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Abstract: Early diagnosis of heart disease is vital for reducing mortality and improving patient
outcomes; yet, accurate prediction remains a significant challenge owing to the complexity and high
dimensionality of medical data. Data preprocessing is essential for overcoming these issues by
cleaning, transforming, reducing, and balancing data to provide reliable inputs for feature selection
and classification. This study introduces an improved chi-square (y?) feature selection framework
combined with multiple classifiers to enhance predictive performance. Our method was applied
to Cleveland heart disease and diabetes datasets, where numeric attributes were discretized into
categorical values, enabling y? to select the most informative features while eliminating redundancy.
Several classifiers, including support vector machine (SVM), logistic regression (LR), K-nearest
neighbors (KNN), and naive Bayes (NB), were trained using both the reduced subset and the complete
feature set. Results show that the preprocessing include y? feature selection, achieved the highest
performance. On the Cleveland dataset, the model attained a mean accuracy of 93.72%, precision
of 94.01%, recall of 93.72%, F1-score of 93.74%, and an area under the curve(AUC) of 97.87%,
while on the diabetes dataset, it achieved mean values of 93.55% accuracy, 94.23% precision, 93.55%
recall, 93.48% F1-score, and an AUC 93.53%. The main contribution of this work lies in integrating
discretization with y? based selection to produce a compact and discriminative feature subset.
With a minimal number of selected features, the proposed approach delivers robust, accurate, and
computationally efficient heart disease prediction, outperforming existing methods.
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1. Introduction

Accurate prognosis of cardiac disease is both essential and challenging. Heart disease, often linked
to coronary artery dysfunction, weakens the body and disrupts vascular function, particularly in adults
and the elderly. Cardiovascular diseases cause over 18 million deaths worldwide every year, according
to the World Health Organization (WHO) [1], cardiovascular diseases claim more than 18 million lives
annually [2], and in the United States alone, approximately one billion dollars are spent daily on heart
disease treatment [3]. Early prediction is therefore critical for improving patient outcomes. With the
rapid growth in the volume, variety, velocity, and veracity of healthcare data, effective computational
models are needed to identify disease risk factors, support personalized and cost-effective treatment,
and enhance overall quality of care [4]. Early warning signs of myocardial ischemia, a major cause
of heart attacks and strokes, frequently include chest pain, shortness of breath, an irregular heartbeat,
fatigue, and fainting. Timely detection of these symptoms can significantly improve patient survival.
Diagnosis typically relies on clinical tests such as angiography, electrocardiograms (ECG), and blood
analyses, along with expert medical evaluation. However limited access to specialists and the potential
for human error pose challenges to accurate diagnosis. Consequently, there is growing research interest
in developing intelligent, machine-assisted systems to automate this process and reduce diagnostic
errors. Artificial intelligence (Al), particularly machine learning [5] and deep learning [6], has shown
promise in supporting the diagnosis and prognosis of cardiac diseases, as well as in the analysis and
interpretation of medical images [7]. Support vector machine (SVM), K-nearest neighbors (KNN),
logistic regression (LR), and decision tree (DT) are examples of machine learning strategies that
are commonly used [8]. But the effective implementation of these methods might be significantly
influenced by the availability of high-quality data. Therefore, appropriate data handling during the
preprocessing phase, which also includes the (FS) stage, is essential to guarantee success. Choosing the
best feature subset can result in increased classification accuracy, improved generalization by avoiding
overfitting, and less computational complexity. Algorithms for FS may be divided into two main
categories: filter methods and wrapper methods. Filter methods are independent of the classifier and
use statistical or probabilistic techniques to choose important features [9, 10]. Filter-based approaches
are further divided into two types: uni-variate methods, which evaluate each feature individually
with respect to the target variable, and multivariate methods, which account for dependencies among
multiple features [11]. Filter-based FS methods have also gained significant attention due to their
simplicity and scalability. These approaches evaluate the relevance of features using statistical or
probabilistic measures independently of classifiers, making them efficient and less prone to overfitting.
They are broadly categorized into uni-variate and multivariate methods [11]. Uni-variate filters assess
each feature individually against the target class using tests such as Mann-Whitney U test, 7-test,
information gain, Pearson correlation, Fisher’s exact test, and y? test. Although computationally
efficient and suitable for high-dimensional data, uni-variate methods overlook feature interactions.
Multivariate filters, such as Relief-based algorithms, minimal redundancy-maximal relevance (mMRMR)
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and fast correlation-based filter (FCBF), evaluate groups of features jointly, capturing dependencies and
reducing redundancy. However, they are computationally more demanding and less scalable compared
to uni-variate filters. Contrarily, wrapper techniques make use of the performance of classification
algorithms to determine the optimal feature subsets [12]. Prior to applying FS, raw data must be
preprocessed to address issues such as incompleteness, inconsistency, noise, or redundancy, as these
challenges can otherwise result in unreliable outcomes. Data preprocessing encompasses selection,
cleaning, and transformation steps that refine datasets, resolve quality issues, and convert raw data
into formats suitable for mining algorithms, thereby enhancing interpretability and overall model
performance [13]. After preprocessing and feature selection, data mining techniques are applied to
extract meaningful patterns and insights [14]. Prepared datasets can be analyzed through clustering
approaches [15] or classification methods [16, 17], implemented using supervised or unsupervised
machine learning algorithms. These techniques enable the identification of hidden structures, the
development of predictive models, and the generation of actionable knowledge. The extracted
results are commonly communicated through data visualization methods [18, 19] and knowledge
representation techniques [20, 21], which facilitate understanding and decision making. In this study,
the dataset is first preprocessed to ensure reliability, consistency, and suitability for analysis. Feature
selection is then applied as a critical step to enhance classification performance. A uni-variate filter
based approach is adopted, employing y* test to select the most relevant features. The y? method
is selected due to its efficiency, scalability, ability to mitigate overfitting, and suitability for medical
datasets that contain categorical features. To assess the effectiveness of the resulting feature subsets,
multiple machine learning algorithms are applied, including SVM, LR, KNN, and NB.

