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Abstract: Modeling the interactions between prey and predators has become an important method to
reveal their evolutionary patterns. This paper investigated a predator-prey model incorporating Holling
II functional response, considering the dynamic effects of time delay and cross-diffusion on the model.
First, the existence and local stability of a positive equilibrium were proven without time delay and
diffusion. Next, we selected time delay as the bifurcation parameter to study the existence of Hopf
bifurcation, and determined the critical value for Hopf bifurcation. Furthermore, by utilizing multi-
scale analysis, the amplitude equation was derived, thereby obtaining the direction of Hopf bifurcation
and the stability of bifurcation periodic solutions. Our results show that changes in time delay or
diffusion parameters can lead to periodic oscillatory solutions in time and space, corresponding to
supercritical (subcritical) Hopf bifurcation, and Turing instability. Finally, the theoretical results were
validated through numerical simulations.
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1. Introduction

As is well known, the relationships between species are complex and diverse, including predation,
parasitism, competition, and mutualistic symbiosis, which together constitute a rich and colorful
ecosystem. The predator-prey model is an important ecosystem model that describes the dynamic
interactions between two organisms. This has long been an important topic in ecology and
mathematics, and it has already obtained many research results [1-3].

The first predator-prey model in ecological history was proposed by Lotka-Volterra (L-V) [4, 5],
which laid the foundation for subsequent research. In the classic L-V model, the predation term is
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linear, which means that the predation rate increases linearly with prey density, and there is no limit
to the number of prey that each predator can kill, which is clearly unrealistic. In fact, the amount of
food that a predator can eat in a day is limited. When the prey is very abundant, it will not hunt again
while being full. In order to enhance the realism of the model, Holling proposed three main types of
functional responses, including Holling I, Holling II, and Holling III [6, 7], and then used functional
responses to replace the overly simplified predation term in the L-V model, greatly improving the
model’s realism and predictive ability. Therefore, inspired by the above ideas and reference [8], this
paper considers a predator-prey model with Holling II functional response

d

= =u(-w - ——,

dt U+« (1.1)
dv ruv ’
— = - oV,

dt u+a

where u and v is the density of prey and predator population at the time t. u(1 — u) describes the self
growth of prey in the absence of predators. Predation of prey species by predators is quantified by a
Holling type-1II functional response, which is given by -, where a represents the half saturation rate.
r is the conversion efficiency of predators, and the value of r is between 0 and 1 based on ecological
reasons. o represents the mortality rate of predators.

Due to the interactions between populations in ecosystems, time delay is a common phenomenon.
For example, pregnancy delay refers to the time it takes for predators to catch prey and produce the
next generation [9]. On the other hand, a delay caused by the regrowth of consumed resources (such
as plant biomass) is called resource regeneration delay, while Poisoning delay refers to the delay in
poisoning of animals after consuming toxic food, as they will wait for a period of time before symptoms
appear [10]. At present, multiple papers have studied the impact of delay on population dynamic
behavior. For example, delay can trigger Hopf bifurcation by adjusting interspecific or intraspecific
feedback, thereby disrupting the stability of the system equilibrium and generating periodic oscillation
behavior [11-13]. In this paper, we consider that the physiological characteristics of a species, such as
the length of pregnancy, may themselves determine whether its population will experience a “boom-
bust” cycle. This has important implications for conservation biology and pest management, that is,
we need to pay attention to those key life cycle parameters that may themselves be sources of risk
for population instability. Based on the above viewpoint, a more reasonable predator-prey model with

delay is obtained as

-
t u+a (1.2)

dv  ru(t—T1)
dt ult—-1)+a
where 7 represents the pregnancy delay.

In nature, everything not only evolves in time, but also undergoes non-homogeneous evolution in
space. For predation models, considering the discrete distribution of population habitats in ecosystems
and the interactions between populations in different habitats, we know that the survival behavior of
populations involves self-diffusion and cross-diffusion. Self-diffusion is mainly used to describe the
random walks of individuals within their habitat. However, prey tends to stay away from predators in
order to avoid capture, which causes changes in the concentration levels of prey [14, 15]. Meanwhile,
the movement of predators is also influenced by the concentration gradient of prey at the same location.

