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Abstract: In this paper, we develop a comprehensive mathematical model to investigate the
transmission dynamics of dual Nosema infections (Nosema apis and Nosema ceranae) in two
interacting honeybee colonies. The model incorporates distributed time delays to capture biological
realism in latency, incubation, and parasite maturation periods, and includes an environmental
pathogen compartment to account for indirect, environment-mediated transmission. First, we analyze
a simplified ordinary differential equation (ODE) version of the model, thereby deriving the basic
reproduction number R0 and establishing the global asymptotic stability of both disease-free and
endemic equilibria using Lyapunov functions. Then, the analysis is extended to the full distributed-
delay system, where we derive the delayed basic reproduction number Rd

0 and prove the global stability
of its equilibria via carefully constructed Lyapunov functionals. A sensitivity analysis identifies
key parameters—most notably transmission rates, spore shedding rates, and natural mortality—that
dominate the infection dynamics. Furthermore, we introduce an antiviral treatment term to quantify
the efficacy required to drive Rd

0 below unity and achieve disease eradication. Numerical simulations
validate the analytical results and illustrate how distributed delays and treatment interventions critically
influence the long-term disease outcomes. The study provides a robust theoretical framework to
understand Nosema spread in multi-colony settings. Its key contributions are as follows: (1) The
derivation of an additive basic reproduction number reveals the necessity of apiary-wide management;
(2) provides rigorous global stability proofs for the delayed system; and (3) provides actionable
quantitative insights to design effective apiary management, identify critical intervention targets, and
establish treatment efficacy thresholds for disease eradication.
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1. Introduction

The decline of global honeybee (Apis mellifera) populations has garnered substantial scientific and
agricultural concern due to these pollinators’ crucial role in maintaining the ecosystem diversity and
ensuring agricultural productivity. Among the multiple biotic stressors that affect honeybees, one of
the most pervasive is the microsporidian disease known as Nosemosis, which is primarily caused by
two intracellular fungal species, Nosema apis and Nosema ceranae. First described in the early 1900s,
N. apis was traditionally regarded as the principal etiological agent of Nosemosis in the European
honeybee. However, the emergence and global spread of the Asian parasite N. ceranae, initially
associated with the Eastern honeybee (Apis cerana), have reshaped the epidemiology of this infection
in apiculture [1–3] that are extended recently to reflect the influence of seasonality [4,5]. The parasitic
invasion of N. ceranae has led to a severe reduction in colony productivity, longevity, and in some
cases, colony collapse [6, 7]. Nosemosis is characterized by spore ingestion through trophallactic
behavior, spore germination within the midgut epithelial cells, and dissemination of the pathogen
through feces, which perpetuates environmental contamination. Numerous experimental studies have
demonstrated that infection can impair the immune system, reduce the foraging efficiency, disrupt the
energy metabolism, and alter the gut microbiota composition [8–10]. Furthermore, N. ceranae exhibits
distinct thermal and physiological tolerances compared to N. apis, thereby enabling its persistence
under warmer environmental conditions and suggesting its potential advantage under global climate
change [11].

In recent decades, mathematical modeling has become a critical tool to understand the disease
transmission and population dynamics of honeybees. Early compartmental models explored
demographic changes under different stressors, including pathogens, pesticides, and mites [12–14]
that can reflect age structure influence [15]. With the advent of bio-epidemiological data, these
models have been refined to capture latency periods, environmental contamination, and host-parasite
interactions. For instance, Dénes and Ibrahim [16] analyzed the dynamics of colonies infested by
virus-carrying Varroa mites, thus emphasizing the significance of within-colony infection feedbacks.
Similarly, El Hajji et al. [17, 18] incorporated environmental seasonality to reveal periodic oscillations
in honeybee-parasite interactions, thereby highlighting the need to integrate temporal heterogeneity
into epidemic frameworks. Distributed delay models, which generalize classical delay-differential
systems, have been widely used in epidemic modeling for their biological realism [19, 20]. Such
methods capture the variability in incubation and maturation times that fixed delays cannot represent.
These approaches have been applied to diseases such as Zika virus [21], and malaria [22]; however,
their application to honeybee Nosemosis remains limited. Previous Nosema models often assumed
instantaneous transitions or constant infection rates, which neglects the inherent stochasticity and
variability of latency and infectious stages. Additionally, few studies have explored the role of
inter-colony interactions—a critical epidemiological driver in apiaries where multiple colonies share
foraging resources and pathogen reservoirs.

This study addresses these research gaps by developing a comprehensive mathematical model that
jointly considers (i) the co-infection dynamics of two honeybee colonies exposed to dual Nosema
species, (ii) the biological realism introduced via distributed delays, and (iii) the influence of antiviral
treatment interventions. Our model introduces an environmental pathogen pool shared by the colonies,
thus representing a realistic mechanism of indirect transmission. The distributed time delays capture
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crucial biological processes, including parasite maturation, latency, and spore germination periods.
Moreover, by integrating the treatment efficacy as a control parameter, the model provides quantitative
thresholds for successful infection mitigation and eradication. A stability analysis is conducted using
rigorous Lyapunov functionals and LaSalle’s Invariance Principle, thus allowing us to characterize the
global asymptotic behavior of the equilibria. The theoretical results are complemented by numerical
simulations to validate the analytical predictions and visualize disease extinction or persistence
scenarios under varying parameter regimes.

The remainder of this paper is organized as follows: Section 2 presents the formulation of the dual-
target delayed model, thereby describing the biological and epidemiological assumptions underlying
the model’s compartments; Section 3 analyzes the system without distributed delays, thereby providing
expressions for the basic reproduction number R0 and establishing the existence and global stability of
the disease-free and endemic equilibria; Section 4 extends the analysis by incorporating distributed
delays, deriving the delayed basic reproduction number Rd

0 , and demonstrating global asymptotic
stability through Lyapunov functionals; Section 5 provides numerical experiments, sensitivity analyses,
and treatment simulations to highlight the quantitative behavior of the model; and finally, Section 6
concludes the paper with remarks on the biological implications, limitations, and directions for
future research.

2. Derivation of the mathematical model

In this study, we consider a system composed of two distinct honeybee colonies, denoted as
Colonies 1 and 2, which share a common natural foraging and living environment. Each colony is
structured into several epidemiological compartments that represent the different health states of the
bees with respect to Nosema infection (Figure 1). This compartmentalization allows us to capture the
progression of the disease within and between the colonies, as well as the environmental dynamics of
the pathogen.

Specifically, for each colony, the bee population is subdivided into the following classes:

• Susceptible (healthy) bees: These are individuals free of infection and capable of becoming
infected. We denote susceptible bees in Colony 1 by S1(t) and in Colony 2 by S2(t).

• Latently infected bees: Bees that have been exposed to the Nosema pathogen but are in the latent
phase, during which they harbor the parasite without yet being infectious. These are represented
by L1(t) and L2(t) for Colonies 1 and 2, respectively.

• Actively infected bees: These are individuals who have progressed from latency to an infectious
state, and are capable of shedding spores and contributing to disease transmission. These
compartments are denoted by I1(t) and I2(t), respectively.

In addition to the host compartments, we introduce an environmental compartment, P(t), which
quantifies the concentration of Nosema spores in the shared environment. This term accounts for
the pathogen load shed by infected bees, which mediates the indirect transmission between and
within colonies.

The model is grounded on several biological and epidemiological assumptions, which are
summarized as follows:

1. Population dynamics: Susceptible bees in each colony are replenished at constant recruitment
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rates, Λ1 for Colony 1 and Λ2 for Colony 2, thereby incorporating birth and immigration
processes. Natural mortality acts on all compartments at rates m1 and m2 for Colonies 1
and 2, respectively.

2. Disease transmission: The infection process occurs through an indirect contact with the
environmental pathogen pool P(t). Susceptible bees become latently infected at rates proportional
to the product of the susceptible population and the pathogen concentration, with transmission
coefficients β1 and β2 for each colony.

3. Latency and Infection progression: The transition from latent to actively infected stages occurs
at incubation rates ζ1 and ζ2. The latent and infectious stages have associated average durations,
which are inversely related to these rates and mortality rates, thus reflecting the biological delay
inherent in parasite development.

4. Pathogen shedding: Infectious bees shed Nosema spores into the environment at colony-specific
rates k1 and k2, thus contributing to the environmental pathogen load P(t).

5. Environmental decay: The environmental spores decay or are cleared at a rate m, thus
representing natural degradation or removal mechanisms.

6. Distributed delays: To realistically represent the biological timing of infection and parasite
maturation, we incorporate distributed delays through probability density functions qi(τ), with
support on the intervals [0,ωi], for i = 1, . . . ,5. These delay distributions capture the variability in
latency periods, reactivation times, and maturation durations rather than assuming fixed delays.

7. Functions qi(τ), i = 1, · · · ,5, satisfy qi(τ)> 0 and∫
ωi

0
qi(τ)dτ = 1,

∫
ωi

0
qi(τ)elτdτ < ∞,

where l > 0. Let us denote Gi(τ) = qi(τ)e−ηiτ and Fi =
∫

ωi

0
Gi(τ)dτ, i = 1, · · · ,5, which

implies that 0 < F1, · · · ,F5 ≤ 1.

Here, the functions qi(τ) are the probability density functions which characterize the distributed delays,
and ηi represent the mortality or clearance rates during the corresponding delay period. The terms e−ηiτ

reflect the survival probabilities of bees or spores surviving the delay time τ . The upper limits ωi denote
the maximal delay durations.

The properties of qi(τ) ensure the following:

1. The model is well-posed (existence and uniqueness of solutions);
2. the basic reproduction number Rd

0 can be expressed in terms of Gi;
3. Lyapunov functionals can be constructed to prove global stability; and
4. numerical simulations can be performed using specific kernel choices (e.g., Dirac delta, gamma

distribution, uniform distribution).

By specifying qi(τ) as probability density functions with the given properties, the model realistically
captures the variability and losses associated with time delays in environmental pollution dynamics,
while maintaining mathematical tractability for the analysis of global dynamics.

Figure 1 captures the intricate host-parasite-environment interactions that govern Nosema dynamics
in coexisting honeybee colonies. By incorporating distributed delays, the mathematical model that we
propose hereafter accounts for biological realism in the infection timing and parasite development,
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which are essential for accurate predictions of disease progression and control. This comprehensive
framework lays the foundation for subsequent analytical and numerical investigations into the
transmission dynamics of dual Nosema infections, the effects of distributed delays, and potential
treatment strategies within multi-colony apiaries.

S1 L1 I1

P

S2 L2 I2

k 1I 1

k2 I2

ζ1L1

ζ2L2

Λ1

Λ2

β1 S1 P

β2S2P

m1S1 m1L1

m1I1

m2S2 m2L2

m2I2

mP

Figure 1. Nosema disease transmission diagram.

Mathematically, the dynamics is described by the following set of integro-differential equations:

dS1

dt
= Λ1−β1S1(t)P(t)−m1S1(t),

dL1

dt
= β1

∫
ω1

0
G1(τ)S1(t− τ)P(t− τ)dτ− (ζ1 +m1)L1(t),

dI1

dt
= ζ1

∫
ω2

0
G2(τ)L1(t− τ)dτ−m1I1(t),

dS2

dt
= Λ2−β2S2(t)P(t)−m2S2(t),

dL2

dt
= β2

∫
ω3

0
G3(τ)S2(t− τ)P(t− τ)dτ− (ζ2 +m2)L2(t),

dI2

dt
= ζ2

∫
ω4

0
G4(τ)L2(t− τ)dτ−m2I2(t),

dP
dt

=
∫

ω5

0
G5(τ)

[
k1I1(t− τ)+ k2I2(t− τ)

]
dτ−mP(t).

(2.1)

The parameters and their biological interpretations are summarized in Table 1.
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Table 1. Summary of model parameters and their biological meanings.

