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Abstract: This paper addresses two interrelated problems: the integral representation of solutions
to third-order linear differential equations and the completeness of the root function system of the
corresponding differential operator under irregular boundary conditions. In the first part, an integral
representation for the fundamental system of solutions of a third-order differential equation with a
complex spectral parameter is constructed. Unlike the classical approach by Marchenko, the obtained
representations remain valid even when the coeflicients are not holomorphic. The method is based on
reducing the problem to Volterra integral equations of the second kind, which are solved using Picard’s
iterative method. Special representations are established for the initial terms of the iteration sequence,
and a universal integral form is derived for the higher-order terms. The second part of the work focuses
on a third-order differential operator on a finite interval with general irregular boundary conditions. The
aim is to establish the completeness of the system of eigenfunctions and associated functions of this
operator in the space L,. To achieve this, properties of the characteristic determinant, its asymptotic
behavior, and its relation to root functions are analyzed. It is proved that the root function system is
complete even under boundary conditions that do not satisfy Birkhoff regularity. The results generalize
known theorems for second-order operators and significantly extend the class of boundary conditions
for which completeness holds. The proposed methods and results are of interest for the spectral theory
of differential operators and the theory of transmutation operators and can be applied further to the
study of inverse problems and problems with more general boundary conditions.
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1. Introduction and formulation of the main result

When solving inverse scattering problems, Marchenko introduced a method using transformation
operators, which furthered the study and theory of inverse problems. Let us recall the theorem on
transformation operators from Marchenko’s monographs [1].

Theorem 1. Let g(x) be an arbitrary complex-valued function from the space 1,(0, 1) and A- be any
complex number. Solutions y|(x, 1), y,(x, A) of the equation —y"(x) + g(x)y(x) = Ay(x), 0 < x < 1
given initial data y,(0) = y,(0) = 1, y{(0) = y»(0) = 0 can be represented in the form of

X X

yl(-x9 /l) = le(-x’ /l) + le (-xa t)yl()(t7 /l)dt’ )’2(3@ /l) = )’ZO(X, /l) + fKZ(x’ t)yZO(t’ /l)dt’
0 0

at some continuous functions K (x,t), K;(x,t). Here, the continuous functions K,(x,1t), K»(x,t) are
independent of A, and yo(x, 1) = cos \/Zx, yao(x, ) = %
This paper gives an integral representation of solutions of third-order linear differential equations.
Let us denote by yi(x), y,(x), y3(x) solutions of a homogeneous equation

Y7(xX) + p1(x)y'(x) + po(x)y(x) = Ay(x), 0<x<1 (1.1)
subject to the initial Cauchy conditions at x = 0
YW0) = 640 ke j=1,2.3. (1.2)

Note that the functions yi(x, 1), k = 1,2,3 represent entire functions of A. Consider the case when
p1(x) = po(x) = 0. In this case, the fundamental system of solutions has a simpler form. To write it
out, we introduce the following notations:

1 \3 1 V3

Q0:1,01:—§+17, 92:—5—17.

Then, when p,(x) = po(x) = 0, we will reduce the fundamental system of solutions to the form

3 3 3
(9()600 Vax + 91661 Vax + 92662 \/71;5)’

1
y3o(x, A) =
3V2
)’20(3@ /1) = y;O(x’ /1)9 le(x’ /l) = )’g,o(x’ /l)
Similar solutions were introduced and used in the works of Zolotarev [2,3]. Referring to the above
work, we conclude the main assertion of the article.

Theorem 2. Let pi(x) € C'[0,1], po(x) € C[0,1]. Then for k = 2,3 there exist such functions
Ri(x,7,1), S 1(x,T,1), such that the integral representation is valid for all complex A:

Vi(x, A) = yro(x, 1) + f dr f Ri(x, T, )yro(t + 7, D)dt + f dr f Si(x, T, Dyt + 017, Ddt,  (1.3)
0 0 0 0

AIMS Mathematics Volume 11, Issue 1, 2702-2721.



2704

where Ri(x,7,1), S i (x, T, t)-independent of A.
Also, there exists a pair of functions Ri(x,7,t),S (x,7,t) such that the following representation is
true:

X X=T

y1(x, ) =yi0(x, 1) + p1(0)yzo(x, 1) + dele(X, T, )yt + 7, Ddt
0 0
+defS1(x,T, Dyt + 6,7, D)dt, (1.4)

0 0
where we have Ry(x, 1,t),S 1(x, T, t)-independent of A.

If in the representations (1.3) and (1.4) of the functions S;(x,7,1), kK = 1,2, 3 are identically zero,
then the representations from Theorem 2 coincide with the representations from Theorem 1. This is
possible only when p;(x), po(x) holomorphically continues from the segment [0, 1] to the complex
plane.

