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complex spectral parameter is constructed. Unlike the classical approach by Marchenko, the obtained
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behavior, and its relation to root functions are analyzed. It is proved that the root function system is
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1. Introduction and formulation of the main result

When solving inverse scattering problems, Marchenko introduced a method using transformation
operators, which furthered the study and theory of inverse problems. Let us recall the theorem on
transformation operators from Marchenko’s monographs [1].

Theorem 1. Let q(x) be an arbitrary complex-valued function from the space L2(0, 1) and λ- be any
complex number. Solutions y1(x, λ), y2(x, λ) of the equation −y′′(x) + q(x)y(x) = λy(x), 0 < x < 1
given initial data y1(0) = y′2(0) = 1, y′1(0) = y2(0) = 0 can be represented in the form of

y1(x, λ) = y10(x, λ) +

x∫
0

K1(x, t)y10(t, λ)dt, y2(x, λ) = y20(x, λ) +

x∫
0

K2(x, t)y20(t, λ)dt,

at some continuous functions K1(x, t),K2(x, t). Here, the continuous functions K1(x, t),K2(x, t) are
independent of λ, and y10(x, λ) = cos

√
λx, y20(x, λ) = sin

√
λx

√
λ

.
This paper gives an integral representation of solutions of third-order linear differential equations.
Let us denote by y1(x), y2(x), y3(x) solutions of a homogeneous equation

y′′′(x) + p1(x)y′(x) + p0(x)y(x) = λy(x), 0 < x < 1 (1.1)

subject to the initial Cauchy conditions at x = 0

y(k−1)
j (0) = δk j, k, j = 1, 2, 3. (1.2)

Note that the functions yk(x, λ), k = 1, 2, 3 represent entire functions of λ. Consider the case when
p1(x) = p0(x) = 0. In this case, the fundamental system of solutions has a simpler form. To write it
out, we introduce the following notations:

θ0 = 1, θ1 = −
1
2

+ i

√
3

2
, θ2 = −

1
2
− i

√
3

2
.

Then, when p1(x) = p0(x) = 0, we will reduce the fundamental system of solutions to the form

y30(x, λ) =
1

3
3√
λ2

(
θ0eθ0

3√
λx + θ1eθ1

3√
λx + θ2eθ2

3√
λx
)
,

y20(x, λ) = y′30(x, λ), y10(x, λ) = y′′30(x, λ).

Similar solutions were introduced and used in the works of Zolotarev [2, 3]. Referring to the above
work, we conclude the main assertion of the article.

Theorem 2. Let p1(x) ∈ C1[0, 1], p0(x) ∈ C[0, 1]. Then for k = 2, 3 there exist such functions
Rk(x, τ, t), S k(x, τ, t), such that the integral representation is valid for all complex λ:

yk(x, λ) = yk0(x, λ) +

x∫
0

dτ

x−τ∫
0

Rk(x, τ, t)yk0(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S k(x, τ, t)yk0(t + θ1τ, λ)dt, (1.3)

AIMS Mathematics Volume 11, Issue 1, 2702–2721.



2704

where Rk(x, τ, t), S k(x, τ, t)-independent of λ.
Also, there exists a pair of functions R1(x, τ, t), S 1(x, τ, t) such that the following representation is

true:

y1(x, λ) =y10(x, λ) + p1(0)y30(x, λ) +

x∫
0

dτ

x−τ∫
0

R1(x, τ, t)y10(t + τ, λ)dt

+

x∫
0

dτ

x−τ∫
0

S 1(x, τ, t)y10(t + θ1τ, λ)dt, (1.4)

where we have R1(x, τ, t), S 1(x, τ, t)-independent of λ.

If in the representations (1.3) and (1.4) of the functions S k(x, τ, t), k = 1, 2, 3 are identically zero,
then the representations from Theorem 2 coincide with the representations from Theorem 1. This is
possible only when p1(x), p0(x) holomorphically continues from the segment [0, 1] to the complex
plane.

In the case of nonholomorphism of the coefficients p1(x) and p0(x), the representations (1.3)
and (1.4) are essentially different from those of Theorem 1. For ordinary differential equations of order
greater than two, the transformation operator was first constructed by Fage [4] and also independently
by Delsarte and Lions [5]. Then, other derivations of the transformation operator of the indicated type
were proposed by [6–8]. The formulas obtained in these works have a more complex structure. In this
case, the transformation operator was first obtained by Sakhnovich [9], and then a more accurate result
belongs to Khachatryan [10], Khachatryan proved that if the coefficients of a differential equation are
holomorphic in some quadrangle, then the corresponding integral representation holds. The question
of the necessity of the condition of holomorphy of the coefficients of a differential equation of order
n for the existence of transformation operators was discussed in [11–13]. In particular, Malamud
proved that if there is a transformation operator of a certain type and some of the coefficients qk(x)
are holomorphic, then the remaining coefficients also necessarily possess the holomorphic property.
The search for a Lax pair for the nonlinear Camassa–Holm and Degasperis–Procesi equations leads to
the study of the spectral properties of third-order linear differential operators. A fairly detailed study
of third-order operators based on the special mathematical apparatus of p-hyperbolic functions can
be found in the works of Zolotarev [2, 3, 14]. In contrast to our work, in his works, the presence of
an imaginary unit in the highest third-order derivative allows one to identify classes of nonlocal self-
adjoint operators. Self-adjoint third-order operators have various physical applications. In particular,
their systems of eigenfunctions are always complete in the original space. In our case, we specifically
study non-self-adjoint boundary value problems, because the completeness of the root functions of
such operators is of particular interest.

2. Supporting statements and proof of Theorem 2

Let us recall some simple statements.

Lemma 1. The identity at k = 1, 2, 3 is

y10(τ, λ)yk0(t, λ) =
1
3

(yk0(t + θ0τ, λ) + yk0(t + θ1τ, λ) + yk0(t + θ2τ, λ)),
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y10(x) = y10(θ1x) = y10(θ2x), y20(θ1x) = θ1y20(x), y20(θkx) = θky20(x),

y20(θ2x) = θ2y20(x), y30(θ1x) = θ2
1y30(x), y30(θ2x) = θ2

2y30(x).