2. Related work

To develop an intelligent healthcare framework for predicting heart disease, Ali et al. [22] proposed
combining feature fusion with ensemble deep learning approaches. Their system integrates electronic
health records with sensor data to provide insightful health information. To decrease computational
burden and increase system efficiency, feature selection was performed using Information Gain, while
the conditional probability approach gave each class its own unique weights to improve the accuracy
of predictions. The proposed system was benchmarked against traditional classifiers using feature
fusion, FS, and weighting methods on heart disease data. Using Orange, Weka, Rapid Miner, Knime,
MATLAB, and Scikit-learn [23] compared six common data mining approaches for identifying heart
illness. The measures of accuracy, sensitivity, and specificity were used to assess performance.
The best results were obtained with MATLAB, especially with its Artificial Neural Network (ANN)
model. Based on user experience and receiver operating characteristic (ROC) curve analysis, their
research ended with advice on how to choose tools, emphasizing MATLAB’s advantages. The PIMA
Indian diabetes dataset was analyzed using machine learning approaches by Kalagotla et al. [24].
They utilized a correlation-based FS technique, followed by AdaBoost, and they went on to present
a novel stacking strategy that combines MLP, SVM, and LR models. Their stacking framework
consistently outperformed AdaBoost and produced good results in a variety of diagnostic datasets,
such as the Wisconsin breast cancer dataset and the Cleveland heart disease dataset. Additionally, the
study highlighted the significance of data protection in healthcare research, pointing out the dangers
of centralized data storage. They emphasized federated learning (FL) as a potential approach for
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distributed model training that preserves the privacy of healthcare information. Latha and Jeeva [25]
investigated ensemble-based classification methods to improve heart disease prediction using the
Cleveland dataset. They evaluated bagging, boosting, stacking, and majority voting approaches,
reporting accuracy improvements ranging from 5-7%, with majority voting providing the best gain
of 7.26%. Moreover, when ensemble methods were combined with FS, the predictive accuracy
increased further, reaching a maximum of 85.48% with majority voting applied to the optimized feature
subset. [26] applied principal component analysis (PCA) for feature reduction before classification,
transforming correlated features into principal components for improved model efficiency. Sarra
et al. [27] proposed an SVM-based classification model combined with y? feature selection, which
reduced dataset dimensionality while maintaining key attributes. Their approach improved accuracy
from 85.29% to 89.7% and cut computational load by half, outperforming several traditional methods.
By combining FL with feature selection and extraction, Kapila et al. [28] extended this study. Utilizing
both the Cleveland heart disease and diabetes datasets, they employed linear discriminant analysis
(LDA) for feature extraction, as well as y> and ANOVA for FS. Unlike other methods, this one
uses LDA to extract features. Their FL framework, which was built around a centralized strategy,
assured data security by keeping sensitive information local and just sharing model updates. The
integration of FS and FE in the FL environment resulted in better dimensionality reduction, increased
class separability, and higher prediction accuracy across benchmark datasets. Based on the preceding
discussion, it is evident that many studies have employed uni-variate filter based methods particularly
x* test for feature selection in medical datasets. x> method is well regarded for its simplicity,
scalability, and ability to mitigate overfitting [11,25]. Its main limitation, however, is that it evaluates
features independently, thereby overlooking potential interactions between attributes [9]. Despite this
drawback, y? remains highly effective for categorical medical data due to its robustness and low
computational cost. Building on these strengths, the present study proposes a tailored preprocessing
pipeline that integrates discretization with y? test to generate a compact and discriminative feature
subset. This subset is then evaluated using multiple classifiers, yielding a computationally effective,
accurate, and reliable approach to predicting heart disease.

