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Abstract: China’s booming food-delivery industry produces massive disposable-tableware waste,
demanding efficient and low-carbon reverse logistics. Here, we studied a dynamic tableware collection
routing problem with real-time order insertion: a recycling center serves preset recycling points, while
new door-to-door requests appear during route execution. The objective is to minimize total cost,
including vehicle dispatch fixed cost, distance-based depreciation, cleaning cost (including incremental
cleaning for inserted orders), waiting and lateness penalties under soft time windows, and fuel plus
carbon-emission costs. Routes must satisfy depot start/end, single-service requirements, vehicle
capacity limits, feasible service-time propagation, and a minimum satisfaction threshold derived from
the soft time-window function. To solve this NP-hard problem, we designed an improved genetic
algorithm with time-window-based grouped initialization, natural-number encoding with depot
separators, OX crossover, two-point mutation, and a destruction-repair local search using farthest
insertion for reinsertion. Experiments indicated faster and more stable convergence than a basic GA. In
an order-insertion case, inserting new orders into en-route tours significantly outperforms dispatching
an additional vehicle (total cost about 75.7% higher). The proposed method offers implementable
decision support for platforms and municipalities to run time-sensitive, low-carbon tableware recovery.
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The main parameters in the model are shown below:

Notation Hidden meaning
V Set of all nodes, including depot and pickup nodes: V' = {0jUFUD
0 Depot (recycling center) node index
F Set of fixed-point pickup nodes (planned tasks in the baseline tour)
D Set of inserted/dynamic pickup nodes (newly arrived orders to be inserted)
A Set of feasible directed arcs: A = {(i:j) li,jeV, i+ j}
K Set of available vehicles, K = {O, 1,2, ..., K}
Recover the set of travel paths of vehicles between two points,
E={G, )i, jeV.i# ]}
F Fixed cost of use of vehicle &
C* Cost per unit distance traveled by the vehicle from the starting pointi to the target point
1 j
L Number of containers to be recycled at recycling point 1
P Cleaning cost per unit number of containers collected from fixed collection points
D Cleaning cost per unit number of containers recovered from insertion order collection
< points
B Base cost of cleaning meal boxes recovered from insertion order collection points
B, Variable cost of cleaning meal boxes recovered from insertion order collection points
Ic, Recycling operation time at recycling point 1
” Recycling point 7 Time from being recycled to being cleaned for dishes that need to

i

be recycled

Maximum load capacity of the vehicle

Euclidean distance between origin i and destination j
Point in time to reach recovery point i

Cost of waiting for vehicles to arrive early at recovery point I

Penalty cost of delayed vehicle arrival at recovery point I

Continued on next page

AIMS Mathematics Volume 11, Issue 1, 2613-2644.



2615

Notation Hidden meaning

/i Total fuel consumed by vehicles

f » Fuel consumption per unit distance travelled by vehicles

/s Fuel consumed per unit of time during vehicle recovery activities

Py Price per unit of fuel volume

Co Price per unit of carbon emissions

2 Carbon emission factor

le;, /] The time window in which the recycling point expects recycling to take place
[E,, L] The time window in which the recycling point is acceptable for recycling

x, Whether vehicle k is traveling on the path (i, j) , if yes, then 1, otherwise 0

yk Whether the recycling activity is performed by vehicle k at recycling point 1, if yes,

then 1, otherwise 0

1. Introduction

Over the past decade, the popularization of online food-delivery platforms and evolving
consumption patterns have driven rapid sectoral growth [1]. Industry reports indicate that the
“post-90s” cohort constitutes the largest consumer segment, exceeding 50% of demand, while the
purchasing power of “post-70s” and “post-80s” consumers remain strong; orders priced above 30
yuan occur at markedly higher rates among these latter groups than among post-90s. The consumer
base has broadened from youth to middle-aged adults. Meituan data show that, in 2019, first-tier,
new first-tier, and second-tier cities formed the core markets, accounting for 64.7% of national orders.
However, order volumes and sales growth in lower-tier cities have outpaced those in higher-tier
cities, and for many white-collar workers, delivery has become a necessity. During the three-year
pandemic, restaurants that once treated delivery as a niche strategy shifted decisively to online
channels, further accelerating market expansion [2]. Against this backdrop, China’s food-delivery
market reached 934 billion yuan in 2021 and was expected to surpass one trillion yuan in 2022.

However, the rapid expansion of the takeaway market has brought about serious environmental
issues. In 2020, China’s takeaway industry generated 17 billion takeaway orders, each containing an
average of 3.44 lunch boxes, 70% of which were various plastic lunch boxes. The report “Mapping
the Environmental Impacts and Policy Effectiveness of China’s Takeaway Food Industry” analyzes
more than 35 million takeaway orders, maps the characteristics of China’s takeaway industry, the use
of packaging, and its environmental impacts, and evaluates the policy pressures faced by the industry
as well as the effectiveness of plastic packaging control programs. The report shows that takeaways
in the economically developed southeastern coastal provinces, the Yellow River Basin and the
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Yangtze River Basin, generate more plastic packaging waste. Because of the proximity of these areas
to bodies of water, the likelihood of water contamination from leaking plastic is also higher. In terms
of the timing of orders, takeaway waste is produced at a much faster rate than its disposal. The report
shows that takeaway orders are generated around the clock. The amount of takeaway waste being
recycled is much lower than the amount of takeaway waste being produced. Most of the takeaway
packaging waste is generated during peak order times at noon and in the evening, accounting for 60%
of all orders. Due to the rapid generation of takeaway packaging waste during these peak times, a
large amount of waste accumulates quickly and is not removed promptly. As a result, a significant
portion of recyclable waste that is not disposed of in time ends up being treated as non-recyclable
waste and is either sent to landfills or incinerated, which has a serious impact on the environment.

Currently, many foreign catering enterprises or catering platforms are exploring reusable
tableware to pack takeaway food and ensuring the recycling of tableware and lunch boxes through
specific ways and mechanisms [3]. For example, the foreign DabbaDrop platform requires customers
to purchase stainless steel containers, which will be recycled by takeaway riders when they order
takeaway food next time. The Sharepack platform is also committed to promoting reusable tableware
so that customers can return the tableware from their last order when they order takeaway food the
next time. Alternatively, they can return the tableware to the nearby cooperative catering outlets. In
China, Haidilao hot pot’s takeaways are delivered by a delivery person who agrees with the customer
on a pick-up time. On the other hand, Yikou Liangshi uses recyclable and reusable ceramic bowls for
takeaway delivery, which the store staff recycles.

Regarding recycling methods, domestic takeaway platforms have carried out both fixed-point
and door-to-door recycling in some areas. In some places, the recycling bodies of the two recycling
modes are the same, but in the actual recycling process, there are problems of higher cost and lower
efficiency. Therefore, this paper proposes a takeaway recycling path optimization model considering
dynamic order insertion to maximize the efficiency of recycling vehicles and solve the insertion of
orders while meeting fixed-point recycling to optimize cost savings.

This paper takes the takeaway tableware recycling vehicle scheduling problem as an entry point.
It proposes to achieve cost reduction, carbon emission reduction, and satisfaction enhancement
through the rational arrangement of vehicle paths. The following is a brief overview of the results
related to this paper from the perspectives of reverse logistics, vehicle path problems, and dynamic
path planning.