In the works of Zolotarev [2,3], one can find additional formulas about the solutions of yk0(x, λ) under
k = 1, 2, 3. Lemma 1 contains only those formulas that we will use in the future.

Lemma 2. The general solution of the inhomogeneous linear differential equation of the third order

y′′′(x) − λy(x) = F(x)

is defined by the following formula:

y(x, λ) = C1y10(x, λ) + C2y20(x, λ) + C3y30(x, λ) +

x∫
0

∣∣∣∣∣∣∣∣∣
y10(t, λ) y20(t, λ) y30(t, λ)
y′10(t, λ) y′20(t, λ) y′30(t, λ)
y10(x, λ) y20(x, λ) y30(x, λ)

∣∣∣∣∣∣∣∣∣ F(t)dt,

where F(x) – is a given function.
Thus, substituting instead of F(x) the expression −p1(t)y′(x, λ)− p0(t)y(t, λ) in Lemma 2, the general

solution of the problem (1.1)-(1.2) can be written in the following form:

y(x, λ) = C1y10(x, λ) + C2y20(x, λ) + C3y30(x, λ) + C1 p1(0)y30(x, λ)

+

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)y(t, λ)dt, (2.1)

where T (x − τ, t) = x−t−τ
1!

(
p′1(t) − p0(t)

)
− p1(t).

In this paper, we discover the dependence of yk(x, λ), k = 1, 2, 3 on the spectral parameter. It
follows from relations (1.3) that they are solutions of the Volterra integral equations of the second
kind,

y1(x, λ) = y10(x, λ) + p1(0)y30(x, λ) +

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)y1(t, λ)dt,

y2(x, λ) = y20(x, λ) +

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)y2(t, λ)dt,

y3(x, λ) = y30(x, λ) +

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)y3(t, λ)dt.

We solve the Volterra integral equations by the Picard method. Let us introduce the functions

χ10(x, λ) = y10(x, λ) + p1(0)y30(x, λ), χk0(x, λ) = yk0(x, λ), k = 2, 3.

From the general theorems on integral equations, it follows that at k = 1, 2, 3,

yk(x, λ) = χk0(x, λ) +

∞∑
j=1

χk j(x, λ).
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The elements of the series are calculated by the formulas

χk j(x, λ) =

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)χk j−1(t, λ)dt, j > 0.

Let λ ∈ K, where K is a compact set in the complex plane. Then, for all x ∈ [0, 1], the estimate
|χk j(x, λ)| ≤ M · N · m · x j+1

( j+1)! holds for j ≥ 1, where

M = max
0≤x≤1

(
|p′1(x)| + |p0(x)| + |p1(x)|

)
,

N = max
0≤x≤1
λ∈K

|y10(x, λ)|,

mk = max
0≤x≤1
λ∈K

|χk0(x, λ)|.

From the given estimates, it follows that the given series converge uniformly on the corresponding
compact sets. Our goal is to obtain a unified integral representation for iterations χk j(x, λ), j > 1.
It becomes apparent that the first two terms, χk0(x, λ), χk1(x, λ), can have individual representations.
However, starting from the term χk2(x, λ), there is a single universal form of writing for all χk j(x, λ),
j > 1.

Lemma 3. At k = 1, 2, 3, the identity

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)yk0(t, λ)dt

=

x∫
0

dτ

x−τ∫
0

1
3

T (x − τ, t)yk0(t + τ, λ)dt

×

x∫
0

dτ

x−τ∫
0

1
3

(
T (x − τ, t) + θ2k+1

1 T (x − τ, t)
)
yk0(y + θ1τ, λ)dt

is valid.

In the derivation of Lemma 3, the relations from Lemma 1 are taken into account.
According to Lemma 3, when k = 2, 3, we have

χk1(x, λ) =

x∫
0

dτ

x−τ∫
0

Rk1(x, τ, t)yk0(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S k1(x, τ, t)yk0(t + θ1τ, λ)dt,

where
Rk1(x, τ, t) =

1
3

T (x − τ, t),

S k1(x, τ, t) =
1
3

(
T (x − τ, t) + θ2k+1

1 T (x − t, τ)
)
.

AIMS Mathematics Volume 11, Issue 1, 2702–2721.



2707

Now, at k = 2, 3, we find representations for subsequent iterations,

χk2(x, λ) =

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)dt

t∫
0

dσ

t−σ∫
0

Rk1(x, σ, ω)yk0(ω + σ, λ)dω

+

x∫
0

dτ

x−τ∫
0

T (x − τ, t)y10(τ, λ)dt

t∫
0

dσ

t−σ∫
0

S k1(x, σ, ω)yk0(ω + σ, λ)dω.

Changing the order of integration, we obtain the representation

χk2(x, λ) =

x∫
0

dτ

x−τ∫
0

dσ

x−τ−σ∫
0

Rk2(x, τ, σ, ω)y10(τ, λ)yk0(ω + σ, λ)dω

+

x∫
0

dτ

x−τ∫
0

dσ

x−τ−σ∫
0

S k2(x, τ, σ, ω)y10(τ, λ)yk0(ω + θ1σ, λ)dω,

where

Rk2(x, τ, σ, ω) =

x−τ∫
σ+ω

T (x − τ, t)R̃k1(x, σ, ω)dt,

S k2(x, τ, σ, ω) =

x−τ∫
σ+ω

T (x − τ, t)S̃ k1(t, σ, ω)dt.

According to Lemma 1, we have

y10(τ, λ)yk0(ω + θ1σ, λ) =
1
3

(
yk0(ω + θ1σ + τ, λ) + yk0(ω + θ1σ + θ1τ, λ) + yk0(ω + θ1σ + θ2τ, λ)

)
.