3. Research approach

3.1. Data collection

One of the most popular datasets for forecasting heart disease, notably in machine learning research,
is the Cleveland heart disease dataset. There are 14 features in the dataset, including demographic,
medical, and diagnostic variables, that were obtained from 303 individuals. The UCI Machine
Learning Repository makes the dataset available to the public. This dataset includes a range of features
that are classified as binary, nominal, or numerical, all of which provide essential information about
the patient’s features that are important for determining cardiovascular risk. Table 1 summarizes key
descriptive statistics, including standard deviation (SD), range, mean, and information on missing
values or potential outliers. This dataset is frequently used because it contains a diverse set of variables
that capture the complex nature of heart disease. The target variable is binary, where 0 denotes the
absence of heart disease and 1 denotes the presence with severity levels ranging from 1-4. This study
also employs the diabetes UCI dataset”, which contains 520 patient records described by 17 attributes.

*https://www.kaggle.com/datasets/alakaaay/diabetes-uci-dataset
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Among these, age (ranging from 20 to 65 years) is the only numerical feature, while the remaining
are categorical, including sex, alopecia, muscle stiffness, partial paresis, delayed healing, irritability,
itching, visual blurring, genital thrush, polyphagia, weakness, sudden weight loss, polydipsia, polyuria,
and obesity. The target variable (class) is binary, indicating either a positive or negative diabetes
diagnosis. Given that nearly all attributes are categorical, this dataset is particularly well-suited for our
method y?, which measures the dependency between the class target and categorical features.

Table 1. Descriptive statistics of features in the Cleveland heart disease dataset.

Feature  Description Range Mean Sd Missing Outlier
Binary Features
Exang Indicates whether angina occurred during exercise (yes=1). [0, 1] 0.3267 0.4698 No Yes
Sex Patient’s sex ( female=0, male=1). [0, 1] 0.6799 0.4673 No Yes
FBS Fasting blood sugar greater than 120 mg/dl (true=1). [0, 1] 0.1485 0.3562 No Yes
Nominal Features
CP Type of chest pain (values 1-4). [1, 4] 3.1584 0.9601 No No
RestECG  Resting electrocardiogram outcomes (0, 1, 2). [0, 2] 0.9901 0.9950 No No
Slope Slope of the peak exercise ST segment (values 1-3). [1, 3] 1.6007 0.6162 No No
Thal Thalassemia status (normal=3, fixed defect =6 , reversible defect =7).  [3, 7] 4.7342 19710  Yes Yes
CA Number of major blood vessels visualized via fluoroscopy (range 0-3). [0, 3] 0.6722 0.9344  Yes Yes
Numeric Features
Thalach ~ Maximum heart rate achieved. [71,202] 149.6073 22.8750 No Yes
Oldpeak ST depression relative to rest, induced by exercise. [0, 6.2] 1.0396 1.1611 No Yes
Age Age of the patient (in years). [29, 77] 54.4389 9.0387 No Yes
Chol Serum cholesterol concentration (mg/dl). [126,564] 246.6931 51.7769 No Yes
Trestbps  Resting blood pressure (mm Hg). [94,200] 131.6898 17.5997 No Yes

Abbreviations: Sd = Standard Deviation

3.2. Preprocessing steps

The process of preparing data is essential in data mining applications, as raw data often contains
errors, inconsistencies, and omissions that can degrade the performance of learning and mining
algorithms [29]. To address these issues, preprocessing techniques are applied to improve data
quality before model building. Recent studies broadly classify preprocessing methods into three main
categories: data cleaning (e.g., noise filtering and missing value imputation), data reduction (e.g.,
feature and instance selection), and data transformation (e.g., normalization and aggregation).

3.2.1. Data cleaning

e Missing Values: Missing values are a major problem that must be addressed during
preprocessing, before applying machine learning algorithms. It can result from human error,
equipment failure, withheld information, or inconsistent data. Anomalies may also cause missing
values when removed. These values are typically handled through imputation or repair techniques
to maintain data integrity. Features with over 45% missing values were excluded from the
analysis. For the remaining features, binary features were imputed with a constant value,
categorical variables with the mode, and numerical variables with either the mean [30] or median.

e QOutliers: Outliers differ from noise: while noise is generally meaningless and should be removed,
outliers may contain both irrelevant and valuable (exceptional) information. Outliers are data
points that significantly deviate from expected patterns. They may result from measurement
errors, misreporting, sampling issues, or reflect rare but true values. In medical datasets, outliers
are often retained rather than removed, as they may represent rare but clinically significant cases
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rather than errors [31]. Eliminating these data points could lead to a loss of important information,
particularly when modeling conditions with high variability or rare presentations. Approaches
such as Z-score and inter-quartile range (IQR) are used to identify it [32].