1.1. Reverse logistics-related research

Research on reverse logistics for municipal recyclable waste, including takeaway tableware,
mainly focuses on strategic studies, such as recycling models. Linderhof et al. [4] simulated the
impact of the deposit refund model on the recycling rate and pointed out that the deposit refund
model is particularly effective when the recycling rate is relatively low. Xu et al. [5] proposed a
courier siting model, a door-to-door delivery model, and a courier locker model to recycle courier
packages. Currently, most companies tend to outsource all or part of their recycling processes [6] and
increase the flexibility of logistics reorganization by cooperating with third-party reverse logistics
providers [7]. Therefore, how to select a third-party reverse logistics provider is a crucial issue.
Zarbakhshnia et al. [8] introduced a hybrid multi-attribute decision-making approach that integrates
the advantages of fuzzy analytic hierarchical processes and grey multi-objective optimization to help
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enterprises select a third-party reverse logistics provider. Similarly, Chen et al. [9] proposed a
multi-perspective, multi-attribute decision-making framework based on semantic analysis, which
provides an effective and efficient way for enterprises to select the best third-party reverse logistics
provider for systematic decision support. In addition, the government and individuals should be the
leading players in packaging recycling activities in cooperation with enterprises. Agovino et al. [10]
showed that the joint efforts of the government and the public can improve waste treatment
efficiency. Therefore, it is increasingly important to explore the operational management issues
related to packaging recycling from both government and consumer perspectives. As a regulator and
policymaker, the government is essential to encouraging recycling activities [11]. Since government
management has been ineffective in environmental protection in recent years, it was suggested that
the government should play an active role in recycling management while working closely with other
stakeholders [12]. Heydari et al. [13] suggested that the government can improve and coordinate
reverse logistics by providing tax exemptions and subsidies. Yang et al. [14] compared the
market-driven, government-driven, and cooperative-driven models and found that choosing a
cooperative-driven recycling model can get the highest benefit, and the subsidies are conducive to
increasing recycling efforts. However, relevant studies have pointed out that government-led recycling
management activities have the disadvantages of having a single participant and low efficiency [15],
which is unsuitable for modern urban packaging management. Therefore, some scholars began to
explore the multi-actor shared governance system, such as Berthomé and Thomes [16], who proposed
that the community should participate in that system. The government is still the center of governance
but only plays a resource supply and supervision role; the community should be the primary bearer.

1.2. Research related to vehicle path problems

The vehicle routing problem, referred to as the VRP problem, originated from the traveling
salesman problem (TSP), in which the customer base is much larger than that of the TSP problem. As
such, the customer demand cannot be satisfied by a single vehicle or a single distribution path. And
multiple delivery routes and delivery vehicles must be used to solve the problem. Compared with the
TSP problem, the VRP problem is more complex and more challenging to solve, and the difficulty
increases dramatically with the constraints of various realistic conditions. However, because of this,
the VRP problem is closer to reality. Song [17] established a model with the objective of
maximizing customer time satisfaction, taking into account customer time window constraints and
release time constraints. Wang et al. [18] improved the cuckoo algorithm for the vehicle path
problem, using examples to verify that the improved algorithm is more efficient than the original
algorithm. Fan et al. [19] set the optimization objectives as minimizing delivery cost, the number
of vehicles dispatched, delivery distance, and total order delay time. The multi-objective model was
established according to the theory of credibility testing. Huang et al. [20] designed an adaptive
genetic grey wolf optimization algorithm with capacity constraints for the vehicle path problem,
which adopts a routing and grouping strategy. Majidi et al. [21] improved the large neighborhood
search algorithm, with the optimization objective of minimizing the delivery vehicles’ carbon
emissions and fuel consumption.
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1.3. Research related to dynamic path planning

Zhang et al. [22] improved a genetic algorithm based on a local search strategy to solve a
dynamic path planning problem. Zhang et al. [23] designed a two-stage solution strategy for the
dynamic pickup and delivery vehicle path problem with multiple vehicles and combined 2-OPT
quantum evolution to improve the solution efficiency. Shi and Zhang [24] employed an improved
iterative local search algorithm to solve a dynamic pickup and delivery vehicle routing problem with
randomly distributed demand points. Zhang et al. [25] improved the iterative local search algorithm
to optimize the delivery cost and time satisfaction for the delivery of takeout, taking into account the
customer’s priority. Zhang et al. [26] investigated the mixed loading and unloading problem that
occurs during transportation under stochastic and dynamic conditions, extending the objective
function from single to multi-objective. The number of vehicles was extended from single to
multi-vehicle, and according to the different situations, corresponding strategies were proposed for
solving the problem. The advantages and disadvantages of each solution strategy were analyzed. Lei
et al. [27] improved the adaptive large-neighborhood search algorithm and considered the random
distribution of the customer demand points in the model to solve the dynamic customer satisfaction
problem. Demand points are randomly distributed to solve the dynamic pickup and delivery vehicle
path problem.

At this stage, most of the literature on takeaway recycling focuses on strategic issues, such as
the choice of recycling model, and less on practical matters, such as optimizing takeaway recycling
paths. Various recycling models also need to incorporate the unique characteristics of takeaway
tableware recycling. On the other hand, most of the literature on recycling path optimization mainly
focuses on single-model recycling path optimization and does not consider the possibility of
completing the insertion order in the process of fixed-point recycling. In summary, this paper
combines the existing literature and proposes a takeaway recycling path optimization model that
considers dynamic order insertion to maximize the efficiency of recycling vehicle usage, solve the
insertion order while satisfying fixed-point recycling, and maximize cost savings.

The rest of the paper is organized as follows: In Section 2, we describe the problems to be
solved, introduce the improved methods of genetic algorithms, and build the basic algorithmic model.
In Section 3, we implement an empirical case study to validate the effectiveness of the proposed
improved genetic algorithm to solve the problem of takeout order insertion. In Section 4, model
performance is validated by comparison of costs, and corresponding limitations of the model are
proposed. Section 5 presents the main findings and key theoretical implications and management
insights, as well as recommendations for future research.

2. Materials and methods
2.1. Description of the problem

Take the “Green Mountain Program” initiated by Meituan as an example; at this stage, the main
body of takeaway garbage recycling is still a garbage transfer station. Two main recycling modes are

fixed-point recovery and online ordering for door-to-door recycling. A comparison of the two
recycling modes is shown in Table 1.

AIMS Mathematics Volume 11, Issue 1, 2613-2644.



2619

Table 1. Comparison of the two recycling methods.

Fixed-point recovery Order online for door-to-door recycling
Recycling locations  Higher and fixed number Smaller and more dispersed
Recycled quantity More 5 kg or more to order online
Recycling time Lower urgency Higher urgency

In this paper, several recycling vehicles at a recycling center are studied.

A recycling center is also responsible for the fixed recycling in the surrounding area. At the
same time, online orders from the surrounding area will also be sent to the recycling center in
real-time, and the recycling center dispatcher will change the recycling plan in real time to meet the
fixed-point recycling. The recycling center scheduler will change the recycling schedule in real-time
and insert the orders while satisfying the fixed points. The diagram with before and after order
insertion is shown in Figure 1.

v\ AN
\ ’/ \ g~ - -
Initial Distribution Route Map Insert Order Delivery Route Map
. Recycling centers ————> |nitial distribution route
Fixed recycling point - === = > Updated distribution route

. Insert Order Recovery Point

Figure 1. Schematic diagram of path update before and after order insertion.
2.2. Modeling
2.2.1.  Model assumptions

This study develops its model based on the following integrated set of assumptions, aligned
with standard practices in vehicle routing literature while incorporating the specifics of our dynamic
recycling context. We assume the recycling quantity and time window for each fixed collection point
are known a priori, and the depot is equipped with a sufficient homogeneous fleet. Upon receiving an
online order, customers specify a desired collection time window, starting no less than one hour from
the order placement; the system then prioritizes inserting these new requests into the routes of
vehicles already in operation. Each vehicle has a maximum load capacity @, and the cumulative load
on any route must never exceed this limit, a constraint that must also be satisfied during dynamic
insertion. The fuel consumption and carbon emissions on an arc (i,j) depend on the distance
traveled, the vehicle's average speed, and its current load, with congestion and weather effects
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captured through their influence on speed and modified energy coefficients. Travel times on network
arcs are time-dependent, modeled as a step function of the departure time to reflect peak and off-peak
periods. All collected tableware is fully recyclable without damage. For modeling clarity, we assume
a uniform grease level for tableware from newly inserted orders (representing immediate post-use
state) and a separate uniform level for tableware at fixed points. Finally, to handle operational
uncertainty, external factors like weather are represented by a finite set of scenarios s € S, where
each scenario defines specific impacts on vehicle speed and energy consumption—an approach
consistent with prior studies examining environmental disruptions such as rainfall.

