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Abstract: China’s booming food-delivery industry produces massive disposable-tableware waste, 

demanding efficient and low-carbon reverse logistics. Here, we studied a dynamic tableware collection 

routing problem with real-time order insertion: a recycling center serves preset recycling points, while 

new door-to-door requests appear during route execution. The objective is to minimize total cost, 

including vehicle dispatch fixed cost, distance-based depreciation, cleaning cost (including incremental 

cleaning for inserted orders), waiting and lateness penalties under soft time windows, and fuel plus 

carbon-emission costs. Routes must satisfy depot start/end, single-service requirements, vehicle 

capacity limits, feasible service-time propagation, and a minimum satisfaction threshold derived from 

the soft time-window function. To solve this NP-hard problem, we designed an improved genetic 

algorithm with time-window-based grouped initialization, natural-number encoding with depot 

separators, OX crossover, two-point mutation, and a destruction-repair local search using farthest 

insertion for reinsertion. Experiments indicated faster and more stable convergence than a basic GA. In 

an order-insertion case, inserting new orders into en-route tours significantly outperforms dispatching 

an additional vehicle (total cost about 75.7% higher). The proposed method offers implementable 

decision support for platforms and municipalities to run time-sensitive, low-carbon tableware recovery. 
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The main parameters in the model are shown below: 

Notation Hidden meaning 

V  Set of all nodes, including depot and pickup nodes:    0 F DV =   

0 Depot (recycling center) node index 

F  Set of fixed-point pickup nodes (planned tasks in the baseline tour) 

D  Set of inserted/dynamic pickup nodes (newly arrived orders to be inserted) 

A  Set of feasible directed arcs:  |A , ( , ) ,i j i j V i j =  

K  Set of available vehicles,    0,  1,  2,  ,  K K=   

E  

Recover the set of travel paths of vehicles between two points, 

{( , ) | , , }E i j i j V i j=    

kF  Fixed cost of use of vehicle k  

k

ijC  
Cost per unit distance traveled by the vehicle from the starting point i to the target point 

j  

ir  Number of containers to be recycled at recycling point i  

1pc  Cleaning cost per unit number of containers collected from fixed collection points 

2pc  
Cleaning cost per unit number of containers recovered from insertion order collection 

points 

1  Base cost of cleaning meal boxes recovered from insertion order collection points 

2  Variable cost of cleaning meal boxes recovered from insertion order collection points 

itc  Recycling operation time at recycling point i  

'

itc  
Recycling point i  Time from being recycled to being cleaned for dishes that need to 

be recycled 

Q  Maximum load capacity of the vehicle 

ijd  Euclidean distance between origin i  and destination j  

it  Point in time to reach recovery point i  

1  Cost of waiting for vehicles to arrive early at recovery point i  

2  Penalty cost of delayed vehicle arrival at recovery point i  

 Continued on next page 
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Notation Hidden meaning 

tf  Total fuel consumed by vehicles 

pf  Fuel consumption per unit distance travelled by vehicles 

sf  Fuel consumed per unit of time during vehicle recovery activities 

fp  Price per unit of fuel volume 

0c  Price per unit of carbon emissions 

  Carbon emission factor 

[ , ]i ie l  The time window in which the recycling point expects recycling to take place 

[ , ]i iE L  The time window in which the recycling point is acceptable for recycling 

k

ijx  Whether vehicle k is traveling on the path ( , )i j , if yes, then 1, otherwise 0 

k

iy  
Whether the recycling activity is performed by vehicle k at recycling point i , if yes, 

then 1, otherwise 0 

1. Introduction 

Over the past decade, the popularization of online food-delivery platforms and evolving 

consumption patterns have driven rapid sectoral growth [1]. Industry reports indicate that the 

“post-90s” cohort constitutes the largest consumer segment, exceeding 50% of demand, while the 

purchasing power of “post-70s” and “post-80s” consumers remain strong; orders priced above 30 

yuan occur at markedly higher rates among these latter groups than among post-90s. The consumer 

base has broadened from youth to middle-aged adults. Meituan data show that, in 2019, first-tier, 

new first-tier, and second-tier cities formed the core markets, accounting for 64.7% of national orders. 

However, order volumes and sales growth in lower-tier cities have outpaced those in higher-tier 

cities, and for many white-collar workers, delivery has become a necessity. During the three-year 

pandemic, restaurants that once treated delivery as a niche strategy shifted decisively to online 

channels, further accelerating market expansion [2]. Against this backdrop, China’s food-delivery 

market reached 934 billion yuan in 2021 and was expected to surpass one trillion yuan in 2022. 

However, the rapid expansion of the takeaway market has brought about serious environmental 

issues. In 2020, China’s takeaway industry generated 17 billion takeaway orders, each containing an 

average of 3.44 lunch boxes, 70% of which were various plastic lunch boxes. The report “Mapping 

the Environmental Impacts and Policy Effectiveness of China’s Takeaway Food Industry” analyzes 

more than 35 million takeaway orders, maps the characteristics of China’s takeaway industry, the use 

of packaging, and its environmental impacts, and evaluates the policy pressures faced by the industry 

as well as the effectiveness of plastic packaging control programs. The report shows that takeaways 

in the economically developed southeastern coastal provinces, the Yellow River Basin and the 
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Yangtze River Basin, generate more plastic packaging waste. Because of the proximity of these areas 

to bodies of water, the likelihood of water contamination from leaking plastic is also higher. In terms 

of the timing of orders, takeaway waste is produced at a much faster rate than its disposal. The report 

shows that takeaway orders are generated around the clock. The amount of takeaway waste being 

recycled is much lower than the amount of takeaway waste being produced. Most of the takeaway 

packaging waste is generated during peak order times at noon and in the evening, accounting for 60% 

of all orders. Due to the rapid generation of takeaway packaging waste during these peak times, a 

large amount of waste accumulates quickly and is not removed promptly. As a result, a significant 

portion of recyclable waste that is not disposed of in time ends up being treated as non-recyclable 

waste and is either sent to landfills or incinerated, which has a serious impact on the environment. 

Currently, many foreign catering enterprises or catering platforms are exploring reusable 

tableware to pack takeaway food and ensuring the recycling of tableware and lunch boxes through 

specific ways and mechanisms [3]. For example, the foreign DabbaDrop platform requires customers 

to purchase stainless steel containers, which will be recycled by takeaway riders when they order 

takeaway food next time. The Sharepack platform is also committed to promoting reusable tableware 

so that customers can return the tableware from their last order when they order takeaway food the 

next time. Alternatively, they can return the tableware to the nearby cooperative catering outlets. In 

China, Haidilao hot pot’s takeaways are delivered by a delivery person who agrees with the customer 

on a pick-up time. On the other hand, Yikou Liangshi uses recyclable and reusable ceramic bowls for 

takeaway delivery, which the store staff recycles. 

Regarding recycling methods, domestic takeaway platforms have carried out both fixed-point 

and door-to-door recycling in some areas. In some places, the recycling bodies of the two recycling 

modes are the same, but in the actual recycling process, there are problems of higher cost and lower 

efficiency. Therefore, this paper proposes a takeaway recycling path optimization model considering 

dynamic order insertion to maximize the efficiency of recycling vehicles and solve the insertion of 

orders while meeting fixed-point recycling to optimize cost savings. 

This paper takes the takeaway tableware recycling vehicle scheduling problem as an entry point. 

It proposes to achieve cost reduction, carbon emission reduction, and satisfaction enhancement 

through the rational arrangement of vehicle paths. The following is a brief overview of the results 

related to this paper from the perspectives of reverse logistics, vehicle path problems, and dynamic 

path planning. 

