
α(G)k−i α(Hi)

2

=

k∑
i=0

k∑
j=0

(
k
i

) (
k
j

)
α(G)2k−i− j α(Hi)α(H j). (D.2)

Subtracting (D.2) from (D.1) gives

α(K2k) − α(Kk)2 =

k∑
i=0

k∑
j=0

(
k
i

) (
k
j

)
α(G)2k−i− j

(
α(Hi+ j) − α(Hi)α(H j)

)
. (D.3)

Since by assumption Θ(H) > α(H), there exists i0, j0 ∈ N such that

α(Hi0+ j0) − α(Hi0)α(H j0) > 0. (D.4)

Otherwise, by (2.5) and (D.4), for all m ∈ N, α(Hm) = α(H)m, so Θ(H) = α(H), contradicting our
assumption. Hence, α(K2k) > α(Kk)2 for all k ≥ max{i0, j0}. Set k0 , max{i0, j0}.
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Suppose by contradiction that Θ(K) =
k
√
α(Kk) for some k ≥ k0. Then, by (2.5), (D.3), and (D.4), we

get α(K2k) > α(Kk)2, which gives

Θ(K) ≥ 2k
√
α(K2k) > k

√
α(Kk) = Θ(K), (D.5)

thus leading to a contradiction. Hence, the equality Θ(K) =
k
√
α(Kk) cannot hold for any k ≥ k0.

Note that if we assume that the equality Θ(K) =
k
√
α(Kk) holds for some k < k0, then for every n ∈ N,

Θ(G) ≥ nk
√
α(Knk) ≥ k

√
α(Kk) = Θ(G), (D.6)

which, using the same argument for nk ≥ k0, leads to a contradiction. Hence, the Shannon capacity of
the graph K is not attained by the independence number of any finite strong power of this graph. �

E. The original proof from [7] of inequality (7.9)

Theorem E.1. [7] Let G be a simple graph on n vertices. Then,

Θ(G + G) ≥ 2
√

n. (E.1)

Proof. Let A ∪ B = {a1, . . . , an, b1, . . . , bn} be the vertex set of G + G, where A and B are the vertex
sets of a copy of G and of its complement G, respectively. The labeling is chosen so that, for i , j,
{ai, a j} ∈ E(G) if and only if {bi, b j} < E(G). Moreover, since G + G is a disjoint union, there are no
edges of the form {ai, b j}. For each k ∈ N, we construct an independent set in the strong power (G+G)2k,
which is then used to bound the Shannon capacity of G + G. For every k, define Sk as the set of all
vectors v = (v1, v2, . . . , v2k) with coordinates inA∪B that satisfy the following two conditions:

1.
∣∣∣{i : vi ∈ A}

∣∣∣ =
∣∣∣{ j : v j ∈ B}

∣∣∣ = k,

2. For every i ∈ [k], if ar is the ith coordinate of v (from left to right) belonging toA, and bs is the ith
coordinate of v belonging to B, then r = s.

Next, we prove that Sk is an independent set in (G + G)2k. Let u and v be two distinct vectors in Sk. We
consider the following two cases:

• Case 1: If there exists an index t such that ut ∈ A and vt ∈ B (or vice versa), then the vertices u
and v are clearly nonadjacent in (G + G)2k.
• Case 2: If there is no such an index, then there exist two indices 1 ≤ i, j ≤ k, and two positions

1 ≤ r, s ≤ 2k such that ur = ai, us = bi, vr = a j, and vs = b j. Since {ai, a j} ∈ E(G) if and only if
{bi, b j} < E(G), the vertices u and v are again nonadjacent in (G + G)2k.

Hence, Sk is an independent set in (G + G)2k. The cardinality of Sk is
(

2k
k

)
nk. Indeed, there are

(
2k
k

)
ways to choose the positions of the coordinates from A, which uniquely determines the positions of
the coordinates from B. For each such choice, there are n possible values for each of the k coordinates,
yielding |Sk| =

(
2k
k

)
nk. Consequently,

α((G + G)2k) ≥ |Sk| =

(
2k
k

)
nk, (E.2)
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which yields

Θ(G + G) ≥ lim
k→∞

2k
√
α((G + G)2k)

≥ lim
k→∞

2k

√(
2k
k

)
nk

= 2
√

n. (E.3)

�

Remark E.2. It is noted in [7] that the inequality Θ(G + G) ≥
√

2n, which is a loosened version of
inequality (E.1), easily follows for every simple graph G on n vertices. This holds since{

(ai, bi)
}
i∈[n]

⋃{
(bi, ai)

}
i∈[n]

is an independent set of the square (G + G)2, consisting of 2n elements. Furthermore, it is also noted
in [7] that inequality (E.1) is easily obtained for every self-complementary and vertex-transitive graph
G. Indeed, by [11, Theorem 12], Θ(G) =

√
n = Θ(G) for every such graph on n vertices, so it follows

from Shannon’s inequality (2.31) that Θ(G + G) ≥ 2
√

n. Our strengthened result in Corollary 7.4 asserts
that inequality (E.1) holds with equality for all self-complementary vertex-transitive graphs, as well as
for some additional graph families.
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