—ov,
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This phenomenon is usually described by cross-diffusion [16, 17]. In addition, the dynamic study of
spatial models has always been one of the main topics in the field of biological mathematics [18-20].
Therefore, it is significant to study the impact of self and cross-diffusion on the interactions between
species, and finally establish the following delayed reaction-diffusion system

Ou(x, t DIV, T
uxn _ dyAu(x, 1) + dipAv(x, 1) + u(x, (1 — u(x, 1)) — M’x €Q,1>0,
i u(x,t)+a
ov(x, t ru(x,t — t)v(x, t
El't ) da1 Au(x, 1) + dap Av(x, 1) + u((x, ‘- T)) J(r a) moviEnn,x el >0, (1.3)
6u(X, t) _ (9v(x, t) — O,X c aQ’ t> O’
on on
u(x, 1) = up(x, 1) 2 0, v(x, 1) = vo(x, 1) 2 0, (x,1) € QX [-7,0],

where d;; and dy, are the self-diffusion coefficients of prey and predator, respectively, which are
nonnegative and describe the random movement of species. d, and d,; are the cross-diffusion
coefficients of predators and prey, respectively, which are positive and negative values or zero.
According to [16,21], we assume dy1dy, — dioday > 0. A is the Laplace operator, and Q = (0, )
is a smooth and bounded domain. The homogeneous Neumann boundary condition % = % =0
means that no species enter or leave this area, where n is the outward unit normal vector to the boundary

0Q, and uy(x, 1) and vy(x, t) respectively represent the initial conditions.

The main contributions of this study are summarized as follows: in the model construction, we
considered the time delay required for predators to capture prey and generate the next generation, and
discussed the critical conditions for Hopf bifurcation. Furthermore, using multi-scale analysis, we
derived the amplitude equation of the system when Hopf bifurcation occurs near positive equilibrium,
revealing rich spatiotemporal pattern dynamics. The multi-scale analysis is the core method for solving
weakly nonlinear amplitude equations. Its fundamental idea is that, given the characteristic that
solutions of weakly nonlinear systems evolve at different rates across different time scales, multiple
independent time variables are introduced to decompose the original equations into different scales
and solve them step by step, thereby obtaining high-precision amplitude evolution equations. This
enables precise analytical insights into the coupling effects of Holling II functional response, time
delay, and cross-diffusion on population dynamics across different scales. Finally, numerical analysis
shows that both self-diffusion and cross-diffusion can induce Turing instability. Based on the above
results, we will improve the system performance by adjusting the time delay and diffusion coefficient,
in order to gain a deeper understanding of their impact on the dynamics of the ecosystem.

The subsequent sections are organized as follows. First, the existence and stability of equilibria
and the conditions to ascertain the local stability of the Hopf bifurcation are conducted in Section 2.
Subsequently, we use multi-scale analysis to separate the delayed reaction-diffusion system on the
time scale, simplify the complex nonlinear system to a topologically equivalent amplitude equation,
and analyze the dynamic behavior of the amplitude equation in Section 3. To validate the obtained
results, in Section 4, numerical simulation are carried out. Some conclusions are given to conclude our
work in Section 5.
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2. Local stability and Hopf bifurcation

2.1. The existence of equilibria

In this subsection, we mainly analyze the existence of the equilibria for system (1.1). It is easy to
know that the trivial equilibrium E,(0, 0) and semi-trivial equilibrium E;(1,0) of system (1.1) always
exist. From the perspective of species diversity, the coexistence of two species is very meaningful.
Therefore, we assume that E*(u*, v*) is the coexistence equilibrium of system (1.1) with u* = =
and v* = W Importantly, if Hy : r > o(a + 1) holds, the system (1.1) has a unique positive
coexistence equilibrium E*(u*, v*).

2.2. Local stability of positive equilibrium E* and Hopf bifurcation

Under the condition that Hy holds, we only discuss the local stability of positive coexistence
equilibrium E* and further study the existence of Hopf bifurcation by analyzing the characteristic
equation of the system (1.3). Subsequently, the derivation process of the characteristic equation
is as follows: First, introducing small perturbations near E*, that is u(x,f) = u* + i(x,t) and
v(x,t) = v* + ¥(x, 1), where ii(x, t) and ¥(x, f) are small perturbation amounts. Substituting i(x, t) and
P(x, t) into the system (1.3), then the linearized system of (1.3) can be written as

on(x, t
O gy A1) + dipATCr, 1) + ani(x, 1) — ani(x, 1),
~<9t 2.1)
ov(x, 1) N - -
o = dy Ali(x, 1) + dpAV(x, 1) + axii(x, t — 7),

i
a+u*

>0, a3 = 225 > 0.

Assuming ii(x,t) = cie , W(x, 1) = e , where ¢; and ¢, correspond to the amplitude of
i(x,t) and V(x,t) near E* respectively. A represents the eigenvalue, which determines whether the
disturbance increases or decreases over time, and Re(1) > 0 indicates instability. k represents wave
number (k = 0,1,2,3,...). e** represents spatial harmonics. For the time delay term, ii(x,t — 1) =
Cle/l(t—'r)ﬂ'kx — e‘“z?t(x, t).