1.1. Reverse logistics-related research 

Research on reverse logistics for municipal recyclable waste, including takeaway tableware, 

mainly focuses on strategic studies, such as recycling models. Linderhof et al. [4] simulated the 

impact of the deposit refund model on the recycling rate and pointed out that the deposit refund 

model is particularly effective when the recycling rate is relatively low. Xu et al. [5] proposed a 

courier siting model, a door-to-door delivery model, and a courier locker model to recycle courier 

packages. Currently, most companies tend to outsource all or part of their recycling processes [6] and 

increase the flexibility of logistics reorganization by cooperating with third-party reverse logistics 

providers [7]. Therefore, how to select a third-party reverse logistics provider is a crucial issue. 

Zarbakhshnia et al. [8] introduced a hybrid multi-attribute decision-making approach that integrates 

the advantages of fuzzy analytic hierarchical processes and grey multi-objective optimization to help 
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enterprises select a third-party reverse logistics provider. Similarly, Chen et al. [9] proposed a 

multi-perspective, multi-attribute decision-making framework based on semantic analysis, which 

provides an effective and efficient way for enterprises to select the best third-party reverse logistics 

provider for systematic decision support. In addition, the government and individuals should be the 

leading players in packaging recycling activities in cooperation with enterprises. Agovino et al. [10] 

showed that the joint efforts of the government and the public can improve waste treatment 

efficiency. Therefore, it is increasingly important to explore the operational management issues 

related to packaging recycling from both government and consumer perspectives. As a regulator and 

policymaker, the government is essential to encouraging recycling activities [11]. Since government 

management has been ineffective in environmental protection in recent years, it was suggested that 

the government should play an active role in recycling management while working closely with other 

stakeholders [12]. Heydari et al. [13] suggested that the government can improve and coordinate 

reverse logistics by providing tax exemptions and subsidies. Yang et al. [14] compared the 

market-driven, government-driven, and cooperative-driven models and found that choosing a 

cooperative-driven recycling model can get the highest benefit, and the subsidies are conducive to 

increasing recycling efforts. However, relevant studies have pointed out that government-led recycling 

management activities have the disadvantages of having a single participant and low efficiency [15], 

which is unsuitable for modern urban packaging management. Therefore, some scholars began to 

explore the multi-actor shared governance system, such as Berthomé and Thomes [16], who proposed 

that the community should participate in that system. The government is still the center of governance 

but only plays a resource supply and supervision role; the community should be the primary bearer. 

1.2. Research related to vehicle path problems 

The vehicle routing problem, referred to as the VRP problem, originated from the traveling 

salesman problem (TSP), in which the customer base is much larger than that of the TSP problem. As 

such, the customer demand cannot be satisfied by a single vehicle or a single distribution path. And 

multiple delivery routes and delivery vehicles must be used to solve the problem. Compared with the 

TSP problem, the VRP problem is more complex and more challenging to solve, and the difficulty 

increases dramatically with the constraints of various realistic conditions. However, because of this, 

the VRP problem is closer to reality. Song [17] established a model with the objective of 

maximizing customer time satisfaction, taking into account customer time window constraints and 

release time constraints. Wang et al. [18] improved the cuckoo algorithm for the vehicle path 

problem, using examples to verify that the improved algorithm is more efficient than the original 

algorithm. Fan et al. [19] set the optimization objectives as minimizing delivery cost, the number 

of vehicles dispatched, delivery distance, and total order delay time. The multi-objective model was 

established according to the theory of credibility testing. Huang et al. [20] designed an adaptive 

genetic grey wolf optimization algorithm with capacity constraints for the vehicle path problem, 

which adopts a routing and grouping strategy. Majidi et al. [21] improved the large neighborhood 

search algorithm, with the optimization objective of minimizing the delivery vehicles’ carbon 

emissions and fuel consumption. 
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1.3. Research related to dynamic path planning 

Zhang et al. [22] improved a genetic algorithm based on a local search strategy to solve a 

dynamic path planning problem. Zhang et al. [23] designed a two-stage solution strategy for the 

dynamic pickup and delivery vehicle path problem with multiple vehicles and combined 2-OPT 

quantum evolution to improve the solution efficiency. Shi and Zhang [24] employed an improved 

iterative local search algorithm to solve a dynamic pickup and delivery vehicle routing problem with 

randomly distributed demand points. Zhang et al. [25] improved the iterative local search algorithm 

to optimize the delivery cost and time satisfaction for the delivery of takeout, taking into account the 

customer’s priority. Zhang et al. [26] investigated the mixed loading and unloading problem that 

occurs during transportation under stochastic and dynamic conditions, extending the objective 

function from single to multi-objective. The number of vehicles was extended from single to 

multi-vehicle, and according to the different situations, corresponding strategies were proposed for 

solving the problem. The advantages and disadvantages of each solution strategy were analyzed. Lei 

et al. [27] improved the adaptive large-neighborhood search algorithm and considered the random 

distribution of the customer demand points in the model to solve the dynamic customer satisfaction 

problem. Demand points are randomly distributed to solve the dynamic pickup and delivery vehicle 

path problem. 

At this stage, most of the literature on takeaway recycling focuses on strategic issues, such as 

the choice of recycling model, and less on practical matters, such as optimizing takeaway recycling 

paths. Various recycling models also need to incorporate the unique characteristics of takeaway 

tableware recycling. On the other hand, most of the literature on recycling path optimization mainly 

focuses on single-model recycling path optimization and does not consider the possibility of 

completing the insertion order in the process of fixed-point recycling. In summary, this paper 

combines the existing literature and proposes a takeaway recycling path optimization model that 

considers dynamic order insertion to maximize the efficiency of recycling vehicle usage, solve the 

insertion order while satisfying fixed-point recycling, and maximize cost savings. 

The rest of the paper is organized as follows: In Section 2, we describe the problems to be 

solved, introduce the improved methods of genetic algorithms, and build the basic algorithmic model. 

In Section 3, we implement an empirical case study to validate the effectiveness of the proposed 

improved genetic algorithm to solve the problem of takeout order insertion. In Section 4, model 

performance is validated by comparison of costs, and corresponding limitations of the model are 

proposed. Section 5 presents the main findings and key theoretical implications and management 

insights, as well as recommendations for future research. 

2. Materials and methods 

2.1. Description of the problem 

Take the “Green Mountain Program” initiated by Meituan as an example; at this stage, the main 

body of takeaway garbage recycling is still a garbage transfer station. Two main recycling modes are 

fixed-point recovery and online ordering for door-to-door recycling. A comparison of the two 

recycling modes is shown in Table 1. 
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Table 1. Comparison of the two recycling methods. 

 Fixed-point recovery Order online for door-to-door recycling 

Recycling locations Higher and fixed number Smaller and more dispersed 

Recycled quantity More 5 kg or more to order online 

Recycling time Lower urgency Higher urgency 

In this paper, several recycling vehicles at a recycling center are studied. 

A recycling center is also responsible for the fixed recycling in the surrounding area. At the 

same time, online orders from the surrounding area will also be sent to the recycling center in 

real-time, and the recycling center dispatcher will change the recycling plan in real time to meet the 

fixed-point recycling. The recycling center scheduler will change the recycling schedule in real-time 

and insert the orders while satisfying the fixed points. The diagram with before and after order 

insertion is shown in Figure 1. 

 

Figure 1. Schematic diagram of path update before and after order insertion. 