In the case of nonholomorphism of the coefficients p;(x) and po(x), the representations (1.3)
and (1.4) are essentially different from those of Theorem 1. For ordinary differential equations of order
greater than two, the transformation operator was first constructed by Fage [4] and also independently
by Delsarte and Lions [5]. Then, other derivations of the transformation operator of the indicated type
were proposed by [6—8]. The formulas obtained in these works have a more complex structure. In this
case, the transformation operator was first obtained by Sakhnovich [9], and then a more accurate result
belongs to Khachatryan [10], Khachatryan proved that if the coefficients of a differential equation are
holomorphic in some quadrangle, then the corresponding integral representation holds. The question
of the necessity of the condition of holomorphy of the coefficients of a differential equation of order
n for the existence of transformation operators was discussed in [11-13]. In particular, Malamud
proved that if there is a transformation operator of a certain type and some of the coeflicients g;(x)
are holomorphic, then the remaining coefficients also necessarily possess the holomorphic property.
The search for a Lax pair for the nonlinear Camassa—Holm and Degasperis—Procesi equations leads to
the study of the spectral properties of third-order linear differential operators. A fairly detailed study
of third-order operators based on the special mathematical apparatus of p-hyperbolic functions can
be found in the works of Zolotarev [2, 3, 14]. In contrast to our work, in his works, the presence of
an imaginary unit in the highest third-order derivative allows one to identify classes of nonlocal self-
adjoint operators. Self-adjoint third-order operators have various physical applications. In particular,
their systems of eigenfunctions are always complete in the original space. In our case, we specifically
study non-self-adjoint boundary value problems, because the completeness of the root functions of
such operators is of particular interest.

2. Supporting statements and proof of Theorem 2

Let us recall some simple statements.

Lemma 1. The identity atk = 1,2,3 is
1
Y10(T, Dyro(t, ) = g@ko(t + 6o7, A) + Yot + 6,7, ) + yio(t + 0,7, A)),
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Yio(x) = y10(01x) = y10(62%), Y20(01%) = O1y20(x), Y20(0kX) = Gry20(x),
¥20(602%) = 62y20(x), y30(61X) = 07y30(x), Y30(62%) = B3y30(x).

In the works of Zolotarev [2, 3], one can find additional formulas about the solutions of yio(x, 1) under
k =1,2,3. Lemma I contains only those formulas that we will use in the future.

Lemma 2. The general solution of the inhomogeneous linear differential equation of the third order

Y (x) = Ay(x) = F(x)
is defined by the following formula:

Lot )y, ) 3t )
y(x, ) = Ciyio(x, ) + Coyrp(x, A) + C3yzo(x, ) + | (V& D) Yoo, D) ¥, V| F(t)dt,
0 io(x, ) yalx, ) y3olx, )

where F(x) — is a given function.
Thus, substituting instead of F(x) the expression —p(t)y’(x, 1) — po(t)y(t, 1) in Lemma 2, the general
solution of the problem (1.1)-(1.2) can be written in the following form:

y(x, ) = Ciyi10(x, ) + Coyro(x, ) + C3y30(x, A) + C1 p1(0)yso(x, 1)

+defT(x—T, Hyro(T, D)y(t, Ddt, 2.1
0 0

where T(x — 7,1) = == (P’l(l) - Po(l)) - pi(0).

In this paper, we discover the dependence of y.(x,1), k = 1,2,3 on the spectral parameter. It
follows from relations (1.3) that they are solutions of the Volterra integral equations of the second
kind,

yi(x, ) = yio(x, 1) + pi1(0)yzo(x, ) + de f T(x — 7, )y10(7, Dy (t, Ddt,
0 0

X X=T

y2(x9 /l) = Y20(x, /l) + de f T(X -1 t)le(T9 /l))’2(t, /l)dt9

0 0
y3(-x9 /l) = )’30(3@ A) + de f T(x - T, t)le(Ta /l))’B(t, /l)dt
0 0

We solve the Volterra integral equations by the Picard method. Let us introduce the functions

X10(x, ) = yio(x, ) + p1(0)yzo(x, 1), xro(x, ) = yro(x, ), k=2,3.

From the general theorems on integral equations, it follows that at k = 1,2, 3,

W ) = Xao(x, D)+ (%, ).

J=1
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The elements of the series are calculated by the formulas

Xij(x, ) = defT(X—T, Dy10(t, Oxij-1(t, dt, j> 0.
0 0

Let 1 € K, where K is a compact set in the complex plane. Then, for all x € [0, 1], the estimate

ij(x, Dl < M - N - m - 2 holds for j > 1, where

M = max (P11 + [po(0)] + Ip1(0)]),

N = max [y;o(x, D),
0<x<1
AeK
my. = max |y (x, A)|.
0<x<1
AeK
From the given estimates, it follows that the given series converge uniformly on the corresponding
compact sets. Our goal is to obtain a unified integral representation for iterations y;(x, 1), j > 1.
It becomes apparent that the first two terms, y;o(x, ), yx1(x, 1), can have individual representations.
However, starting from the term y»(x, ), there is a single universal form of writing for all y;(x, 1),
j>1.