Next, substituting #(x, 1), i(x,t — 7) and ¥(x,¢) into the linearized Eq (2.1), we obtain the
characteristic equation in matrix form

where apn = 1-2u* - m, app =

At+ikx At+ikx

/l+d11k2—(111 d12k2+(112 C1 —-0
d21k2—a216_h /1+d22k2 (o5} e

To ensure the existence of non-zero solutions, the determinant of the matrix is zero. Thus, the
characteristic equation is

A+ ad+b+ce™ =0, (2.2)

where a; = dy1k* + dpk? — a1, by = (di1day — dipdo))k* — (arnda) + andn)k?, ¢ = axdipk* + anaz > 0.

Finally, analyzing the characteristic Eq (2.2) when 7 = 0 and 7 > 0, the local stability of positive

equilibrium E* and the existence of Hopf bifurcation are studied as follows.
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2.2.1. The local stability of ordinary differential equation (ODE) (7 = 0,k = 0)
When 7 = 0, k = 0, the characteristic Eq (2.2) becomes

A +apdl+by+cy=0, (2.3)

where ap = —aipy1,Co = d1pdr > 0.

If Hy : ap > 0, by + ¢y > 0 holds, then all roots of the Eq (2.3) have negative real parts, which means
the positive equilibrium E* is locally asymptotically stable. Summarizing the above analysis, we can
obtain the local stability of equilibrium E* of the ordinary differential system (1.1).

Lemma 2.1. Assuming that the existence condition Hy of the positive equilibrium E* is satisfied. If H,
holds, then the positive equilibrium E* is locally asymptotically stable.

2.2.2. The local stability of reaction-diffusion equation in E* (7 = 0,k > 0)

When 7 = 0, k > 0, the characteristic Eq (2.2) can be written as
A+ @A +bi+c =0. (2.4)

Under the condition that ODE is stable, a; > ay > 0 is obviously true, so all roots of the Eq (2.4)
have negative real parts if and only if b; + ¢, > O for all k. According to the expression of by, ¢, and
donating m = k?, we get

b + ¢ = (dy1dy — diada))k* + (a21dyy — anadyy — ay1da)k* — anay = pym* + pym + ps,

where p| = dy1dy —diadyy > 0,05 = az1dix — aindar — andan, p3 = anax > 0, Ay = p5 —4pps. Further,
we give two assumptions: H, : Ag < 0; H3 : Ag > 0, p» > 0. Then, we can get the following results
about the local stability of equilibrium E* of the reaction-diffusion system.

Lemma 2.2. Assuming that the existence condition Hy and the stability condition H, of the positive
equilibrium E* are satisfied, if Hy or H3 holds, then by + ¢, > 0 for all k. Thus, the positive equilibrium
E* is locally asymptotically stable.

Proof. We know that a; > ay > 0 when H, holds, and p; > 0 is obviously true. If H, or H; holds, then
we can obtain by + ¢, > 0 for all &, and at this time, all roots of Eq (2.4) have negative real parts. Thus,
the positive equilibrium E* is locally asymptotically stable. O

Theorem 2.1. Assuming that the existence condition Hy and the stability condition H, of the positive

equilibrium E* are satisfied, if Ao > 0, p, <0, and k € (\Jmy, \/lmy), where k is a nonnegative integer,
my = %&),mz = %&), then by + ¢, < 0, that is, Eq (2.4) has two roots with opposite signs,

meaning the system (1.3) presents Turing instability.

Proof. We know that p; > 0 and p; > 0 are obviously true. If Ay > 0 and p, < 0 hold, then

cer —p2— VA - A
by + ¢ = 0 has two positive roots m; and m,, where m; = %,mg = %ﬁ_ Further, when

k € (\fmy, \'my), b, + ¢, < 0, that is, Eq (2.4) has two roots with opposite signs, thus the system

(1.3) presents Turing instability. Further, we can get the critical wavenumber k> = —2%21 and then the

.. 2
characteristic wavelength 4;, = ¥ = 27 [~ 2. O
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2.2.3. The local stability of time-delay reaction-diffusion system in E* (7 > 0)

Assuming that A; = *iwi(wy > 0) is a pair of purely imaginary roots of Eq (2.2) and dividing the
real and imaginary parts, we get

w?—b
cos(wyT) = k k,
Ck (2.5
. AWy
sin(wy ) = —.
Ck

Taking the sum of squares of the corresponding sides of Eq (2.5), we obtain
w; + (a; = 2b)w; + b — c; = 0. (2.6)
Denoting z; = w%, Eq (2.6) can be written as
h(zi) = 7 + (@ = 2bzi + b — ¢ = 0, 2.7)

where a; — 2by = 2dyaday + dyk* + (dik* — an)? + 2a12daik® > 0, Ay = (a; — 2by)* — (b7 — ).