3.2.2. Discretization

Discretization transforms continuous numerical data into nominal or categorical attributes by
dividing the data range into non-overlapping intervals, each mapped to a discrete value. This enables
the data to be treated as nominal, facilitates statistical tests such as y? test, and enhances interpretability.
Equal-frequency and equal-width binning are two discretization techniques. Common discretization
techniques include equal-frequency and equal-width binning [29].

3.2.3. Bin selection rules

e Sturges’ rule [33]: We used the equal-width binning method, where the number of bins is
determined using Sturges’ rule [33], defined as

n=1+3.322log,,(k), (D)

where k and n are the number of observations and bins, respectively.

e Freedman-Diaconis rule [34]: Determines bin width based on IQR, making it more robust to
skewed distributions and outliers.

e Scott’s rule [35]: Computes bin width using the standard deviation of the data and is suitable for
data that is approximately normally distributed but more sensitive to outliers than the Freedman-
Diaconis rule.

Table 2 reports the number of bins obtained for each numeric feature using the three rules.

Table 2. Number of bins obtained using different discretization rules.

Numeric feature Sturges Freedman-Diaconis Scott

oldpeak 10 9 8

age 10 13 11
chol 10 13 11
trestbps 10 13 10
thalach 10 13 10

Importantly, altering the discretization scheme directly influences y? feature selection outcome.
Splitting numeric attributes into ten bins resulted in a compact set of highly informative features
and consistently yielded superior classification performance compared with alternative binning
configurations. In this study, numeric attributes were discretized into ten bins following Sturges’ rule.
Although this rule is optimal for approximately normally distributed data and several numeric attributes
in the datasets exhibit deviations from normality, the adopted discretization strategy yielded a more
stable and discriminative feature subset, resulting in consistently higher classification performance
compared with alternative binning configurations.

3.2.4. Data normalization

Numerical features are rescaled to a common scale using a preprocessing technique known as
normalization, without distorting the differences in their value ranges [36]. It is essential in algorithms
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sensitive to scale, as it ensures that each feature contributes equally to the analysis. In this study,
normalization was applied after imputation to maintain consistency across numeric features [37]. We
applied min-max normalization, which scales each feature to a specified range [7,,i,, fimayx] Using the

following formula:
V = Vmin
Vi = X (nmax - nmin) + Ppmin, (2)
Vmax — Vmin

where

v denotes the original feature value,

v denotes the normalized value,

Vimin and vy.x represent the minimum and maximum values of the original feature,
nmin and ny, represent the lower and upper bounds of the target range.

We introduce y? test for feature selection (see Section 3.3). Since the y? test requires non-negative
input values, the data were normalized to the range [0, 1] instead of [—1, 1], ensuring compatibility
with the test.

3.2.5. Balanced dataset

The synthetic minority over-sampling technique (SMOTE) is a popular way to handle class
imbalance in classification problems. SMOTE creates synthetic samples by interpolating between
existing minority instances and their closest neighbors, rather than simply replicating instances of
the minority class. This helps create a more balanced training dataset, allowing machine learning
algorithms to learn decision boundaries better and avoid bias toward the majority class. When the
minority class is underrepresented, SMOTE works especially well as it improves model generalization
without increasing the risk of overfitting associated with traditional oversampling methods [38].
Importantly, SMOTE is applied only on the training data, and the evaluation remains unbiased.

Figure 1 illustrates the proposed preprocessing and classification pipeline. Numeric features are
first discretized and then all data normalized, followed by y? based feature selection to retain the most
relevant attributes. The dataset is then split into training and testing sets, with SMOTE applied to
the training set only to address class imbalance. Classifiers are subsequently trained on the selected
features, and performance is evaluated using standard metrics.

’ Discretization ‘

]

’ Normalization ‘

i
Chi-Square Feature Selection (o = 0.001)

1
Train/Test Split 90:10
1
SMOTE (training only)
1

Classifier Training

1

Evaluation ‘

Figure 1. Schematic diagram of the improved x? based feature selection algorithm.
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3.3. Chi-square test for feature selection

Overfitting often results from having too many features, which can reduce a model’s ability to
generalize. Therefore, selecting the most predictive features for both testing and training datasets is
essential for improving model performance [39]. This involves retaining features that are meaningful
to the machine learning classifier while discarding those that are noisy or irrelevant [40]. In our study,
before applying the machine learning classifier, relevant features were selected using y? statistical
test [41]. x? test is a correlation-based feature selection method evaluates the relationship between the
target class and each feature. It calculates the y? statistic to determine whether a feature is dependent on
the predicted attribute. A higher y? score indicates a stronger dependency, suggesting that the feature
is more relevant to the prediction task. It should be noted that the y? test applies only to categorical
variables. Therefore, before applying the y? test [42], continuous features must be discretized. In this
process, each feature is divided into discrete intervals based on specific binning boundaries. These
boundaries are determined using Sturges’ rule [33], which aims to minimize discretization error while
preserving the informational content of the original data.