Lemma 3. Atk = 1,2, 3, the identity

de f T(x -1 t)le(T’ /l)ka(ta /l)dt

0 0
X X—Tl
= de f gT(x — T, D)ywo(t + T, D)dt
0 0

1
X fdr f —(T(x -1, + T (x -1, t))yko(y + 6,7, D)dt

3
0 0
is valid.

In the derivation of Lemma 3, the relations from Lemma 1 are taken into account.
According to Lemma 3, when k = 2, 3, we have

Xkl(xﬂl):dekal(X,T,t)ka(t"'T,/l)dt"'defSkl(X,T,t))’kO(t"‘HlTa/l)dt,
0 0 0 0

where )
Ry (x,7,1) = §T(X -T,1),

1
Sutern = 3(Ta =70 +6' T~ 1.7)
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Now, at k = 2, 3, we find representations for subsequent iterations,

X X—=7T t 1—o
Xia(x, ) = f dr f T(x -7, t)y0(r, Ddt f do f R (x, o, w)yr(w + o, Hdw
0 0 0 0

X X=T t t—o
+defT(x—T,t)ylo(T,/l)dtde'fSk](x,O',w)yko(w+0',/l)dw.
0 0 0 0

Changing the order of integration, we obtain the representation

Xo(x, ) = f dr f do f Rio(x, T, 0, w)y10(T, Dyro(w + o, Ddw
0 0 0

X X—=T X—T—0

+ f dr f do f Si(x, 7, 0, W)yio(T, Dyr(w + 6,0, Ddw,
0 0 0
where B
Rup(x,7,0,0) = f T(x — 7, )R, (x, o, w)dt,
o+w
Spx,17,0,w) = f T(x—r, t)§ w(t, o, w)dt.
o+w

According to Lemma 1, we have
1
Y10(T, Dyro(w + 6,0, ) = §()’ko(w + 6,0 +7,4) +y(w + 010 + 611, ) + yro(w + 6,0 + 0,7, /1))-
Let us transform the integral

X xX-T X—T—O’l
fdr fdcr f §S X, T, 0, a))[yko(w + 6010 +71, )+ yo(w+ 60,0+ 0,7, 1) + yio(w+ 0,0 + 6,7, /l)]dw.
0 0 0

Let us separately calculate the integral of

X X=T X—T—O'l
de fdcr f §Sk2(x, T,0,W)Vi(w + T+ 0,0, Ddw

0 0 0
X X=T x—(rl
= fdr de' f §Sk2(x, T,0,w — T)Vio(w + 0,0, Ddw
0 0 0

(o

1
:fdwfyko(w+6],/l)d0'fgSkz(x,T,O',w—T)dT.
0 0

0
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Similarly, we obtain

1
§S (X, 7,0, w)yw(w + 6,(c + 1), Ddw

QU
s‘
o%
QL
S
=
%;:

1
dr fda) f §Sk2(x, 7,0 — T, w)Yr(w + 0,0, Ddo
0

o

X X—w 1
fdw fyko(w + 0,0, Ddo f §Sk2(x, T,00 — T, w)dr.
0 0

0

Now, let us calculate a more complicated integral,

X xX-7 x—T—O'l
1= de de' f gSkz(x, 7,0, W)YVi(w + 6,0 + 047, Ddw
0 0 0

X xX-T x—‘r—wl | 3
= fdr de' f =SH(x, 1,0, a))yko(w —=(c+1)+ ii(()' -7), ﬂ)dw.
3 2 2
0 0 0

We introduce new variables (X, Y) instead of variables (7, o). Also, X = w— %(0’+T), Y = g(a—r).

_ 1 _ 1 _ 2
Then,T—w—X—ﬁY,o'—a)—X+ 7§Y,d‘rdo'——7§dXdY.

I:fff—s x,w—X-—Yw-X+—YwnX+i¥, )(———)dXdYdw.
3 k2( \/5 \/§ ) %) \/g

P(x)

Here, P(x) is the image of the pyramid {(r,0,w) : 7 > 0,0 > 0,w > 0,0 + 7 + w < x} in the new
variables (X, Y, w). Let us represent the pyramid P(x) as the union of three nonintersecting pyramids,
P1(x), P2(x), P3(x). Then,

2 ﬂfl 1 1 .
I=—-— =Splx,o-X-—Yw-X+—Y,w)ywX +i¥, DdXdYdw
V3 3 o V3 V3 o

Pi(x)

: fffl 1 1 ‘
- —Swlx,w—-—X - Yw-X+ Y, w)yio(X + iY, )dXdYdw
v ) 35l V3 e

P> (x)
2 fffls ( X L yw_x+ -y ) (X + iY, )dXdYd
-—— Splxw-X-—Yw- —Y, w)y iy, w.
x/§P() 37 \3 \3 ¥

Let us denote the first integral by /; and transform it as follows. We introduce new variables (7, o)
instead of variables (X, Y). Now, X = -1t - 10, ¥ = %gr - ‘?0’, then dXdY = ‘/;dm’o-. As a result,
we have

X X-T 3+t
1
Il = — de fyko(eza' + 017’, /l)dO' f §Sk2(x, w+o,w+T, LL))dCL)
0 0 0

AIMS Mathematics Volume 11, Issue 1, 2702-2721.