2.2.2.  Description of model parameters

Let V be the set of all nodes including the depot, fixed-point requests, and inserted requests.
Indices i,j € V denote nodes, and k € K denotes vehicles, where K is the set of available vehicles
and K = |K| is the fleet size. Decision variable x;j, € {0,1} equals 1 if vehicle k travels from
node I to node j, and 0 otherwise. t;, denotes the service start time of vehicle k at node i. The
desired time window 1is [e;, [;], while the acceptable time window is [E;, L;], which is used to
compute waiting and penalty terms.

2.2.3.  Cost function analysis

(1) Fixed costs

The recycling center generates fixed costs whenever it dispatches recycling vehicles to carry out
recycling activities. Fixed costs include purchasing or leasing recycling vehicles, personnel wages,
and annual inspection fees for operating vehicles, among others. Usually, fixed costs can be taken as
fixed values. Assuming that the recycling center dispatches a total of K5, vehicles for recycling in
the whole recycling process, the fixed cost can be expressed as Eq (1):

C = ngi k (1)

K
k=1 i=1
(2) Vehicle wear and tear costs

Vehicle wear and tear costs refer to the costs incurred due to wear and tear during vehicle
operation. This part of the cost includes the depreciation cost of the vehicle with the increased
distance travelled, the maintenance cost for each fixed distance travelled, and other costs caused by
violations, accidents, and other unavoidable factors. The cost of wear and tear is proportional to the
distance travelled and can be expressed as Eq (2):

K
C1:Z
=1

D cpdyx; )
J=

i,j=1

(3) Cleaning costs

Recovered tableware needs to be cleaned, whether it can continue to be used as takeaway
tableware or be processed into other products. The cleaning cost will increase with the side length of
the recovery time, as the takeaway tableware in the fixed recycling point has been set aside for a long
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time, so it is considered that the unit cleaning cost is a fixed value. The tableware that needs to be
recovered for new orders is the tableware that has just been used, and the cleaning cost will vary
significantly with time. The cleaning cost can be expressed as Eqs (3)—(5):

G, = pclzn‘ 3)
i1
Cy, =D, Z n=0 +ﬂ2tc;)ng 4)
i=n+1 i=1
G = pclz’? +(B + ﬁth; )Z’? (5)
i=1 i=1

(4) Time penalty costs

Suppose the recycling vehicle does not recycle within the customer’s desired time window. In
that case, the customer’s satisfaction is reduced, affecting the motivation for later participation in
tableware recycling, and a specific penalty cost will be incurred. Similarly, suppose the recycling
vehicle arrives at the recycling location early. In that case, it will need to wait until the time when
recycling is acceptable to the customer, which will also incur a specific waiting cost. The time
penalty cost can be expressed as Eq (6):

C, :i“(a1 max {e, —1,,0} +a, max {r, -, 0}) (6)

i=1

(5) Fuel and carbon costs

Recovery vehicles consume fuel during recovery activities, and the amount consumed is related
to the route length of the recovery activity. In addition, due to the “dual carbon target”, carbon
emissions are included in the cost considerations in this paper. Only one gas, CO2, is considered in
this paper. This paper uses the following formula to calculate the carbon generated by the fuel
consumed in the recycling process: carbon emission = fuel consumption emission factor. Then, the
cost of fuel and carbon emissions can be expressed as Eqgs (7)—(9):

K m
G = pf; 21 (/o +fiLf)dijx§ (7
=1i,j=
K m ‘
C,, = a)cokzl: Z:ltﬁ (T,s)xl./ (8)
=1i,j=
CS = CSI * Csz (9)
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where f,, (L¥) = f, + f1L¥, and the greater the load, the higher the fuel consumption per unit mileage.
Also, t;i(z,s) = K;;(t)(1 + 6s)tlpj, tioj is the benchmark travel time (sunny/unobstructed), K;;(7)
is the congestion coefficient (peak > 1), and § is weather scenario coefficient (rainy days > 0).
(6) Customer satisfaction

Since customer satisfaction is one of the most critical constraints, this paper adopts a hybrid
time window to carry out the measure of customer satisfaction for timeliness. The functional

relationship between timeliness satisfaction and time can be expressed as Eq (10):

Lk, JE <t <e,
e—L,
- 1, e <t <[ (10)
i L _
’—[’,l, <t <L
L -1
0, other
2.2.4. Cost function analysis
In summary, the model of this paper is shown as follows:
minZ =C, +C,+C; +C, +C; (11)
S.t.
1 m
—>85=8 (12)
n i=l
K m
D> xy <K,VkeK,ie{l,2,3,.,m} (13)
k=1 i=1
K m
YDy <LVkek (14)
k=1 i=1
D oxy = xk<1VkeK (15)
i=l i=1
D Vg, <0VkeK (16)
i=1
K m d
tj=ZZx§ max(ti,Ei)+tsi+7” ,je{l,2,...m} (17)
k=1 i=l
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K m d.
t; = ; > X} max(ts; +1c, tE)je {1,2,...m} (18)
E <ts,<L,ie{l,2,.,m} (19)
K
Y yi=lie{l,2,...,m} (20)

k=1

where Eq (11) is an objective function that indicates that the total cost of the entire recycling
activity is minimized; Eq (12) indicates the customer's satisfaction constraints concerning the
timeliness; Eq (13) indicates that there are enough recycling vehicles at the recycling center to
perform the recycling activity; Eq (14) indicates that each customer is served; Eq (15) indicates
that each recycling vehicle departs from the recycling center and returns to the recycling center at
the end; Eq (16) indicates that each recycling vehicle does not exceed the load capacity; Eq. (17)
indicates the time the vehicle arrives at the recycling site; Eq (18) indicates the time the recycling
vehicle starts its recycling activities at the recycling site; Eq (19) indicates that all recycling
activities take place within a time window that is acceptable to the customer; and Eq (20) indicates
that each recycling site is visited only once.

2.3. Algorithm design

Compared with a standard genetic algorithm, our method introduces two problem-driven
enhancements to handle dynamic order insertion in recycling operations. First, we incorporate a
sorted insertion (SI) procedure during decoding/repair to insert newly arrived pickup requests into
existing vehicle routes by ranking candidate insertion positions according to incremental cost while
enforcing feasibility. This step reduces the search space and prevents infeasible offspring from
dominating the population. Second, we apply a local search (LS) intensification to each offspring
after crossover/mutation using fast neighborhood moves to eliminate detours and improve route
quality. Together, SI improves feasibility and responsiveness to new orders, while LS accelerates
convergence and improves solution quality. After reviewing the relevant literature on vehicle routing
problems both domestically and internationally, it is evident that different algorithms can be
employed to address these problems, depending on the specific objective functions, decision
variables, and function constraints. Seven heuristic algorithms are commonly used to solve the
vehicle routing problem with time windows, and among these, the genetic algorithm and the ant
colony algorithm are the most frequently utilized. Next, we will compare the advantages and
disadvantages of some commonly used heuristic algorithms.