2.2. Modeling 

2.2.1. Model assumptions 

This study develops its model based on the following integrated set of assumptions, aligned 

with standard practices in vehicle routing literature while incorporating the specifics of our dynamic 

recycling context. We assume the recycling quantity and time window for each fixed collection point 

are known a priori, and the depot is equipped with a sufficient homogeneous fleet. Upon receiving an 

online order, customers specify a desired collection time window, starting no less than one hour from 

the order placement; the system then prioritizes inserting these new requests into the routes of 

vehicles already in operation. Each vehicle has a maximum load capacity 𝑄, and the cumulative load 

on any route must never exceed this limit, a constraint that must also be satisfied during dynamic 

insertion. The fuel consumption and carbon emissions on an arc (𝑖, 𝑗) depend on the distance 

traveled, the vehicle's average speed, and its current load, with congestion and weather effects 
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captured through their influence on speed and modified energy coefficients. Travel times on network 

arcs are time-dependent, modeled as a step function of the departure time to reflect peak and off-peak 

periods. All collected tableware is fully recyclable without damage. For modeling clarity, we assume 

a uniform grease level for tableware from newly inserted orders (representing immediate post-use 

state) and a separate uniform level for tableware at fixed points. Finally, to handle operational 

uncertainty, external factors like weather are represented by a finite set of scenarios 𝑠 ∈ 𝑆, where 

each scenario defines specific impacts on vehicle speed and energy consumption—an approach 

consistent with prior studies examining environmental disruptions such as rainfall. 

2.2.2. Description of model parameters 

Let V be the set of all nodes including the depot, fixed-point requests, and inserted requests. 

Indices i, j ∈ V denote nodes, and k ∈ K denotes vehicles, where K is the set of available vehicles 

and 𝐾 = |𝐾| is the fleet size. Decision variable 𝑥𝑖𝑗𝑘 ∈ {0,1} equals 1 if vehicle 𝑘 travels from 

node 𝑖 to node 𝑗, and 0 otherwise. 𝑡𝑖𝑘 denotes the service start time of vehicle 𝑘 at node 𝑖. The 

desired time window is [𝑒𝑖 , 𝑙𝑖], while the acceptable time window is [𝐸𝑖 , 𝐿𝑖], which is used to 

compute waiting and penalty terms. 

2.2.3. Cost function analysis 

(1) Fixed costs 

The recycling center generates fixed costs whenever it dispatches recycling vehicles to carry out 

recycling activities. Fixed costs include purchasing or leasing recycling vehicles, personnel wages, 

and annual inspection fees for operating vehicles, among others. Usually, fixed costs can be taken as 

fixed values. Assuming that the recycling center dispatches a total of 𝐾𝑢𝑠𝑒𝑑 vehicles for recycling in 

the whole recycling process, the fixed cost can be expressed as Eq (1): 

  1 0

1 1

K m
k

i k

k i

C x f
= =

=  (1) 

(2) Vehicle wear and tear costs 

Vehicle wear and tear costs refer to the costs incurred due to wear and tear during vehicle 

operation. This part of the cost includes the depreciation cost of the vehicle with the increased 

distance travelled, the maintenance cost for each fixed distance travelled, and other costs caused by 

violations, accidents, and other unavoidable factors. The cost of wear and tear is proportional to the 

distance travelled and can be expressed as Eq (2): 

 1

1 , 1

K m
k k

ij ij ij

k i j

C c d x
= =

=  (2) 

(3) Cleaning costs 

Recovered tableware needs to be cleaned, whether it can continue to be used as takeaway 

tableware or be processed into other products. The cleaning cost will increase with the side length of 

the recovery time, as the takeaway tableware in the fixed recycling point has been set aside for a long 
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time, so it is considered that the unit cleaning cost is a fixed value. The tableware that needs to be 

recovered for new orders is the tableware that has just been used, and the cleaning cost will vary 

significantly with time. The cleaning cost can be expressed as Eqs (3)–(5): 

 
31 1

1

n

c i

i

C p r
=

=   (3) 

 
'

32 2 1 2

1 1

( tc )
m n

c i i i

i n i

C p r r 
= + =

= = +   (4) 

 
'

3 1 1 2

1 1

( )
n n

c i i i

i i

C p r tc r 
= =

= + +   (5) 

(4) Time penalty costs 

Suppose the recycling vehicle does not recycle within the customer’s desired time window. In 

that case, the customer’s satisfaction is reduced, affecting the motivation for later participation in 

tableware recycling, and a specific penalty cost will be incurred. Similarly, suppose the recycling 

vehicle arrives at the recycling location early. In that case, it will need to wait until the time when 

recycling is acceptable to the customer, which will also incur a specific waiting cost. The time 

penalty cost can be expressed as Eq (6): 

    4 1 2

1

( max ,0 max ,0 )
m

i i i i

i

C e t t l 
=

= − + −  (6) 

(5) Fuel and carbon costs 

Recovery vehicles consume fuel during recovery activities, and the amount consumed is related 

to the route length of the recovery activity. In addition, due to the “dual carbon target”, carbon 

emissions are included in the cost considerations in this paper. Only one gas, CO2, is considered in 

this paper. This paper uses the following formula to calculate the carbon generated by the fuel 

consumed in the recycling process: carbon emission = fuel consumption emission factor. Then, the 

cost of fuel and carbon emissions can be expressed as Eqs (7)–(9): 

 
51 0 1

1 , 1

( )k

i

K m
k

f ij ij

k i j

C p f f L d x
= =

= +  (7) 

 
52 0

1 , 1

( , )
K m

k

ij ij

k i j

C c t s x 
= =

=   (8) 

 
51 525C C C+=  (9) 
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where 𝑓𝑝(𝐿𝑖
𝑘) = 𝑓0 + 𝑓1𝐿𝑖

𝑘, and the greater the load, the higher the fuel consumption per unit mileage. 

Also, 𝑡𝑖𝑗(𝜏, 𝑠) = 𝛫𝑖𝑗(𝜏)(1 + 𝛿𝑠)𝑡𝑖𝑗
0 , 𝑡𝑖𝑗

0  is the benchmark travel time (sunny/unobstructed), 𝛫𝑖𝑗(𝜏) 

is the congestion coefficient (peak > 1), and 𝛿𝑠 is weather scenario coefficient (rainy days > 0). 

(6) Customer satisfaction 

Since customer satisfaction is one of the most critical constraints, this paper adopts a hybrid 

time window to carry out the measure of customer satisfaction for timeliness. The functional 

relationship between timeliness satisfaction and time can be expressed as Eq (10): 

 

i

,

1,           

,

0,         

i i
i i i

i

i i i

i

i i
i i i

i i

t E
E t e

e E

e t l
S

L t
l t L

L l
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−
  −


  

= 
−  
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


 (10) 

2.2.4. Cost function analysis 

In summary, the model of this paper is shown as follows: 

 1 2 3 4 5min Z C C C C C= + + + +  (11) 

s.t. 
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  (12) 
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k

i
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1,
K m

k
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 0 0
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k k
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  
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ijk
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k i
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v= =
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1

1, 1,2,...,
K

k

i

k

y i m
=

=   (20) 

where Eq (11) is an objective function that indicates that the total cost of the entire recycling 

activity is minimized; Eq (12) indicates the customer's satisfaction constraints concerning the 

timeliness; Eq (13) indicates that there are enough recycling vehicles at the recycling center to 

perform the recycling activity; Eq (14) indicates that each customer is served; Eq (15) indicates 

that each recycling vehicle departs from the recycling center and returns to the recycling center at 

the end; Eq (16) indicates that each recycling vehicle does not exceed the load capacity; Eq. (17) 

indicates the time the vehicle arrives at the recycling site; Eq (18) indicates the time the recycling 

vehicle starts its recycling activities at the recycling site; Eq (19) indicates that all recycling 

activities take place within a time window that is acceptable to the customer; and Eq (20) indicates 

that each recycling site is visited only once. 

2.3. Algorithm design 

Compared with a standard genetic algorithm, our method introduces two problem-driven 

enhancements to handle dynamic order insertion in recycling operations. First, we incorporate a 

sorted insertion (SI) procedure during decoding/repair to insert newly arrived pickup requests into 

existing vehicle routes by ranking candidate insertion positions according to incremental cost while 

enforcing feasibility. This step reduces the search space and prevents infeasible offspring from 

dominating the population. Second, we apply a local search (LS) intensification to each offspring 

after crossover/mutation using fast neighborhood moves to eliminate detours and improve route 

quality. Together, SI improves feasibility and responsiveness to new orders, while LS accelerates 

convergence and improves solution quality. After reviewing the relevant literature on vehicle routing 

problems both domestically and internationally, it is evident that different algorithms can be 

employed to address these problems, depending on the specific objective functions, decision 

variables, and function constraints. Seven heuristic algorithms are commonly used to solve the 

vehicle routing problem with time windows, and among these, the genetic algorithm and the ant 

colony algorithm are the most frequently utilized. Next, we will compare the advantages and 

disadvantages of some commonly used heuristic algorithms. 