When A,y < 0, Eq (2.7) has no positive real root. On the contrary, when Ay, > 0, we assume that
z; and z,% are two roots of Eq (2.7). Since z, + z,% = —(a,f —2b;) < 0, Eq (2.7) has only a positive root if
and only if ;27 = (b + ¢ )(bx — ¢x) < 0. Further, under the condition that H, or H; holds, by + ¢, > 0,
thereby Eq (2.7) has only a positive root if and only if b; — ¢, < 0, which means Eq (2.2) has a pair of
pure imaginary roots. According to the expression of b; and c;, and donating m = k?, we get

by — ¢k = (d1dy — d12d21)k4 + (=ajndy — ands - Cllldzz)k2 —dapdy = lez + p4m + Ps, (2.8)

where p1 = dydy — dpdyy > 0,p4 = —apdy — andip — andy < p,ps = —apay < 0 < ps3,
Ay =p; —4pips > 0.

From Eq (2.8), it is easy to know that when k € [0, y/m3), (m3 = %m), then b, — ¢, < 0. Based
on the above analysis, we obtain the following lemma.

Lemma 2.3. Assuming that the existence condition Hy and the stability condition H, of the positive
equilibrium E* are satisfied, and H, or H; holds, when k € [0, \/m3), where k is a nonnegative integer
and mz = %ﬂ, then by + ¢, > 0 and by, — ¢, < 0 are established simultaneously.

According to Lemma 2.3, we can obtain a positive root wy of Eq (2.6), which is written as

(2.9)

Dby — @} + \Jat - 4alby + 4]
Wy = ) .
The associated critical value of delay is
2

w; —b
2jm + arccos( kK

7 = )]’k € [0, Vm3), j = 0,1,2,3.... (2.10)

wk[ Ck

Denoting 7, = min {T,((j)}, and A (1) = ax(7) £ iBr(7) is a pair of eigenvalues of Eq (2.2), which
satisfies a(7.) = 0,Bi(7.) = wy. Next, consider the transversal condition for the occurrence of Hopf
bifurcation. First, differentiating both sides of Eq (2.2) with respect to 7, we get

(%)_1 QA+ apett T

-—. 2.11
dr Ck/lk /lk ( )
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Second, taking the real part of Eq (2.11), we have

dy\"' 2wi+ad-2b
Re(—k) et e Wiy (2.12)

dr 2

T=T¢ ck

: : 2 2 \,4 2 2 2 dy )
Finally, according to a; —2b; = (2d2dy + dy,)k™ + (di1k* — ay1)” +2a12dy k* > 0, then Re (?)T:T >0,

which means that the transversal condition is satisfied. Using the Hopf bifurcation theory, we can
obtain the following theorem.

Theorem 2.2. Assuming that the existence condition Hy and the stability condition H; of the positive
equilibrium E*, H, or H; holds, k € [0, \/m3), and k is a nonnegative integer.

(1) When 1 < 1, the positive equilibrium E* is locally asymptotically stable.
(2) When t > 7, the positive equilibrium E* is unstable.
(3) When 1 = 1., the system (1.3) undergoes Hopf bifurcation.

3. Amplitude equation of Hopf bifurcation
In this section, we consider extending the multi-scale analysis to the predator-prey reaction-diffusion

systems with time delay and derive the amplitude equation of the Hopf bifurcation at E*(u*,v*). By
making the time scale transformation (¢ — ﬁ ) for system (1.3), we can get

Ou(x,t ,Hv(x, t
8D diyAuCe, 1) + dipAv(e 1) + uCe, (1 - u(x, ) - 0]
ot u(x,n +a
ov(x,1) ru(x,t — 1v(x, 1) 3.1
Py = T[dQ]AI/t()C, 1) +dnAv(x, 1) + wi—Dta —ov(x, t)].
After Taylor expansion of Eq (3.1) at equilibrium E*, we can obtain
ou(x,
u(a); 2 :T[dnAu(x, 1)+ dpAv(x, 1) + apu(x, t) — apv(x, t)
— prl(x, 1) — pou(x, Hv(x, 1) + O(u3(x, t))],
ov(x, 1) (3.2)
n =t|dy1 Au(x, 1) + dpAv(x, 1) + ayu(x, t = 1)
— gl (x,t = 1) + qou(x, t — Dv(x, 1) + O(u3(x, t— 1))],

where p = 1 — =25, py = =5 > 0, q1 = 225 > 0,2 = 2% > 0.