Let us transform the integral

x∫
0

dτ

x−τ∫
0

dσ

x−τ−σ∫
0

1
3

S k2(x, τ, σ, ω)
[
yk0(ω+ θ1σ+ τ, λ) + yk0(ω+ θ1σ+ θ1τ, λ) + yk0(ω+ θ1σ+ θ2τ, λ)

]
dω.

Let us separately calculate the integral of

x∫
0

dτ

x−τ∫
0

dσ

x−τ−σ∫
0

1
3

S k2(x, τ, σ, ω)yk0(ω + τ + θ1σ, λ)dω

=

x∫
0

dτ

x−τ∫
0

dσ

x−σ∫
0

1
3

S k2(x, τ, σ, ω − τ)yk0(ω + θ1σ, λ)dω

=

x∫
0

dω

x−ω∫
0

yk0(ω + θ1, λ)dσ

σ∫
0

1
3

S k2(x, τ, σ, ω − τ)dτ.
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Similarly, we obtain

x∫
0

dτ

x−τ∫
0

dσ

x−τ−σ∫
0

1
3

S k2(x, τ, σ, ω)yk0(ω + θ1(σ + τ), λ)dω

=

x∫
0

dτ

x−τ∫
0

dω

x−σ∫
τ

1
3

S k2(x, τ, σ − τ, ω)yk0(ω + θ1σ, λ)dσ

=

x∫
0

dω

x−ω∫
0

yk0(ω + θ1σ, λ)dσ

σ∫
0

1
3

S k2(x, τ, σ − τ, ω)dτ.

Now, let us calculate a more complicated integral,

I =

x∫
0

dτ

x−τ∫
0

dσ

x−τ−σ∫
0

1
3

S k2(x, τ, σ, ω)yk0(ω + θ2σ + θ4τ, λ)dω

=

x∫
0

dτ

x−τ∫
0

dσ

x−τ−ω∫
0

1
3

S 2(x, τ, σ, ω)yk0

(
ω −

1
2

(σ + τ) + i

√
3

2
(σ − τ), λ

)
dω.

We introduce new variables (X,Y) instead of variables (τ, σ). Also, X = ω− 1
2 (σ+τ), Y =

√
3

2 (σ−τ).
Then, τ = ω − X − 1

√
3
Y , σ = ω − X + 1

√
3
Y , dτdσ = − 2

√
3
dXdY .

I =

$
P(x)

1
3

S k2

(
x, ω − X −

1
√

3
Y, ω − X +

1
√

3
Y, ω

)
yk0(X + iY, λ)(−

2
√

3
)dXdYdω.

Here, P(x) is the image of the pyramid {(τ, σ, ω) : τ ≥ 0, σ ≥ 0, ω ≥ 0, σ + τ + ω ≤ x} in the new
variables (X,Y, ω). Let us represent the pyramid P(x) as the union of three nonintersecting pyramids,
P1(x), P2(x), P3(x). Then,

I = −
2
√

3

$
P1(x)

1
3

S k2

(
x, ω − X −

1
√

3
Y, ω − X +

1
√

3
Y, ω

)
yk0(X + iY, λ)dXdYdω

−
2
√

3

$
P2(x)

1
3

S k2

(
x, ω − X −

1
√

3
Y, ω − X +

1
√

3
Y, ω

)
yk0(X + iY, λ)dXdYdω

−
2
√

3

$
P3(x)

1
3

S k2

(
x, ω − X −

1
√

3
Y, ω − X +

1
√

3
Y, ω

)
yk0(X + iY, λ)dXdYdω.

Let us denote the first integral by I1 and transform it as follows. We introduce new variables (τ, σ)
instead of variables (X,Y). Now, X = −1

2τ −
1
2σ, Y =

√
3

2 τ −
√

3
2 σ, then dXdY =

√
3

2 dτdσ. As a result,
we have

I1 = −

x∫
0

dτ

x−τ∫
0

yk0(θ2σ + θ1τ, λ)dσ

x
3 +σ+τ

2∫
0

1
3

S k2(x, ω + σ,ω + τ, ω)dω.
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Thus, the integral representation is valid:

I1 =

x∫
0

dτ

x−τ∫
0

S k3(x, τ, σ)yk0(θ2σ + θ1τ, λ)dσ =

x∫
0

dτ

x−τ∫
0

S k3(x, τ, σ)yk0(θ2(σ + θ2τ), λ)dσ,

where we have S k3(x, τ, σ)-independent of λ. From Lemma 1, a new integral representation follows:

I1 =

x∫
0

dτ

x−τ∫
0

θ2k+1
2 S k3(x, τ, σ)yk0(σ + θ2τ, λ)dσ.

In the second integral, I2, the variables (τ, σ) and (X,Y) are related as follows: X = τ− 1
2σ, Y = −

√
3

2 σ.
Hence,

I2 =

x∫
0

dτ

x−τ∫
0

S k4(x, τ, σ)yk0(θ2σ + τ, λ)dσ

=

x∫
0

dτ

x−τ∫
0

S k4(x, τ, σ)yk0(θ2(σ + θ1τ), λ)dσ

=

x∫
0

dτ

x−τ∫
0

θ2k+1
2 S k4(x, τ, σ)yk0(σ + θ1τ), λ)dσ,

where we have S k4(x, τ, σ)-independent of λ.
In the third integral, I3, the variables (τ, σ) and (X,Y) are related as follows: X = τ− 1

2σ, Y =
√

3
2 σ.