In a binary classification context for heart disease, let the dataset consist of t instances categorized
into two classes: negative (absence of disease) and positive (presence of disease), where p and t — p
are the number of positive and negative class instances, m represents the instances where feature F is
present, and ¢ — m where it is absent see Table 3. y? test assesses the deviation between observed and
expected frequencies under the assumption of independence between a feature and the class label. Let
the observed frequencies be denoted by fi1, fi0, fo1, foo, and the corresponding expected frequencies by
Ey1, Ey, Eo1, Eoo. The expected values, assuming independence, are calculated as follows:

E, = (fir + flO)t(fll +f01). 3)

Similarly, Eo, Eo;, and Eq can be calculated. The general y? test statistic is given by

> O (O — Ep)?
= —_ 4
XY= "5 @)
k=1
In the case of a 2 X 2 contingency table, y* can be computed as
—E|)? — Ep)? — Eg)? — Eg)?

V= (fir — Evn) N (fio — E10) N (for — Eo) N (foo — Eoo) _ 5)

Eyy Eyo Eo Eoo

Table 3. Table for calculating y* score for feature X;.

Positive class Negative class  Total

Feature X; occurs fii fio S+ fio=m
Feature X; does not occur  fi; Joo for + foo=t—m
Total Sfut+tfou=p fiotfo=t—p t

3.4. Feature ranking and hypothesis testing using chi-square test

Feature selection begins by computing the y? score for each feature using Eq (5). This score
quantifies the strength of association between the target class and a feature. A higher y* value shows
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a stronger statistical relationship with the class label (positive or negative). Features are prioritized
based on their y? statistic, arranged in descending order. To ensure that the selected features are not
statistically significant merely by chance, each is further evaluated through hypothesis testing using the
chi-squared distribution.

The hypotheses for the y? test are defined as follows: the null hypothesis (H,) assumes that a feature
is independent of the class label (no association, not predictive), whereas the alternative hypothesis (H;)
assumes dependence (an association exists). A significance level of @ = 0.001 is used. For each feature,
the p-value is computed from its corresponding y? statistic. If p < @, the null hypothesis is rejected
in favor of the alternative, indicating that the feature is statistically significant. This stricter threshold
(a = 0.001 vs the more common « = 0.01) selects a smaller subset of features with stronger statistical
significance, improving feature relevance, reducing redundancy, and enhancing interpretability, which
contributed to improved classification performance see [43].

According to the chi-squared scores and the predefined significance level, the top five features
selected for classification in the heart disease dataset are: thal, exang, ca, oldpeak, and slope. Similarly,
for the diabetes dataset, the top eight features identified as most influential for classification are:
polydipsia, polyuria, gender, polyphagia, sudden weight loss, partial paresis, visual blurring,and
weakness.

4. Validation strategy and evaluation metrics

4.1. Validation strategy

To ensure robust performance assessment, we employed 30 repeated stratified train-test splits,
preserving class distributions and reducing sampling bias. Model performance was evaluated using
accuracy, precision, recall, Fl-score, and AUC reported as mean + 99.9% confidence intervals to
provide a conservative, variance-aware estimate of stability. AUC curves were aggregated across
splits, with mean curves and shaded variability bands illustrating the robustness of discriminative
performance.

4.2. Evaluation metrics

To thoroughly assess the proposed model’s performance, we employ a range of standard evaluation
metrics, including F1-score, accuracy, recall, precision, and the receiver operating characteristic (ROC)
curve with its corresponding AUC [44]. These metrics capture complementary aspects of classification
effectiveness and are defined as follows:

e Accuracy: The fraction of correctly classified instances out of the total, reflecting the model’s
overall correctness.

e Precision: The proportion of true positive predictions among all positive predictions, indicating
how well the model avoids false positives.

e Recall (sensitivity): The proportion of true positive predictions among all actual positives,
measuring the model’s ability to identify relevant cases.

e Fl-score: The harmonic mean of precision and recall, providing a balanced evaluation metric,
especially useful for imbalanced datasets.

e ROC curve and AUC: ROC curve illustrates the trade-off between true positive rate and false
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positive rate across different thresholds. AUC condenses this performance into a single value,
with higher values indicating better discriminative capability.

Together, these metrics provide both an overall assessment of model accuracy and a detailed evaluation
of its ability to handle imbalanced classes and detect positive cases reliably.