Parameter Description
qi(τ) Probability density functions for distributed delays (i = 1, . . . ,5)
ηi Mortality rates during delay periods (i = 1, . . . ,5)
ωi Maximum lengths of distributed delay intervals (i = 1, . . . ,5)
Λ1, Λ2 Recruitment rates of susceptible bees in Colonies 1 and 2
β1, β2 Transmission rates of Nosema spores to susceptible bees
ζ1, ζ2 Incubation rates from latent to infectious stages
m1, m2 Mortality rates of bees in Colonies 1 and 2
k1, k2 Spore shedding rates by infectious bees
m Decay rate of Nosema spores in the environment

The initial conditions for system (2.1) are given by continuous nonnegative functions defined on the
interval [−τ∗,0], where τ∗ = max(ω1, . . . ,ω5):

S1(θ) = φ S
1 (θ), L1(θ) = φ L

1 (θ), I1(θ) = φ I
1(θ), S2(θ) = φ S

2 (θ),L2(θ) = φ L
2 (θ),

I2(θ) = φ I
2(θ), P(θ) = φ P(θ), θ ∈ [−τ∗,0].

(2.2)

φ S
1 ,φ

L
1 ,φ

I
1,φ

S
2 ,φ

L
2 ,φ

I
2 and φ P are assumed to be bounded, nonnegative, continuous functions, thus

reflecting the initial state of the system.

3. Analysis of the non-delayed model

This section focuses on analyzing the simplified version of the model without distributed delays,
thus providing a foundational understanding of the system’s dynamics. By assuming constant
parameters and omitting time delays, we derive explicit expressions for key epidemiological quantities
such as the basic reproduction number R0. We establish the existence, uniqueness, and global stability
of both the disease-free and endemic equilibria, using Lyapunov functions and LaSalle’s Invariance
Principle. This analysis not only clarifies the threshold behavior governed by R0, but also sets the
stage for the more complex delayed model examined in subsequent sections.
We start by providing the dynamical system without distributed delays as follows:

Ṡ1 = Λ1−β1S1P−m1S1,
L̇1 = β1S1P− (ζ1 +m1)L1,

İ1 = ζ1L1−m1I1,

Ṡ2 = Λ2−β2S2P−m2S2,
L̇2 = β2S2P− (ζ2 +m2)L2,
İ2 = ζ2L2−m2I2,

Ṗ = k1I1 + k2I2−mP,

(3.1)

with initial condition (S0
1,L

0
1, I

0
1 ,S

0
2,L

0
2, I

0
2 ,P

0) ∈ R7
+.

3.1. Biological feasible domain

In this section, we focus on establishing the biological feasibility of the mathematical model
developed to describe the dynamics of honeybee colonies affected by Nosema infections. Specifically,
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we analyze the system’s behavior under the assumption of constant parameters and without the
incorporation of distributed delays. Our aim is to demonstrate that the model’s trajectories remain
within biologically realistic bounds, thereby ensuring that all populations—healthy, latently infected,
and actively infected bees—remain non-negative over time. By defining the biologically feasible region
and proving its attractiveness, we lay a solid foundation to understand the system’s dynamics and the
conditions under which disease-free and endemic equilibria can exist. The biologically feasible region
of the dynamics (3.1), denoted here by Σ, is given by the following:

Σ =

{
(S1,L1, I1,S2,L2, I2,P) ∈ R7

+ : S1 +L1 + I1 =
Λ1

m1
, S2 +L2 + I2 =

Λ2

m2
, P≤ k1Λ1

mm1
+

k2Λ2

mm2

}
.

Note that the set Σ is positively attracting all trajectories of dynamics (3.1) according to the
following results.

Lemma 1. Σ is a positively invariant, attracting, and compact set for the dynamics of (3.1).

Proof. By applying the classical theory of functional differential equations [23], system (3.1) with
the initial condition in R7

+ admits a unique solution for t ≥ 0. Since we have Ṡ1 |S1=0= Λ1 > 0,
L̇1 |L1=0= β1S1P > 0, İ1 |I1=0= ζ1L1 > 0, Ṡ2 |S2=0= Λ2 > 0, L̇2 |L2=0= β2S2P > 0, İ2 |I2=0= ζ2L2 > 0,
and Ṗ |P=0= k1I1 + k2I2 > 0. Therefore, R7

+ is invariant by the dynamics of (3.1). Let us denote the
sizes of the total bees’ compartments from the first and second beehives by T1 := S1 + L1 + I1 and
T2 := S2+L2+ I2, respectively. From the dynamics of (3.1), we have Ṫ1 = Λ1−m1S1−m1L1−m1I1 =

m1(
Λ1

m1
− T1). Hence, T1 = S1 + L1 + I1 =

Λ1

m1
if T1(0) = S1(0) + L1(0) + I1(0) =

Λ1

m1
. Similarly,

Ṫ2 = S2 + L2 + I2 = Λ2−m2S2−m2L2−m2I2 = m2(
Λ2

m2
− T2). Hence, T2 = S2 + L2 + I2 =

Λ2

m2
if

T2(0) = S2(0)+L2(0)+ I2(0) =
Λ2

m2
. Similarly, Ṗ = k1I1 + k2I2−mP ≤ k1Λ1

m1
+

k2Λ2

m2
−mP. Hence,

P≤ k1Λ1

mm1
+

k2Λ2

mm2
if P(0)≤ k1Λ1

mm1
+

k2Λ2

mm2
. �

3.2. Basic reproduction number and equilibria

Now, we will calculate the basic reproduction number, denoted as R0, for the system described
in (3.1) using the next generation matrix [24]. First, we must identify the steady state free of Nosema

disease, which has the form E0 =

(
Λ1

m1
,0,0,

Λ2

m2
,0,0,0

)
. All equations of (3.1), except the first

and the fourth one, characterize the emergence of new infections and the transitions among infected
individuals. To build the next generation matrix, we define matrix F to represent the rate at which new
infections occur in these equations, while matrix V reflects the rate of movement of individuals into
and out of the various compartments. Then the non-negative matrix F and the non-singular matrix V
are specified as follows:

F =


0 0 0 0 β1

Λ1
m1

0 0 0 0 β2
Λ2
m2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and V =


ζ1 +m1 0 0 0 0

0 ζ2 +m2 0 0 0
−ζ1 0 m1 0 0

0 −ζ2 0 m2 0
0 0 −k1 −k2 m

 .
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The basic reproduction number for dynamics (3.1) is defined as the spectral radius of the next
generation matrix FV−1, which is provided as follows:

R0 =
k1β1ζ1Λ1

mm2
1(ζ1 +m1)

+
k2β2ζ2Λ2

mm2
2(ζ2 +m2)

= R01 +R02. (3.2)

The structure of the basic reproduction number in Eq (3.2) reveals a crucial feature of environmentally
transmitted diseases in interconnected populations. Here, R0 is not merely an average over the two
colonies but a sum of colony-specific contributions (R01 +R02).
Biological interpretation: This additive form arises because the environmental spore pool (P) acts
as a common infectious reservoir. A single infection in either colony contributes spores to this
shared reservoir. Then these spores pose a transmission risk to susceptible bees in both colonies. R01
represents the average number of secondary infections (in either colony) generated over the lifetime
of an infected bee that originates from Colony 1, mediated through the environmental reservoir.
Similarly, R02 represents the contribution from an infection that originates in Colony 2.
Epidemiological Consequence: The additive property has a critical implication for disease control:
An infection introduced into either colony fully contributes to the overall epidemic potential of the
entire system. Even if one colony is highly resistant (e.g., R01 � 1), then a sufficiently high force
of infection from the other colony (R02 > 1) can maintain R0 > 1, thus leading to endemic disease
in both colonies through the contaminated environment. This models the real-world observation in
apiaries that a single diseased hive can act as a source of infection for neighboring hives. In contrast,
for models with only direct (bee-to-bee) transmission between colonies, R0 would typically be a more
complex function (e.g., the spectral radius of a next-generation matrix) and not a simple sum. Here,
the additive form here is a hallmark of indirect, common-source transmissions.

The additive R0 is a property of the coupling structure (two sources, one shared sink), not just the
sum of two independent populations. It is the correct threshold for the coupled system as modeled. If
the system structure changes (by merging), then the threshold changes. This is a strength of the model
when applied to separate hives that share a landscape, but it also defines the model’s limits.

Theorem 1. If R0 > 1, then (3.1) admits a unique endemic steady state.

This theorem confirms the intuitive threshold behavior: a unique endemic steady state exists if and
only if R0 > 1. It guarantees that when the disease can invade, it will stabilize at a predictable, positive
level rather than growing without bound or oscillating indefinitely.

Proof. Let the endemic steady state of (3.1) be denoted by E ∗ = (S∗1,S
∗
2,L
∗
1,L
∗
2, I
∗
1 , I
∗
2 ,P
∗).

This equilibrium is determined by solving the following two sub-systems of equations:
Λ1−β1S∗1P∗−m1S∗1 = 0,
β1S∗1P∗− (ζ1 +m1)L∗1 = 0,
ζ1L∗1−m1I∗1 = 0,

(3.3)


Λ2−β2S∗2P∗−m2S∗2 = 0,
β2S∗2P∗− (ζ2 +m2)L∗2 = 0,
ζ2L∗2−m2I∗2 = 0,

(3.4)

and

k1I∗1 + k2I∗2 −mP∗ = 0. (3.5)

We obtain the following:

L∗1 =
m1

ζ1
I∗1 , L∗2 =

m2

ζ2
I∗2 , P∗ =

k1I∗1 + k2I∗2
m

. (3.6)
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Substituting (3.6) into the second equations of (3.3) and (3.4) leads to the following:(
β1k1S∗1

m
− m1(ζ1 +m1)

ζ1

)
I∗1 +

(
β2k2S∗2

m
− m2(ζ2 +m2)

ζ2

)
I∗2 = 0. (3.7)

We can write the following:

m1(ζ1 +m1)

ζ1

(
β1k1S∗1

mm1(ζ1 +m1)
−1
)

I∗1 +
m2(ζ2 +m2)

ζ2

(
β2k2S∗2

mm2(ζ2 +m2)
−1
)

I∗2 = 0. (3.8)

Equation (3.8) implies that either I∗1 = I∗2 = 0, or that S∗1 =
mm1(ζ1 +m1)

β1k1ζ1
=

Λ1

m1R01
and S∗2 =

mm2(ζ2 +m2)

β2k2ζ2
=

Λ2

m2R02
. From the first equations of (3.3) and (3.4), we have

(
Λ1−β1

Λ1

m1R01

k1

m
I∗1 −

Λ1

R01

)
+
(

Λ2 − β2
Λ2

m2R02

k2

m
I∗2 −

Λ2

R02

)
= 0, and this gives I∗1 =

mm1R01

β1k1

(
1 − 1

R01

)
and I∗2 =

mm2R02

β2k2

(
1− 1

R02

)
. From (3.6), we have L∗1 =

mm2
1R01

β1k1ζ1

(
1− 1

R01

)
, L∗2 =

mm2
2R02

β2k2ζ2

(
1− 1

R02

)
, and

P∗ =
m1R01

β1

(
1− 1

R01

)
+

m2R02

β2

(
1− 1

R02

)
. As we can note, E ∗ exists whenever S∗1 > 0, S∗2 > 0,

L∗1 > 0, L∗2 > 0, I∗1 > 0, I∗2 > 0, and P∗ > 0, and this only feasible if R0 > 1. Therefore, we deduce that
the endemic equilibrium point E ∗ exists, and is unique only if R0 > 1. �

Now, we will assess the global stability of both the Nosema disease-free equilibrium and the
endemic steady state. This analysis of global stability will be conducted through Lyapunov’s theory.

3.3. Global stability of equilibria

In this section, we will investigate the global stability of the equilibria established in the previous
analyses. Specifically, we aim to determine the conditions under which the disease-free equilibrium
and the endemic steady state are globally asymptotically stable. To achieve this, we will employ
Lyapunov’s stability theory, which provides a robust framework to assess the long-term behavior
of dynamical systems. By defining appropriate Lyapunov functions for both equilibria, we will
demonstrate how variations in the basic reproduction number, R0, influence the stability outcomes.
This analysis is crucial to understand the potential for disease eradication or persistence within
honeybee colonies under the modeled conditions.