Hence,

I3 =

x∫
0

dτ

x−τ∫
0

S k5(x, τ, σ)yk0(θ1σ + τ, λ)dσ =

x∫
0

dτ

x−τ∫
0

S k5(x, σ, τ)yk0(σ + θ2τ, λ)dσ,

where we have S k5(x, τ, σ)-independent of λ.
Thus, the integral I has an integral representation

I =

x∫
0

dτ

x−τ∫
0

S k6(x, τ, σ)yk0(σ + θ2τ, λ)dσ,

where we have S k6(x, τ, σ)-independent of λ.
Ultimately, for the χk2(x, λ), we obtain the integral representation

χk2(x, λ) =

x∫
0

dτ

x−τ∫
0

R̃k2(x, τ, t)yk0(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S̃ k2(x, τ, t)yk0(t + θ2τ, λ)dt,

where we have R̃k j(x, τ, t), S̃ k j(x, τ, t)-independent of λ. Note that the functions R̃k j(x, τ, t), S̃ k j(x, τ, t)
depend on the coefficients p0(x), p1(x) and can be defined recursively. Their specific form is not
specified in this paper due to space limitations.

The statement of Theorem 2 follows from the latter notion.
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3. Theorems on the completeness of the system of root functions of a third-order differential
operator on a segment

Differential operators with a discrete spectrum are an important source of root function systems.
Thus, reversible operators give rise to minimal systems in the corresponding functional g-spaces. The
root function systems of self-adjoint operators are orthogonal complete systems. However, self-adjoint
differential operators are a rather narrow class of operators with complete root function systems. In this
section, we study the completeness of root functions of third-order differential operators on a segment
with general boundary conditions, which are not self-adjoint and sometimes irreversible.

In the function space L2(0, 1), consider a differential operator K given by the linear differential
expression

Ky ≡ y(3)(x) + p1(x)y(1)(x) + p0(x)y(x), 0 < x < 1,

in the field of definition

y ∈ D(K) ≡
{
y ∈ W3

2 [0, 1] : U j(y) = 0, j = 1, 3
}
,

where y ∈ W3
2 [0, 1]–Sobolev space. Here, pk(x) are the coefficients of the differential expression of

k over times continuously differentiable [0, 1] functions. The boundary forms U1(y),U2(y),U3(y) are
defined as follows:

U1(y) = y(2)(0) + α11y(0),

U2(y) = y(1)(0) + α21y(0),

U3(y) = y(2)(1) + β32y(1)(1) + β31y(1) + α31y(0),

where α11, α21, α31, β31, β32-are arbitrary complex numbers.
The purpose of this paper is to investigate the completeness of the system of root functions of the

operator K in the function space L2(0, 1). The most complete results in this direction are obtained
in the case of second-order differential operators. In [1], the completeness of root functions in
the case of nondegenerate boundary conditions in the sense of Marchenko was proved. Moreover,
the completeness of root functions for nondegenerate boundary conditions does not depend on the
coefficients of the differential expression generating the operator. In [4], the completeness of the system
of root functions of linear differential operators of the second order in the case of degenerate boundary
conditions was investigated. It was shown that in this case, the completeness of the system of root
functions depends not only on the J matrix of boundary coefficients, but also on the coefficients of the
differential expression. Similar questions for second-order differential operators were studied in [5].

The completeness of the system of root functions of linear differential operators of higher orders
is guaranteed in the case of regular boundary conditions in the sense of Birchhoff [6]. Moreover, the
completeness of the root functions for regular boundary conditions in the sense of Birchhoff does not
depend on pk(x) of the coefficients of the differential expression. The case of irregular and decaying
boundary conditions for the completeness of the system of root functions was studied in the work of
Shkalikov [7].

We are interested in finding an analog of nondegenerate boundary conditions for the operator K,
extending the class of regular Birchhoff boundary conditions and preserving the completeness of the
system of eigenfunctions and adjoint functions in the space L2(0, 1) [15].

Now let us formulate the main conclusion of this section.
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Theorem 3. Let p1(x) ∈ C1[0, 1], p0(x) ∈ C[0, 1], and α11, α21, α31, β31, β32 – be arbitrary complex
numbers. Then, the system of eigenfunctions and adjoint functions of the operator K is complete in the
space L2(0, 1).

Let us denote by y1(x), y2(x), y3(x) the solutions of the homogeneous equation

l(y) ≡ y(3)(x) + p1(x)y(1)(x) + p0(x)y(x) = λy(x), 0 < x < 1,

subject to the Cauchy initial conditions at x = 0:

y(k−1)
j (0) = δk j, k, j = 1, 2, 3.

Note that the functions yn(x, λ), n = 1, 2, 3 represent integer functions of λ.
We denote the formally conjugate differential expression by

l+(z) ≡ −z(3)(x) − p1(x)z(1)(x) +
(
− p(1)

1 (x) + p0(x)
)
z(x).

By zk(x), k = 1, 2, 3, we denote the solutions of the homogeneous conjugate equation

l+(z) = λz(x), 0 < x < 1 (3.1)

with Cauchy conditions at x = 0

z1(0) = 0, z2(0) = 0, z3(0) = 1,
z(1)

1 (0) = 0, z(1)
2 (0) = −1, z(1)

3 (0) = 0,
z(2)

1 (0) = 1, z(2)
2 (0) = 0, z(2)

3 (0) = −p1(0).
(3.2)

Note that the solutions zk(x, λ), k = 1, 2, 3 depend on the spectral parameter λ. The functions
zk(x, λ), k = 1, 2, 3 represent entire functions of λ.