The multi-scale analysis can systematically separate fast and slow variables by introducing different
time variables, and accurately capturing system evolution. In addition, Taylor expansion based on the
MTS idea can eliminate long-term terms and ensure solution consistency. Specifically, the basic steps
of the computational process are as follows:

Step 1. Preparation

Assume that Eq (3.2) has the following form of solution:

(3.3)

u(-x9 t) — M(X, TO’ Tl’ T29 ) i 8m l/lm(x, T09 Tla TZ’ )
v(x, 1) v(x,To, T1, T, ...) VX, To, T4, T, ...))°

m=1
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where T, = &%t (g = 0,1,2,3,...) is the scale transformation on time direction. Then, differentiating
T, = &%t with respect to time 7 by the chain rule, we have % = %+8% +826%+... = Do+eD+&*Dy+...,

where D, = %, g =0,1,2,.... Furthermore, we can obtain the following expression:
8

ﬁ l/l(x, t) — l/ll(x, TO’ T17T29"') + 82[D MZ(x’ TO’ Tla T29"')
ot \v(x, 1) 0 vi(x, To, T1, T, ...) 0 v(x, To, T1, T, ...)

M](.x, T(), Tla T27 "') 3 I/t?,(x, TO’ T]a T2’ ---)
D °1D
¥ I(Vl(X, Ty, T1,Ts,...) ]+8 [ O\vs(x, To, T4, T, )

uy(x, To, T, T, )) (Ml(X, Ty, T,,T>, ))
+D + + ...,
! (VZ(-X7 TOa Tla T25 ) : V](x, TOa Tl’ TZ’ ) ]

(AM(X’ t)) —g (Aul(-xa T()a Tl’ TZ, )) + 82 (AMZ()C’ T()a Tla TZ, ))

(3.4)

AV(.X, t) AVl(x, TO’ Tla TZa ) AVZ(-X9 T()’ Tla TZa )

3 Au3(xa TO, Tl, T2, ...) n
AVS(x9 TO, Tl, T2,...) e

2 3
vix,t=1)=¢evi 1 +& (a1 — D) +&(v31 — Divyy — Dovyg) + ...

Please see Appendix for the calculation process of v(x,t — 1). Next, take the time delay 7 as the
bifurcation parameter, and further expand it into a power series with a small quantity & near the critical
value 7., that is, T = 7. + &7} + &7, + ... Finally, substitute 7 and Eqs (3.3) and (3.4) into Eq (3.2), and
then compare the orders of &, and the following results are obtained:

Step 2. The coefficient expression of &, &2 and &

Oe) : Douy — tc(dy1Auy + dipAvy + ayuy — appvy) =0, (3.5)
D0V1 — Tc(dzlAI/ll + dggAV] + a21u1,1) =0.
Douy — t.(dy1Auy + dipAvy + ayjuy — ajpvy)
0(82) : =—-Duy - Tc(plu% + pauivy) + Tl(dnAul + dipAvy + ajuy — 6112\/1), (3.6)

Dovy — tc(dy1 Auy + dnAvy + azius )
=-Dyv + Tc(—qm%J + qauy 1vi — a Dy y) + T1(dnAuy + dpAvy + aguy ).
Dous — 7.(dy1Aus + dipAvs + ayjuz — appvs)
= —Diuy — Dyuy — 7.(2p1usus + paurva + pauzvy)
+ 71(d11Auy + dipAvy + ayupy — appvy — Plu% — pauvy),
0(&%) : { Dovs — Te(dai Auz + dpnAvs + azyuz,) (3.7)
=-Dv; — Dyv; + Tc( — 2qiuy,1(uz — Dyuy ) + gavi(ua,r — Dyuy )

2
+ qavaur ) — ax(Dyug + Dzul,l)) +71( = quuy + qaug vy
+ dz]AI/tQ + dngVz +daxup — a21D1u1,1).

Step 3. The solution of u, v, u,, v, and the Fredholm alternative condition
(1) Assuming Eq (3.5) has the following form of solution

(Ml(X, Ty, T,,T,,...)