Theorem 2. If R0 ≤ 1, then E0 is globally asymptotically stable.

This is a powerful eradication result. It proves that if R0 ≤ 1, then the disease will die out from
any initial condition within the biologically feasible set. The proof constructs an explicit Lyapunov
function, thereby providing a rigorous guarantee for disease elimination when control measures
push R0 below unity.

Proof. Let us consider the candidate Lyapunov function:

L0 = ζ1
k1

m1
(m2 +ζ2)L1 +

k1

m1
(m1 +ζ1)(m2 +ζ2)I1 +ζ2

k2

m2
(m1 +ζ1)L2

+
k2

m2
(m2 +ζ2)(m1 +ζ1)I2 +(m1 +ζ1)(m2 +ζ2)P.
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The Lyapunov functional F0 is defined on the biologically feasible set Σ — a positively invariant,
bounded subset of R7

+. It maps states in Σ to nonnegative real numbers, is smooth on the interior of Σ,
and only equals to zero at the disease-free equilibrium E0. This ensures that the Lyapunov analysis is
performed in a region that is both biologically realistic and mathematically well-posed.

By differentiating L0 along the trajectories of the dynamics of (3.1), we obtain the following:

L̇0 = ζ1
k1

m1
(m2 +ζ2)L̇1 +

k1

m1
(m1 +ζ1)(m2 +ζ2)İ1 +ζ2

k2

m2
(m1 +ζ1)L̇2

+
k2

m2
(m2 +ζ2)(m1 +ζ1)İ2 +(m1 +ζ1)(m2 +ζ2)Ṗ

= m(m1 +ζ1)(m2 +ζ2)

[
β1ζ1k1S1

mm1(m1 +ζ1)
+

β2ζ2k2S2

mm2(m2 +ζ2)
−1
]

P.

Since S1 ≤
Λ1

m1
and S2 ≤

Λ2

m2
, it follows that

β1ζ1k1S1

mm1(m1 +ζ1)
+

β2ζ2k2S2

mm2(m2 +ζ2)
≤ β1ζ1k1Λ1

mm2
1(m1 +ζ1)

+
β2ζ2k2Λ2

mm2
2(m2 +ζ2)

= R0.

Then the derivative satisfies the following:

L̇0 ≤ m(m1 +ζ1)(m2 +ζ2)(R0−1)P.

Thus, if R0 ≤ 1, then, L̇0 ≤ 0. When R0 < 1, then, L̇0 = 0 yields P = 0. Therefore, it can be

deduced from system (3.1) that, as t → ∞, L1→ 0, L2→ 0, I1→ 0, I2→ 0, S1→
Λ1

m1
, and S2→

Λ2

m2
.

Thus, the invariant set for which L̇0 = 0 is the singleton
{

E0 =

(
Λ1

m1
,0,0,

Λ2

m2
,0,0,0

)}
. By using

Lasalle’s Invariance Principle [25], we deduce that any solution of the dynamics of (3.1) with initial
conditions in Σ, converges to E0 as t → ∞. Thus, the equilibrium point E0 is globally asymptotically
stable once R0 < 1. When R0 = 1, L̇0 = 0 implies either P = 0, or

1 =
β1ζ1k1S1

mm1(m1 +ζ1)
+

β2ζ2k2S2

mm2(m2 +ζ2)
≤ β1ζ1k1Λ1

mm2
1(m1 +ζ1)

+
β2ζ2k2Λ2

mm2
2(m2 +ζ2)

= R0.

The latter case yields S1 =
Λ1

m1
, S2 =

Λ2

m2
and, consequently, L1 = I1 = L2 = I2 = P = 0. Therefore,

the invariant set for which L̇0 = 0 is the singleton E0 =

(
Λ1

m1
,0,0,

Λ2

m2
,0,0,0

)
. Therefore, the steady

state E0 is globally asymptotically stable if R0 = 1. �

Theorem 3. If R0 > 1, then the endemic steady state of the dynamics of (3.1), E ∗, exists, and is
globally asymptotically stable.

This theorem completes the global stability picture. When R0 > 1, not only does an endemic state
exist (Theorem 1), but it attracts all trajectories. This means the disease is predicted to persist at a stable
endemic level, irrespective of the initial number of infected bees, thus highlighting the robustness of
the endemic state once established.
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Proof. Let us define the nonnegative function Φ(X) = X − 1− lnX that only vanishes at X = 1, and
consider a candidate Lyapunov function F ∗(S1,L1, I1,S2,L2, I2,P) as follows

F ∗ = S∗1Φ

(
S1

S∗1

)
+L∗1Φ

(
L1

L∗1

)
+

m1 +ζ1

ζ1
I∗1 Φ

(
I1

I∗1

)
+

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
S∗2Φ

(
S2

S∗2

)
+

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
L∗2Φ

(
L2

L∗2

)
+

k2m1(m1 +ζ1)

k1m2ζ1
I∗2 Φ

(
I2

I∗2

)
+

m1(m1 +ζ1)

k1ζ1
P∗Φ

(
P
P∗

)
.

The Lyapunov functional F ∗ is defined on the biologically feasible set Σ. It maps states in Σ to
nonnegative real numbers, is smooth on the interior of Σ, and only equals to zero at the disease-free
equilibrium E ∗.

We calculate
dF ∗

dt
along the trajectories of dynamics (3.1) to obtain the following:

dF ∗

dt
=

(
1−

S∗1
S1

)
(Λ1−m1S1−β1S1P)+

(
1−

L∗1
L1

)
(β1S1P− (m1 +ζ1)L1)

+
m1 +ζ1

ζ1

(
1−

I∗1
I1

)
(ζ1L1−m1I1)+

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

(
1−

S∗2
S2

)
(Λ2−m2S2−β2S2P)

+
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

(
1−

L∗2
L2

)
(β2S2P− (m2 +ζ2)L2)

+
k2m1(m1 +ζ1)

k1m2ζ1

(
1−

I∗2
I2

)
(ζ2L2−m2I2)+

m1(m1 +ζ1)

k1ζ1

(
1− P∗

P

)
(k1I1 + k2I2−mP) .

By using the equilibrium equalities

Λ1 = m1S∗1 +β1S∗1P∗, Λ2 = m2S∗2 +β2S∗2P∗, k1I∗1 + k2I∗2 = mP∗,
β1S∗1P∗ = (m1 +ζ1)L∗1,ζ1L∗1 = m1I∗1 , β2S∗2P∗ = (m2 +ζ2)L∗2,ζ2L∗2 = m2I∗2 ,

we get

m1I∗1 = ζ1L∗1 =
ζ1β1S∗1P∗

(m1 +ζ1)
,m2I∗2 = ζ2L∗2 =

ζ2β2S∗2P∗

(m2 +ζ2)
,

and

dF ∗

dt
=

(
1−

S∗1
S1

)
(m1S∗1−m1S1)+β1S∗1P∗

(
1−

S∗1
S1

)
−β1S1P

L∗1
L1

+β1S∗1P∗

−β1S∗1P∗
I∗1
I1

L1

L∗1
+β1S∗1P∗+

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

(
1−

S∗2
S2

)
(m2S∗2−m2S2)

+
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

(
1−

S∗2
S2

)
− k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

S2PL∗2
S∗2P∗L2

+
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗− k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

I∗2
I2

L2

L∗2
+

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗−β1S∗1P∗

I1

I∗1

P∗

P
− k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

I2

I∗2

P∗

P

+β1S∗1P∗+
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗.

Therefore,
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dF ∗

dt
= −

m1(S1−S∗1)
2

S1
− k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

m2(S2−S∗2)
2

S2

+β1S∗1P∗
(

4−
S∗1
S1
− I1P∗

I∗1 P
−

I∗1 L1

I1L∗1
−

S1PL∗1
S∗1P∗L1

)
+

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

(
4−

S∗2
S2
− I2P∗

I∗2 P
−

I∗2 L2

I2L∗2
−

S2PL∗2
S∗2P∗L2

)
.

By applying the relation between the arithmetical and geometrical means

x1 + x2 + · · ·+ xn

n
≥ n
√

x1x2 · · ·xn, for all x1,x2, · · · ,xn ≥ 0, (3.9)

we get

4≤
S∗1
S1

+
I1P∗

I∗1 P
+

I∗1 L1

I1L∗1
+

S1PL∗1
S∗1P∗L1

and 4≤
S∗2
S2

+
I2P∗

I∗2 P
+

I∗2 L2

I2L∗2
+

S2PL∗2
S∗2P∗L2

.

Hence,
dF ∗

dt
≤ 0. Moreover,

dF ∗

dt
= 0 if (S1,L1, I1,S2,L2, I2,P) = (S∗1,L

∗
1, I
∗
1 ,S
∗
2,L
∗
2, I
∗
2 ,P
∗).

LaSalle’s invariance principle indicates that E ∗ is globally asymptotically stable when R0 > 1. �

The analysis of the non-delayed model provides crucial biological insights into the
dynamics of Nosema transmission between two honeybee colonies. The basic reproduction number,
R0 = R01 + R02, acts as a clear threshold to determine the long-term fate of the disease within
the apiary. If R0 ≤ 1, then the disease-free equilibrium is globally stable, which indicates that the
infection will naturally die out as each infected bee, on average, fails to replace itself with a new
infection. Conversely, if R0 > 1, then the pathogen can successfully invade and persist at an endemic
level, thus establishing a stable balance between new infections and the loss of infected individuals.
This persistence is characterized by a positive equilibrium where the number of healthy bees is reduced,
and a constant level of infection is maintained within the colonies and their shared environment. These
findings underscore that effective disease management must aim to reduce R0 below unity, which
can be achieved by targeting key parameters such as transmission rates (β1,β2) or spore shedding
rates (k1,k2), for instance, through improved hive hygiene or treatments that lower the infectiousness
of bees.

4. Impact of distributed delays

Having established the foundational dynamics of the system in the absence of distributed delays,
we now extend our analysis to incorporate a more biologically realistic framework. This section
reintroduces the full model with distributed delays, as defined in system (2.1), to account for the
essential time lags inherent in the Nosema infection process. These delays capture the durations of
latency, incubation, and parasite maturation, which are critical to accurately model the progression
of the disease. We begin by verifying the well-posedness of the model, thus establishing the non-
negativity and boundedness of solutions within a biologically feasible domain. Subsequently, we derive
the delayed basic reproduction number, Rd

0 , and analyze the existence and stability of the system’s
equilibria. The global stability of both the disease-free and endemic equilibria are rigorously examined
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using appropriately constructed Lyapunov functionals, thereby generalizing the results from the non-
delayed case and revealing how time delays influence the long-term outcome of the epidemic.

Let us return to the main system (2.1) and start by discussing the existence, positivity, and
boundedness of the trajectories.

4.1. Biological feasible domain

Lemma 2. The dynamics (2.1) with initial conditions (2.2) admits nonnegative and ultimately bounded
solutions. Furthermore, the dynamics (2.1) admits an invariant set given by the following:

Σd =

{
(S1,L1, I1,S2,L2, I2,P) ∈ R7

+ : ‖S1‖ ≤
Λ1

m1
,‖L1‖ ≤

Λ1

m1
,‖I1‖ ≤

ζ1Λ1

m2
1
,‖S2‖ ≤

Λ2

m2
,‖L2‖ ≤

Λ2

m2
,

‖I2‖ ≤
ζ2Λ2

m2
2
,‖P‖ ≤ k1ζ1Λ1

mm2
1

+
k2ζ2Λ2

mm2
2

}
.