We denote the Wronski matrix of the fundamental system of solutions y1(x), y2(x), y3(x) by

Y(x, λ) =


y1(x, λ) y2(x, λ) y3(x, λ)
y′1(x, λ) y′2(x, λ) y′3(x, λ)
y′′1 (x, λ) y′′2 (x, λ) y′′3 (x, λ)

 .
Because det Y(x, λ) = 1 for all x ∈ [0, 1], the Wronski matrix is invertible. By the fundamental system
of solutions zk(x, λ), k = 1, 2, 3, we introduce the Wronski matrix Z(x, λ). Then, the matrix identity(

Y(x, λ)
)T

Q(x)Z(x, λ) =
(
Y(0, λ)

)T
Q(0)Z(0, λ),

follows from the Lagrange formula [6], where Q(x) =


p1(0) 0 1

0 −1 0
1 0 0

 . Given a special choice of

systems of fundamental solutions zk(x, λ), yk(x, λ), k = 1, 2, 3 from the last identity, we have(
Y(x, λ)

)−1
=

(
Z(x, λ)

)T (
Q(x)

)T
.
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Thus, the elements of the inverse matrix can be written out through the solutions of the conjugate
equation. In fact, the elements of the inverse matrix are written through the second-order minors of the
Wronski matrix. Therefore, the above formula allows us to write out the second-order minors of the
Wronski matrix through the solutions of the conjugate equation,∣∣∣∣∣∣y′2(x) y′3(x)

y′′2 (x) y′′3 (x)

∣∣∣∣∣∣ = z′′1 (x, λ) + p1(x)z1(x, λ),∣∣∣∣∣∣y2(x) y3(x)
y′′2 (x) y′′3 (x)

∣∣∣∣∣∣ = z′1(x, λ),∣∣∣∣∣∣y′1(x) y′3(x)
y′′1 (x) y′′3 (x)

∣∣∣∣∣∣ = −z′′2 (x, λ) − p1(x)z2(x, λ),∣∣∣∣∣∣y1(x) y3(x)
y′′1 (x) y′′3 (x)

∣∣∣∣∣∣ = −z′2(x, λ),∣∣∣∣∣∣y′1(x) y′2(x)
y′′1 (x) y′′2 (x)

∣∣∣∣∣∣ = −z′′3 (x, λ) − p1(x)z3(x, λ),∣∣∣∣∣∣y1(x) y2(x)
y′′1 (x) y′′2 (x)

∣∣∣∣∣∣ = z′3(x, λ),∣∣∣∣∣∣y2(x) y3(x)
y′2(x) y′3(x)

∣∣∣∣∣∣ = z1(x, λ),∣∣∣∣∣∣y1(x) y3(x)
y′1(x) y′2(x)

∣∣∣∣∣∣ = −z2(x, λ),∣∣∣∣∣∣y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣∣ = z3(x, λ).

Now, consider the characteristic determinant

∆(λ) =

∣∣∣∣∣∣∣∣∣
α11 0 1
α21 1 0

U3(y1) U3(y2) U3(y3)

∣∣∣∣∣∣∣∣∣ .
The following auxiliary statements are useful. For this purpose, let us introduce the following

notations.

Lemma 4. For any p1 ∈ C1[0, 1], p0 ∈ C[0, 1], the characteristic determinant ∆(λ) has the following
representation:

∆(λ) = −α31 + α11β31y3(1, λ) + α11β32y′3(1, λ) + α11y′′3 (1, λ) + α21β31y2(1, λ) + α21β32y′2(1, λ)+

+α21y′′2 (1, λ) − β31y1(1, λ) − β32y′1(1, λ) − y′′1 (1, λ).

Thus, we have found a general representation of the characteristic determinant. So far, we have
considered that the coefficients p1(x), p0(x) are arbitrary smooth functions. Now, consider the case
where p1(x), p0(x) = 0. In this case, the characteristic determinant ∆0(λ) has a simpler form. Given
the above relations and the result of Lemma 4, we obtain the following representation:
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∆0(λ) = − α31 + (α11β31 + λα21 − λβ32)y30(1, λ)
+ (α11β32 + α21β31 − λ)y20(1, λ) + (α11 + α21β32 − β31)y10(1, λ).

Note [6] that the zeros of the characteristic determinant ∆(λ) represent all eigenvalues of the
operator K. Moreover, the multiplicity of zero coincides with the algebraic multiplicity of the
eigenvalue. Let us introduce the function ϕ3(x, λ) as a determinant, which is obtained from the
characteristic determinant

ϕ3(x, λ) =

∣∣∣∣∣∣∣∣∣
α11 0 1
α21 1 0

y1(x) y2(x) y3(x)

∣∣∣∣∣∣∣∣∣ .
Let λ = λ0- be an eigenvalue of the operator K with algebraic multiplicity m+1. It is known [6] that

the function ϕ3(x, λ) at fixed x is an integer function of the spectral parameter λ. Then, in the ordered
set

{
ϕ3(x, λ0), ∂ϕ3(x,λ0)

∂λ
... 1

m!
∂mϕ3(x,λ0)

∂λm

}
, the first nonzero function is an eigenvalue, and the subsequent ones

give a chain of attached functions corresponding to the eigenvalue λ0. These sets of functions give rise
to a complete set of chains of eigenfunctions and adjoint functions corresponding to the eigenvalue λ0.
Therefore, the functions ϕ3(x, λ) introduced by us play the role of an interpolating function. The facts
given by us are known [6].

Lemma 5. For all f (x) ∈ L2(0, 1), the following limit equality is true:

(1) At −π3 <
3√
λ < π

3 : lim
|λ|→∞

e−Re 3√
λ

1∫
0

f (x)y10(x, λ)dx = 0;

(2) At π
3 <

3√
λ < π : lim

|λ|→∞
e−Reθ2

3√
λ

1∫
0

f (x)y10(x, λ)dx = 0;

(3) At π < 3√
λ < 5π

3 : lim
|λ|→∞

e−Reθ1
3√
λ

1∫
0

f (x)y10(x, λ)dx = 0.

Proof of Lemma 5. The set C1(0, 1) of continuously differentiable functions on the segment [0, 1] is
dense in the space L2(0, 1). For any function f (x) ∈ L2(0, 1) and arbitrary ε > 0, there exists a function
gε(x) ∈ C1(0, 1), such that

1∫
0

∣∣∣∣ f (x) − gε(x)
∣∣∣∣dx < ε.