2709

Thus, the integral representation is valid:

I = f dr f Si3(x, T, 0)yro(6r0 + 6,7, Ddo = f dr f Si3(x, T, )yro(6a (0 + 6,7), Ddo,
0 0 0 0

where we have S ;3(x, 7, 0)-independent of A. From Lemma 1, a new integral representation follows:

I, = fder%’”lS;@(x, T, 0)yro(0 + 6,7, Ddo.
0 0

In the second integral, I, the variables (7, o) and (X, Y) are related as follows: X = 7— %0', Y= —go:
Hence,
X X=7T
I, = fd‘r fSM(x, T,0) k(60 + T, Ddo
0 0

= f dr f S ka(x, T, O)yro(6r (0 + 017), Ddo
0 0

= def9§k+15k4(X,T,0'))7ko(0'+917),/1)070',
0 0

where we have S 4(x, 7, 0)-independent of A.

In the third integral, /5, the variables (7, o) and (X, Y) are related as follows: X = 7 — %0‘, Y = %50'.

Hence,

I = f dr f Sis(x, T, 0)yro(010 + T, Ddo = f dr f Sis(x, 0, Dyro(o + 0,7, Ddo,
0 0 0 0

where we have S ;5(x, 7, 0)-independent of A.
Thus, the integral I has an integral representation

I= defSkﬁ(X,T,O'))’ko(0'+927',/1)070',
0 0

where we have S 4(x, 7, 0)-independent of A.
Ultimately, for the yi»(x, 1), we obtain the integral representation

Xo(x, ) = dekaz(X, T, Dywo(t + 7, dt + defng(X, T, Dywo(t + 627, )dt,
0 0 0 0

where we have R, i(x, T, 0), St i(x,7,t)-independent of A. Note that the functions R i(x,7,0), Sk i(x, 7,0
depend on the coefficients py(x), p1(x) and can be defined recursively. Their specific form is not
specified in this paper due to space limitations.

The statement of Theorem 2 follows from the latter notion.
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3. Theorems on the completeness of the system of root functions of a third-order differential
operator on a segment

Differential operators with a discrete spectrum are an important source of root function systems.
Thus, reversible operators give rise to minimal systems in the corresponding functional g-spaces. The
root function systems of self-adjoint operators are orthogonal complete systems. However, self-adjoint
differential operators are a rather narrow class of operators with complete root function systems. In this
section, we study the completeness of root functions of third-order differential operators on a segment
with general boundary conditions, which are not self-adjoint and sometimes irreversible.

In the function space L,(0, 1), consider a differential operator K given by the linear differential
expression

Ky = yP) + pr()yP(x) + po(oy(x), 0<x<1,
in the field of definition

yeDK)={yeW3[0.1]: Usy) =0, j=1,3,

where y € W3[0, 1]-Sobolev space. Here, pi(x) are the coeflicients of the differential expression of
k over times continuously differentiable [0, 1] functions. The boundary forms U,(y), U,(y), Us(y) are
defined as follows:

U () = y2(0) + a11y(0),
Us(y) = yP(0) + a2 9(0),
Us() = y2(1) + B3y(1) + B3iy(1) + a3 3(0),

where a1, @21, @31, 831, B32-are arbitrary complex numbers.

The purpose of this paper is to investigate the completeness of the system of root functions of the
operator K in the function space L,(0,1). The most complete results in this direction are obtained
in the case of second-order differential operators. In [1], the completeness of root functions in
the case of nondegenerate boundary conditions in the sense of Marchenko was proved. Moreover,
the completeness of root functions for nondegenerate boundary conditions does not depend on the
coeflicients of the differential expression generating the operator. In [4], the completeness of the system
of root functions of linear differential operators of the second order in the case of degenerate boundary
conditions was investigated. It was shown that in this case, the completeness of the system of root
functions depends not only on the J matrix of boundary coefficients, but also on the coefficients of the
differential expression. Similar questions for second-order differential operators were studied in [5].

The completeness of the system of root functions of linear differential operators of higher orders
is guaranteed in the case of regular boundary conditions in the sense of Birchhoff [6]. Moreover, the
completeness of the root functions for regular boundary conditions in the sense of Birchhoff does not
depend on py(x) of the coefficients of the differential expression. The case of irregular and decaying
boundary conditions for the completeness of the system of root functions was studied in the work of
Shkalikov [7].

We are interested in finding an analog of nondegenerate boundary conditions for the operator K,
extending the class of regular Birchhoff boundary conditions and preserving the completeness of the
system of eigenfunctions and adjoint functions in the space L,(0, 1) [15].

Now let us formulate the main conclusion of this section.

AIMS Mathematics Volume 11, Issue 1, 2702-2721.
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Theorem 3. Let pi(x) € C'[0,1], po(x) € C[0, 1], and a1, as,31,B31, B3 — be arbitrary complex
numbers. Then, the system of eigenfunctions and adjoint functions of the operator K is complete in the
space L,(0, 1).