Proof. By the classical theory of functional differential equations [23], system (2.1) with initial
conditions (2.2) admits a unique solution for t ≥ 0. Clearly, Ṡ1 |S1=0= Λ1 > 0, Ṡ2 |S2=0= Λ2 > 0.
Hence, S1(t)> 0 and S2(t)> 0 for any t ≥ 0. In addition, we have the following:

L1(t) = e−(m1+ζ1)tφ L
1 (0)+β1

∫ t

0
e−(m1+ζ1)(t−θ)

∫
ω1

0
G1(τ)S1(θ − τ)P(θ − τ)dτdθ ≥ 0,

I1(t) = e−m1t
φ

I
1(0)+ζ1

∫ t

0
e−m1(t−θ)

∫
ω2

0
G2(τ)L1(θ − τ)dτdθ ≥ 0,

L2(t) = e−(m2+ζ2)tφ L
2 (0)+β2

∫ t

0
e−(m2+ζ2)(t−θ)

∫
ω3

0
G3(τ)S2(θ − τ)P(θ − τ)dτdθ ≥ 0,

I2(t) = e−m2t
φ

I
2(0)+ζ2

∫ t

0
e−m2(t−θ)

∫
ω4

0
G4(τ)L2(θ − τ)dτdθ ≥ 0,

P(t) = e−mt
φ

P(0)+
∫ t

0
e−m(t−θ)

∫
ω5

0
G5(τ)[k1I1(θ − τ)+ k2I2(θ − τ)]dτdθ ≥ 0,

for any t ∈ [0,τ∗]. Therefore, by recursive argumentation, we deduce that

(S1,L1, I1,S2,L2, I2,P)(t)≥ 0 for any t ≥ 0.

According to the first equation of dynamics (2.1), we get limsup
t→∞

S1(t) ≤
Λ1

m1
. Let us define

the following:

ψ1(t) =
∫

ω1

0
G1(τ)S1(t− τ)dτ +L1(t).

Then, we obtain the following:

ψ̇1(t) =
∫

ω1

0
G1(τ)Ṡ1(t− τ)dτ + L̇1(t)

=
∫

ω1

0
G1(τ) [Λ1−m1S1(t− τ)−β1S1(t− τ)P(t− τ)]dτ

+β1

∫
ω1

0
G1(τ)S1(t− τ)P(t− τ)dτ− (m1 +ζ1)L1(t)
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= Λ1

∫
ω1

0
G1(τ)dτ−m1

∫
ω1

0
G1(τ)S1(t− τ)dτ− (m1 +ζ1)L1(t)

= Λ1F1−m1

∫
ω1

0
G1(τ)S1(t− τ)dτ− (m1 +ζ1)L1(t)

≤ Λ1−m1

[∫
ω1

0
G1(τ)S1(t− τ)dτ +L1(t)

]
= m1

(
Λ1

m1
−ψ1(t)

)
.

It follows that limsup
t→∞

ψ1(t)≤
Λ1

m1
, and then limsup

t→∞

L1(t)≤
Λ1

m1
. Similarly, we have the following:

İ1(t) = ζ1

∫
ω2

0
G2(τ)L1(t− τ)dτ−m1I1(t)≤

ζ1Λ1

m1
F2−m1I1(t)≤

ζ1Λ1

m1
−m1I1(t).

It follows that limsup
t→∞

I1(t)≤
ζ1Λ1

m2
1

. Similarly, let us define the following:

ψ2(t) =
∫

ω3

0
G3(τ)S2(t− τ)dτ +L2(t).

Then, we obtain the following:

ψ̇2(t) =
∫

ω3

0
G3(τ)Ṡ2(t− τ)dτ + L̇2(t)

=
∫

ω3

0
G3(τ) [Λ2−m2S2(t− τ)−β2S2(t− τ)P(t− τ)]dτ

+β2

∫
ω3

0
G3(τ)S2(t− τ)P(t− τ)dτ− (m2 +ζ2)L2(t)

= Λ2

∫
ω3

0
G3(τ)dτ−m2

∫
ω3

0
G3(τ)S2(t− τ)dτ− (m2 +ζ2)L2(t)

≤ Λ2−m2

[∫
ω3

0
G3(τ)S2(t− τ)dτ +L2(t)

]
= Λ2−m2ψ2(t).

It follows that limsup
t→∞

ψ2(t)≤
Λ2

m2
, and then limsup

t→∞

L2(t)≤
Λ2

m2
. Note that

Ẏi(t) = ζ2

∫
ω4

0
G4(τ)L2(t− τ)dτ−m2I2(t)≤

ζ2Λ2

m2
−m2I2(t).

It follows that limsup
t→∞

I2(t)≤
ζ2Λ2

m2
2

. By the same way, we obtain the following:

Ṗ(t) =
∫

ω5

0
G5(τ)[k1I1(t− τ)+ k2I2(t− τ)]dτ−mP(t)

≤
[

k1ζ1

m1

Λ1

m1
+

k2ζ2

m2

Λ2

m2

]
−mP(t).

It follows that limsup
t→∞

P(t)≤ k1ζ1Λ1

mm2
1

+
k2ζ2Λ2

mm2
2

. Therefore, one deduces that Σd is positively invariant

w.r.t. system (2.1). �

Next, we will calculate the basic reproduction number and study the existence of equilibria of
dynamics (2.1).
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4.2. Computation of the basic reproduction number and equilibria

This section analyzes the existence of equilibria for the proposed model. To compute the basic
reproduction number, Rd

0 , associated with the dual target infection dynamics, we utilize the next-
generation matrix approach as described in [24]. In fact, we will prove that Rd

0 = Rd
01 + Rd

02,
where Rd

01 and Rd
02 denote the total number of newly infected bees in the first and second beehives

generated from a single infected bee at the onset of the infection, respectively. The parameter Rd
0

represents the basic reproduction number for the dual-target infection. The basic reproduction number
is determined at the disease-free equilibrium point. In our case, the infection-free equilibrium
point of system (2.1) is given by E d

0 =
(

Λ1
m1
,0,0, Λ2

m2
,0,0,0

)
. The basic reproduction number, Rd

0 ,

is defined as the spectral radius of the next-generation matrix, denoted by ρ(Fd
0 V d−1

0 ). In this
formulation, Fd

0 contains the rates at which new infections occur, while V d
0 captures the rates of

transitions between infected compartments. These matrices are derived based on the model structure
using the methodology introduced by [24]. The specific forms of Fd

0 and V d
0 are given below:

Fd
0 =


0 0 0 0 F1β1

Λ1
m1

0 0 0 0 0
0 0 0 0 F3β2

Λ2
m2

0 0 0 0 0
0 0 0 0 0

 , V d
0 =


m1 +ζ1 0 0 0 0
−ζ1F2 m1 0 0 0

0 0 m2 +ζ2 0 0
0 0 −ζ2F4 m2 0
0 −k1F5 0 −k2F5 m

 .

Therefore,
Rd

0 = ρ(Fd
0 V d−1

0 ) = Rd
01 +Rd

02,

where

Rd
01 =

k1ζ1β1F1F2F5Λ1

mm2
1(m1 +ζ1)

and Rd
02 =

k2ζ2β2F3F4F5Λ2

mm2
2(m2 +ζ2)

.

Therefore, we obtain the following main result regarding the existence and uniqueness of the
equilibria of the system (2.1).

Lemma 3. • System (2.1) admits an infection-free equilibrium denoted by the following:

E d
0 =

(
Λ1

m1
,0,0,

Λ2

m2
,0,0,0

)
.

• If Rd
0 > 1, then the system (2.1) admits an endemic equilibrium point denoted by the following:

E ∗d = (S∗1,L
∗
1, I
∗
1 ,S
∗
2,L
∗
2, I
∗
2 ,P
∗) .

Proof. By setting the time-derivatives to zero, we obtain the following:

0 = Λ1−m1S1−β1S1P,
0 = β1F1S1P− (m1 +ζ1)L1,

0 = ζ1F2L1−m1I1,
0 = Λ2−m2S2−β2S2P,
0 = β2F3S2P− (m2 +ζ2)L2,
0 = ζ2F4L2−m2I2,

0 = F5(k1I1 + k2I2)−mP.
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We have the following two cases:

1. If P = 0, then the system admits an infection-free equilibrium point as follows:

E d
0 =

(
Λ1

m1
,0,0,

Λ2

m2
,0,0,0

)
.

2. If P , 0, we obtain

S1 =
Λ1

m1 +β1P
, S2 =

Λ2

m2 +β2P
, L1 =

m1β1F1Λ1P
m1(m1 +ζ1)(m1 +β1P)

,

I1 =
ζ1β1F1F2Λ1P

m1(m1 +ζ1)(m1 +β1P)
, L2 =

m2β2F3Λ2P
m2(m2 +ζ2)(m2 +β2P)

,

I2 =
ζ2β2F3F4Λ2P

m2(m2 +ζ2)(m2 +β2P)
,

and P satisfies the following equation:

k1ζ1β1F1F2F5Λ1

m1(m1 +ζ1)(m1 +β1P)
+

k2ζ2β2F3F4F5Λ2

m2(m2 +ζ2)(m2 +β2P)
−m = 0.

Let us consider the function h given by the following:

h(P) =
k1ζ1β1F1F2F5Λ1

m1(m1 +ζ1)(m1 +β1P)
+

k2ζ2β2F3F4F5Λ2

m2(m2 +ζ2)(m2 +β2P)
−m.

Then, we have the following:

h(0) =
k1ζ1β1F1F2F5Λ1

m2
1(m1 +ζ1)

+
k2ζ2β2F3F4F5Λ2

m2
2(m2 +ζ2)

−m

= m
(

k1ζ1β1F1F2F5Λ1

mm2
1(m1 +ζ1)

+
k2ζ2β2F3F4F5Λ2

mm2
2(m2 +ζ2)

−1
)

= m
(
Rd

0 −1
)
.

Thus, h(0)> 0 when Rd
0 > 1. Furthermore, we have h(P)→−m< 0 whenever P→∞. Moreover,

h′(P) =−
(

k1ζ1β 2
1 F1F2F5Λ1

m1(m1 +ζ1)(m1 +β1P)2 +
k2ζ2β 2

2 F3F4F5Λ2

m2(m2 +ζ2)(m2 +β2P)2

)
< 0.

Thus, h is a strictly decreasing function of P and hence, if Rd
0 > 1, then there exists a unique

P∗ ∈ (0,∞) such that h(P∗) = 0. Hence,

S∗1 =
Λ1

m1 +β1P∗
, S∗2 =

Λ2

m2 +β2P∗
, L∗1 =

β1F1Λ1P∗

(m1 +ζ1)(m1 +β1P∗)
,

I∗1 =
ζ1β1F1F2Λ1P∗

m1(m1 +ζ1)(m1 +β1P∗)
,L∗2 =

β2F3Λ2P∗

(m2 +ζ2)(m2 +β2P∗)
, I∗2 =

ζ2β2F3F4Λ2P∗

m2(m2 +ζ2)(m2 +β2P∗)
,

where P∗ satisfies the following quadratic equation:

aP∗
2
+bP∗+ c = 0, (4.1)

where
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a = mβ1β2(m1 +ζ1)(m2 +ζ2)> 0,
b = = m(m2β1 +m1β2)(ζ1 +m1)(ζ2 +m2)

−β1β2F5

(
k2ζ2F3F4

Λ2

m2
(ζ1 +m1)+ k1ζ1F1F2

Λ1

m1
(ζ2 +m2)

)
,

c = mm1m2(m1 +ζ1)(m2 +ζ2)
(
1−Rd

0
)
.

Clearly, c < 0 if Rd
0 > 1. Equation (4.1) admits a unique positive solution given by P∗ =

−b+
√

b2−4ac
2a

> 0. For Rd
0 > 1, we obtain a unique endemic equilibrium point given by

E ∗d = (S∗1,L
∗
1, I
∗
1 ,S
∗
2,L
∗
2, I
∗
2 ,P
∗).

�

4.3. Global stability

In this section, we will focus on the computation of the basic reproduction number, Rd
0 , for the

model with distributed delays. This parameter is essential to understand the potential for disease
spread within the honeybee colonies, as it indicates the average number of secondary infections
generated by a single infected individual in a population free of the disease. We will utilize the
next generation matrix approach to derive Rd

0 and analyze how the inclusion of distributed delays
alters its value compared to the non-delayed scenario. By examining the implications of Rd

0
on the stability of the dynamics (2.1), we aim to provide insights into the dynamics of Nosema
infections and their management in honeybee populations. Let us denote by (S1,L1, I1,S2,L2, I2,P) =
(S1,L1, I1,S2,L2, I2,P)(t), and (Sτ

1,L
τ
1, I

τ
1 ,S

τ
2,L

τ
2, I

τ
2 ,P

τ) = (S1,L1, I1,S2,L2, I2,P)(t− τ).