= G Top cos kx + Ge ¥ To] cos kx, 3.8
Vl(x, T(), Tl, Tz, )) ( )

where G = G(T,,T,,...) is the complex amplitude. cos(kx) is the spatial characteristic function.
h = (hy1, hi2)" is a vector that needs to be determined. Next, substituting u; ; = Ge'*To=Dp,; cos kx +

AIMS Mathematics Volume 11, Issue 1, 2595-2612.
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Ge (To=Dp\ cos kx and Eq (3.8) into Eq (3.5), and then comparing the coefficients of Ge/“To,

2 . . .
we have h = (h,hp)' = (%,I)T. Further, we obtain the linear matrix C =

—dnk*+ay  —dpk* - ap « . .
T (—d21k2 + aye? K from Eq (3.5). Note that h* = (hy;,hy)" is the eigenvectors
corresponding to eigenvalue A = —iw;t, of adjoint matrix of C. To satisfy (h*,h) = (h*)'h =
a 2 -
we select h" = (i, )" = (42542 )T, where I = (1 + fff'f)fa: ) -

Next, substituting u; ; = Ge“*T0=Dp,, coskx + Ge @ (To=Dp, cos kx and Eq (3.8) into the right
(3.6), and denoting the coefficient vector of term e“*"<70 as m,, from the Fredholm alternative condition
(h*,m) = 0, we have the expression of £2 as

oG
— = M1,G,
or,
where M = L [ (dlliZZIhll + d12il21h12 + d21l_122h11 + d22i122h12)k2 + Clul_lzlhn -

o1 hy+hohip+ax hyo by Tee kT
aphyhy + hyphyjay e .
(2) Assuming Eq (3.6) has the solution in the following form:

+00 _ . _ .
ur(x, To, Ty, T, ...) = X, (00,GG + n1,,G*e* 10 + 77y ,G?e~2x7T0) cos(nx),
n=0
+oo _ ‘ L . (3.9
Vz(x, T(), Tl, Tz, ) = Z (-f()’nGG + fl’nGzezmmTo + fl’nGze_ZIwkT”To) COS(I’IX),
n=0
where 19, 710, 00, €1, are parameters that need to be determined. Next, substituting u,; =
+00 _ . _ .
3 onGG+1y ,G? XM=y 5, G2e o= cos(nx) (3.8) and (3.9) into (3.6), and then comparing
n=0
the coefficients of GG and G?¢*“+™To we have
Non = —;—0[ — (dion® + an)(qre ™ (hiohyy + hithiz) — 2q1hhi)
—(2pihi1hiy + pahighyy + chnillz)dzzﬂz],
Eon = %[(_dllnz + an)(qze"""”f(hlzi_m + hnillz) - 2%}111}_111)
—(2p1hithiy + pahiohiy + pahihi)(dan® — 6121)],

Ma = —%[(dlzl’lz + ap)(qe ™ hyhiy — qre” 2 hi ) + (pihi, + pahihi)(daan® + ZiWk)]a
Ein = ;—';[(dnnz + 2iwy = an)(qae T hihiy = q1e”h})

+(pil3, + pahiihi)(dan® - azle_ZiwkT")],

where k, = (cos(kx) cos(kx), sec(nx)), Fo = dpn*(—dyn* + ay) + (dppn® + ap)(dan® — ax), F =
(dnn® — apy + 2iw)(don® + 2iwy) — (dipn® + ap)(dyn® — ay e 2),

(3) For Eq (3.7), substituting u;;, u; (3.8) and (3.9) into the right side of (3.7), we have the
coefficient vector of term e"“’“cT0 denoted as m,. Using the Fredholm alternative condition (h*, m,) = 0
we have the expression of a1, as

oG _
— = NG*G,
oT,
_ +00 (7218 1,1—h228 2 n)cos(nx) . _ 7 7 7
where N = -7, 3, with S, = 2p1(hiuini, + hiinoy) + pa(hion, + hidia, +

n=0 hyihyy+hoshia+hohigitee @k

hianon + hi1lon)s S2n = qa(hi1on + hi181p€ % + hindy e 29%) — 2q1e7 e (hy1ny, + hiiTo.n)-
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Denoting G — g, the normal form of system (1.3) is
G = Mt,G + NG°G + ..., (3.10)

where 7, = er,. To simplify the analysis, G is expressed in polar coordinates G = ye, where
y represents radial distance, and 6 is the phase angle. Then, G>G can be written as G>’G = y’e”.
Substituting G, G>G = y*¢” into (3.10), and neglecting the higher order terms in (3.10), we obtain

¥ = Re(M)tsy + Re(N)y’,
0 = Im(M)t, + Im(N)y>.

Theorem 3.1. For —co < % < 0 and 1, sufficiently small, then & # 0, which means that the

existence condition of the periodic solution is satisfied.

(1) When Re(N) < 0, the Hopf bifurcation is a supercritical bifurcation,meaning that the bifurcation
periodic solution is locally asymptotically stable.

(2) When Re(N) > 0, the Hopf bifurcation is a subcritical bifurcation, meaning that the bifurcation
periodic solution is unstable.