Both the genetic algorithm and ant colony algorithm are more suitable for the problem proposed 

in this paper. As the robustness of the genetic algorithm is higher, this paper chooses it to solve the 

model, because traditional genetic convergence is slower, and local search ability needs to be 

improved. This paper uses the time window information to group the data. It introduces the local 

search operation during the generation of the initial solution to make the algorithm converge faster 

and find a better solution. 

The main body of the algorithm consists of two parts: “Initial Recovery Path Planning” and 



2624 

AIMS Mathematics  Volume 11, Issue 1, 2613–2644. 

“Insertion Order Path Planning”. The algorithm’s schematic diagram and the genetic algorithm’s 

flowchart is shown in Figures 2 and 3. 

(1) Chromosome coding 

The text is encoded using natural number coding for the chromosomes. Take the example of a 

recycling center with four recycling carts and 8 fixed recycling locations. 

If there are 2 codes 1-2-9-3-5-4-4-10-6-7-11-8-12 and 1-2-3-9-4-5-6-10-7-8-11-12, the 

information in the two chromosomes is shown in Table 2. The corresponding vehicle assignments 

and recycling routes for these two chromosome examples are compared in Table 3. 

The natural numbers in the chromosome greater than 8 represent the recycling centers. The 

length of the chromosome is n+K-1 when the recycling point where the recycling activity is to be 

performed is n, and the maximum number of vehicles available is K. 

(2) Initial solution generation and population initialization 

A superior initial solution can significantly accelerate the convergence rate. This paper uses the 

following method to generate a more favorable initial solution: 

Step 1: Arrange the recovery points according to the order of the time window and divide them into 

m segments, denoted as far as possible to satisfy 𝑛 = 𝑞𝑚. 

Step 2: Randomly select one recovery point and arrange it. 

Step 3: Repeat step 2 until all recovery points are aligned, generating a customer sequence. 

Step 4: Traverse the sequence of customers sequentially with k = 1 and i = 1; place the sequence of 

customers in the kth path and determine if the load limit of the recovered vehicle is exceeded. If 

not, i = i + 1 and repeat. 

Step 5: When the load constraint is not satisfied, store the kth path so that k = k + 1, and repeat step 

4. 

The initial solution is generated by traversing all the recovery points, and each sub-path formed 

by the initial solution is directly represented by a natural number greater than n as the recovery center 

to link the sub-paths into the initial solution. Repeat the above method to generate an initial 

population of 50. 

(3) Adaptation function 

The larger the degree of adaptation, the better the result. The objective function of this paper is 

to find the minimum value, so its inverse is used as the adaptation degree function. 

(4) Selection 

The selection operation is performed using a tournament strategy, where two days of 

chromosomes are randomly selected from the parent population to compare fitness sizes, and the 

larger ones go into the next generation. This selection method only compares the relative fitness size, 

which, to some extent, circumvents the situation in which convergence is too early, leading to the 

emergence of locally optimal solutions. 

(5) Crossover 

In this paper, crossover is performed using the method of order crossover (OX). The order 

crossover creates new offspring by swapping gene segments between parents. This enhances genetic 

algorithms’ flexibility and convergence speed. In the paternal generation, chromosomes labeled P1 

and P2 are chosen, with loci a and b selected randomly. A segment from P1 between a and b is 

removed to form C1, while a corresponding segment from P2 is inserted into C1, creating offspring 

C1. This process is similarly applied to create offspring C2. This is illustrated in Figure 4 and 

detailed in the following steps: 
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1) Randomly select two paternal chromosomes P1 and P2, randomly select a and b. 

2) Different gene loci in P2 are sequentially inserted before and after the a and b segments in P1 to 

generate zygotic chromosome C1. 

3) Generate another child C2 in the same way. 

(6) Variation 

In this paper, we use a two-point mutation method for mutation operation, i.e., two gene points 

on the chromosome are randomly selected for exchange operation. 

(7) Local search 

Genetic algorithms (GAs) provide strong global exploration, but the population tends to become 

homogeneous in the late stage, causing slow improvement and oscillation around local optima. To 

enhance late-stage intensification and solution quality, we embed a local search operator into the GA 

framework to refine promising solutions while maintaining feasibility, thereby further reducing the 

total cost. Our problem involves soft time-window penalties (customer satisfaction) and real-time 

order insertion, where small neighborhood moves (e.g., simple swaps or 2-opt) may be insufficient to 

escape local structures. The destruction-repair scheme “removes a small subset of customers (destroy) 

and reinserts them (repair)” to partially reshape route structures with a controllable perturbation. 

During the repair phase, feasibility checks (time windows and, if considered, capacity constraints) 

can be explicitly enforced, which improves the effectiveness of local improvements under complex 

constraints. In routing problems with time-window penalties, some customers are “hard-to-insert” 

due to remote locations or tight service windows; inserting them late often leads to large penalties or 

infeasibility. Farthest insertion prioritizes customers with the largest distance (or insertion difficulty) 

relative to the current partial routes, effectively placing the most challenging nodes first. This 

strategy reduces the risk of infeasible reinsertion and mitigates penalty accumulation, resulting in 

higher-quality reconstructed routes and improved algorithm stability. 

To further enhance the ability of the algorithm to find the optimal solution, this algorithm adds 

the step of local search. The specific operation is as follows: first, eliminate a randomly selected gene 

point using the destruction operator to carry out the operation. Then, compute the correlation 

(distance) between the remaining and removed gene points. Third, remove the gene points with 

higher correlation individually. Finally, we will reintroduce the gene points into the chromosome 

using the farthest insertion method, which entails inserting the gene point with the highest minimum 

insertion cost first. 

(8) Termination conditions 

This paper’s algorithm stops the operation when a set number of iterations is reached. 
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Figure 2. Schematic of the insert order algorithm. 

 

Figure 3. Flowchart of the genetic algorithm. 
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Table 2. Algorithm suitability comparison. 

Algorithm Advantage Disadvantage Applicable question 

Genetic algorithm 

Strong global search 

ability; strong adaptability; 

high robustness 

Slow convergence; 

limited accuracy; 

parameter adjustment is 

complicated 

Complex combinatorial 

optimization problem, NP-hard 

problem, function optimization 

problem, engineering design 

optimization, and so on. 

Ant colony 

optimization 

Positive feedback 

mechanism; 

distributed computing; 

adaptable to dynamic 

environments 

Easy to fall into local 

optimality; slow 

convergence; the 

algorithm parameters are 

complex 

Route optimization problems, 

such as traveling salesman 

problem (TSP), vehicle routing 

problem (VRP), network routing 

optimization, etc. 

Simulated 

annealing 

Simple and easy to 

implement; jumping out of 

local optimal; global 

optimal 

Slow convergence speed; 

sensitive to initial value; 

parameter setting is 

complex 

Global optimization problems, 

especially complex optimization 

problems with multiple extreme 

values, such as combination 

optimization, process parameter 

optimization, etc. 

Table 3. Comparison of two chromosomes. 