Let us denote by y|(x), y,(x), y3(x) the solutions of the homogeneous equation

1(y) = y2(x) + pr(0)yV(x) + po(x)y(x) = Ay(x), 0<x<1,
subject to the Cauchy initial conditions at x = 0O:
YW =60 k. j=1,2,3.

Note that the functions y,(x, 1), n = 1,2, 3 represent integer functions of A.
We denote the formally conjugate differential expression by

'@ = 220 — 10200 + (- P + po) 2.

By zi(x), k = 1,2,3, we denote the solutions of the homogeneous conjugate equation

If(2) = 2z(x), 0<x<1 (3.1
with Cauchy conditions at x = 0
21000 =0, 2(0)=0, z3(0) =1,
2P0y =0, 0 =-1, £0) =0, (3.2)

220) =1, Z0)=0, z0)=-pi0).

Note that the solutions zi(x,A), k = 1,2,3 depend on the spectral parameter A. The functions
z(x, 1), k =1,2,3 represent entire functions of A.
We denote the Wronski matrix of the fundamental system of solutions y,(x), y>(x), y3(x) by

i, D) yaux, ) yi(x, D)
Y(x, D) =|yj(x, D) )"Z(X A) yg(x .
v, Yy, yi(x,A)

Because det Y(x,A) = 1 for all x € [0, 1], the Wronski matrix is invertible. By the fundamental system
of solutions z;(x, ), k=1,2,3, we introduce the Wronski matrix Z(x, A). Then, the matrix identity

(YD) 2Z(x. D) = (Y(0.0) G020, D).

p0) 0 1
follows from the Lagrange formula [6], where Q(x) = | 0 -1 0]. Given a special choice of
1 0 0

systems of fundamental solutions z;(x, /_l), vi(x, D),k = 1,2,3 from the last identity, we have
1 ——=\T,—\T
(v, ) = (20 D) (00) .

AIMS Mathematics Volume 11, Issue 1, 2702-2721.
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Thus, the elements of the inverse matrix can be written out through the solutions of the conjugate
equation. In fact, the elements of the inverse matrix are written through the second-order minors of the
Wronski matrix. Therefore, the above formula allows us to write out the second-order minors of the
Wronski matrix through the solutions of the conjugate equation,

() y3(0)| _

y//(x) y//(x) - lel(x, z) + pl(x)zl(x, z)’
2 3

() y3(x)

Y | e

yi()  y3(x)

y//(x) y//(x) = _Z,ZI(X7 Z) - pl(x)ZZ(xa z)’
1 3

yi(x)  y3(x)

Vi | T TR

Y1) y;3(x)
yi () ¥ (%)

= —z{(x, D) — p1(N)z3(x, ),

yi(x)  y2(x) S~
1’ ’’ = Z x’ A >
Vi )| T B
y2(x)  y3(x) -
, , = z1(x, ),
o) woo| =AY
yi(x)  y3(x) =
’ ’ ==z X,/l s
Vi) |~ e
yi(x) y2(x) =
, , = z3(x, A).
Vi) | =8
Now, consider the characteristic determinant
a1 0 1
A(/l) =1 an 1 0

Us(y1) Us(y2) Us(ys)

The following auxiliary statements are useful. For this purpose, let us introduce the following
notations.

Lemma 4. For any p, € C'[0,1], py € C[0, 1], the characteristic determinant A(1) has the following
representation:

AQ) = —az + anB31y3(1, D) + anB3ys(1, ) + a11yy (1, 1) + @21831y2(1, ) + @21 B3y5(1, D+

+a21y, (1,0) = Bxiyi(1,2) = By (1, ) = y{(1, D).

Thus, we have found a general representation of the characteristic determinant. So far, we have
considered that the coefficients p(x), po(x) are arbitrary smooth functions. Now, consider the case
where pi(x), po(x) = 0. In this case, the characteristic determinant Ay(A) has a simpler form. Given
the above relations and the result of Lemma 4, we obtain the following representation:
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Ao(d) = — az; + (@11B31 + daz; — AB3x)yso(l, 1)
+ (@183 + @21831 — Dy20(1, ) + (@11 + @21832 — B31)yi0(1, ).

Note [6] that the zeros of the characteristic determinant A(Q) represent all eigenvalues of the
operator K. Moreover, the multiplicity of zero coincides with the algebraic multiplicity of the
eigenvalue. Let us introduce the function ¢3(x,A) as a determinant, which is obtained from the

characteristic determinant
(0351 0 1

e3(x, ) = | axn 1 0
yi(x)  y2(x)  y3(x)

Let A = Ay- be an eigenvalue of the operator K with algebraic multiplicity m+ 1. It is known [6] that
the function ¢3(x, ) at fixed x is an integer function of the spectral parameter A. Then, in the ordered
set {(pg (x, o), 6‘“()6 103 o amngi,xo)}, the first nonzero function is an eigenvalue, and the subsequent ones
give a chain of attached functions corresponding to the eigenvalue Ay. These sets of functions give rise
to a complete set of chains of eigenfunctions and adjoint functions corresponding to the eigenvalue A.
Therefore, the functions ¢3(x, A) introduced by us play the role of an interpolating function. The facts
given by us are known [6].