Theorem 4. The infection-free equilibrium point E d
0 is globally asymptotically stable once Rd

0 ≤ 1.

This result generalizes Theorem 2 to the biologically realistic delayed system. It proves that
the threshold condition Rd

0 ≤ 1 remains a sharp criterion for global disease eradication, even when
accounting for variable incubation and maturation periods. The construction of a Lyapunov functional
capable of handling distributed delays is a key technical achievement.

Proof. Let us consider a candidate Lyapunov function F d
0 (S1,L1, I1,S2,L2, I2,P)

F d
0 = F1F2F5

Λ1

m1
Φ

(
m1S1

Λ1

)
+F2F5L1 +F5

m1 +ζ1

ζ1
I1

+F3F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

Λ2

m2
Φ

(
m2S2

Λ2

)
+F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
L2 +F5

k2m1(m1 +ζ1)

k1m2ζ1
I2 +

m1(m1 +ζ1)

k1ζ1
P

+F2F5β1

∫
ω1

0
G1(τ)

∫ t

t−τ

S1(θ)P(θ)dθdτ

+F5(m1 +ζ1)
∫

ω2

0
G2(τ)

∫ t

t−τ

L1(θ)dθdτ

+F4F5β2
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

∫
ω3

0
G3(τ)

∫ t

t−τ

S2(θ)P(θ)dθdτ
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+F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1

∫
ω4

0
G4(τ)

∫ t

t−τ

L2(θ)dθdτ

+
m1(m1 +ζ1)

k1ζ1

∫
ω5

0
G5(τ)

∫ t

t−τ

(
k1I1(θ)+ k2I2(θ)

)
dθdτ.

The Lyapunov functional F d
0 is defined on the biologically feasible set Σd — a positively invariant,

bounded subset of R7
+. It maps states in Σd to nonnegative real numbers, is smooth on the interior of Σd ,

and only equals to zero at the disease-free equilibrium E d
0 . This ensures that the Lyapunov analysis is

performed in a region that is both biologically realistic and mathematically well-posed.

We calculate
dF d

0
dt

along the trajectories of the dynamics (2.1) to obtain the following:

dF d
0

dt
= F1F2F5

(
1− Λ1

m1S1

)
Ṡ1 +F2F5L̇1 +F5

m1 +ζ1

ζ1
İ1

+F3F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

(
1− Λ2

m2S2

)
Ṡ2 +F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
L̇2

+F5
k2m1(m1 +ζ1)

k1m2ζ1
İ2 +

F3F4F8

k2

m1(m1 +ζ1)

k1ζ1
Ṗ

+F2F5β1

∫
ω1

0
G1(τ)(S1P−Sτ

1Pτ)dτ +F5(m1 +ζ1)
∫

ω2

0
G2(τ)(L1−Lτ

1)dτ

+F4F5β2
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

∫
ω3

0
G3(τ)(S2P−Sτ

2Pτ)dτ

+F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1

∫
ω4

0
G4(τ)(L2−Lτ

2)dτ

+
m1(m1 +ζ1)

k1ζ1

∫
ω5

0
G5(τ)

[
k1(I1− Iτ

1 )+ k2(I2− Iτ
2 )
]
dτ.

From the dynamics (2.1), we obtain the following:

dF d
0

dt
= −F1F2F5

m1

S1

(
S1−

Λ1

m1

)2

−F1F2F5β1S1P+F1F2F5β1
Λ1

m1
P−F2F5(m1 +ζ1)L1

−F5
(m1 +ζ1)

ζ1
m1I1−F3F4F5

m1k2ζ2(m1 +ζ1)

S2k1ζ1(m2 +ζ2)

(
S2−

Λ2

m2

)2

−F3F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S2P+F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2
2ζ1(m2 +ζ2)

β2Λ2P

−F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1
L2−F5

k2m1(m1 +ζ1)

k1m2ζ1
m2I2−

m1(m1 +ζ1)

k1ζ1
mP

+F1F2F5β1S1P+F2F5(m1 +ζ1)L1 +F3F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S2P

+F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1
L2 +F5

m1(m1 +ζ1)

k1ζ1

[
k1I1 + k2I2

]
.

We collect terms as follows:

dF d
0

dt
= −F1F2F5

m1

S1

(
S1−

Λ1

m1

)2

−F3F4F5
k2m1ζ2(m1 +ζ1)

S2k1ζ1(m2 +ζ2)

(
S2−

Λ2

m2

)2

+
mm1(m1 +ζ1)

k1ζ1

(
k1ζ1β1F1F2F5Λ1

mm2
1(m1 +ζ1)

+
k2ζ2β2F3F4F5Λ2

mm2
2(m2 +ζ2)

−1
)

P.
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Finally, we obtain the following:

dF d
0

dt
= −F1F2F5

m1

S1

(
S1−

Λ1

m1

)2

−F3F4F5
k2m1ζ2(m1 +ζ1)

S2k1ζ1(m2 +ζ2)

(
S2−

Λ2

m2

)2

+
mm1(m1 +ζ1)

k1ζ1

(
Rd

0 −1
)

P.

Therefore, for all S1,L1, I1,S2,L2, I2,P > 0, we have
dF d

0
dt
≤ 0 when Rd

0 ≤ 1. Moreover,
dF d

0
dt

= 0

when S1 =
Λ1

m1
, S2 =

Λ2

m2
, and (Rd

0 − 1)P = 0. According to [19], solutions of system (2.1) limit to

the largest invariant subset of

{
(S1,L1, I1,S2,L2, I2,P) :

dF d
0

dt
= 0

}
, which contains elements with

S1(t) =
Λ1

m1
, S2(t) =

Λ2

m2
, and

(Rd
0 −1)P = 0. (4.2)

Let us consider two cases:

• If Rd
0 < 1, then, we obtain P = 0 from Eq (4.2). Since the largest invariant subset of{

(S1,L1, I1,S2,L2, I2,P) :
dF d

0
dt

= 0

}
is invariant, we obtain Ṗ(t) = 0. Then,

0 =
∫

ω5

0
ζ5(τ)e−η5τ

[
k1I1(t− τ)+ k2I2(t− τ)

]
dτ ⇒ I1(t) = I2(t) = 0,∀t. (4.3)

Furthermore, since I1 = 0, then İ2(t) = ζ1

∫
ω2

0
ζ2(τ)e−η2τL1(t−τ)dτ = 0, and thus L1(t) = 0, for

any t. By the same way, I2 = 0, then İ2(t)= ζ2

∫
ω4

0
ζ4(τ)e−η4τL2(t−τ)dτ = 0, and thus L2(t)= 0,

for any t. Hence, the largest invariant subset of

{
(S1,L1, I1,S2,L2, I2,P) :

dF d
0

dt
= 0

}
=
{
E d

0
}

.

• If Rd
0 = 1, then we have S1 =

Λ1

m1
, S2 =

Λ2

m2
; then, Ṡ1(t) = Ṡ2(t) = 0. From (2.1), we have

the following:

Λ2−Λ2−β2
Λ2

m2
P = 0 =⇒ P(t) = 0,∀t. (4.4)

According to (4.3), we deduce that I1(t) = I2(t) = L1(t) = L2(t) = 0 for all t ≥ 0. Hence, the

largest invariant subset of

{
(S1,L1, I1,S2,L2, I2,P) :

dF d
0

dt
= 0

}
=
{
E d

0
}

.

By applying LaSalle’s invariance principle [26], we conclude that E d
0 =

(
Λ1

m1
,0,0,

Λ2

m2
,0,0,0

)
is

globally asymptotically stable once Rd
0 ≤ 1. �
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Theorem 5. If the dual target-infection equilibrium point E ∗d exists (Rd
0 > 1), then it is globally

asymptotically stable.

This theorem establishes the global attractiveness of the endemic equilibrium in the delayed model,
thereby generalizing Theorem 3. It confirms that the threshold dynamics are preserved: when Rd

0 > 1,
the disease will persist at an endemic level for all initial histories, and the inclusion of delays does not
induce sustained oscillations or other complex behaviors that could invalidate the simple dichotomy.

Proof. Let us define a candidate Lyapunov function F ∗
d (S1,L1, I1,S2,L2, I2,P) as follows:

F ∗
d = F1F2F5S∗1Φ

(
S1

S∗1

)
+F2F5L∗1Φ

(
L1

L∗1

)
+F5

m1 +ζ1

ζ1
I∗1 Φ

(
I1

I∗1

)
+F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
S∗2Φ

(
S2

S∗2

)
+F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
L∗2Φ

(
L2

L∗2

)
+F5

k2m1(m1 +ζ1)

k1m2ζ1
I∗2 Φ

(
I2

I∗2

)
+

m1(m1 +ζ1)

k1ζ1
P∗Φ

(
P
P∗

)
+F2F5β1S∗1P∗

∫
ω1

0
G1(τ)

∫ t

t−τ

Φ

(
S1(θ)P(θ)

S∗1P∗

)
dθdτ

+F5(m1 +ζ1)L∗1

∫
ω2

0
G2(τ)

∫ t

t−τ

Φ

(
L1(θ)

L∗1

)
dθdτ

+F4F5β2
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
S∗2P∗

∫
ω3

0
G3(τ)

∫ t

t−τ

Φ

(
S2(θ)P(θ)

S∗2P∗

)
dθdτ

+F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1
L∗2

∫
ω4

0
G4(τ)

∫ t

t−τ

Φ

(
L2(θ)

L∗2

)
dθdτ

+
m1(m1 +ζ1)

k1ζ1

∫
ω5

0
G5(τ)

∫ t

t−τ

(
k1I∗1 Φ

(
I1(θ)

I∗1

)
+ k2I∗2 Φ

(
I2(θ)

I∗2

))
dθdτ.

The Lyapunov functional F ∗
d is defined on the biologically feasible set Σd . It maps states in Σd to

nonnegative real numbers, is smooth on the interior of Σd , and only equals to zero at the disease-free
equilibrium E ∗d .

By calculating
dF ∗

d
dt

along the trajectories of dynamics (2.1), we obtain the following:

dF ∗
d

dt
= F1F2F5

(
1−

S∗1
S1

)
(Λ1−m1S1−β1S1P)

+F2F5

(
1−

L∗1
L1

)(
β1

∫
ω1

0
G1Sτ

1Pτdτ− (m1 +ζ1)L1

)
+F5

m1 +ζ1

ζ1

(
1−

I∗1
I1

)(
ζ1

∫
ω2

0
G2Lτ

1dτ−m1I1

)
+F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

(
1−

S∗2
S2

)
(Λ2−m2S2−β2S2P)

+F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

(
1−

L∗2
L2

)(
β2

∫
ω3

0
G3Sτ

2Pτdτ− (m2 +ζ2)L2

)
+F5

k2m1(m1 +ζ1)

k1m2ζ1

(
1−

I∗2
I2

)(
ζ2

∫
ω4

0
G4Lτ

2dτ−m2I2

)
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+
m1(m1 +ζ1)

k1ζ1

(
1− P∗

P

)(∫
ω5

0
G5
[
k1Iτ

1 + k2Iτ
2
]
dτ−mP

)
+F2F5β1S∗1P∗

∫
ω1

0
G1(τ)

[
S1P
S∗1P∗

−
Sτ

1Pτ

S∗1P∗
+ ln

(
Sτ

1Pτ

S1P

)]
dτ

+F5(m1 +ζ1)L∗1

∫
ω2

0
G2(τ)

[
L1

L∗1
−

Lτ
1

L∗1
+ ln

(
Lτ

1
L1

)]
dτ

+F4F5β2
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
S∗2P∗

∫
ω3

0
G3(τ)

[
S2P
S∗2P∗

−
Sτ

2Pτ

S∗2P∗
+ ln

(
Sτ

2Pτ

S2P

)]
dτ

+F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1
L∗2

∫
ω4

0
G4(τ)

[
L2

L∗2
−

Lτ
2

L∗2
+ ln

(
Lτ

2
L2

)]
dτ

+
m1(m1 +ζ1)

k1ζ1

∫
ω5

0
G5(τ)

(
k1I∗1

[
I1

I∗1
−

Iτ
1

I∗1
+ ln

(
Iτ
1

I1

)]
+ k2I∗2

[
I2

I∗2
−

Iτ
2

I∗2
+ ln

(
Iτ
2

I2

)])
dτ.