Both the genetic algorithm and ant colony algorithm are more suitable for the problem proposed
in this paper. As the robustness of the genetic algorithm is higher, this paper chooses it to solve the
model, because traditional genetic convergence is slower, and local search ability needs to be
improved. This paper uses the time window information to group the data. It introduces the local
search operation during the generation of the initial solution to make the algorithm converge faster
and find a better solution.

The main body of the algorithm consists of two parts: “Initial Recovery Path Planning” and
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“Insertion Order Path Planning”. The algorithm’s schematic diagram and the genetic algorithm’s

flowchart is shown in Figures 2 and 3.

(1) Chromosome coding
The text is encoded using natural number coding for the chromosomes. Take the example of a

recycling center with four recycling carts and 8 fixed recycling locations.

If there are 2 codes 1-2-9-3-5-4-4-10-6-7-11-8-12 and 1-2-3-9-4-5-6-10-7-8-11-12, the
information in the two chromosomes is shown in Table 2. The corresponding vehicle assignments
and recycling routes for these two chromosome examples are compared in Table 3.

The natural numbers in the chromosome greater than 8 represent the recycling centers. The
length of the chromosome is n+K-1 when the recycling point where the recycling activity is to be
performed is n, and the maximum number of vehicles available is K.

(2) Initial solution generation and population initialization
A superior initial solution can significantly accelerate the convergence rate. This paper uses the

following method to generate a more favorable initial solution:

Step 1: Arrange the recovery points according to the order of the time window and divide them into
m segments, denoted as far as possible to satisfy n = gm.

Step 2: Randomly select one recovery point and arrange it.

Step 3: Repeat step 2 until all recovery points are aligned, generating a customer sequence.

Step 4: Traverse the sequence of customers sequentially with k = 1 and 1 = 1; place the sequence of
customers in the kth path and determine if the load limit of the recovered vehicle is exceeded. If
not, 1 =1+ 1 and repeat.

Step 5: When the load constraint is not satisfied, store the kth path so that k = k + 1, and repeat step
4.

The initial solution is generated by traversing all the recovery points, and each sub-path formed
by the initial solution is directly represented by a natural number greater than n as the recovery center
to link the sub-paths into the initial solution. Repeat the above method to generate an initial
population of 50.

(3) Adaptation function
The larger the degree of adaptation, the better the result. The objective function of this paper is

to find the minimum value, so its inverse is used as the adaptation degree function.

(4) Selection
The selection operation is performed using a tournament strategy, where two days of

chromosomes are randomly selected from the parent population to compare fitness sizes, and the

larger ones go into the next generation. This selection method only compares the relative fitness size,
which, to some extent, circumvents the situation in which convergence is too early, leading to the
emergence of locally optimal solutions.

(5) Crossover
In this paper, crossover is performed using the method of order crossover (OX). The order

crossover creates new offspring by swapping gene segments between parents. This enhances genetic

algorithms’ flexibility and convergence speed. In the paternal generation, chromosomes labeled P1
and P2 are chosen, with loci a and b selected randomly. A segment from P1 between a and b is
removed to form C1, while a corresponding segment from P2 is inserted into C1, creating offspring

Cl1. This process is similarly applied to create offspring C2. This is illustrated in Figure 4 and

detailed in the following steps:
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1) Randomly select two paternal chromosomes P1 and P2, randomly select a and b.

2) Different gene loci in P2 are sequentially inserted before and after the a and b segments in P1 to
generate zygotic chromosome C1.

3) Generate another child C2 in the same way.

(6) Variation

In this paper, we use a two-point mutation method for mutation operation, i.e., two gene points
on the chromosome are randomly selected for exchange operation.
(7) Local search

Genetic algorithms (GAs) provide strong global exploration, but the population tends to become
homogeneous in the late stage, causing slow improvement and oscillation around local optima. To
enhance late-stage intensification and solution quality, we embed a local search operator into the GA
framework to refine promising solutions while maintaining feasibility, thereby further reducing the
total cost. Our problem involves soft time-window penalties (customer satisfaction) and real-time
order insertion, where small neighborhood moves (e.g., simple swaps or 2-opt) may be insufficient to
escape local structures. The destruction-repair scheme “removes a small subset of customers (destroy)
and reinserts them (repair)” to partially reshape route structures with a controllable perturbation.
During the repair phase, feasibility checks (time windows and, if considered, capacity constraints)
can be explicitly enforced, which improves the effectiveness of local improvements under complex
constraints. In routing problems with time-window penalties, some customers are “hard-to-insert”
due to remote locations or tight service windows; inserting them late often leads to large penalties or
infeasibility. Farthest insertion prioritizes customers with the largest distance (or insertion difficulty)
relative to the current partial routes, effectively placing the most challenging nodes first. This
strategy reduces the risk of infeasible reinsertion and mitigates penalty accumulation, resulting in
higher-quality reconstructed routes and improved algorithm stability.

To further enhance the ability of the algorithm to find the optimal solution, this algorithm adds
the step of local search. The specific operation is as follows: first, eliminate a randomly selected gene
point using the destruction operator to carry out the operation. Then, compute the correlation
(distance) between the remaining and removed gene points. Third, remove the gene points with
higher correlation individually. Finally, we will reintroduce the gene points into the chromosome
using the farthest insertion method, which entails inserting the gene point with the highest minimum
insertion cost first.

(8) Termination conditions
This paper’s algorithm stops the operation when a set number of iterations is reached.
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Figure 2. Schematic of the insert order algorithm.
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Figure 3. Flowchart of the genetic algorithm.
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Table 2. Algorithm suitability comparison.

Algorithm

Advantage

Disadvantage

Applicable question

Genetic algorithm

Strong global search
ability; strong adaptability;
high robustness

Positive feedback

Slow convergence;
limited accuracy;
parameter adjustment is
complicated

Easy to fall into local

Complex combinatorial
optimization problem, NP-hard
problem, function optimization
problem, engineering design
optimization, and so on.

Route optimization problems,

Ant col mechanism; optimality; slow such as traveling salesman
nt colon
tmi t'y distributed computing; convergence; the problem (TSP), vehicle routing
optimization
P adaptable to dynamic algorithm parameters are  problem (VRP), network routing
environments complex optimization, etc.
Global optimization problems,
Simple and easy to Slow convergence speed;  especially complex optimization
Simulated implement; jumping out of  sensitive to initial value;  problems with multiple extreme
annealing local optimal; global parameter setting is values, such as combination
optimal complex optimization, process parameter
optimization, etc.
Table 3. Comparison of two chromosomes.
Chromosomes 1-2-9-3-5-4-10-6-7-11-8-12 1-2-3-9-4-5-6-10-7-8-11-12
Total vehicles 4 4
Used vehicles 4 3
Recovery path 0-1-2-0 0-1-2-3-0
(0 for return) 0-3-5-4-0 0-4-5-6-0
(collection centers) 0-6-7-0 0-7-8-0
0-8-0
P1 1 23] afs]e]7
P2 3 s 1 # 5 6 | 2 | 4
Pt [ 1 [ 5 | s | 7 |
v
2 ENEEEN 22
~ /,.’—’7//_,‘-——"7
RN | RKNEN
ANIEEEAEEE RN

Figure 4. Schematic of order crossover.
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3. Results
3.1. Initial recovery path planning

We calibrate the vehicle fixed utilization cost F as the per-shift (or per-day) fixed expense of
deploying one recycling vehicle, including driver labor, vehicle depreciation/lease,
insurance/registration, and routine maintenance. Specifically, F = Cigpor + Cgepr + Cins + Crmaine +
(+Coverneaq)- The adopted value is obtained from local market quotations and/or operational
accounting records, and we further test F in a sensitivity range of 20% to verify robustness. The
unit carbon price ¢, is referenced from the prevailing carbon trading price in the selected
market/period. Since carbon prices fluctuate, we adopt the average (or end-of-period average) price
over the study window and convert it to the unit used in our model (e.g., Yuan/kg) through standard
unit conversion. A sensitivity analysis on ¢, is also conducted to ensure the conclusions are not
driven by a single price point.