4. Numerical simulation

In this paper, we select @ = 0.3,r = 0.35, 0 = 0.2 to verify the correctness of the above theoretical
results and replenish the content that cannot be presented in the theoretical calculation.

4.1. Numerical simulation to the stability of equilibria for system (1.1)

In this subsection, we mainly analyze the influence of parameters a, r, and o on the existence
and stability of the equilibria of the system according to bifurcation theory. It can also be observed
that a, r, and o can induce Hopf bifurcation and transcritical bifurcation with increasing bifurcation
parameters. Specially, subcritical Hopf bifurcation for @ and o, and r can induce supercritical Hopf
bifurcation, which is shown in Figure 1. Further, we select « = 0.25,0.3,1.5, r = 0.1,0.35,0.4,
and o = 0.18,0.2,0.4 to observe the changes in the topological structure of system (1.1), as shown
in Figure 2(a)—(l). Subsequently, we will take parameter r as an example for specific analysis. In
Figure 2(d), the system (1.1), only one stable boundary equilibrium E;, which means that low predation
efficiency leads to the extinction of predators and the proliferation of prey. With the increasing of r, we
can observe that there are two equilibria, where the positive equilibrium E* is stable and the boundary
equilibrium E; is unstable, as shown in Figure 2(e). Compared to (e), the positive equilibrium E*
becomes unstable, and there is a stable limit cycle around the equilibrium E* in Figure 2(f), indicating
that when r is too high, the predator population can quickly respond to the growth of prey and easily
maintain a high density, which may cause the system to tend towards oscillation.

In short, @, r, and o can affect the topology of system (1.1), and appropriate predation efficiency
enables predators to efficiently convert prey into self reproduction, eventually making the system stable.

AIMS Mathematics Volume 11, Issue 1, 2595-2612.
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(a) (b) (©)
Figure 1. Bifurcation diagrams of equilibria with different parameters. H represents a Hopf
bifurcation. T represents a transcritical bifurcation. The blue and black solid curves represent
the stable equilibrium states (limit cycles), while the red dotted curves represent the unstable
equilibrium states.
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Figure 2. The dynamic processes of (a) to (1) corresponding to Figure 1. The blue solid
curves and the red dashed curves represent isocline lines, where f(u) = (1 — u)(u + @),
g(u) = %;”) The green (pink) solid curves indicate the trajectory.
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4.2. Numerical simulation to the delay T for system (1.3)

In this subsection, we mainly discuss the influence of time delay parameters 7 on the dynamic
behavior of the system (1.3). According to @« = 0.3,r = 0.35,0 = 0.2, we have £%(0.4,0.42), and
ap = —0.0571428571 < 0, which can ensure that the positive equilibrium E* of system (1.1) is locally
asymptotically stable. Further, selecting dy; = 0.02,d;, = 0.01,d,; = 0.011,d» = 0.025, we know
Ao = —0.00006456959183 < 0,A; = 0.0001133732653 > 0, which means that b; + ¢; > 0 and
by — ¢ < 0 are true simultaneously if k € [0, \/m3) with m3 = 21.03183477. (Here, k € {0,1,2,3,4}
because k represents the wave number and should be integer.) Therefore, the condition of Theorem 2.2
is satisfied. Next, according to (2.9) and (2.10), the discrete graph of time delay varying with wave
number k € {0,1,2,3,4} can be described as Figure 3. It is found that the critical delay is 7. =

min {T,ﬁf’} =7 = 1.1228.

7'23) L

350
300
250
S 200

150 Ee) T4

50 (1) AV ° 1
T 1 (0)
f & ® 0 A0 0 R
Y 1 L L
o 05 1 15 2 25 3 35 4

Figure 3. The discrete graph of time delay \k/arying with wave number k, k € [0, \/m3).

In order to further analyze the influence of parameters «, r, o on 7., we use the statistical technique
of partial rank correlation coefficients (PRCCs) to evaluate the strength and direction of the correlation
between input parameters a, 7, o, and 7, with PRCC values ranging from [-1, 1]. It is worth noting
that parameters with higher absolute values of PRCC have a more significant impact on 7. Therefore,
parameters that have a positive impact (through positive PRCC values) or a negative impact (through
negative PRCC values) on 7. can be identified. From Figure 4, it can be seen that parameters « and
o have a negative impact on 7., while parameter r has a positive impact. Based on Theorem 2.2
and sensitivity analysis, we can conclude that reducing parameters @ and o or directly increasing
parameter r can increase the value of 7., resulting in a larger stable region for both predators and prey.
Therefore, understanding the parameters and their specific effects on 7, provides valuable insights for
implementing targeted interventions or management measures.