By using the equilibrium conditions

Λ1 = m1S∗1 +β1S∗1P∗, Λ2 = m2S∗2 +β2S∗2P∗, F5(k1I∗1 + k2I∗2 ) = mP∗,
β1F1S∗1P∗ = (m1 +ζ1)L∗1,ζ1F2L∗1 = m1I∗1 , β2F3S∗2P∗ = (m2 +ζ2)L∗2,ζ2F4L∗2 = m2I∗2 ,

we get m1I∗1 = ζ1F2L∗1 =
ζ1F1F2

(m1 +ζ1)
β1S∗1P∗,m2I∗2 = ζ2F4L∗2 =

ζ2F3F4

(m2 +ζ2)
β2S∗2P∗, and

dF ∗
d

dt
= −F1F2F5

m1(S1−S∗1)
2

S1
−F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

m2(S2−S∗2)
2

S2

+F1F2F5β1S∗1P∗
(

1−
S∗1
S1

)
+F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

(
1−

S∗2
S2

)
+F2F5β1S∗1P∗

∫
ω1

0
G1(τ)

[
1−

Sτ
1PτL∗1

S∗1P∗L1
+ ln

(
Sτ

1Pτ

S1P

)]
dτ

+F1F5β1S∗1P∗
∫

ω2

0
G2(τ)

[
1−

Lτ
1I∗1

L∗1I1
+ ln

(
Lτ

1
L1

)]
dτ

+F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

∫
ω3

0
G3(τ)

[
1−

Sτ
2PτL∗2

S∗2P∗L2
+ ln

(
Sτ

2Pτ

S2P

)]
dτ

+F3F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

∫
ω4

0
G4(τ)

[
1−

Lτ
2I∗2

L∗2I2
+ ln

(
Lτ

2
L2

)]
dτ

+F1F2β1S∗1P∗
∫

ω5

0
G5(τ)

[
1−

Iτ
1 P∗

I∗1 P
+ ln

(
Iτ
1

I1

)]
dτ

+F3F4
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

∫
ω5

0
G5(τ)

[
1−

Iτ
2 P∗

I∗2 P
+ ln

(
Iτ
2

I2

)]
dτ.

By applying the equalities:

ln
(

Sτ
1Pτ

S1P

)
+ ln

(
Lτ

1
L1

)
+ ln

(
Iτ
1

I1

)
= ln

(
S∗1
S1

)
+ ln

(
Sτ

1PτL∗1
S∗1P∗L1

)
+ ln

(
Lτ

1I∗1
L∗1I1

)
+ ln

(
Iτ
1 P∗

I∗1 P

)
,

ln
(

Sτ
2Pτ

S2P

)
+ ln

(
Lτ

2
L2

)
+ ln

(
Iτ
2

I2

)
= ln

(
S∗2
S2

)
+ ln

(
Sτ

2PτL∗2
S∗2P∗L2

)
+ ln

(
Lτ

2I∗2
L∗2I2

)
+ ln

(
Iτ
2 P∗

I∗2 P

)
,
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we obtain the following:

dF ∗
d

dt
= −F1F2F5

m1(S1−S∗1)
2

S1
−F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)

m2(S2−S∗2)
2

S2

−F1F2F5β1S∗1P∗Φ
(

S∗1
S1

)
−F3F4F5

k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗Φ

(
S∗2
S2

)
−F2F5β1S∗1P∗

∫
ω1

0
G1(τ)Φ

(
Sτ

1Pτ

S∗1P∗
L∗1
L1

)
dτ−F1F5β1S∗1P∗

∫
ω2

0
G2(τ)Φ

(
I∗1
I1

Lτ
1

L∗1

)
dτ

−F4F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

∫
ω3

0
G3(τ)Φ

(
Sτ

2Pτ

S∗2P∗
L∗2
L2

)
dτ

−F3F5
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

∫
ω4

0
G4(τ)Φ

(
Lτ

2
L∗2

I∗2
I2

)
dτ

−F1F2β1S∗1P∗
∫

ω5

0
G5(τ)Φ

(
Iτ
1

I∗1

P∗

P

)
dτ

−F3F4
k2m1ζ2(m1 +ζ1)

k1m2ζ1(m2 +ζ2)
β2S∗2P∗

∫
ω5

0
G5(τ)Φ

(
Iτ
2

I∗2

P∗

P

)
dτ.

Therefore,
dF ∗

d
dt

≤ 0. Furthermore,
dF ∗

d
dt

= 0 exactly if (S1,L1, I1,S2,L2, I2,P) =

(S∗1,L
∗
1, I
∗
1 ,S
∗
2,L
∗
2, I
∗
2 ,P
∗). By using LaSalle’s invariance principle, we deduce that E ∗d is globally

asymptotically stable once Rd
0 > 1. �

The analytical results of this section provide the framework for the delayed system. In Section 5,
numerical simulations will be used to validate these stability results and to investigate the quantitative
impact of the distributed delays on the infection dynamics.

5. Numerical simulations

In this section, we complement the theoretical results obtained in the previous analyses with a
comprehensive set of numerical simulations. These experiments aim to validate the analytical findings
regarding the global stability of equilibria and to illustrate the dynamic behavior of the system under
various biological and epidemiological scenarios. By exploring different parameter regimes, we
examine how variations in the transmission rates, latency periods, and treatment efficacies influence the
progression and control of dual Nosema infections in interacting honeybee colonies. Furthermore, a
sensitivity analysis is performed to identify the key parameters that most significantly affect the delayed
basic reproduction number Rd

0 , thus providing valuable insights into effective intervention strategies.
The numerical results not only confirm the theoretical predictions but also offer practical guidance to
optimize the treatment protocols and manage the disease persistence within multi-colony apiaries.

The numerical simulations are performed using a discrete-delay formulation derived from the
general distributed-delay model by choosing a specific probability density function, namely the Dirac
delta δ (·). This choice effectively reduces the integral terms to discrete delayed variables [27, 28],
which are computationally easier to handle with standard Delay Differential Equations (DDE) solvers
such as MATLAB’s dde23. Below, we explain the mathematical justification for this reduction and
why it is a legitimate approximation for numerical purposes.
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The original distributed-delay model (system (2.1)) contains terms of the following form:∫
ωi

0
Gi(τ)Z(t − τ)dτ, where Gi(τ) = qi(τ)e−ηiτ , and qi(τ) is a probability density function. If we

select qi(τ) = δ (τ− τi), then∫
∞

0
δ (τ− τi)e−ηiτZ(t− τ)dτ = e−ηiτiZ(t− τi) = e−ηiτiZτi.

Thus, the distributed delay is replaced by a single discrete delay τi multiplied by a survival factor e−ηiτi .
This is a standard simplification in DDEs when the delay distribution is highly concentrated around a
mean value. This approach is used for simulations since the following hold:

1. Discrete-delay systems are directly solvable with widely available numerical DDE solvers;
2. the Dirac delta represents the case where the delay is fixed (non-distributed), which is a common

first approximation when detailed distributions are unknown; and
3. the discrete-delay version retains the essential dynamic features analyzed in the paper (threshold

Rd
0 , stability switches, etc.), while allowing explicit computation of trajectories.

Hence, the dynamics (2.1) will be written as follows:



Ṡ1 = Λ1−m1S1−β1S1P,
L̇1 = β1e−η1τ1Sτ1

1 Pτ1− (m1 +ζ1)L1,
İ1 = ζ1e−η2τ2Lτ2

1 −m1I1,
Ṡ2 = Λ2−m2S2−β2S2P,
L̇2 = β2e−η3τ3Sτ3

2 Pτ3− (m2 +ζ2)L2,
İ2 = ζ2e−η4τ4Lτ4

2 −m2I2,
Ṗ = e−η5τ5

[
k1Iτ5

1 + k2Iτ5
2
]
−mP.

(5.1)

The basic reproduction number of model (5.1) is provided hereafter as follows:

Rd
0 =

k1ζ1β1Λ1

mm2
1(m1 +ζ1)

e−(η1τ1+η2τ2+η5τ5)+
k2ζ2β2Λ2

mm2
2(m2 +ζ2)

e−(η3τ3+η4τ4+η5τ5).

The parameter values listed in Table 2 are employed for the numerical simulations. We allow for
colony-specific parameters to account for the heterogeneity commonly observed in apiaries, where
colonies differ in size, genetic resistance, and management, thus enabling the study of cross-colony
spillover dynamics. The initial value problem is solved using MATLAB’s ode45 solver to numerically
integrate the system and verify the theoretical findings presented in the previous sections. To examine
the influence of key parameters on the threshold quantities and stability behavior, selected values are
systematically varied. Furthermore, the system of delay differential equations (5.1) is numerically
solved using MATLAB’s dde23 solver. For simplicity, we assume ηi = 1 and set the delay parameters
to τi = 0.1 for i = 1, · · · ,5

Table 2. Parameter values that are chosen arbitrarily and without biological significance.

Parameter Λ1 Λ2 ζ1 ζ2 m1 m2 k1 k2 m
Value 20 30 0.01 0.05 0.02 0.03 0.01 0.009 0.4
Parameter τ1 τ2 τ3 τ4 τ5 η1 η2 η3 η4 η5
Value 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1
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5.1. Stability of equilibria

By varying the initial condition, we validate the theoretical findings derived in Section 4.
For two different set of infection rates β1 and β2, we obtain the following two cases:

• For β1 = 0.0003 and β2 = 0.00002, we obtain Rd
0 = 0.1019 < 1.

The trajectories of dynamics (2.1) converge to the infection-free equilibrium point
E d

0 = (1000,0,0,1000,0,0,0) (Figure 2), thus confirming the results provided in Theorems 2
and 4, where the trajectories of dynamics (2.1) converge to E d

0 .
• For β1 = 0.02 and β2 = 0.03, we obtain Rd

0 = 16.5912 > 1.
The trajectories of dynamics (2.1) converge to the endemic equilibrium point
E ∗d = (60.26,566.87,256.55,60.26,318.86,480.87,15.59) (Figure 3), thus confirming the
theoretical results provided in Theorems 3 and 5.

Figure 2 illustrates the case where the delayed basic reproduction number satisfies Rd
0 < 1. Under this

condition, the infection cannot sustain itself in the long term. Biologically, this means that the average
number of secondary infections produced by a single infected bee is insufficient to replace itself, thus
leading to the eventual extinction of the pathogen. The trajectories show the following:

• The latent and infectious bee populations in both colonies (L1, I1,L2, I2) decline to zero;
• the environmental spore load P(t) also decays to zero, indicating no persistent contamination; and
• the healthy bee populations S1 and S2 recover and stabilize at their carrying capacities Λ1

m1

and Λ2
m2

, respectively.

This scenario reflects successful disease containment, possibly due to low transmission rates, high
bee mortality, effective treatment, or prolonged pathogen maturation delays that reduce Rd

0 below the
critical threshold.

Figure 3 depicts the endemic state where Rd
0 > 1. Here, the infection establishes itself in both

colonies and persists at a stable positive level. Biologically, this indicates that the pathogen is able to
maintain continuous transmission through the shared environment. The model predicts the following:

• The susceptible bee populations S1 and S2 settle at reduced levels compared to the disease-
free state;

• Latent (L1,L2) and infectious (I1, I2) compartments stabilize at positive values, thus reflecting
ongoing infection cycles; and

• The environmental spore concentration P(t) remains positive, thus confirming a contaminated
environment that facilitates indirect transmission.