Chromosomes 1-2-9-3-5-4-10-6-7-11-8-12 1-2-3-9-4-5-6-10-7-8-11-12 

Total vehicles 4 4 

Used vehicles 4 3 

Recovery path 0-1-2-0 0-1-2-3-0 

(0 for return) 0-3-5-4-0 0-4-5-6-0 

(collection centers) 0-6-7-0 0-7-8-0 

0-8-0 

 

Figure 4. Schematic of order crossover. 
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3. Results 

3.1. Initial recovery path planning 

We calibrate the vehicle fixed utilization cost 𝐹 as the per-shift (or per-day) fixed expense of 

deploying one recycling vehicle, including driver labor, vehicle depreciation/lease, 

insurance/registration, and routine maintenance. Specifically, 𝐹 = 𝐶𝑙𝑎𝑏𝑜𝑟 + 𝐶𝑑𝑒𝑝𝑟 + 𝐶𝑖𝑛𝑠 + 𝐶𝑚𝑎𝑖𝑛𝑡 +

(+𝐶𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑). The adopted value is obtained from local market quotations and/or operational 

accounting records, and we further test F in a sensitivity range of ±20% to verify robustness. The 

unit carbon price 𝑐0  is referenced from the prevailing carbon trading price in the selected 

market/period. Since carbon prices fluctuate, we adopt the average (or end-of-period average) price 

over the study window and convert it to the unit used in our model (e.g., Yuan/kg) through standard 

unit conversion. A sensitivity analysis on 𝑐0 is also conducted to ensure the conclusions are not 

driven by a single price point. 

This study confirms the proposed model and algorithm through a series of experiments., and we 

provide information about the values of the experimental parameters. Due to the confidentiality of 

real-world business data and for the purpose of methodological validation, the numerical case study 

employs a set of simulated data generated based on classic VRP benchmarks and realistic assumptions, 

detailed in Table 4, including initial conditions, boundary conditions, and physical parameters, to better 

build the model. We have also recorded the recovery point information in Table 5, which captures a 

system state snapshot at a specific time during the numerical simulation. This information enables 

subsequent analysis and comparison. Moreover, we list the specific settings of the algorithm 

parameters in Table 6 to demonstrate the algorithm’s performance and optimization effects. These 

parameters cover the algorithm's convergence conditions, the number of iterative steps, step size, and 

key optimization parameters. By providing these details, we aim to ensure a transparent and reliable 

experimental framework for numerical simulation and algorithm research. 

Table 4. Parameter assignment table. 

Parameters Numerical value 

Maximum number of vehicles to be recovered 20 vehicles 

Vehicle fixed utilization cost kF  100 Yuan (USD14.04)/per vehicle 

Unit cleaning cost of tableware recovered from fixed collection points 1cp  0.5 Yuan (USD0.07)/kg 

Cost of basic cleaning of dishes recovered from order insertion recycling 

points 1  
0.1 Yuan (USD0.014)/kg 

Cost of basic cleaning of dishes recovered from order insertion recycling 

points 2  
0.002 Yuan (USD0.00028)/kg ·min 

Maximum load capacity Q  100 kg 

Waiting cost 1  0.2 Yuan (USD0.028)/min 

Late arrival cost 2  1 Yuan (USD0.14)/min 

Fuel consumption per unit distance traveled pf  0.1 L/km 

Price per unit of fuel volume fp  7.06 Yuan (USD0.99)/L 

Price per unit of carbon emissions 0c  1 Yuan (USD0.14)/kg 

 Continued on next page 



2629 

AIMS Mathematics  Volume 11, Issue 1, 2613–2644. 

 

Parameters Numerical value 

Carbon emission factor   2.63 kg/L 

Minimum desired customer satisfaction S  85% 

Distance correction coefficient 1.3 

Recovery vehicle travel speed 0v  30 km/h 

Table 5. Basic information on fixed recycling points. 

Num x y [ei, li] [Ei, Li] ri tci 

0 30 40 7:00–21:00 7:00–21:00 0 0 

1 41 49 17:00–17:30 16:00–18:30 30 20 

2 35 17 16:30–17:00 15:30–18:00 10 5 

3 55 45 9:00–9:30 8:00–10:30 30 20 

4 55 20 16:00–16:30 15:00–17:30 10 5 

5 15 30 7:30–8:00 7:00–9:00 20 10 

6 25 30 15:00–15:30 14:00–16:30 10 5 

7 20 50 9:40–10:10 8:40–11:10 30 20 

8 10 43 10:40–11:10 9:40–12:10 10 5 

9 55 60 14:40–15:20 13:40–16:20 10 5 

10 30 60 12:00–12:30 11:00–13:30 20 10 

11 20 65 13:30–14:00 12:30–15:00 20 10 

12 50 35 15:10–15:40 14:10–16:40 20 10 

13 30 25 9:00–9:30 8:00–10:30 15 5 

14 15 10 14:10–14:40 13:10–15:40 30 20 

15 30 5 13:10–13:40 12:10–14:40 25 15 

16 10 20 11:00–11:30 10:00–12:30 20 10 

17 5 30 14:10–15:10 13:10–16:10 25 15 

18 35 35 14:30–15:00 13:30–16:00 30 20 

19 15 60 17:00–17:30 16:00–18:30 25 15 

20 45 65 16:30–17:00 15:30–18:00 20 10 

Table 6. The initial recycling route. 

Recycling vehicle number Recycling routes 

1 0-6-11-3-5-2-2-11-9-6-9-5-0 

2 0-11-6-1-11-3-15-6-1-11-8-0 

3 0-3-4-9-3-3-1-7-7-7-7-4-0 

4 0-8-1-1-3-9-7-6-10-3-5-11-0 

Moreover, to facilitate accurate calculation and analysis, the mathematical tool of Euclidean 

distance is used to measure and calculate the distance between two points. Although the Euclidean 

distance is simple and easy to use in theory, in practical application, considering the complexity and 

uncertainty of the road network, other measurement methods need to be adopted or modified to 

improve the accuracy of the model. According to the historical data of this region, the actual distance 
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is generally 1.3 times the Euclidean distance, that is, the correction coefficient 1.3 = , so the 

corrected distance is calculated by Eq (22). Specifically, the Euclidean distance is calculated as 

shown in Eq (21):  

 
2 2

2 1 2 1( ) ( )ijd x x y y= − + −  (21) 

 
'

ij ijd d=  (22) 

The provided text outlines a pathway scheme for an initial recovery effort, detailed in Figure 5, 

offering a clear view of its structure and flow. Additionally, it includes an economic analysis through 

Tables 6 and 7, listing the recovery routes and their costs—covering transportation, processing, and 

other related expenses—which aids in optimizing the recovery process for cost efficiency. 

 

Figure 5. The initial recovery path. 

Table 7. Cost table under the initial recovery path planning. 

Cost classification Amount/yuan (USD) 

total cost 742.64 (USD104.22) 

fixed costs 400 (USD56.14) 

vehicle wear and tear costs 102.14 (USD14.33) 

cleaning costs 67.22 (USD9.43) 

time penalty cost 42.77 (USD6.00) 

fuel and carbon costs 130.51 (USD18.32) 

3.2. Inserting order routing 

At 11:00, five new individuals are added to the recycling order, and the specific information is 

shown in Table 8. After inserting the order, the route for sending new vehicles from the recycling 
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center to perform the recycling task can be calculated, as shown in Table 9 and Figure 6; at the same 

time, it is possible to calculate a route where the original vehicle is still deployed directly from the 

midway to perform the recovery task, as shown in Table 10 and Figure 7. 

In Figure 7, if the new vehicle is recycled separately according to the insertion sequence, the 

optimized path diagram is shown when compared to the direct deployment of the car in the initial 

path. In this way, we can observe the optimized path map, which shows the efficiency and 

cost-effectiveness of sending new vehicles separately in the recovery mission. This display of the 

control group-optimized pathway map helps us better understand the advantages of the original 

vehicle call in the recovery task. Through this detailed comparative analysis, we can further verify 

whether sending new vehicles alone for recovery tasks can result in cost optimization providing a 

scientific basis for decision-makers. 

Table 8. Order insertion recovery point basic information. 