Because
1∫

0

f (x)y10(x, λ)dx =

1∫
0

{ f (x) − g(x)ε}y10(x, λ)dx +

1∫
0

gε(x)y10(x, λ)dx

=

1∫
0

{ f (x) − gε(x)}y10(x, λ)dx + gε(1)
1
3

( 1

θ0
3√
λ

e
3√
λθ0 +

1

θ1
3√
λ

e
3√
λθ1 +

1

θ2
3√
λ

e
3√
λθ2

)

−

1∫
0

g′ε(1)
1
3

( 1

θ0
3√
λ

e
3√
λθ0 x +

1

θ1
3√
λ

e
3√
λθ1 x +

1

θ2
3√
λ

e
3√
λθ2 x

)
dx
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=

1∫
0

{
f (x) − g(x)ε

}
y10(x, λ)dx

+
3√
λ
−1

{
gε(1)

1
3

(
θ0e

3√
λθ0 + θ2e

3√
λθ1 + θ1e

3√
λθ2

)

−

1∫
0

g′ε(1)
1
3

(
θ0e

3√
λθ0 + θ2e

3√
λθ1 + θ1e

3√
λθ2

)
dx

}
,

if at −π3 <
3√
λ < π

3 , then Reθ1 < Reθ2 < Reθ0, and for all x ∈ [0, 1], the estimates |y10(x, λ)| ≤ eRe 3√
λ, are

satisfied, then∣∣∣∣∣∣
1∫

0

f (x)y10(x, λ)dx

∣∣∣∣∣∣ ≤ eRe 3√
λ

[ 1∫
0

| f (x) − gε(x)|dx + |
3√
λ|−1

{
|gε(1)| +

1∫
0

|gε(x)|dx
}]
.

Therefore,

lim
|λ|→∞

e−Re 3√
λ

1∫
0

f (x)y10(x, λ)dx = 0.

Similar estimates are proved in the remaining sectors. Therefore, Lemma 5 is proved. �

Lemmas 6 and 7 are proved in the same way.

Lemma 6. For all f (x) ∈ L2(0, 1), the following limit equality is true:

(1) At −π3 < arg 3√
λ < π

3 : lim
|λ|→∞

3√
λe−Re 3√

λ
1∫

0
f (x)y20(x, λ)dx = 0;

(2) At π
3 < arg 3√

λ < π : lim
|λ|→∞

3√
λe−Reθ2

3√
λ

1∫
0

f (x)y20(x, λ)dx = 0;

(3) At π < arg 3√
λ < 5π

3 : lim
|λ|→∞

3√
λe−Reθ1

3√
λ

1∫
0

f (x)y20(x, λ)dx = 0.

Lemma 7. For all f (x) ∈ L2(0, 1), the following limit equality is true:

(1) At −π3 <
3√
λ < π

3 : lim
|λ|→∞

3√
λ2e−Re

3√
λ2

1∫
0

f (x)y30(x, λ)dx = 0;

(2) At π
3 <

3√
λ < π : lim

|λ|→∞

3√
λ2e−Reθ2

3√
λ2

1∫
0

f (x)y30(x, λ)dx = 0;

(3) At π < 3√
λ < 5π

3 : lim
|λ|→∞

3√
λ2e−Reθ1

3√
λ2

1∫
0

f (x)y30(x, λ)dx = 0.

Now, we will show how the following statement follows from Lemmas 5–7.

Lemma 8. For all f (x) ∈ L2(0, 1), the limit equality is valid for k = 1, 2, 3:

(1) At −π3 <
3√
λ < π

3 : lim
|λ|→∞

( 3√
λ)k−1e−Re 3√

λ
1∫

0
f (x)yk(x, λ)dx = 0;
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(2) At π
3 <

3√
λ < π : lim

|λ|→∞
( 3√
λ)k−1e−Reθ2

3√
λ

1∫
0

f (x)yk(x, λ)dx = 0;

(3) At π < 3√
λ < 5π

3 : lim
|λ|→∞

( 3√
λ)k−1e−Reθ1

3√
λ

1∫
0

f (x)yk(x, λ)dx = 0.

Proof of Lemma 8. For k = 3 and for −π3 <
3√
λ < π

3 , the set C1(0, 1) of continuously differentiable
functions on the segment [0, 1] is dense in the space L2(0, 1). For any function f (x) ∈ L2(0, 1) and
arbitrary ε > 0, there exists a function gε(x) ∈ C1(0, 1) such that

1∫
0

| f (x) − gε(x)|dx < ε.

Because
1∫

0

f (x)y3(x, λ)dx =

1∫
0

{ f (x) − gε(x)}y3(x, λ)dx +

1∫
0

gε(x)y3(x, λ)dx, (3.3)

Theorem 2 implies the representation

y3(x, λ) = y30(x, λ) +

x∫
0

dτ

x−τ∫
0

R3(x, τ, t)y30(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S 3(x, τ, t)y30(t + θ1τ, λ)dt. (3.4)

Substitute expression (3.3) into Eq (3.4). As a result, we obtain

1∫
0

f (x)y3(x, λ)dx =

1∫
0

{ f (x) − gε(x)}y30(x, λ)dx +

1∫
0

gε(x)y30(x, λ)dx +

1∫
0

{ f (x) − gε(x)}

×

( x∫
0

dτ

x−τ∫
0

R3(x, τ, t)y30(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S 3(x, τ, t)y30(t + θ1τ, λ)dt
)
dx

+

1∫
0

gε(x)
( x∫

0

dτ

x−τ∫
0

R3(x, τ, t)y30(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S 3(x, τ, t)y30(t + θ1τ, λ)dt
)
dx.

In proving Lemma 7 for the expression
1∫

0
{ f (x) − gε(x)}y30(x, λ)dx +

1∫
0

gε(x)y30(x, λ)dx, an upper

bound was obtained for λ → ∞. Now, we will separately estimate the modulus of the following
expression:

|I1| =

∣∣∣∣∣∣
1∫

0

{ f (x) − gε(x)}
( x∫

0

dτ

x−τ∫
0

R3(x, τ, t)y30(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S 3(x, τ, t)y30(t + θ1τ, λ)dt
)
dx

∣∣∣∣∣∣
≤

1∫
0

| f (x) − gε(x)|dx

x∫
0

dτ

x−τ∫
0

|R3(x, τ, t)||y30(t + τ, λ)|dt
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+

1∫
0

| f (x) − gε(x)|dx

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)||y30(t + θ1τ, λ)|dt.