This study confirms the proposed model and algorithm through a series of experiments., and we
provide information about the values of the experimental parameters. Due to the confidentiality of
real-world business data and for the purpose of methodological validation, the numerical case study
employs a set of simulated data generated based on classic VRP benchmarks and realistic assumptions,
detailed in Table 4, including initial conditions, boundary conditions, and physical parameters, to better
build the model. We have also recorded the recovery point information in Table 5, which captures a
system state snapshot at a specific time during the numerical simulation. This information enables
subsequent analysis and comparison. Moreover, we list the specific settings of the algorithm
parameters in Table 6 to demonstrate the algorithm’s performance and optimization effects. These
parameters cover the algorithm's convergence conditions, the number of iterative steps, step size, and
key optimization parameters. By providing these details, we aim to ensure a transparent and reliable
experimental framework for numerical simulation and algorithm research.

Table 4. Parameter assignment table.

Parameters Numerical value
Maximum number of vehicles to be recovered 20 vehicles
Vehicle fixed utilization cost £ 100 Yuan (USD14.04)/per vehicle

Unit cleaning cost of tableware recovered from fixed collection points P! 0.5 Yuan (USDO0.07)/kg

Cost of basic cleaning of dishes recovered from order insertion recycling
_ 0.1 Yuan (USDO0.014)/kg
points p

Cost of basic cleaning of dishes recovered from order insertion recycling .
0.002 Yuan (USD0.00028)/kg ‘min

points /2

Maximum load capacity ¢ 100 kg

Waiting cost ¢, 0.2 Yuan (USDO0.028)/min
Late arrival cost &> 1 Yuan (USDO0.14)/min
Fuel consumption per unit distance traveled /f, 0.1 L/km

Price per unit of fuel volume p, 7.06 Yuan (USD0.99)/L
Price per unit of carbon emissions o 1 Yuan (USDO.14)/kg

Continued on next page
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Parameters

Numerical value

Carbon emission factor
Minimum desired customer satisfaction S
Distance correction coefficient

[

Recovery vehicle travel speed Vo

2.63 kg/L
85%

1.3

30 km/h

Table 5. Basic information on fixed recycling points.

Num X y [ei, 1i] [Ei, Li] Ii tei
0 30 40 7:00-21:00 7:00-21:00 0 0
1 41 49 17:00-17:30 16:00-18:30 30 20
2 35 17 16:30-17:00 15:30-18:00 10 5
3 55 45 9:00-9:30 8:00-10:30 30 20
4 55 20 16:00-16:30 15:00-17:30 10 5
5 15 30 7:30-8:00 7:00-9:00 20 10
6 25 30 15:00-15:30 14:00-16:30 10 5
7 20 50 9:40-10:10 8:40-11:10 30 20
8 10 43 10:40-11:10 9:40-12:10 10 5
9 55 60 14:40-15:20 13:40-16:20 10 5
10 30 60 12:00-12:30 11:00-13:30 20 10
11 20 65 13:30-14:00 12:30-15:00 20 10
12 50 35 15:10-15:40 14:10-16:40 20 10
13 30 25 9:00-9:30 8:00-10:30 15 5
14 15 10 14:10-14:40 13:10-15:40 30 20
15 30 5 13:10-13:40 12:10-14:40 25 15
16 10 20 11:00-11:30 10:00-12:30 20 10
17 5 30 14:10-15:10 13:10-16:10 25 15
18 35 35 14:30-15:00 13:30-16:00 30 20
19 15 60 17:00-17:30 16:00-18:30 25 15
20 45 65 16:30-17:00 15:30-18:00 20 10

Table 6. The initial recycling route.

Recycling vehicle number

Recycling routes

1

2
3
4

0-6-11-3-5-2-2-11-9-6-9-5-0
0-11-6-1-11-3-15-6-1-11-8-0
0-3-4-9-3-3-1-7-7-7-7-4-0

0-8-1-1-3-9-7-6-10-3-5-11-0

AIMS Mathematics

Moreover, to facilitate accurate calculation and analysis, the mathematical tool of Euclidean
distance is used to measure and calculate the distance between two points. Although the Euclidean
distance is simple and easy to use in theory, in practical application, considering the complexity and
uncertainty of the road network, other measurement methods need to be adopted or modified to
improve the accuracy of the model. According to the historical data of this region, the actual distance

Volume 11, Issue 1, 2613-2644.
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is generally 1.3 times the Euclidean distance, that is, the correction coefficient p=1.3, so the

corrected distance is calculated by Eq (22). Specifically, the Euclidean distance is calculated as
shown in Eq (21):

d; =\, — %) +(r —») @1

d,=pd, (22)

The provided text outlines a pathway scheme for an initial recovery effort, detailed in Figure 5,
offering a clear view of its structure and flow. Additionally, it includes an economic analysis through
Tables 6 and 7, listing the recovery routes and their costs—covering transportation, processing, and
other related expenses—which aids in optimizing the recovery process for cost efficiency.

Initial recovery path diagram
60 °
/ Legend
s Vehicle 1 route (blue)
4 \ , = === Vehicle 2 route (green)
> s Vehicle 3 route (red)

20 s Vehicle 4 route (magenta)
Each color denotes one vehicle route (K=4).
Black dots are pickup nodes.

0 ¥/ are simulated coordinates.
10 20 30 40 50

X

Note: Coordinates are simulated 2-D locations used to compute corrected Euclidean distances in the case study.

Strategy: baseline routes before insertion.

Figure 5. The initial recovery path.

Table 7. Cost table under the initial recovery path planning.

Cost classification Amount/yuan (USD)
total cost 742.64 (USD104.22)
fixed costs 400 (USD56.14)
vehicle wear and tear costs 102.14 (USD14.33)
cleaning costs 67.22 (USD9.43)
time penalty cost 42.77 (USD6.00)
fuel and carbon costs 130.51 (USD18.32)

3.2. Inserting order routing

At 11:00, five new individuals are added to the recycling order, and the specific information is
shown in Table 8. After inserting the order, the route for sending new vehicles from the recycling
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center to perform the recycling task can be calculated, as shown in Table 9 and Figure 6; at the same
time, it is possible to calculate a route where the original vehicle is still deployed directly from the

midway to perform the recovery task, as shown in Table 10 and Figure 7.
In Figure 7, if the new vehicle is recycled separately according to the insertion sequence, the

optimized path diagram is shown when compared to the direct deployment of the car in the initial
path. In this way, we can observe the optimized path map, which shows the efficiency and
cost-effectiveness of sending new vehicles separately in the recovery mission. This display of the
control group-optimized pathway map helps us better understand the advantages of the original
vehicle call in the recovery task. Through this detailed comparative analysis, we can further verify
whether sending new vehicles alone for recovery tasks can result in cost optimization providing a
scientific basis for decision-makers.

Table 8. Order insertion recovery point basic information.

Num X y [ei, 1i] [Ei, Li] 1i tei
21 40 55 12:00-13:00 11:30-13:30 5 5
22 10 50 13:00-14:00 12:30-14:30 5 5
23 12 48 13:00-14:00 12:30-14:30 5 5
24 40 25 12:00-13:00 11:30-13:30 5 5
25 20 20 12:00-13:00 11:30-13:30 5 5

Table 9. Insert order path.