5. Classifiers

In the machine learning technique known as supervised learning, labeled input-output pairings are
used to train models so they can learn the relationship between features and target variables. Once
trained, these models can generalize to unseen data and provide accurate predictions. In this study,
four supervised classification algorithms are employed, each widely used in medical data analysis and
optimized with appropriate parameters to enhance predictive performance.

5.1. Naive Bayes (NB)

Naive Bayes is a probabilistic classification algorithm based on Bayes’ theorem, which assumes
that features are conditionally independent given the class, as illustrated in Figure 2. Despite its
simplicity, it performs well in many real-world scenarios [45]. Among its merits, the computation
process is easier compared to many other classifiers, and it is particularly well suited to continuous-
valued attributes [46].

The model estimates the posterior probability P(C; | F) as

P(F|C) - P(C)
P(C, | F) = , 5.1
(G | F) PF) (5.1
where C; is the class target(0 or 1), P(F') the marginal likelihood, P(C;) the prior probability, P(F' | C;)
is the likelihood, and, the feature vector F = (fi, f2,..., fu)-
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Feature Correlation Matrix of the Cleveland Dataset
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5.2. K-nearest neighbor (KNN)

It assigns an unknown data point based on the majority class of its nearest neighbors [47]. It
is widely applied in medical datasets, pattern recognition, cluster analysis, and image processing.
In healthcare, KNN has been used with LDA to build a warning system for hypertension and
cardiovascular disease [48], to identify predictive features of chronic disease [49], and to support
cardiac patient analysis. In our study, the model is configured with K = 10, and Euclidean distance is

applied to evaluate:
N
d(x,y) = | ) (i =), (5.2)
i=1

where
e X = (x1,X2,...,Xxy) 1s the feature vector of the query (test) instance,
e y=(1,Y,...,yn) 1s the feature vector of a training instance,

e N is the total number of features (dimensions),
e d(x,y) is the Euclidean distance between x and y.

5.3. Support vector machine (SVM)

It is a statistical, kernel-based method that constructs an optimal hyperplane to separate data points
of different classes, where the closest instances to the hyperplane, called support vectors, determine
the decision boundary [50]. By mapping data into higher-dimensional spaces, SVM can handle
nonlinear classification using kernels such as polynomial, radial basis function or linear, typically
employing Euclidean distance with parameters controlling the flexibility of the RBF function [51, 52].
In our study, the model was configured with probability estimation enabled (probability = True),
allowing probabilistic outputs in addition to class predictions. SVM offers several merits, including
high accuracy compared to many classifiers, effective handling of complex nonlinear data, and reduced
susceptibility to overfitting.

5.4. Logistic regression (LR)

It is a linear model for binary classification that employs the logistic (sigmoid) function to estimate
the probability that an input instance belongs to the positive class [53]. In the presence of arbitrary
outliers in the covariate matrix, robust approaches such as Robust Logistic Regression(RoLLR) have
been proposed, which estimate parameters via a simple linear programming procedure. RoLR is
the first logistic regression approach that offers performance guarantees in the presence of corrupted
covariates, demonstrating robustness against a consistent proportion of adversarial outliers. Beyond
regression, it can also be applied to binary classification when a fraction of training samples are
corrupted [54]. The model is configured with max_iter = 1000 to ensure convergence during training,

and predicts the positive class with probability:
1

p=Py=1]|f)= 1 + e~ BotBifi+—+Bufn)’

(5.3)
where fi, f>,..., f, are input features and Sy, . . . , 8, are model coefficients.
6. Results and discussion

6.1. Chi-square feature ranking

Figure 3 presents y” feature ranking for both datasets at a significance level of @=0.001.
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For the Cleveland heart disease dataset (Figure 3(a)), the features thal, exang, ca, oldpeak, and
slope achieved the highest y? scores, indicating a strong statistical association with the target variable.
These attributes were therefore the most relevant for predicting heart disease, whereas features such as
trestbps, fbs, and chol exhibited limited significance.

For the diabetes dataset (Figure 3(b)), the most discriminative features were polydipsia, polyuria,
gender, polyphagia, sudden weight loss, partial paresis, visual blurring, and weakness. These variables
attained substantially higher y? scores than the rest, underscoring their critical role in differentiating
diabetic from non-diabetic cases. A significance level of @ = 0.001 is used see Table 4. The smaller
p-values do not automatically reduce false positives, using @ = 0.001 prioritizes features with stronger
associations, complementing effect size and domain knowledge in the selection process.

Chi-Square Ranking (a = 0.001) for Cleveland Dataset
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Figure 3. Chi-square feature ranking for the (a) Cleveland dataset and (b) diabetes dataset.