Num x y [ei, li] [Ei, Li] ri tci 

21 40 55 12:00–13:00 11:30–13:30 5 5 

22 10 50 13:00–14:00 12:30–14:30 5 5 

23 12 48 13:00–14:00 12:30–14:30 5 5 

24 40 25 12:00–13:00 11:30–13:30 5 5 

25 20 20 12:00–13:00 11:30–13:30 5 5 

Table 9. Insert order path. 

Recycling vehicle number  Recovery routes 

1  0- 1-1-3-1-3-2-2-10-6-1-11-12-8-0 

2  0- 9-1-12-10-6-12-13-11-7-6-9-9-9-0 

3  0- 2-8-13-13-1-1-9-9-3-6-1-12-9-0 

4  0- 10-1-7-3-1-11-12-12-13-13-13-12-0 

Table 10. The initial recycling route. 

Recycling vehicle number Recycling routes 

1 0- 3-2-1-12-12-10-1-15-7-7-5-8-11-9-5-0 

2 0-10-6-14-7-3-1-1-14-13-6-13-3-13-13-2-0 

3 0- 2-12-10-3-3-5-2-9-3-1-13-12-12-0 

4 0- 4-10-2-12-5-6-3-13-11-6-5-13-12-0 
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Figure 6. New dispatch vehicle recovery path. 

 

Figure 7. Optimized path map using the original vehicle. 

On this basis, consider directly deploying the vehicles that are already in the middle of the 

recovery task. The specific information and data for this route are detailed in Table 10 and presented 

graphically in Figure 7. These charts show the complete process of starting the vehicle from the 

starting point, going through a series of path choices, and finally reaching the mission site. 

Table 11 shows that the recycling method we suggest, which prioritizes sorting and uses 

vehicles in a specific order, saves more money overall than the method where a different vehicle is 

assigned for recycling. Specifically, there are savings in four areas: fixed costs, vehicle wear and tear 

costs, time penalty costs, and fuel and carbon emission costs. The time penalty costs are particularly 

optimized, as using the original vehicle will save more than 200%. While sending another car can 

reduce cleaning costs by fulfilling orders promptly, cleaning costs are a smaller percentage of the 

total cost and are reduced by only about 10%. Hence, prioritizing vehicles for tasks has a more 

significant advantage. 
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Table 11. Cost comparison of the two recovery modes. 

Cost classification 
Use the original 

vehicle/Yuan (USD) 

Send another 

vehicle/Yuan (USD) 

Increased percentage 

(Another/Original) 

total cost 939.17 (USD131.79) 1650.48 (USD231.67) 75.74% 

fixed costs 400 (USD56.14) 500 (USD70.17) 25% 

vehicle wear and 

tear costs 
235.40 (USD33.04) 283.54 (USD39.80) 20.45% 

cleaning costs 112.26 (USD15.75) 100.64 (USD14.13) –10.35% 

time penalty cost 70.70 (USD9.92) 216.80 (USD30.43) 206.65% 

fuel and carbon 

costs 
356.21 (USD49.99) 549.50 (USD77.13) 54.26% 

Due to the complexity of the real-world scenarios, there is still room for further optimization of 

this kind of model: (1) Compared to adding new orders, fixed-point recycling, which happens every 

day, discusses whether the recycling spot used by the vehicle should stay the same even after new 

orders are added, to suit the staff's usual habits. (2) The cost of recycling is also determined by other 

factors, such as weather, road conditions, etc., especially during the peak hours of commuting, when 

the speed of the recycling vehicles will vary greatly. (3) Since the amount of recycling for dynamic 

orders is relatively tiny, is it feasible to consider using different models of recycling vehicles to save 

costs. 

3.3. Comprehensive benefit comparison across recycling modes 

To demonstrate the comprehensive advantages of the proposed fixed-point recycling + dynamic 

order insertion hybrid mode, we extend the comparison beyond the two insertion strategies and 

benchmark our approach against two widely used operational modes. Specifically, we consider: 

Mode A (fixed-point recycling only), where vehicles follow the pre-planned fixed-point routes and 

newly arrived requests are postponed to the next cycle (or treated as unserved within the current 

cycle); Mode B (on-demand re-dispatch), where the fleet is re-dispatched from the depot and routes 

are re-optimized upon order arrivals; and Mode C (hybrid mode), where new requests are inserted 

into the ongoing fixed-point tours (en-route insertion), which corresponds to the proposed strategy. 

We evaluate these modes using a multi-dimensional performance set: economic performance 

(total cost and cost breakdown), environmental performance (total fuel consumption and carbon 

emissions, reported as physical emissions 𝐸 in addition to the carbon cost), social performance 

(service quality measured by customer satisfaction and participation rate), and long-term operational 

performance (cost per served request and fleet utilization over multiple insertion rounds). For social 

benefits, we compute the average satisfaction 𝑆̅ based on the satisfaction function in Section 2 and 

define the participation rate as the proportion of requests whose satisfaction exceeds a predefined 

threshold 𝑆𝑚𝑖𝑛. For long-term benefits, we conduct a rolling-horizon simulation with repeated order 

insertions and report aggregated metrics over the entire operating horizon. 

Table 12 summarizes the comparative results. Compared with Mode A, the hybrid mode 

improves service quality by serving newly arrived requests within the ongoing cycle, thereby 

increasing satisfaction/participation while keeping costs controlled. Compared with Mode B, the 

hybrid mode reduces redundant vehicle repositioning and avoids frequent re-dispatching, leading to 

lower emissions intensity and more stable long-run operational performance. 
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Table 12. Comprehensive performance comparison across recycling modes. 

Metric 

Mode A: 

Fixed-point only 

(Yuan / USD) 

Mode B: Dispatch 

additional vehicle 

(Yuan / USD) 

Mode C: Hybrid—reuse 

original vehicles (Yuan / 

USD) 

Operational and social metrics 

Orders served / total 20 / 25 25 / 25 25 / 25 

Participation rate PR 

(current-cycle fulfillment) 
80.00% 100.00% 100.00% 

Vehicles activated (implied 

by fixed costs) 
4 5 4 

Cost classification 

Total cost CCC 
742.64 (USD 

104.22) 
1650.48 (USD 231.67) 939.17 (USD 131.79) 

Fixed costs 
400.00 (USD 

56.13) 
500.00 (USD 70.17) 400.00 (USD 56.14) 

Wear and tear costs 
102.14 (USD 

14.34) 
283.54 (USD 39.79) 235.40 (USD 33.04) 

Cleaning costs 
67.22 (USD 

9.43) 
100.64 (USD 14.13) 112.26 (USD 15.75) 

Time-penalty cost 
42.77 (USD 

6.00) 
216.80 (USD 30.43) 70.70 (USD 9.92) 

Fuel and carbon costs 
130.51 (USD 

18.32) 
549.50 (USD 77.13) 356.21 (USD 49.99) 

Environmental and long-run operation metrics 

Estimated total distance 

DDD (km)* 
134.69 567.08 367.61 

Fuel consumption (L)* 13.47 56.71 36.76 

Carbon emissions (kg 

CO2_22)* 
35.42 149.14 96.68 

Cost per served order 

(Yuan/order) 
37.13 66.02 37.57 

Time-penalty per served 

order (Yuan/order) 
2.14 8.67 2.83 

CO2_22 per served order 

(kg/order)* 
1.77 5.97 3.87 

Distance per activated 

vehicle (km/vehicle)* 
33.67 113.42 91.9 

3.4. Algorithm performance analysis 

The experiment was programmed with MATLAB 2023b. To facilitate the comparison, the data 

from the above case is used. After the order insertion, the simple genetic algorithm (SGA) is used to 

synchronize the experiment. To ensure reproducibility and to justify the key GA parameters, we 
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determine the algorithm configuration using a two-stage calibration procedure: (i) literature-informed 

screening and (ii) pilot tuning on a representative instance. 

Stage 1: Literature-informed screening. 