Recycling vehicle number

Recovery routes

1

2
3
4

0- 1-1-3-1-3-2-2-10-6-1-11-12-8-0

0- 9-1-12-10-6-12-13-11-7-6-9-9-9-0
0- 2-8-13-13-1-1-9-9-3-6-1-12-9-0

0- 10-1-7-3-1-11-12-12-13-13-13-12-0

Table 10. The initial recycling route.

Recycling vehicle number

Recycling routes

1 0-3-2-1-12-12-10-1-15-7-7-5-8-11-9-5-0

2 0-10-6-14-7-3-1-1-14-13-6-13-3-13-13-2-0

3 0-2-12-10-3-3-5-2-9-3-1-13-12-12-0

4 0- 4-10-2-12-5-6-3-13-11-6-5-13-12-0
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New dispatch vehicle recovery path diagram

Legend

= Vehicle 1 route (blue)

msmm Vehicle 2 route (green)

memms Vehicle 3 route (red)

s Vehicle 4 route (magenta)
Each color denotes one vehicle route (K=4).

Black dots are pickup nodes.
XfY are simulated coordinates.

10 20 30 40 50
X

Note: Coordinates are simulated 2-D locations used to compute corrected Euclidean distances in the case study.

Strategy: re-dispatch from depot after insertion (no extra vehicle).

Figure 6. New dispatch vehicle recovery path.

Final recovery path diagr@

Legend

= Vehicle 1 route (blue)

mmmm Vehicle 2 route (green)

e Vehicle 3 route (red)

s Vehicle 4 route (magenta)
Each color denotes one vehicle route (K=4).

Black dots are pickup nodes.
X[Y are simulated coordinates.

0
10 20 30 40 50

X

Note: Coordinates are simulated 2-D locations used to compute corrected Euclidean distances in the case study.

Strategy: en-route insertion using the original 4 vehicles.

Figure 7. Optimized path map using the original vehicle.

On this basis, consider directly deploying the vehicles that are already in the middle of the
recovery task. The specific information and data for this route are detailed in Table 10 and presented
graphically in Figure 7. These charts show the complete process of starting the vehicle from the
starting point, going through a series of path choices, and finally reaching the mission site.

Table 11 shows that the recycling method we suggest, which prioritizes sorting and uses
vehicles in a specific order, saves more money overall than the method where a different vehicle is
assigned for recycling. Specifically, there are savings in four areas: fixed costs, vehicle wear and tear
costs, time penalty costs, and fuel and carbon emission costs. The time penalty costs are particularly
optimized, as using the original vehicle will save more than 200%. While sending another car can
reduce cleaning costs by fulfilling orders promptly, cleaning costs are a smaller percentage of the
total cost and are reduced by only about 10%. Hence, prioritizing vehicles for tasks has a more
significant advantage.
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Table 11. Cost comparison of the two recovery modes.

Cost classification Use the original Send another Increased percentage
vehicle/Yuan (USD)  vehicle/Yuan (USD) (Another/Original)

total cost 939.17 (USD131.79)  1650.48 (USD231.67) 75.74%

fixed costs 400 (USD56.14) 500 (USD70.17) 25%

vehicle wearand 35 40 (USD33.04)  283.54 (USD39.80)  20.45%

tear costs

cleaning costs 112.26 (USD15.75)  100.64 (USD14.13) -10.35%

time penalty cost 70.70 (USD9.92) 216.80 (USD30.43) 206.65%

fueland carbon 356 71 (USD49.99)  549.50 (USD77.13)  54.26%

costs

Due to the complexity of the real-world scenarios, there is still room for further optimization of
this kind of model: (1) Compared to adding new orders, fixed-point recycling, which happens every
day, discusses whether the recycling spot used by the vehicle should stay the same even after new
orders are added, to suit the staff's usual habits. (2) The cost of recycling is also determined by other
factors, such as weather, road conditions, etc., especially during the peak hours of commuting, when
the speed of the recycling vehicles will vary greatly. (3) Since the amount of recycling for dynamic
orders is relatively tiny, is it feasible to consider using different models of recycling vehicles to save
costs.

3.3. Comprehensive benefit comparison across recycling modes

To demonstrate the comprehensive advantages of the proposed fixed-point recycling + dynamic
order insertion hybrid mode, we extend the comparison beyond the two insertion strategies and
benchmark our approach against two widely used operational modes. Specifically, we consider:
Mode A (fixed-point recycling only), where vehicles follow the pre-planned fixed-point routes and
newly arrived requests are postponed to the next cycle (or treated as unserved within the current
cycle); Mode B (on-demand re-dispatch), where the fleet is re-dispatched from the depot and routes
are re-optimized upon order arrivals; and Mode C (hybrid mode), where new requests are inserted
into the ongoing fixed-point tours (en-route insertion), which corresponds to the proposed strategy.

We evaluate these modes using a multi-dimensional performance set: economic performance
(total cost and cost breakdown), environmental performance (total fuel consumption and carbon
emissions, reported as physical emissions E in addition to the carbon cost), social performance
(service quality measured by customer satisfaction and participation rate), and long-term operational
performance (cost per served request and fleet utilization over multiple insertion rounds). For social
benefits, we compute the average satisfaction S based on the satisfaction function in Section 2 and
define the participation rate as the proportion of requests whose satisfaction exceeds a predefined
threshold S,,,;,,. For long-term benefits, we conduct a rolling-horizon simulation with repeated order
insertions and report aggregated metrics over the entire operating horizon.

Table 12 summarizes the comparative results. Compared with Mode A, the hybrid mode
improves service quality by serving newly arrived requests within the ongoing cycle, thereby
increasing satisfaction/participation while keeping costs controlled. Compared with Mode B, the
hybrid mode reduces redundant vehicle repositioning and avoids frequent re-dispatching, leading to
lower emissions intensity and more stable long-run operational performance.
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Table 12. Comprehensive performance comparison across recycling modes.

Mode A: Mode B: Dispatch Mode C: Hybrid—reuse

Metric Fixed-point only additional vehicle original vehicles (Yuan /
(Yuan / USD) (Yuan / USD) USD)

Operational and social metrics

Orders served / total 20/25 25725 25725

Participation rate PR 80.00% 100.00% 100.00%

(current-cycle fulfillment)

Vehicles activated (implied
4 5 4

by fixed costs)

Cost classification

42.64 D

Total cost CCC ZO4 22)(US 1650.48 (USD 231.67) 939.17 (USD 131.79)
400.00 D

Fixed costs 56.13) (US 500.00 (USD 70.17) 400.00 (USD 56.14)
102.14 D

Wear and tear costs 14.34) (US 283.54 (USD 39.79) 235.40 (USD 33.04)
67.22 D

Cleaning costs 9743) (US 100.64 (USD 14.13) 112.26 (USD 15.75)
42. D

Time-penalty cost 6 0(7))7 (US 216.80 (USD 30.43) 70.70 (USD 9.92)
130.51 D

Fuel and carbon costs 12032) (US 549.50 (USD 77.13) 356.21 (USD 49.99)

Environmental and long-run operation metrics

Estimated total distance

DDD (km)* 134.69
Fuel consumption (L)* 13.47
Carbon emissions (kg

35.42
CO,_22)*
Cost per served order

37.13
(Yuan/order)
Time-penalty per served )14
order (Yuan/order) '
CO;_22 per served order 177
(kg/order)* '
Dls‘Fance per actl.vated 33.67
vehicle (km/vehicle)*

567.08
56.71
149.14

66.02

8.67

5.97

113.42

367.61
36.76
96.68

37.57

2.83

3.87

91.9

3.4. Algorithm performance analysis

The experiment was programmed with MATLAB 2023b. To facilitate the comparison, the data
from the above case is used. After the order insertion, the simple genetic algorithm (SGA) is used to
synchronize the experiment. To ensure reproducibility and to justify the key GA parameters, we

AIMS Mathematics
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determine the algorithm configuration using a two-stage calibration procedure: (i) literature-informed
screening and (i1) pilot tuning on a representative instance.
Stage 1: Literature-informed screening.