Table 4. Chi-square test results for feature selection: (a) Cleveland dataset and (b) diabetes

dataset. (a) (b)
Feature Chi-square p-value Sig. (p < 0.001) Feature Chi-square p-value Sig. (p < 0.001)
thal 44878 210x 107 Yes Polydipsia 241.5710 1.79 x 10>*  Yes
“10 Polyuria 232.3692 1.81 x 10752 Yes
exang 38.053 6.89 x 10 Yes Gender 77.4953 133% 10 Yes
ca 28.038 1.19x 1077 Yes Polyphagia 66.3968 3.69% 1071 Yes
oldpeak 13.857 1.97x10*  Yes Sudden weight loss  57.7493 298 x 107*  Yes
slope 10.984 919%10% Yes Partial paresis 55.3143 1.03 x 10’;3 Yes
-3 Visual blurring 18.1246 2.07 x 10™ Yes
sex 7.433 6.40x 1073 No Weakness 12.7243 3.61 x10™  Yes
cp 7.385 6.58 x 10 No Age 7.4429 637x 107 No
restecg  4.322 37610 No Trritability 6.8918 8.66x10° No
thalach  3.149 7.60x 1072 No Alopecia 6.2491 124x 102 No
age 1.260 262%10°! No Muscle stiffness 4.8750 2.72x 1072  No
trestbps  0.592 4.42x 10" No Obesity 4.5006 3.39x10™  No
-1 Genital thrush 0.8963 3.44x 107" No
fbs 0.165 6.85x 107 No Delayed healing  0.6202 431x10"  No
chol 0.105 7.46x107"  No Itching 0.0157 9.00x 10" No

6.2. Performance metrics results

The classification models were evaluated using 30 repeated stratified train-test splits to ensure
reliable performance estimates. All metrics accuracy, precision, recall, F1-score, and AUC are reported
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as mean + 99.9% confidence intervals, providing a conservative, variance-aware assessment that
emphasizes stability rather than overfitting. Table 5 summarizes the results. Across models, high
mean accuracy, precision, recall, Fl1-score, and AUC values were observed, with narrow confidence
intervals indicating consistent performance and minimal variance.

Table 5. Performance metrics of the evaluated models (mean + 99.9% CI).

Data Accuracy Precision Recall F1-score AUC

(a) Cleveland 93.5% + 0.010 93.7% +0.012 93.4% +0.011 93.5% + 0.011 96.8% + 0.009
(b) Diabetes  93.7% + 0.019 94% +0.018  93.7% + 0.019 93.7% + 0.019 97.9% + 0.010

The results indicate strong and stable classification performance across both datasets. High values
of accuracy, precision, recall, Fl1-score, and AUC, together with narrow 99.9% confidence intervals,
demonstrate the robustness and consistency of the evaluated models. In particular, the high AUC
values suggest excellent discriminative capability, while the tight confidence bounds confirm low
variability across repeated stratified evaluations. Aggregated ROC curves Figure 4 further illustrate
model robustness, showing mean curves with shaded bands representing variability across splits. The
combination of repeated stratification, conservative confidence intervals, and visual ROC assessment
demonstrates that the models achieve stable, generalizable performance rather than overfitting to
individual splits.

Mean ROC Curve with Variability Mean ROC Curve with Variability
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Figure 4. Comparison of ROC curves before and after applying chi-square feature selection:
(a) and (b) Cleveland dataset, (c) and (d) diabetes dataset.
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(a) Cleveland dataset

e All features: Using all features, model performance varied across classifiers. NB achieved the
highest AUC of 0.897, indicating strong discriminative ability despite its simplicity. LR also
performed well with an AUC of 0.879. SVM and KNN showed moderate performance with AUCs
of 0.754 and 0.700, respectively. These results suggest that while some models can capture the
underlying patterns with all features, others may be affected by noise or redundant information,
limiting their predictive accuracy.

o Selected features: After feature selection, all models showed substantial improvements in AUC,
highlighting the benefit of removing irrelevant feature. SVM achieved the highest AUC of 0.942,
followed closely by KNN (0.933), NB (0.935), and LG (0.926). The consistent improvement
across classifiers demonstrates that the selected subset of features preserves the most informative
attributes for heart disease prediction, resulting in more robust and discriminative models.

(b) Diabetes dataset

o All features: Using all features, all classifiers demonstrated strong predictive performance.
LR achieved the highest AUC of 0.971, closely followed by KNN (0.961) and NB (0.952),
while SVM obtained an AUC of 0.938. These high values indicate that most features
contribute meaningful information for diabetes prediction, allowing models to achieve excellent
discriminative ability even without feature selection.

o Selected features: After feature selection, model performance improved slightly for some
classifiers and markedly for SVM. SVM achieved the highest AUC of 0.980, KNN improved
to 0.965, NB reached 0.953, and LG obtained 0.959. The results suggest that selecting the most
informative features enhances the discriminative power of the models, particularly benefiting
SVM, and confirms that careful feature selection can further refine predictive accuracy even when
overall model performance is already high.