For permutation-based routing problems with OX crossover and mutation operators, typical 

values of crossover probability and mutation probability are often selected within moderate ranges to 

balance exploration and exploitation. Following this principle, we initially consider 𝑝𝑐 ∈ [0.6, 0.8] 

and 𝑝𝑚 ∈ [0.01, 0.10]. The population size is set to be sufficiently larger than the chromosome 

length to maintain diversity while keeping runtime acceptable for real-time insertion scenarios. In 

our encoding, the chromosome length is 39, and candidate population sizes are selected as 50–100. 

Stage 2: Pilot tuning and final configuration. 

We further conduct a pilot parameter tuning experiment by jointly varying mutation rate, 

crossover rate, population size, and number of generations at three representative levels each (a full 

factorial 34 = 81 combinations; provided in Appendix Table A1). Each configuration is evaluated 

using two criteria: (1) the best objective value achieved (total cost) and (2) runtime/convergence 

speed. Since the proposed method targets dynamic order insertion, we prioritize configurations that 

achieve stable convergence within a short computation time, rather than pursuing marginal 

improvements with excessively long runtime. Based on the above trade-off, we adopt the final 

parameter setting summarized in Table 13, which provides robust performance and satisfactory 

convergence in the case study. 

Table 13. Algorithm parameter table. 

Parameter Value 

population size 50 

chromosome length 39 

crossover probability 0.7 

mutation probability 0.1 

number of iterations 100 

In addition, all stochastic runs are executed under controlled random seeds for fair comparison 

across algorithms, and the termination condition is set as a fixed number of iterations (generations). 

In a comparative study of the improved genetic algorithm presented in this paper with 

conventional ones, we pay particular attention to the performance of these two algorithms during the 

first 50 iterations. Through comparative analysis, we find that the improved genetic algorithm 

proposed in this paper converges significantly faster than the traditional genetic algorithm under the 

given parameter conditions. To ensure the reliability and statistical significance of the results, we 

performed 20 independent running experiments on the two algorithms. The proposed improved 

genetic algorithm showed consistent efficient convergence performance in 20 runs in these 

experiments. In contrast, the traditional genetic algorithm converges relatively slowly under the same 

experimental conditions, which is 6 times more effective than the results of the improved algorithm. 

This comparative result fully proves that the enhanced GA presented here has significant advantages 

in convergence speed and performs well in stability, effectively improving the performance of the 

genetic algorithm. 

Figure 8 shows the iteration diagram of the improved genetic algorithm, and Figure 9 shows the 

iterative process of the simple genetic algorithm, through which we can see that the SGA’s 
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convergence rate is relatively slow. This means that the algorithm requires multiple iterations that 

consume more time and computational resources to reach the optimal solution. Moreover, the graph 

indicates that the simple genetic algorithm may be more effective in local search but may not 

consistently find the optimal solution. Ultimately, despite several iterations, the convergence effect of 

SGA has not improved significantly, and there is still a gap between the IGA in the ideal state. 

In order to verify the applicability of the model, a systematic sampling method was used to 

simulate the experimental data. The values of 0.01, 0.055, and 0.1 were extracted from mutation 

probability, 0.6, 0.7, and 0.8 from crossover probability, 50, 75, and 100 from population size, and 

100, 550, and 1000 from the number of iterations. Due to space constraints, the detailed calculation 

results are presented in Appendix A. To assess the robustness of the above findings, we conduct a 

brief sensitivity analysis on key model parameters (time-window penalty and major cost coefficients). 

Detailed results are reported in Appendix B. 

After adjusting the parameters, it can be seen that the convergence rate and the optimal cost of 

the model are within a reasonable range, indicating that the model has a good adaptive ability to 

different parameters. 

 

Figure 8. IGA iteration diagram. 

 

Figure 9. SGA iteration diagram. 
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4. Discussion 

4.1. Cost-saving mechanisms of en-route insertion 

This study shows that prioritizing en-route insertion (i.e., inserting newly arrived pickup 

requests into vehicles that are already executing routes) can reduce total operating cost relative to the 

conventional strategy of dispatching an additional vehicle. The cost advantage comes from four 

mechanisms. 

First, fixed deployment costs are avoided when insertion is handled by active vehicles. In 

practice, dispatching an additional vehicle trigger fixed costs such as vehicle activation, driver 

assignment, and operational coordination. When the marginal insertion demand can be absorbed by 

en-route vehicles, these fixed costs are eliminated. 

Second, en-route insertion improves time-related performance, thereby reducing 

waiting/lateness penalties under the (soft) time-window setting. Compared with waiting for a new 

vehicle to depart and travel to the service area, insertion into an ongoing tour typically shortens 

response time, which directly lowers the time penalty component. 

Third, en-route insertion can decrease variable operating costs (e.g., energy and emissions) by 

reducing redundant vehicle movements. Even when the inserted requests add some detours, the total 

distance and energy consumption can still be lower than operating an additional vehicle for a 

separate tour, especially when the inserted requests are geographically close to the current route. 

Finally, the two strategies may differ in cleaning-related costs. Although dispatching a new 

vehicle may sometimes reduce cleaning time due to shorter task chains, this component is generally a 

smaller share of total cost and is often insufficient to offset the additional fixed and time-related costs 

of activating a new vehicle. Overall, the insertion-first strategy offers a consistent cost-control 

advantage in the case study, mainly through fixed-cost avoidance and improved time performance. 

The magnitude of cost reduction is partly structure-driven and partly scenario-dependent. 

Structurally, reusing the original vehicles avoids additional vehicle activation and associated fixed 

and operating costs, and reduces dispatch-related delays. However, the savings percentage depends 

on the insertion context, including the spatial dispersion of new orders, the tightness of time windows, 

baseline route utilization, and vehicle capacity slack. In scenarios with highly dispersed new orders 

or very tight time windows, dispatching an additional vehicle may become competitive, which 

defines the boundary conditions of the proposed hybrid strategy. In addition to cost savings, the 

proposed hybrid mode delivers environmental and service-level benefits by reducing redundant 

vehicle movements and improving customer satisfaction/participation within the current operating 

cycle. Moreover, rolling-horizon results indicate that the hybrid mode achieves more stable 

long-term performance in terms of cost per served request and fleet utilization compared with purely 

fixed-point or purely on-demand operations. 

4.2. Managerial implications and implementation considerations 

The results suggest a practical decision rule for operators: prioritize en-route insertion whenever 

feasibility constraints allow, and use additional vehicles only when insertion would violate service 

commitments or operational limits. This has three managerial implications. 

Decision support for real-time dispatch: The proposed model can be integrated as a 
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decision-support module that evaluates, at each arrival of new requests, whether insertion into an 

ongoing tour is feasible and cost-effective. This supports time-sensitive recycling operations and 

reduces unnecessary vehicle activation. 

Operational feasibility in real settings: Implementation should explicitly account for factors that 

drive feasibility and cost in practice, including vehicle capacity, time windows, and route stability. A 

phased rollout is recommended: start with a pilot region and limited time periods, monitor key KPIs 

(total cost, response time, on-time rate, and emissions), and then scale up to larger areas once the 

decision logic is validated. 

Data and system requirements: Effective deployment requires basic interoperability with 

operational data sources (order streams, vehicle states, and location data). To improve reliability, the 

dispatch system should support (i) periodic route re-optimization, (ii) exception handling for 

congestion/weather disruptions, and (iii) clear operational rules for when a driver can accept 

insertion tasks. Training and lightweight user interfaces are important to ensure that dispatch 

recommendations can be executed smoothly. Finally, because real-time insertion is time-sensitive, 

adequate computation resources (or simplified evaluation rules) should be ensured to maintain fast 

response times during peak demand. 