Let −π3 < arg 3√
λ < π

3 and λ→ ∞. Let us estimate the modulus of the expression

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)||y30(t + θ1τ, λ)|dt

≤

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)|
1

3|
3√
λ2|

(
|eθ0

√
λ(t+θ1τ)| + |eθ1

√
λ(t+θ1τ)| + |eθ2

√
λ(t+θ1τ)|

)
dt

=

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)|
1

3|
3√
λ2|

(
eRe(θ0

√
λ(t+θ1τ)) + eRe(θ1

√
λ(t+θ1τ)) + eRe(θ2

√
λ(t+θ1τ))

)
dt (3.5)

from above. At −π3 < arg 3√
λ < π

3 , Reρθ1 ≤ Reρθ2 ≤ Reρθ0 holds; therefore,

eRe(θ0ρ(t+θ1τ)) = eRe(θ0ρt)eRe(θ0ρ(θ1τ) ≤ etReρeτReρ ≤ e(t+τ)Reρ.

Because 0 ≤ t + τ ≤ x, the following inequality holds:

e(t+τ)Reρ ≤ exReρ.

From the last inequality and inequality (3.5), the final inequality follows:

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)||y30(t + θ1τ, λ)|dt ≤
exReρ

|
3√
λ2|

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)|dt. (3.6)

Let ρ3 = λ. It is assessed in the same way:

x∫
0

dτ

x−τ∫
0

|R3(x, τ, t)||y30(t + τ, λ)|dt ≤
exReρ

|
3√
λ2|

x∫
0

dτ

x−τ∫
0

|R3(x, τ, t)|dt. (3.7)

Using inequalities (3.6) and (3.7), inequality (3.5) implies that

|I1| ≤

1∫
0

| f (x) − gε(x)|dx
exReρ

|
3√
λ2|

x∫
0

dτ

x−τ∫
0

|R3(x, τ, t)|dt

+

1∫
0

| f (x) − gε(x)|dx
exReρ

|
3√
λ2|

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)|dt

≤
exReρ

|
3√
λ2|

1∫
0

| f (x) − gε(x)|dx

x∫
0

dτ

x−τ∫
0

|R3(x, τ, t)|dt

AIMS Mathematics Volume 11, Issue 1, 2702–2721.



2717

+
exReρ

|
3√
λ2|

1∫
0

| f (x) − gε(x)|dx

x∫
0

dτ

x−τ∫
0

|S 3(x, τ, t)|dt.

To evaluate I2, we need

I2 =

1∫
0

gε(x)
( x∫

0

dτ

x−τ∫
0

R3(x, τ, t)y30(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S 3(x, τ, t)y30(t + θ1τ, λ)dt
)
dx

preliminarily integrate by parts and then perform estimates similar to (3.5)–(3.7).
Thus, Lemma 8 is completely proven for k = 3 and for −π3 <

3√
λ < π

3 . �

The remaining cases are proven similarly. We will need one useful statement.

Lemma 9. Let Ω = {(τ, t) : τ, t ≥ 0, τ + t < 1} and N(τ, t) ∈ L2(Ω):

(1) If −π3 <
3√
λ < π

3 , then lim
|λ|→∞

ρk−1e−Reρ
1∫

0
dτ

1−τ∫
0

N(τ, t)yk0(t + θ1τ, λ)dt = 0.

(2) If π
3 <

3√
λ < π, then lim

|λ|→∞
ρk−1e−Reθ2ρ

1∫
0

dτ
1−τ∫
0

N(τ, t)yk0(t + θ1τ, λ)dt = 0.

(3) If π < 3√
λ < 5π

3 , then lim
|λ|→∞

ρk−1e−Reθ1ρ
1∫

0
dτ

1−τ∫
0

N(τ, t)yk0(t + θ1τ, λ)dt = 0.

The proof of Lemma 9 is similar to the proof of Lemma 8. Now, let us estimate the modulus of the
characteristic determinant from below as λ→ ∞.

Lemma 10. When λ→ ∞, the characteristic determinant has asymptotic representations

∆(λ) = −λy20(1, λ)(1 + o(1)).

Proof of Lemma 10. According to Lemma 4, the characteristic determinant has the form

∆(λ) = −α31 + α11β31y3(1, λ) + α11β32y′3(1, λ) + α11y′′3 (1, λ) + α21β31y2(1, λ)
+ α21β32y′2(1, λ) + α21y′′2 (1, λ) − β31y1(1, λ) − β32y′1(1, λ) − y′′1 (1, λ).

From Theorem 2, it follows that

y3(x, λ) =y30(x, λ) +

x∫
0

dτ

x−τ∫
0

R3(x, τ, t)y30(t + τ, λ)dt +

x∫
0

dτ

x−τ∫
0

S 3(x, τ, t)y30(t + θ1τ, λ)dt,

y′3(x, λ) =y′30(x, λ) +

x∫
0

dτ

x−τ∫
0

∂

∂x
R3(x, τ, t)y30(t + τ, λ)dt + y30(x, λ)

x∫
0

R3(x, τ, x − τ)dτ+

+

x∫
0

dτ

x−τ∫
0

∂

∂x
S 3(x, τ, t)y30(t + θ1τ, λ)dt +

x∫
0

S 3(x, τ, x − τ)y30(x − τ + θ1τ, λ)dτ,
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y′′3 (x, λ) =y′′30(x, λ) +

x∫
0

dτ

x−τ∫
0

∂2

∂x2 R3(x, τ, t)y30(t + τ, λ)dt + y30(x, λ)

x∫
0

∂

∂x
R3(x, τ, x − τ)dτ

+ y30(x, λ)
∂

∂x

( x∫
0

R3(x, τ, x − τ)dτ
)

+ y′30(x, λ)

x∫
0

R3(x, τ, x − τ)dτ

+

x∫
0

dτ

x−τ∫
0

∂2

∂x2 S 3(x, τ, t)y30(t + θ1τ, λ)dt +

x∫
0

∂

∂x
S 3(x, τ, x − τ)

∣∣∣∣∣∣
t=x−τ

y30(x − τ + θ1τ, λ)dτ

×

x∫
0

[
∂

∂x

(
S 3(x, τ, x − τ)

)
y30

(
x − τ + θ1τ, λ

)
+ S 3(x, τ, x − τ)y′30

(
x − τ + θ1τ, λ

)]
dτ

+ S 3(x, x, 0)y30(θ1x, λ).