Lemma S. For all f(x) € L,(0, 1), the following limit equality is true:
1
(1) Ar=5 < A< 5 lim eV [ fQyiorn Ddx=0
—00 O

1
(2)AtE < VA<n: lim ¢ Ret2 Vi f F@y10(x, Ddx = 0

(3) At < VA < : lim e ~Rety Y1 f Fy10(x, Ddx =

Proof of Lemma 5. The set C'(0, 1) of continuously differentiable functions on the segment [0, 1] is
dense in the space L,(0, 1). For any function f(x) € L,(0, 1) and arbitrary £ > 0, there exists a function

g2.(x) € C'(0, 1), such that
1

f () - godx < e.
0
Because
1

1 1
ff(x))’m(?c, dx = f{f(x) — &(X)s}y10(x, D)dx + fga(x)ylo(x, dx
0 0

0

1
1 o V0 LR L
: Adx + g.(1 ' 1 2
Off(X) ge(O}y10(x, Ddx + g.(1)= ( 0\/‘ +91\3/Ze +02\/§ )

1
\f(iox 1 %F/w]x 1 (92)5
g.()= + ——e¢ + — dx
Of aa ™ am am™)
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{£(0) = g(@)e}y1o(x, Ddx

<| =—-

{gg(l) (Goe Vo 4,6V 1 gy %)

f 8(1) Goe‘n)“ + Hze‘fg' +0 e\mz)d },

(=]

ifat -3 < VA < 5» then Ref); < Ref, < Ret), and for all x € [0, 1], the estimates [y;o(x, )| < eke ‘%, are
satisfied, then

1 1 1
‘ f F@)y1o(x, Ddx Se’m[ f £(x) = ge(®)ldx + VA {1ge(1)] + f |g€(x)|dx}].
0 0 0

Therefore,
1
_— 3
Iﬁllim €_R6ﬁff(X)Y1o(x, Ddx =0
0
Similar estimates are proved in the remaining sectors. Therefore, Lemma 5 is proved. O

Lemmas 6 and 7 are proved in the same way.
Lemma 6. For all f(x) € L,(0, 1), the following limit equality is true:
1
(1) Ar -5 < arg\3/7l <z Mllim We_Re%ff(x)yzo(x, Adx =0
—00 0

1
(2)Arf <argVA<z: lim Vi V[ f()ya0(x, Ddx = 0
—00 0

1
(3) At < arg\}/Z < 57” : l}grio Ve ket %ﬁff(x)ho(x’ Ddx =0
0

Lemma 7. For all f(x) € L,(0, 1), the following limit equality is true:
1
(1)Ar-% < V1<z: lim e e VP f FOOy30(x, Ddx = 0

(2)Ar% < VA <7 lim \/_e‘Reezrff(x)ygo(x Adx =

[ —c0
(3)Atm< VA< : lim e ket VB f F(x)y30(x, Ddx =

Now, we will show how the following statement follows from Lemmas 5-7.
Lemma 8. For all f(x) € L,(0, 1), the limit equality is valid for k = 1,2, 3:
1
(DAt-2<Va<Z%: lim (VO!Le RV [ £(x)ye(x, Ddx = 0
—00 0
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(2)AtE < VA< x: lim (V) e ket V1 f FOy(x, Ddx =

[A]—> 00

(3)Atm < VA<= lim (V)T eRetr V1 f Fye(x, Ddx =0
0

Proof of Lemma 8. For k = 3 and for -5 < Va < %, the set C 1(0,1) of continuously differentiable

functions on the segment [0, 1] is dense in the space L,(0, 1). For any function f(x) € L,(0,1) and
arbitrary & > 0, there exists a function g.(x) € C'(0, 1) such that

flf(x) - g.(x)dx < &.
0

Because
1

1
f Jys(x, Ddx = f (%) = g:(0)}ys(x, Ddx + f ge(0)y3(x, Ddx, (3.3)
0 0 0

Theorem 2 implies the representation

y3(x, A) = y30(x, ) + f dr f R3(x, T, t)ys30(t + 7, D)dt + f dr f S3(x, T, t)y30(t + 6,7, D)dt.  (3.4)
0 0 0

0
Substitute expression (3.3) into Eq (3.4). As a result, we obtain

1

1 1
f Jys(x, Ddx = f {f(%) = ge(0)}yz0(x, Ddx + f 8e(X)y3o(x, Ddx + f {f(x) - g:(x)}
0 0 0

0

X(defR3(x,T, Hyso(t + T, /l)dt+defS3(x,T, Dyso(t + 0y, /l)dt)dx
0 0 0 0

1

+fg8(x)(defR3(x,T, t)ygo(t+‘r,/l)dt+defS3(x,T,t)y30(t+le,ﬂ)dt)dx
0 0 0 0

0

In proving Lemma 7 for the expression f f(x) = gs(x)}yz0(x, Ddx + f g:(X)y30(x, A)dx, an upper

bound was obtained for 4 — oco. Now, we will separately estimate the modulus of the following
expression:

1 X X-T X X-T
|| = ff(x) g:(x)} (f ng(X,T, Dyso(t + T, /l)dt+defS3(x,T, Dyso(t + 6,7, /l)dt)dx
0 0 0 0 0

X

1
f |f(x) — ge(x)ldx f dr f IR3(x, T, Dllyso(t + 7, Dldt
0

0
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X

1 xX-T
+ f |f(x) — gs(0)ldx f dr f 1S 3(x, T, Olly30(t + 6,7, Dldt.
0 0

0

Let -5 < arg VA < 5 and 1 — oo. Let us estimate the modulus of the expression

X

def|Ss(X,T,f)||y3o(l‘+91T,/1)|dl‘

def|S (x,7T, f)| (leaoﬁ(t+elr)| +|e€1 ﬁ(rw.r)l_l_ |e(92\/71(t+6}17)|)dt
Va

1
— f dr f 1S 3(x, 7, 1) — (eRe(aox/i(Helr)) + oRe@r Va@+611) eRe(&p/I(Holr))) dt
31VA?|

from above. At —% < arg VA < £, Repf; < Repb < Repb, holds; therefore,

eRe(Gop(HQ]T)) — eRe(Bopt)eRe(Gop(er) < etRepeTRep < e(t+‘r)Rep.

Because 0 < 7 + 7 < x, the following inequality holds:

e(l+T)Rep < exRep ]

From the last inequality and inequality (3.5), the final inequality follows:

X

xRep
defIS3(x T, Hllys0(t + 617, D)|dt < Ie\/_ fd‘rfng,(x T, b)|dt.

0

Let p* = A. Itis assessed in the same way:

X

> xRep
fdrfle(x,T, Dllyso(t + 7, Dldt < — defle(x T,1)|dt.
0

0

Using inequalities (3.6) and (3.7), inequality (3.5) implies that

XRe, >y

;] < f |f(x) — ge(x)ldx \/_p dr Of |R3(x, 7, 1)|dt
xRep 7

f |f(x) - ga(X)Idx \/_ dr f 1S 3(x, 7, 1)|dt

xRep
| (Ol f d f Rs(x, 7. Dlde
I\/_Iff(X) g(ldx | dr 3(x, T,

0

(3.5)

(3.6)

(3.7)
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xRep
flf(X) gg(X)ldXIdelSs(x 7, Hldt.

0

To evaluate I, we need

1 x X7 x x-7
I, = fgg(x)( defR3(x, T, Dys0(t + 7, D)dt + defS3(x, T, y30(t + 0,7, D)dt |dx
0 0 0 0 0

preliminarily integrate by parts and then perform estimates similar to (3.5)—(3.7).
Thus, Lemma 8 is completely proven for k = 3 and for —5 < Va < 5 O

The remaining cases are proven similarly. We will need one useful statement.

Lemma9. Let Q ={(7,0) : 17,t >0, 7+ 1< 1} and N(t,t) € L,(Q):
1-7

(D) If -% < VA< Z, then lim pk— ~—Rep f dr f N(t, Dyt + 6,7, Ddt =

1 -7

(2)If £ < NA <, then lim pfteiets f dr f N, Dyio(t + 017, Ddt =

1 -T

(3)If 1 < VA < Z, then lim p*le Rebr f dr f N(t, Dyt + 0,7, Vdt =

4|00

The proof of Lemma 9 is similar to the proof of Lemma 8. Now, let us estimate the modulus of the
characteristic determinant from below as 1 — co.

Lemma 10. When A — oo, the characteristic determinant has asymptotic representations
A(D) = =Ayx(1, (1 + o(1)).
Proof of Lemma 10. According to Lemma 4, the characteristic determinant has the form

AQ) = —az1 + a11Ba1y3(1, ) + @ Bany;(1, ) + anyy (1, ) + @1B31y2(1, 2)
+ @21 B3)5(1, ) + a21y5 (1, 2) = Ba1yi(1, ) = By (1, ) — y{(1, D).

From Theorem 2, it follows that

y3(x, 4) =y30(x, 1) + defR3(X, T, Dyso(t + 7, dt + fd7f53()€, T, yso(t + 0,7, A)dt,
0 0 0 0

y5(x, ) =y5(x, 1) + f dr f §R3(X,T, Dy3o(t + 7, )dt + y3o(x, ) f Riy(x,7,x — T)dT+
X

X X—=T X

0
+ de f aS3()€, T, )y30(t + 617, D)dt + ng(x, T, X — T)yz0(x — T+ 6,1, D)dr,

0 0 0
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X X—T 62 X a
¥ (x, ) =y5(x, ) + defﬁ&(X’ 7, Dy3o(t + 7, Ddt + y3o(x, 1) f £R3(X, T,x—71)d7
0 0 0

X

6 X
+ y30(x, /l)a( ng(x, T, X — T)d‘l') + Vio(x, ) fR3(x, T, X —7)dt
0

0
r o P
+ | dr ﬁS 3(x, T, Dyso(t + 67, Ddt + a—S:,'(X, T,X—T) y3o(x — 7+ 6,7, Ddt
X X
0 0 0 f=x-t
X a ,
X f 8—(53()(, T, X — T))y30(x —T+607, )+ S3(x, T, x — T)yyo(x — T+ 047, /l)]d‘r
o ;
0
+ 83(x, x,0)y30(61 x, ).