This endemic equilibrium illustrates how a single infected colony can act as a reservoir, thereby
spreading Nosema spores via the environment and leading to sustained infections in both hives. Such
a situation may arise from high transmission rates, efficient spore shedding, or an insufficient natural
decay of spores in the environment—factors that collectively raise Rd

0 above 1.
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Figure 2. Dynamics of the dual-colony Nosema infection model when Rd
0 < 1. All infected

compartments (L1, I1,L2, I2) and environmental spores (P) converge to zero, while susceptible
bee populations (S1,S2) stabilize at their disease-free equilibrium levels.
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Figure 3. Dynamics of the dual-colony Nosema infection model when Rd
0 > 1. The

system converges to an endemic equilibrium where infection persists in both colonies and
the environment.

5.2. Sensitivity analysis

A sensitivity analysis aims to assess and quantify how variations in the input parameters affect the
output of a mathematical model [22]. This is commonly done through the use of sensitivity indices,
which express the relative change in a model outcome that results from a proportional change in a given
parameter. Such an approach enables the identification of parameters that exert the strongest influence
on the basic reproduction number, Rd

0 . Because Rd
0 is differentiable with respect to several model

parameters, these indices can be analytically computed using partial derivatives [29]. The purpose of
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this analysis is to examine how variations in the model’s parameters affect Rd
0 and, consequently, the

stability of the infection-free equilibrium E d
0 . The sensitivity index of Rd

0 with respect to a parameter ν

is defined as follows [22]:

S
Rd

0
ν =

∂Rd
0

∂ν
× ν

Rd
0
.

Rd
0 is given by Rd

0 =
ζ1k1β1Λ1

mm2
1(m1 +ζ1)

e−(η1τ1+η2τ2+η5τ5)+
ζ2k2β2Λ2

mm2
2(m2 +ζ2)

e−(η3τ3+η4τ4+η5τ5). Therefore,

we obtain the following:

S
Rd

0
Λ1

= S
Rd

0
k1

= S
Rd

0
β1

=
ζ1k1β1Λ1

mm2
1R

d
0 (m1 +ζ1)

e−(η1τ1+η2τ2+η5τ5),

S
Rd

0
Λ2

= S
Rd

0
k2

= S
Rd

0
β2

=
ζ2k2β2Λ2

mm2
2R0(m2 +ζ2)

e−(η3τ3+η4τ4+η5τ5),

S
Rd

0
η1 = S

Rd
0

τ1 =− η1τ1ζ1k1β1Λ1

mm2
1(m1 +ζ1)R0

e−(η1τ1+η2τ2+η5τ5),

SR0
η2 = S

Rd
0

τ2 =− η2τ2ζ1k1β1Λ1

mm2
1(m1 +ζ1)Rd

0
e−(η1τ1+η2τ2+η5τ5),

S
Rd

0
η3 = S

Rd
0

τ3 =− η3τ3ζ2k2β2Λ2

mm2
2(m2 +ζ2)R0

e−(η3τ3+η4τ4+η5τ5),

S
Rd

0
η4 = S

Rd
0

τ4 =− η4τ4ζ2k2β2Λ2

mm2
2(m2 +ζ2)Rd

0
e−(η3τ3+η4τ4+η5τ5),

S
Rd

0
m1 =

−ζ1k1β1Λ1(2(m1 +ζ1)+m1)

Rd
0 mm2

1(m1 +ζ1)2
e−(η1τ1+η2τ2+η5τ5),

S
Rd

0
m2 =

−ζ2k2β2Λ2(2(m2 +ζ2)+m2)

Rd
0 mm2

2(m2 +ζ2)2
e−(η3τ3+η4τ4+η5τ5),

S
Rd

0
ζ1

=
ζ1k1β1Λ1

Rd
0 mm1(m1 +ζ1)2

e−(η1τ1+η2τ2+η5τ5),

S
Rd

0
ζ2

=
ζ2k2β2Λ2

R0mm2(m2 +ζ2)2 e−(η3τ3+η4τ4+η5τ5),

S
Rd

0
η5 = S

Rd
0

τ5 =−η5τ5,S
Rd

0
m =−1.

By choosing β1 = 0.02 and β2 = 0.03, the sensitivity indices of Rd
0 are calculated in Table 3.
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Table 3. Sensitivity of Rd
0 .

Parameter ν Λ1 k1 β1 Λ2 k2 β2 ζ1

S
Rd

0
ν 0.3721 0.3721 0.3721 0.6279 0.6279 0.6279 0.2481

Parameter ν ζ2 τ1 η1 τ2 η2 τ3 η3

S
Rd

0
ν 0.2355 -0.0372 -0.0372 -0.0372 -0.0372 -0.0628 -0.0628

Parameter ν η4 τ4 η5 τ5 m1 m2 m

S
Rd

0
ν -0.0628 -0.0628 -0.1 -0.1 -0.6202 -0.8634 -1

The sensitivity analysis quantifies the relative impact of each parameter on the basic reproduction
number Rd

0 , which serves as a threshold to determine whether the dual Nosema infection persists or
dies out in the honeybee colonies. Each sensitivity index Sν

Rd
0

measures the proportional change in Rd
0

that results from a proportional change in the parameter ν . According to Table 3, parameters associated
with the transmission process, namely the transmission rates β1 and β2, the spore shedding rates k1 and
k2, and the recruitment rates Λ1 and Λ2, exhibit the highest positive sensitivity indices. This implies
that even small increases in these parameters substantially raise Rd

0 , thus enhancing the infection
persistence within and between colonies. Biologically, a higher transmission efficiency or an increased
spore release from infected bees intensifies the environmental contamination, thus accelerating disease
spread. In contrast, parameters such as the natural death rates m1 and m2, and the environmental spore
decay rate m, show negative sensitivity indices. An increase in these parameters leads to a reduction
in Rd

0 , which indicates that an elevated mortality or faster pathogen degradation in the environment
suppresses infection. This observation agrees with epidemiological expectations, as a greater removal
or decay rates limit the availability of infectious agents and contribute to disease eradication. Figure 4
provides a visual ranking of the sensitivity indices, thereby highlighting the parameters that exert the
greatest influence on Rd

0 . The tallest bars correspond to β1, β2, k1, and k2, thus confirming that
inter-colony transmission and spore release are the dominant factors that govern infection dynamics.
Parameters with negative bars represent control factors that mitigate infection when increased.

Figure 4. Sensitivity analysis.

From a biological standpoint, the sensitivity results suggest that effective management strategies
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should focus on the following: (i) reducing transmission coefficients (βi) through improved colony
hygiene and reduced contact with contaminated resources; (ii) lowering spore shedding rates (ki) via
targeted treatment or disinfection; and (iii) enhancing natural or environmental clearance mechanisms
by promoting hygienic bee behaviors or improving conditions that accelerate pathogen decay. Overall,
the analysis demonstrates that Rd

0 is most sensitive to transmission-related parameters, while natural
mortality and decay act as stabilizing forces that favor disease control.

5.3. Influence of treatments on the dynamics

In this subsection, we examine the effects of antiviral treatment interventions on the dynamics of the
dual Nosema infection model. The inclusion of the treatment allows us to quantitatively assess how
reductions in the transmission and shedding rates influence the basic reproduction number Rd

0 and
the long-term behavior of the system. Through numerical simulations, we explore different levels
of treatment efficacy to identify threshold values that ensure infection eradication or persistence.
This analysis provides important insights into the potential effectiveness of pharmacological and
management-based control strategies in mitigating the spread of Nosema disease within and across
honeybee colonies.

To model the effect of an antiviral or antimicrobial treatment, we introduce an efficacy
parameter κ ∈ [0,1]. We assume the treatment acts by reducing the probability that contact with
an environmental spore leads to a successful infection. This is modeled by scaling the transmission
coefficients β1 and β2 by the factor (1−κ). This formulation implicitly assumes that the treatment:

• Does not cure already infected bees (latent or active),
• does not reduce the spore-shedding rate of infectious bees,
• does not alter the natural mortality rates or the pathogen’s incubation period, and
• does not directly degrade spores in the environment.

This is a simplified representation of a prophylactic or transmission-blocking intervention, which may
be relevant for certain feed-administered compounds intended to prevent new infections rather than
clear existing ones. 

Ṡ1 = Λ1−m1S1− (1−κ)β1S1P,
L̇1 = (1−κ)β1e−η1τ1Sτ1

1 Pτ1− (m1 +ζ1)L1,

İ1 = ζ1e−η2τ2Lτ2
1 −m1I1,

Ṡ2 = Λ2−m2S2− (1−κ)β2S2P,
L̇2 = (1−κ)β2e−η3τ3Sτ3

2 Pτ3− (m2 +ζ2)L2,

İ2 = ζ2e−η4τ4Lτ4
2 −m2I2,

Ṗ = e−η5τ5
[
k1Iτ5

1 + k2Iτ5
2
]
−mP.

(5.2)

According to the reproduction number Rd
0 previously discussed, the basic reproduction number for

model (5.2) is given by the following:

Rtreatment
0 (κ) = (1−κ)Rd

0 ≤Rd
0 .

Suppose that Rd
0 > 1, and that our objective is to impose Rtreatment

0 (κ)≤ 1 and then the stability of the
infection-free equilibrium point E d

0 . The critical treatment efficacy κcr is given by the following:

Rtreatment
0 (κcr) = 1 =⇒ κcr = 1− 1

Rd
0
.
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Then, we obtain the following:

Rtreatment
0 (κ) ≤ 1 for all κcr ≤ κ ≤ 1;

thus, E0 is globally asymptotically stable. By choosing β1 = 0.005 and β2 = 0.008, we get κcr =
0.8094. Therefore,

(i) if 0.8094≤ κ ≤ 1, then Rtreatment
0 (κ)≤ 1, and E d

0 is globally asymptotically stable;
(ii) if 0 ≤ κ < 0.8094, then Rtreatment

0 (κ) > 1, E d
0 becomes unstable, and the endemic equilibrium

point is globally asymptotically stable.
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Figure 5. The solutions of system (2.1) for different treatment effectiveness rates, κ .
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Table 4. The variation of Rtreatment
0 (κ) with respect to the treatment efficacy κ .

κ 0.6 0.7 0.8094 0.85 0.95
Rtreatment

0 (κ) 2.099 1.5742 1 0.7871 0.2624

Figure 5 and Table 4 illustrate the impact of the antiviral treatment efficacy, denoted by κ , on the
basic reproduction number under treatment, Rtreatment

0 (κ), and on the population dynamics of the dual
Nosema infection model.

The results demonstrate a clear inverse relationship between the treatment efficacy and
the reproduction number. Specifically, as the value of κ increases from 0.6 to 0.95, the
corresponding Rtreatment

0 (κ) decreases from 2.099 to 0.2624, as shown in Table 4. The critical
drug efficacy value κcr = 0.8094 marks the threshold at which Rtreatment

0 (κ) = 1. For κ ≥ κcr, the
infection-free equilibrium Ed

0 becomes globally asymptotically stable, thus ensuring the elimination
of the disease. The time-series plots in Figure 5 further support this analytical result. Increasing κ

enhances the populations of uninfected bees in both colonies while simultaneously reducing the sizes
of the latent and actively infected classes, as well as the concentration of the environmental pathogen
load P(t). When κ is low (e.g., κ = 0.6), the system settles around an endemic state characterized by
a persistent infection. However, as κ approaches or exceeds the threshold value κcr, the trajectories of
the infected compartments sharply decline, and the healthy bee populations recover toward their initial
equilibrium levels.

Biologically, these results emphasize the significant role of treatment efficacy in controlling Nosema
infections. A partial treatment or low drug efficacy may only mitigate symptoms without eradicating
the disease, while sufficiently high efficacy levels can drive the basic reproduction number below unity,
thus leading to disease extinction. Moreover, the continuous decline of Rtreatment

0 (κ) with increasing κ

reflects the nonlinear yet predictable benefit of treatment intensification. Overall, Figure 5 and Table 4
confirm that antiviral treatments capable of achieving an efficacy κ ≥ 0.8094 are necessary to stabilize
the infection-free equilibrium and maintain the colony health. These findings provide quantitative
guidance to design therapeutic and management strategies aimed at reducing pathogen transmission
and sustaining the vitality of honeybee colonies.