For permutation-based routing problems with OX crossover and mutation operators, typical
values of crossover probability and mutation probability are often selected within moderate ranges to
balance exploration and exploitation. Following this principle, we initially consider p. € [0.6,0.8]
and p,, € [0.01,0.10]. The population size is set to be sufficiently larger than the chromosome
length to maintain diversity while keeping runtime acceptable for real-time insertion scenarios. In
our encoding, the chromosome length is 39, and candidate population sizes are selected as 50—100.
Stage 2: Pilot tuning and final configuration.

We further conduct a pilot parameter tuning experiment by jointly varying mutation rate,
crossover rate, population size, and number of generations at three representative levels each (a full
factorial 3* = 81 combinations; provided in Appendix Table Al). Each configuration is evaluated
using two criteria: (1) the best objective value achieved (total cost) and (2) runtime/convergence
speed. Since the proposed method targets dynamic order insertion, we prioritize configurations that
achieve stable convergence within a short computation time, rather than pursuing marginal
improvements with excessively long runtime. Based on the above trade-off, we adopt the final
parameter setting summarized in Table 13, which provides robust performance and satisfactory
convergence in the case study.

Table 13. Algorithm parameter table.

Parameter Value
population size 50
chromosome length 39
crossover probability 0.7
mutation probability 0.1
number of iterations 100

In addition, all stochastic runs are executed under controlled random seeds for fair comparison
across algorithms, and the termination condition is set as a fixed number of iterations (generations).

In a comparative study of the improved genetic algorithm presented in this paper with
conventional ones, we pay particular attention to the performance of these two algorithms during the
first 50 iterations. Through comparative analysis, we find that the improved genetic algorithm
proposed in this paper converges significantly faster than the traditional genetic algorithm under the
given parameter conditions. To ensure the reliability and statistical significance of the results, we
performed 20 independent running experiments on the two algorithms. The proposed improved
genetic algorithm showed consistent efficient convergence performance in 20 runs in these
experiments. In contrast, the traditional genetic algorithm converges relatively slowly under the same
experimental conditions, which is 6 times more effective than the results of the improved algorithm.
This comparative result fully proves that the enhanced GA presented here has significant advantages
in convergence speed and performs well in stability, effectively improving the performance of the
genetic algorithm.

Figure 8 shows the iteration diagram of the improved genetic algorithm, and Figure 9 shows the
iterative process of the simple genetic algorithm, through which we can see that the SGA’s
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convergence rate is relatively slow. This means that the algorithm requires multiple iterations that
consume more time and computational resources to reach the optimal solution. Moreover, the graph
indicates that the simple genetic algorithm may be more effective in local search but may not
consistently find the optimal solution. Ultimately, despite several iterations, the convergence effect of
SGA has not improved significantly, and there is still a gap between the IGA in the ideal state.

In order to verify the applicability of the model, a systematic sampling method was used to
simulate the experimental data. The values of 0.01, 0.055, and 0.1 were extracted from mutation
probability, 0.6, 0.7, and 0.8 from crossover probability, 50, 75, and 100 from population size, and
100, 550, and 1000 from the number of iterations. Due to space constraints, the detailed calculation
results are presented in Appendix A. To assess the robustness of the above findings, we conduct a
brief sensitivity analysis on key model parameters (time-window penalty and major cost coefficients).
Detailed results are reported in Appendix B.

After adjusting the parameters, it can be seen that the convergence rate and the optimal cost of
the model are within a reasonable range, indicating that the model has a good adaptive ability to
different parameters.

107 Improved fitness iteration graph of genetic algorithm
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Figure 8. IGA iteration diagram.
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Figure 9. SGA iteration diagram.
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4. Discussion
4.1. Cost-saving mechanisms of en-route insertion

This study shows that prioritizing en-route insertion (i.e., inserting newly arrived pickup
requests into vehicles that are already executing routes) can reduce total operating cost relative to the
conventional strategy of dispatching an additional vehicle. The cost advantage comes from four
mechanisms.

First, fixed deployment costs are avoided when insertion is handled by active vehicles. In
practice, dispatching an additional vehicle trigger fixed costs such as vehicle activation, driver
assignment, and operational coordination. When the marginal insertion demand can be absorbed by
en-route vehicles, these fixed costs are eliminated.

Second, en-route insertion improves time-related performance, thereby reducing
waiting/lateness penalties under the (soft) time-window setting. Compared with waiting for a new
vehicle to depart and travel to the service area, insertion into an ongoing tour typically shortens
response time, which directly lowers the time penalty component.

Third, en-route insertion can decrease variable operating costs (e.g., energy and emissions) by
reducing redundant vehicle movements. Even when the inserted requests add some detours, the total
distance and energy consumption can still be lower than operating an additional vehicle for a
separate tour, especially when the inserted requests are geographically close to the current route.

Finally, the two strategies may differ in cleaning-related costs. Although dispatching a new
vehicle may sometimes reduce cleaning time due to shorter task chains, this component is generally a
smaller share of total cost and is often insufficient to offset the additional fixed and time-related costs
of activating a new vehicle. Overall, the insertion-first strategy offers a consistent cost-control
advantage in the case study, mainly through fixed-cost avoidance and improved time performance.

The magnitude of cost reduction is partly structure-driven and partly scenario-dependent.
Structurally, reusing the original vehicles avoids additional vehicle activation and associated fixed
and operating costs, and reduces dispatch-related delays. However, the savings percentage depends
on the insertion context, including the spatial dispersion of new orders, the tightness of time windows,
baseline route utilization, and vehicle capacity slack. In scenarios with highly dispersed new orders
or very tight time windows, dispatching an additional vehicle may become competitive, which
defines the boundary conditions of the proposed hybrid strategy. In addition to cost savings, the
proposed hybrid mode delivers environmental and service-level benefits by reducing redundant
vehicle movements and improving customer satisfaction/participation within the current operating
cycle. Moreover, rolling-horizon results indicate that the hybrid mode achieves more stable
long-term performance in terms of cost per served request and fleet utilization compared with purely
fixed-point or purely on-demand operations.

4.2. Managerial implications and implementation considerations
The results suggest a practical decision rule for operators: prioritize en-route insertion whenever
feasibility constraints allow, and use additional vehicles only when insertion would violate service

commitments or operational limits. This has three managerial implications.
Decision support for real-time dispatch: The proposed model can be integrated as a
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decision-support module that evaluates, at each arrival of new requests, whether insertion into an
ongoing tour is feasible and cost-effective. This supports time-sensitive recycling operations and
reduces unnecessary vehicle activation.

Operational feasibility in real settings: Implementation should explicitly account for factors that
drive feasibility and cost in practice, including vehicle capacity, time windows, and route stability. A
phased rollout is recommended: start with a pilot region and limited time periods, monitor key KPIs
(total cost, response time, on-time rate, and emissions), and then scale up to larger areas once the
decision logic is validated.