The results presented in Table 6 demonstrate that the proposed method significantly outperforms
existing models applied to both the Cleveland heart disease and diabetes datasets. [27] employed the
traditional y? test to select six features, achieving an accuracy of 89.47%. Among recent studies,
the highest reported accuracy on the Cleveland dataset was 91.8%, achieved by [55] using Pearson
correlation combined with the grey wolf optimizer. Results with the 10 best selected features are shown
in (a) for the Cleveland heart disease dataset and (b) for the diabetes dataset. Reported accuracies
are 92.3% for diabetes and 88.52% for Cleveland [28], using ANOVA combined with LDA or .
Our proposed method achieved a superior mean accuracy of 93.72% on the Cleveland dataset using
and 93.55% on diabetes datasets. The improvement stems from optimized discretization of numeric
features using 10 bins, which yields a more stable and discriminative feature subset, resulting in
consistently higher classification performance compared with alternative binning configurations, along
with a stricter significance threshold (@ = 0.001) that selects fewer but more statistically relevant
features and yields superior performance compared with @ = 0.01.

Tables 7 and 8 report the paired t-test results comparing the proposed method’s accuracy to previous
literature on the Cleveland and diabetes datasets. For both datasets, the proposed method consistently
outperformed prior results, achieving 0.9354 on Cleveland and 0.9372 on diabetes. The observed
improvements are statistically significant at the 5% significance level (@ = 0.05), with t-statistics

AIMS Mathematics Volume 11, Issue 1, 2682-2701.



2696

of 3.298 and 3.991 and p-values of 0.0458 and 0.0160, respectively. These results confirm that the
proposed approach provides a significant performance gain over existing methods.

Table 6. Comparison between proposed model with existing models.

S.No Author(s) Year Dataset Best Model Accuracy Precision Recall F1-Score
1 [56] 2021 Diabetes dataset Ensemble model 79.22 78.3 78.6 78.3
2 [57] 2021 Diabetes dataset Voting Classifier 79.04 73.48 7145 80.6
3 [58] 2021 Diabetes dataset Stacking Classifier 79.04 73.48 71.45 80.6
4 [27] 2022 Cleveland heart  y? feature selection 89.47 89.40 89.40 89.40
5 [24] 2023 Disease dataset CART Classification 87.25 88.24 84.51 -
6 [59] 2022 Cleveland heart MLP + PSO Hybrid Algorithm 84.61 80.08 88.3 84.4
7 [55] 2024 Cleveland heart Pearson Correlation + Grey Wolf Optimizer 91.8 94.1 88.9 92.8
3 (28] 2025 Cl.eveland heart Anv + LDA or Ch% + LDA 88.52 87.87 90.62 89.23
Diabetes Anv + LDA or Chi + LDA 92.3 94.36 94.36  94.36
9 Proposed method 2025 Cleveland heart Improved Chi + NB Classifier 93.72 94.01 93.72 93.74

Diabetes dataset Improved Chi + SVM Classifier 93.55 94.23 93.55 9348

Table 7. Paired t-test results for Cleveland datasets.

Dataset [27] [59] [55] [28] our result t-statistic p-value Significant
CL 0.8947 0.8461 09180 0.8852 0.9354 3.298 0.0458  Yes

Table 8. Paired t-test results for diabetes datasets.

Dataset  [56] [57] [28] [24] our result t-statistic p-value Significant
Diabetes 0.7922 0.7904 0.9230 0.8725 0.9372 3.991 0.0160 Yes

7. Conclusions

Our study underscores the critical role of data preprocessing and feature selection in enhancing
the prediction of heart disease and diabetes. By integrating y* feature selection with optimized
discretization producing a stable and discriminative feature subset and a stricter significance threshold
selects fewer and more relevant features, leading to consistently higher classification performance. We
achieved significant improvements in key performance metrics. Training with the selected features
consistently demonstrated superior performance relative to those utilizing the full feature set, with
Naive Bayes and KNN showing particularly strong gains in accuracy and AUC. For both the Cleveland
and diabetes datasets, )(2 method effectively removed irrelevant features, leading to more efficient and
accurate classification. ROC curves and AUC values further confirm the superior generalization ability
of models built on the selected features. Importantly, this approach facilitates the identification of
an optimal feature subset, contributing to faster and more reliable diagnosis of heart disease. Overall,
these findings highlight the value of targeted feature reduction in heart dataset analysis and demonstrate
that the proposed preprocessing pipeline provides a robust, interpretable framework for building high-
performance diagnostic systems.
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