5.4. Influence of time delays on the dynamics

In this subsection, we investigate the effect of distributed time delays on the progression and control
of the dual Nosema infection within the honeybee colonies. Time delays represent biologically realistic
processes such as the incubation period of the parasite, the latency between infection and spore
shedding, and the maturation time of the environmental spores. By varying the delay parameters,
we analyze how these temporal factors influence the stability of both the disease-free and endemic
equilibria, as well as the basic reproduction number Rd

0 . Numerical simulations are employed to
illustrate the dynamic outcomes under different delay scenarios, thereby highlighting conditions under
which prolonged delays may hinder parasite transmission and promote infection eradication.

Among the various time-delay parameters that affect the system dynamics, the basic reproduction
number Rd

0 exhibits the highest sensitivity to changes in the delay parameter τ5, which represents the
maturation period of newly released pathogens. Owing to this pronounced influence, our analysis
focuses on examining the impact of τ5 on the overall system behavior. Using the transmission
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coefficients β1 = 0.02 and β2 = 0.03, together with the remaining parameter values provided in
Table 3, we fix τ1 = τ2 = τ3 = τ4 = 0.1 and vary τ5 to investigate its effect on the stability of the
disease-free equilibrium point E d

0 . Since τ5 explicitly appears in the analytical expression of Rd
0 ,

any modification of this delay directly influences the stability properties of E d
0 . Numerical results

reveal that increasing τ5 generally leads to a decrease in Rd
0 , thus enhancing the likelihood of disease

extinction and promoting system stability. To identify the critical threshold of τ5 that guarantees the
global asymptotic stability of the infection-free state, we express the basic reproduction number as a
function of τ5 as follows:

Rd
0 (τ5) = e−η5τ5

(
ζ1k1β1Λ1

mm2
1(m1 +ζ1)

e−η1τ1−η2τ2 +
ζ2k2β2Λ2

mm2
2(m2 +ζ2)

e−η3τ3−η4τ4

)
.

To impose that Rd
0 (τ5)≤ 1, we calculate the critical threshold of τ5 as follows:

τcr
5 = max

{
0,

1
η5

ln
(

ζ1k1β1Λ1

mm2
1(m1 +ζ1)

e−η1τ1−η2τ2 +
ζ2k2β2Λ2

mm2
2(m2 +ζ2)

e−η3τ3−η4τ4

)}
,

which is approximated by τcr
5 ' 3.0989 for β1 = 0.02 and β2 = 0.03. The following follows:

• If τcr
5 ≥ 3.0989, then Rd

0 (τ5) ≤ 1, thus ensuring the global stability of the infection-free
equilibrium point E d

0 ;
• However, if τcr

5 < 3.0989, then Rd
0 (τ5) > 1, and in this case, the endemic equilibrium point

becomes globally attractive.

Table 5 and Figure 6 summarize the influence of the maturation delay parameter τ5 on the basic
reproduction number Rd

0 (τ5) and the overall disease dynamics. The results clearly show that Rd
0 (τ5)

monotonically decreases as the delay τ5 increases. Specifically, as indicated in Table 5, Rd
0 (τ5)

declines from 1.6469 at τ5 = 2.6 to 0.4061 at τ5 = 4.0. The critical delay threshold was found to
be τcr

5 ≈ 3.0989, at which Rd
0 (τ5) = 1. This value represents the boundary between disease persistence

and eradication: when τ5 ≥ τcr
5 , the infection-free equilibrium E d

0 is globally asymptotically stable,
whereas shorter maturation periods (τ5 < τcr

5 ) allow Rd
0 > 1, thus leading to an endemic steady state.

The numerical simulations depicted in Figure 6 further confirm these analytical results. As τ5 increases,
the populations of uninfected bees in both colonies steadily grow, while the numbers of latently and
actively infected bees, as well as the viral concentration P(t), significantly decline. This demonstrates
that extending the maturation delay of newly released spores reduces the effective rate of secondary
infections, thereby slowing disease transmission and promoting recovery of the healthy population.

Biologically, these findings highlight the critical role of pathogen maturation time in shaping the
infection outcomes. Longer maturation periods hinder the pathogen’s ability to rapidly propagate
through the host population, functioning similarly to a natural control mechanism or therapeutic
delay. Consequently, increasing τ5 can be interpreted as analogous to enhancing the treatment efficacy,
since both strategies effectively reduce Rd

0 below unity and stabilize the disease-free equilibrium.
In summary, Figure 6 and Table 5 demonstrate that incorporating biologically realistic time delays,
particularly the maturation delay τ5, not only alters the qualitative behavior of the system but also
provides valuable insight into potential control strategies. By identifying τcr

5 as a threshold for global
stability, the model suggests that mechanisms which prolong parasite development or spore maturation
could serve as effective means to curb the infection spread and sustain the colony health.
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Table 5. Effect of the time delay τ5 on Rd
0 (τ5).

τ5 2.6 2.8 3.0989 3.5 4
Rd

0(τ5) 1.6469 1.3484 1 0.6696 0.4061
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Figure 6. The solutions of system (2.1) for several time delays τ5.

6. Conclusions

This study developed a detailed mathematical model to investigate the dynamics of dual Nosema
infections in two interacting honeybee colonies, thereby incorporating biologically realistic distributed
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delays and potential treatment effects. The model successfully captures key features of Nosema
disease transmission, latency, infection progression, and environmental contamination shared between
colonies. The analytical results established conditions for disease eradication or persistence in terms of
the basic reproduction number (Rd

0 ), with a rigorous treatment of stability using Lyapunov methods.
The inclusion of distributed delays enhanced the biological relevance of the model by accounting
for the incubation and maturation periods, which were shown to significantly influence the disease
outcomes and control strategies. Numerical simulations and sensitivity analyses further highlighted the
critical parameters which drive the infection dynamics, such as transmission rates, parasite shedding,
and natural mortality, while also demonstrating the potential efficacy thresholds for antiviral treatments
to achieve disease control.

Despite these strengths, the model has several limitations. The assumptions of constant parameter
values and homogeneous mixing may oversimplify the complex behaviors and spatial heterogeneity
present in real honeybee populations. Moreover, the model solely focuses on Nosema infections
without explicitly integrating other co-stressors such as Varroa mites, pesticides, or nutritional factors
that also critically impact the colony health. The treatment component was modeled in a generalized
manner without detailed pharmacokinetics or resistance dynamics. Additionally, environmental factors
such as seasonal fluctuations and climatic variability, which are known to affect Nosema prevalence
and bee behavior, were not explicitly included here but could substantially alter the system’s dynamics.

Future research directions include extending this framework to incorporate multi-stressor
interactions and environmental seasonality, which would provide a more comprehensive understanding
of honeybee colony health under realistic conditions. Spatially explicit models could better capture
colony movement and localized transmission better. Integrating detailed treatment protocols and
resistance development would enhance the applicability for management strategies. Experimental
validation with empirical data on Nosema infection rates, latency periods, and treatment outcomes
in field colonies would be invaluable to refine and calibrate the model’s parameters. Finally, exploring
optimal control strategies and economic assessments of intervention measures could directly inform
apicultural practices and policies aimed at sustaining honeybee populations amid rising disease
challenges. Overall, this work lays a strong theoretical foundation for future multidisciplinary studies
on honeybee disease ecology and management.

Author contributions

All authors make equal contributions to the research work. All authors have read and agreed to the
published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-
25-DR-20823). Therefore, the authors thank the University of Jeddah for its technical and financial

AIMS Mathematics Volume 11, Issue 1, 2645–2681.



2679

support. The authors would also like to thank the anonymous referees for many constructive
suggestions, which helped to improve the presentation of the paper.

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia under grant No. (UJ-25-
DR-20823).

Conflict of interest

All the authors declare no conflicts of interest.

References

1. M. Higes, R. Martı́n, A. Meana, Nosema ceranae, a new microsporidian parasite in honeybees in
Europe, J. Invertebr. Pathol., 92 (2006), 93–95. https://doi.org/10.1016/j.jip.2006.02.005

2. Y. P. Chen, R. Siede, Honey bee viruses, Adv. Virus Res., 70 (2007), 33–80.
https://doi.org/10.1016/S0065-3527(07)70002-7

3. Y. Chen, J. D. Evans, I. B. Smith, J. S. Pettis, Nosema ceranae is a long-present and wide-
spread microsporidian infection of the European honey bee (Apis mellifera) in the United States,
J. Invertebr. Pathol., 97 (2008), 186–188. https://doi.org/10.1016/j.jip.2007.07.010

4. J. Chen, K. Messan, M. R. Messan, G. D. Hoffman, D. Bai, Y. Kang, How to model
honeybee population dynamics: Stage structure and seasonality, arXiv Preprint, 2020.
https://doi.org/10.48550/arXiv.2003.09796

5. J. Chen, J. Rincon, G. D. Hoffman, J. Fewell, J. Harrison, Y. Kang, Impacts of
seasonality and parasitism on honey bee population dynamics, J Math. Biol., 87 (2023), 19.
https://doi.org/10.1007/s00285-023-01952-2

6. I. Fries, Nosema apis—a parasite in the honey bee colony, Bee World, 74 (1993), 5–19.
https://doi.org/10.1080/0005772X.1993.11099149

7. C. Mayack, D. Naug, Energetic stress in the honeybee Apis mellifera from Nosema ceranae
infection, J. Invertebr. Pathol., 100 (2009), 185–188. https://doi.org/10.1016/j.jip.2008.12.001

8. S. J. Martin, A. C. Highfield, L. Brettell, E. M. Villalobos, G. E. Budge, M. Powell, et al.,
Global honey bee viral landscape altered by a parasitic mite, Science, 336 (2012), 1304–1306.
https://doi.org/10.1126/science.1220941

9. M. Goblirsch, Z. Y. Huang, M. Spivak, Physiological and behavioral changes in honey
bees (Apis mellifera) induced by Nosema ceranae infection, PLoS One, 8 (2013), e58165.
https://doi.org/10.1371/journal.pone.0058165

10. M. Goblirsch, Nosema ceranae disease of the honey bee (Apis mellifera), Apidologie, 49
(2018), 131–150. https://doi.org/10.1007/s13592-017-0535-1

AIMS Mathematics Volume 11, Issue 1, 2645–2681.

http://dx.doi.org/https://doi.org/10.1016/j.jip.2006.02.005
http://dx.doi.org/https://doi.org/10.1016/S0065-3527(07)70002-7
http://dx.doi.org/https://doi.org/10.1016/j.jip.2007.07.010
http://dx.doi.org/https://doi.org/10.48550/arXiv.2003.09796
http://dx.doi.org/https://doi.org/10.1007/s00285-023-01952-2
http://dx.doi.org/https://doi.org/10.1080/0005772X.1993.11099149
http://dx.doi.org/https://doi.org/10.1016/j.jip.2008.12.001
http://dx.doi.org/https://doi.org/10.1126/science.1220941
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0058165
http://dx.doi.org/https://doi.org/10.1007/s13592-017-0535-1


2680

11. L. Paris, H. El Alaoui, F. Delbac, M. Diogon, Effects of the gut parasite Nosema ceranae
on honey bee physiology and behavior, Curr. Opin. Insect Sci., 26 (2018), 149–154.
https://doi.org/10.1016/j.cois.2018.02.017

12. D. S. Khoury, M. R. Myerscough, A. B. Barron, A quantitative model of honey bee colony
population dynamics, PloS One, 6 (2011), e18491. https://doi.org/10.1371/journal.pone.0018491

13. D. S. Khoury, A. B. Barron, M. R. Myerscough, Modelling food and population dynamics in honey
bee colonies, PloS One, 8 (2013), e59084. https://doi.org/10.1371/journal.pone.0059084

14. M. I. Betti, L. M. Wahl, M. Zamir, Effects of infection on honey bee population dynamics: A
model, PLOS One, 9 (2014), 1–12. https://doi.org/10.1371/journal.pone.0110237

15. M. Betti, L. Wahl, M. Zamir, Age structure is critical to the population dynamics and survival of
honeybee colonies, Roy. Soc. Open Sci., 3 (2016), 160444. https://doi.org/10.1098/rsos.160444
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