Hence, using Lemma 9, as 1 — oo, we obtain asymptotic representations of
y3(1, ) = y3o(1, D) + |ys0(1, Dlezi (),

V51, ) = yao(1, D) + |y20(1, Dlexn(),
V5(1,2) = yio(1,2) + [yio(1, Dlesz (),
where ﬂlim ey () =0,k=1,2,3.

Similarly, when 4 — oo, the following asymptotic representations are obtained:

y2(1,2) = yao(1, D) + [y20(1, Dle21(A),
Ya(1, ) = yio(1, D) + [y1o(1, Dlexa (),
Y5 (1, ) = Ay3o(1, D) + |Alys0(1, Dlex(d),
yi(1, ) = yio(1, D) + [y10(1, Dler1 (D),
Vi1, ) = Ayso(1, ) + [Alyso(1, Dlera (),
Y (L, 2) = Ayao(1, D) + [Ally20(1, Dlerz ().

Now, using the values found, when A4 — oo, we rewrite the characteristic determinant as

A =Ay(A) + a1Bz1y30(1, Desi (D) + a11B32y20(1, Den(d) + aq1yio(l, ez ()
+ @21831y20(1, V&1 () + @21832y10(1, DEn(A) + @1 Ayso(1, e ()
= Ba1yio(l, Ve (D) — Baadyzo(l, De2(A) — Ayzo(1, Dez(A).

When A4 — oo, the characteristic determinant has asymptotic representations
A(A) = =Ayzo(1, (1 + o(1)).
Thus, Lemma 10 is completely proven. O
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Proof of Theorem 3. Let M be the spectrum of operator K, that is the set of all eigenvalues 4,, and m,,
be their multiplicity. According to the above properties of function ¢3(x, 4), the results of the zeta

function '

0
G aE e D, O<k<m, =1, 2,€M)

are either identically equal to zero or are root functions of the operator K.

Therefore, to prove the completeness of the root functions of the operator K, it suffices to show that
if f(x) € L,(0,1) and

1

ak
fﬁwg(x, /l)f(x)dxh:ﬂ =0 0<k<m,—1, 1, eM), (3.8)
0

then f(x) = 0 almost everywhere. The characteristic function A(1) and the function

1

s f) = f o3, D f (X)dx

0

are entire functions of A. If equalities (3.8) hold, then each m,,, — a multiple root of 4, of the func';ion
A(Q), will also be a root of at least the same multiplicity of the function w;(4, f). Therefore, ‘”Z(a’{ ) g
an entire function of 4. According to Lemmas 8 and 10, there exist a constant C and a sequence of

unbounded expanding contours vy, such that for p € vy,

Q)3(p3,f) < £
A®) T el

This assessment implies the equality

(U3(p3,f) -0
Apd) |

Next, using standard methods, applying Mittag-Lefller’s theorems, the maximum principle, and
Liouville’s theorem, we obtain that

lim max

n—oo

w34, f)=0 mall 1€C.

Thus, for all A € C, the identity
1
f F(X)e3(x, Ddx =0 (3.9)
0

holds, where ¢3(x, A) is the solution to the Cauchy problem

244

@3 (X) + pr(x)@3(x) + po(X)p3(x) = Ap3(x), 0 <x <1,

3(0,1) = —1,90'3(0, A) = —ayy, 90'3/(0, A) = —ay.

Because the initial data does not depend on A, the following statement is true:
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Lemma by Shkalikov [16]. If, for some summable function f(x), the following identity holds:
1
f F(X)ps(x, Ddx =0,
0

where the function ¢3(x, 4) is the solution to the Cauchy problem with nonzero initial data that do not
depend on 4, then f(x) = 0 almost everywhere on (0, 1).

From Shkalikov’s lemma, it follows that f(x) = 0O almost everywhere on (0,1). Thus, the
completeness of the system of root functions of the operator K in the space L,(0, 1) is proven. O

4. Conclusions

In the first part of the article, integral representations of solutions to a single-valued third-order
linear differential equation with variable coefficients are obtained. Then, Birchhoff-irregular boundary
conditions are considered, and the completeness of the system of root functions of the corresponding
boundary value problem for a linear differential equation with variable coefficients is proven. The
proof is based on a detailed asymptotic analysis of the characteristic determinant and interpolation
solutions of a homogeneous third-order linear differential equation. The interpolation solutions are
entire functions of the spectral parameter, and they interpolate the system of root functions of the
boundary value problem.
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