Hence, using Lemma 9, as λ→ ∞, we obtain asymptotic representations of

y3(1, λ) = y30(1, λ) + |y30(1, λ)|ε31(λ),

y′3(1, λ) = y20(1, λ) + |y20(1, λ)|ε32(λ),

y′′3 (1, λ) = y10(1, λ) + |y10(1, λ)|ε33(λ),

where lim
λ→∞

ε3k(λ) = 0, k = 1, 2, 3.

Similarly, when λ→ ∞, the following asymptotic representations are obtained:

y2(1, λ) = y20(1, λ) + |y20(1, λ)|ε21(λ),
y′2(1, λ) = y10(1, λ) + |y10(1, λ)|ε22(λ),
y′′2 (1, λ) = λy30(1, λ) + |λ||y30(1, λ)|ε23(λ),
y1(1, λ) = y10(1, λ) + |y10(1, λ)|ε11(λ),
y′1(1, λ) = λy30(1, λ) + |λ||y30(1, λ)|ε12(λ),
y′′1 (1, λ) = λy20(1, λ) + |λ||y20(1, λ)|ε13(λ).

Now, using the values found, when λ→ ∞, we rewrite the characteristic determinant as

∆(λ) =∆0(λ) + α11β31y30(1, λ)ε31(λ) + α11β32y20(1, λ)ε32(λ) + α11y10(1, λ)ε33(λ)
+ α21β31y20(1, λ)ε21(λ) + α21β32y10(1, λ)ε22(λ) + α21λy30(1, λ)ε23(λ)
− β31y10(1, λ)ε11(λ) − β32λy30(1, λ)ε12(λ) − λy20(1, λ)ε13(λ).

When λ→ ∞, the characteristic determinant has asymptotic representations

∆(λ) = −λy20(1, λ)(1 + o(1)).

Thus, Lemma 10 is completely proven. �
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Proof of Theorem 3. Let M be the spectrum of operator K, that is the set of all eigenvalues λn and mn

be their multiplicity. According to the above properties of function ϕ3(x, λ), the results of the zeta
function

1
k!

∂k

∂λkϕ3(x, λ)
∣∣∣
λ=λn

(0 ≤ k ≤ mn − 1, λn ∈ M)

are either identically equal to zero or are root functions of the operator K.
Therefore, to prove the completeness of the root functions of the operator K, it suffices to show that

if f (x) ∈ L2(0, 1) and

1∫
0

∂k

∂λkϕ3(x, λ) f (x)dx
∣∣∣
λ=λn

= 0 (0 ≤ k ≤ mn − 1, λn ∈ M), (3.8)

then f (x) = 0 almost everywhere. The characteristic function ∆(λ) and the function

ω3(λ, f ) =

1∫
0

ϕ3(x, λ) f (x)dx

are entire functions of λ. If equalities (3.8) hold, then each mn, – a multiple root of λn of the function
∆(λ), will also be a root of at least the same multiplicity of the function ω3(λ, f ). Therefore, ω3(λ, f )

∆(λ) is
an entire function of λ. According to Lemmas 8 and 10, there exist a constant C and a sequence of
unbounded expanding contours γn such that for ρ ∈ γn

ω3(ρ3, f )
∆(ρ3)

≤
C
|ρ2|

.

This assessment implies the equality

lim
n→∞

max

∣∣∣∣∣∣ω3(ρ3, f )
∆(ρ3)

∣∣∣∣∣∣ = 0.

Next, using standard methods, applying Mittag-Leffler’s theorems, the maximum principle, and
Liouville’s theorem, we obtain that

ω3(λ, f ) ≡ 0 in all λ ∈ C.

Thus, for all λ ∈ C, the identity
1∫

0

f (x)ϕ3(x, λ)dx = 0 (3.9)

holds, where ϕ3(x, λ) is the solution to the Cauchy problem

ϕ′′′3 (x) + p1(x)ϕ′3(x) + p0(x)ϕ3(x) = λϕ3(x), 0 < x < 1,

ϕ3(0, λ) = −1, ϕ′3(0, λ) = −α21, ϕ
′′
3 (0, λ) = −α11.

Because the initial data does not depend on λ, the following statement is true:
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Lemma by Shkalikov [16]. If, for some summable function f (x), the following identity holds:

1∫
0

f (x)ϕ3(x, λ)dx = 0,

where the function ϕ3(x, λ) is the solution to the Cauchy problem with nonzero initial data that do not
depend on λ, then f (x) = 0 almost everywhere on (0, 1).

From Shkalikov’s lemma, it follows that f (x) = 0 almost everywhere on (0, 1). Thus, the
completeness of the system of root functions of the operator K in the space L2(0, 1) is proven. �

4. Conclusions

In the first part of the article, integral representations of solutions to a single-valued third-order
linear differential equation with variable coefficients are obtained. Then, Birchhoff-irregular boundary
conditions are considered, and the completeness of the system of root functions of the corresponding
boundary value problem for a linear differential equation with variable coefficients is proven. The
proof is based on a detailed asymptotic analysis of the characteristic determinant and interpolation
solutions of a homogeneous third-order linear differential equation. The interpolation solutions are
entire functions of the spectral parameter, and they interpolate the system of root functions of the
boundary value problem.
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