4.3. Limitations and future research 

Several limitations should be noted. First, travel distance/time is approximated using corrected 

Euclidean distances, while real travel time and fuel consumption are affected by road network 

structure, congestion, and weather. Second, the current cost model assumes that fuel consumption 

and related losses are independent of carried load; however, payload varies along the route and may 

significantly affect fuel use and emissions. Third, when multiple insertion requests arrive within a 

short time window, capacity feasibility and route stability may become binding and reduce the 

reliability of insertion-based decisions. 

Future work can extend the current framework in four directions: (i) Replace Euclidean-distance 

approximation with road-network-based shortest paths and time-dependent travel speeds using 

GIS/traffic data, (ii) incorporate load-dependent fuel/emission functions and heterogeneous vehicle 

types to better reflect operational reality, (iii) consider stochastic or robust optimization to handle 

uncertain travel times and bursty order arrivals in real-time insertion, (iv) validate the model on 

larger-scale operational datasets and explore additional objectives (e.g., service equity across regions 

and long-term station planning), potentially combining prediction models for insertion demand with 

routing optimization. 

5. Conclusions 

This paper addresses the problem of efficiently delivering tableware recycling, with customer 

satisfaction as the constraint. Fixed recovery costs, vehicle loss costs, cleaning costs, time penalty 

costs, fuel costs, and carbon emission costs are incorporated into the target function. A path 

optimization model for tableware delivery that considers dynamic order insertion is developed, and 

an improved genetic algorithm is designed to solve the model. The numerical experimental results 

show that: (1) compared with the traditional genetic algorithm, the proposed improved genetic 

algorithm presents significant advantages regarding convergence speed and stability; and (2) in the 
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case of order insertion, the scheme proposed in this paper is to prioritize the use of vehicles in the 

recovery task, which reduces the cost compared with the traditional approach of sending another 

vehicle for recovery. 

Relevant research directions and challenges are discussed, and some suggestions for 

improvement are provided. It is hoped that, through further experiments and analysis, more practical 

solutions for takeaway tableware recycling can be developed to support environmental protection 

policies. 
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Appendix A 

Table A1. Model parameters. 

Mutation 

rate 

Crossover 

rate 

Population 

size 

Number of 

generations 
Rate of convergence (s) 

Optimal solution/Yuan 

(USD) 

0.1 

0.6 

50 

100 2.216 988.4004 (USD139.39) 

550 8.389 837.1398 (USD118.06) 

1000 14.289 777.3294 (USD109.63) 

75 

100 3.010  934.6655 (USD131.81) 

550 10.090  547.8486 (USD77.26) 

1000 22.140  548.9114 (USD77.41) 

100 

100 3.835 934.5324 (USD131.80) 

550 16.845 662.8409 (USD93.48) 

1000 30.373 222.6159 (USD31.40) 

0.7 
50 

100 2.288 939.1742 (USD131.79) 

550 8.816 683.4309 (USD96.38) 

1000 15.230  813.174 (USD114.68) 

75 100 3.085 1088.868 (USD153.56) 
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Mutation 

rate 

Crossover 

rate 

Population 

size 

Number of 

generations 
Rate of convergence (s) 

Optimal solution/Yuan 

(USD) 

 

 

 
550 12.777 473.5608 (USD66.79) 

1000 17.551 349.5841 (USD49.30) 

100 

100 3.907 840.4376 (USD118.53) 

550 17.507 418.5536 (USD59.03) 

1000 30.321 182.1538 (USD25.69) 

0.8 

50 

100 2.462 965.9659 (USD136.23) 

550 8.320  547.6708 (USD77.24) 

1000 14.779 683.2396 (USD96.36) 

75 

100 3.028 919.7602 (USD129.71) 

550 12.607 415.8298 (USD58.64) 

1000 32.850  382.1596 (USD53.90) 

100 

100 3.370  936.3321 (USD132.05) 

550 17.942 514.8307 (USD72.61) 

1000 31.587 441.6423 (USD62.28) 

0.055 

0.6 

50 

100 2.284 719.9238 (USD101.53) 

550 8.595 663.2232 (USD93.57) 

1000 14.587 522.4058 (USD73.70) 

75 

100 3.319 906.2887 (USD127.86) 

550 10.429 538.7476 (USD76.01) 

1000 22.754 534.2266 (USD75.37) 

100 

100 3.110  878.0127 (USD123.87) 

550 19.466 483.9952 (USD68.28) 

1000 47.741 251.5756 (USD35.49) 

0.7 

50 

100 2.372 1225.3498 (USD172.88) 

550 8.815 657.5642 (USD92.77) 

1000 15.008 638.106 (USD90.03) 

75 

100 3.214 724.8134 (USD102.26) 

550 11.524 638.092 (USD90.02) 

1000 23.619 367.5053 (USD51.85) 

100 

100 4.135 867.1107 (USD122.34) 

550 18.211 350.1929 (USD49.41) 

1000 24.122 303.1264 (USD42.77) 

0.8 

50 

100 2.451 971.1642 (USD137.02) 

550 8.965 699.3819 (USD98.67) 

1000 15.557 371.2569 (USD52.38) 

75 

100 3.222 923.0593 (USD130.23) 

550 11.473 524.5995 (USD74.01) 

1000 23.979 416.4266 (USD58.75) 

100 
100 4.391 967.9873 (USD136.57) 

550 18.663 455.5048 (USD64.26) 

     Continued on next page 
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Mutation 

rate 

Crossover 

rate 

Population 

size 

Number of 

generations 
Rate of convergence (s) 

Optimal solution/Yuan 

(USD) 

   1000 32.608 312.6343 (USD44.11) 

0.01 

0.6 

50 

100 2.201 790.4193 (USD111.52) 

550 9.106 872.7977 (USD123.14) 

1000 15.249 674.1007 (USD95.1) 

75 

100 2.668 800.1414 (USD112.89) 

550 13.480  704.1061 (USD99.34) 

1000 25.330  619.9645 (USD87.47) 

100 

100 4.001 724.991 (USD102.28) 

550 14.154 557.514 (USD78.66) 

1000 31.786 482.0295 (USD68.01) 

0.7 

50 

100 2.396 967.9751 (USD136.57) 

550 26.934 794.0319 (USD112.02) 

1000 30.659 714.444 (USD100.8) 

75 

100 3.237 905.1715 (USD127.7) 

550 13.590  549.2548 (USD77.49) 

1000 19.156 508.0898 (USD71.68) 

100 

100 4.105 758.6384 (USD107.03) 

550 17.893 461.3124 (USD65.08) 

1000 32.363 426.43 (USD60.16) 

0.8 

50 

100 2.609 951.8067 (USD134.28) 

550 9.135 662.2082 (USD93.43) 

1000 15.264 613.6152 (USD86.57) 

75 

100 3.185 928.9397 (USD131.06) 

550 14.345 542.93 (USD76.6) 

1000 18.918 625.215 (USD88.21) 

100 

100 4.307 762.6635 (USD107.6) 

550 19.095 465.049 (USD65.61) 

1000 32.500  518.6527 (USD73.17) 
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Appendix B 

Table A2. Sensitivity analysis of key parameters. 

Parameter Multiplier B_Total Cost C_Total Cost 
Gap_Bminus

C 

B_Time 

Penalty 

C_Time 

Penalty 

alpha2 

0.8 1000856.848 780.655264 1000076.193 257.137926 189.221239 

1 1000873.014 769.478278 1000103.536 273.304283 190.15129 

1.2 1000889.181 769.478278 1000119.703 289.470639 190.15129 

F 

0.8 1000833.014 729.478278 1000103.536 273.304283 190.15129 

1 1000873.014 769.478278 1000103.536 273.304283 190.15129 

1.2 1000913.014 809.478278 1000103.536 273.304283 190.15129 

beta1 

0.8 1000872.514 768.978278 1000103.536 273.304283 190.15129 

1 1000873.014 769.478278 1000103.536 273.304283 190.15129 

1.2 1000873.514 769.978278 1000103.536 273.304283 190.15129 
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