Data and system requirements: Effective deployment requires basic interoperability with
operational data sources (order streams, vehicle states, and location data). To improve reliability, the
dispatch system should support (i) periodic route re-optimization, (ii) exception handling for
congestion/weather disruptions, and (iii) clear operational rules for when a driver can accept
insertion tasks. Training and lightweight user interfaces are important to ensure that dispatch
recommendations can be executed smoothly. Finally, because real-time insertion is time-sensitive,
adequate computation resources (or simplified evaluation rules) should be ensured to maintain fast
response times during peak demand.

4.3. Limitations and future research

Several limitations should be noted. First, travel distance/time is approximated using corrected
Euclidean distances, while real travel time and fuel consumption are affected by road network
structure, congestion, and weather. Second, the current cost model assumes that fuel consumption
and related losses are independent of carried load; however, payload varies along the route and may
significantly affect fuel use and emissions. Third, when multiple insertion requests arrive within a
short time window, capacity feasibility and route stability may become binding and reduce the
reliability of insertion-based decisions.

Future work can extend the current framework in four directions: (i) Replace Euclidean-distance
approximation with road-network-based shortest paths and time-dependent travel speeds using
GIS/traffic data, (ii) incorporate load-dependent fuel/emission functions and heterogeneous vehicle
types to better reflect operational reality, (iii) consider stochastic or robust optimization to handle
uncertain travel times and bursty order arrivals in real-time insertion, (iv) validate the model on
larger-scale operational datasets and explore additional objectives (e.g., service equity across regions
and long-term station planning), potentially combining prediction models for insertion demand with
routing optimization.

5. Conclusions

This paper addresses the problem of efficiently delivering tableware recycling, with customer
satisfaction as the constraint. Fixed recovery costs, vehicle loss costs, cleaning costs, time penalty
costs, fuel costs, and carbon emission costs are incorporated into the target function. A path
optimization model for tableware delivery that considers dynamic order insertion is developed, and
an improved genetic algorithm is designed to solve the model. The numerical experimental results
show that: (1) compared with the traditional genetic algorithm, the proposed improved genetic
algorithm presents significant advantages regarding convergence speed and stability; and (2) in the
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case of order insertion, the scheme proposed in this paper is to prioritize the use of vehicles in the
recovery task, which reduces the cost compared with the traditional approach of sending another
vehicle for recovery.

Relevant research directions and challenges are discussed, and some suggestions for
improvement are provided. It is hoped that, through further experiments and analysis, more practical
solutions for takeaway tableware recycling can be developed to support environmental protection
policies.
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Appendix A

Table A1. Model parameters.
Mutation Crossover  Population Number of Optimal solution/Yuan
. . Rate of convergence ()
rate rate size generations (USD)
100 2216 988.4004 (USD139.39)
50 550 8.389 837.1398 (USD118.06)
1000 14.289 777.3294 (USD109.63)
100 3.010 934.6655 (USD131.81)
0.6 75 550 10.090 547.8486 (USD77.26)
1000 22.140 5489114 (USD77.41)
0.1 100 3.835 934.5324 (USD131.80)
100 550 16.845 662.8409 (USD93.48)
1000 30.373 222.6159 (USD31.40)
100 2288 939.1742 (USD131.79)
07 50 550 8.816 683.4309 (USD96.38)
1000 15.230 813.174 (USD114.68)
75 100 3.085 1088.868 (USD153.56)

Continued on next page
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Mutation Crossover  Population Number of Optimal solution/Yuan
. . Rate of convergence (s)
rate rate size generations (USD)
550 12.777 473.5608 (USD66.79)
1000 17.551 349.5841 (USD49.30)
100 3.907 840.4376 (USD118.53)
100 550 17.507 418.5536 (USD59.03)
1000 30.321 182.1538 (USD25.69)
100 2462 965.9659 (USD136.23)
50 550 8.320 547.6708 (USD77.24)
1000 14.779 683.2396 (USD96.36)
100 3.028 919.7602 (USD129.71)
0.8 75 550 12.607 415.8298 (USD58.64)
1000 32.850 382.1596 (USD53.90)
100 3370 936.3321 (USD132.05)
100 550 17.942 514.8307 (USD72.61)
1000 31.587 441.6423 (USD62.28)
100 2284 719.9238 (USD101.53)
50 550 8.595 663.2232 (USD93.57)
1000 14.587 5224058 (USD73.70)
100 3.319 906.2887 (USD127.86)
0.6 75 550 10.429 538.7476 (USD76.01)
1000 22.754 5342266 (USD75.37)
100 3.110 878.0127 (USD123.87)
100 550 19.466 483.9952 (USD68.28)
1000 47.741 251.5756 (USD35.49)
100 2372 1225.3498 (USD172.88)
50 550 8.815 657.5642 (USD92.77)
1000 15.008 638.106 (USD90.03)
0055 100 3214 724.8134 (USD102.26)
0.7 75 550 11.524 638.092 (USD90.02)
1000 23.619 367.5053 (USDS51.85)
100 4.135 867.1107 (USD122.34)
100 550 18211 350.1929 (USD49.41)
1000 24.122 303.1264 (USD42.77)
100 2451 971.1642 (USD137.02)
50 550 8.965 699.3819 (USD98.67)
1000 15.557 371.2569 (USD52.38)
08 100 3222 923.0593 (USD130.23)
75 550 11473 524.5995 (USD74.01)
1000 23979 4164266 (USD58.75)
100 100 4391 967.9873 (USD136.57)
550 18.663 455.5048 (USD64.26)
Continued on next page
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Mutation Crossover  Population Number of Optimal solution/Yuan
. . Rate of convergence (s)
rate rate size generations (USD)
1000 32.608 312.6343 (USD44.11)
100 2201 7904193 (USD111.52)
50 550 9.106 872.7977 (USD123.14)
1000 15.249 674.1007 (USD95.1)
100 2.668 800.1414 (USD112.89)
0.6 75 550 13.480 704.1061 (USD99.34)
1000 25330 619.9645 (USD87.47)
100 4.001 724.991 (USD102.28)
100 550 14.154 557.514 (USD78.66)
1000 31.786 482.0295 (USD68.01)
100 2.396 967.9751 (USD136.57)
50 550 26.934 794.0319 (USD112.02)
1000 30.659 714.444 (USD100.8)
100 3237 905.1715 (USD127.7)
0.01 0.7 75 550 13.590 549.2548 (USD77.49)
1000 19.156 508.0898 (USD71.68)
100 4.105 758.6384 (USD107.03)
100 550 17.893 461.3124 (USD65.08)
1000 32363 426.43 (USD60.16)
100 2.609 951.8067 (USD134.28)
50 550 9.135 662.2082 (USD93.43)
1000 15.264 613.6152 (USD86.57)
100 3.185 928.9397 (USD131.06)
0.8 75 550 14.345 542.93 (USD76.6)
1000 18918 625215 (USD88.21)
100 4307 762.6635 (USD107.6)
100 550 19.095 465.049 (USD65.61)
1000 32.500 518.6527 (USD73.17)
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Appendix B
Table A2. Sensitivity analysis of key parameters.
o Gap Bminus B Time C Time
Parameter Multiplier B Total Cost C_Total Cost
Penalty Penalty
0.8 1000856.848  780.655264 1000076.193  257.137926 189.221239
alpha2 1 1000873.014  769.478278 1000103.536  273.304283 190.15129
1.2 1000889.181  769.478278 1000119.703  289.470639 190.15129
0.8 1000833.014  729.478278 1000103.536  273.304283 190.15129
F 1 1000873.014  769.478278 1000103.536  273.304283 190.15129
1.2 1000913.014  809.478278 1000103.536  273.304283 190.15129
0.8 1000872.514  768.978278 1000103.536  273.304283 190.15129
betal 1 1000873.014  769.478278 1000103.536  273.304283 190.15129
1.2 1000873.514  769.978278 1000103.536  273.304283 190.15129
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