1
0.8
06
0.4

021

0
02 —-

04t

PRCC

-0.6

-0.8

-1

Figure 4. The influence of parameter a, r, o on critical time delay ..

AIMS Mathematics Volume 11, Issue 1, 2595-2612.



2607

4.3. Hopf bifurcation of the delayed reaction-diffusion system (1.3)

In this subsection, we mainly analyze the influence of the parameters 7 on the Hopf bifurcation
of the delayed reaction-diffusion system (1.3). Through simple calculations, we know M =
0.007344156157 + 0.2213334635i, N = —0.12187341 + 0.9253030931i. Thus, we know that the
Hopf bifurcation of system (1.3) is a supercritical bifurcation according to Theorem 3.1.

As shown in Figure 5(a), when 7 < 7, that is, 7, ® 7 — 7, < 0, the positive equilibrium E* is always
stable. When 7 > 7, thatis, 7. =~ 7 — 7. > 0, the positive equilibrium E* loses its stability, and a stable
periodic solution appears. To more specifically study the effectiveness of the delay on oscillations, the
time evolution diagrams of six time delays are presented in Figure 5(b). Obviously, with the increase
of the 7, the amplitudes and periods of the prey oscillations increase significantly, which suggests that
the amplitudes and periods of these oscillations are sensitive to the variation of 7.

In fact, taking 7 = 0.8, that is, 7. = —0.3228 < 0, the system (1.3) eventually stabilizes at
equilibrium E* in Figure 6(a) under different boundary conditions. Next, considering 7 = 1.5, that
1s, 7. = 0.3772 > 0, the periodic solutions of system (1.3) appear near the equilibrium E*, as shown in
Figure 6(b). In summary, when the transcription time delay is greater than zero and less than a certain
value, the steady state is locally asymptotically stable. When the time delay exceeds a certain value,
the steady state becomes unstable and exhibits periodic oscillations.

08 T T - - - - - -
0.8
~ 07t
07
5 06 L ‘ f
206 .
E / ‘ il ’
Sos / 05m \
g S [
=04 -
k| \7,=1.1228 o4
503 N ! |
&~ S 03 [—r12 | Y
0 ~—— — =14 | ]
- ~16
0.1 B 02 =18 b W h’
—_—r2
—r=2.2
0 0.1
0 0s s 2 25 3 0 100 200 300 400 500 600 700 800 900 1000
Time delay 7 t(min)
(@) (b)

Figure 5. (a) Hopf bifurcation diagrams of system (1.3) about 7. (b) The impact of the delay
on amplitudes and periods of oscillations.
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0 200 400 600 800 1000 0 200 400 600 800 1000
t t

(a) (b)
Figure 6. The stability of the positive equilibrium E* of system (1.3) with different 7. (a)
7T =08 <715 ()7t =15 > 7.. The color bar represents the value of u(x,?). (a)(b)
Inhomogeneous initial condition: u(x,0) = 0.35 + 0.1 cos(37x), v(x,0) = 0.4 + 0.1 cos(37x).
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4.4. Numerical simulation of the Turing bifurcation of system (1.3)

In this section, we mainly focus on whether diffusion has an impact on the dynamic behavior of the
system (1.3). Taking 7 = 0.5 € [0,7.), d;; = 0.02,d1, = 0.01,d>; = 0.011,d5, = 0.025 and initial
functions (0.35 + 0.1 cos(37x), 0.4 + 0.1 cos(37x)), the equilibrium E* is locally asymptotically stable
as shown in Figure 7(a). Next, we change d,1, d\»,d>1, d», separately, as shown in Table 1.

According to the Theorem 2.1 and Table 1, it is found that diffusion induces the emergence of Turing
instability, as shown in Figure 7(b)—(e). Specifically, self-diffusion suppresses the occurrence of Turing
instability, which indicates that when the population density of a region temporarily increases due to
fluctuations, individuals tend to spread from high-density areas to low-density areas, rapidly reducing
this density difference and restoring the population to a state of uniform distribution. This maintains
the spatial stability of the system and prevents excessive aggregation or collapse of local populations.

(d)

(e)
Figure 7. Turing instability induced by diffusion. (a) The standard parameter values are
dyy = 0.02,d;; = 0.01,dy; = 0.011,dp, = 0.025; (b) dy; = 0.007; (c) di» = 0.0453; (d)
dr = 0.022; (e) dy, = 0.0108.

Table 1. Diffusion coefficient and Turing instability condition.

di dy, dy dy Ao P2 Figure
0.07 0.01 0.011 0.025 2.28755102 x 107° -0.003957142857 (b)
0.02 0.04534 0.011 0.025 3.438188088 x 10~7 -0.000776542857 (c)
0.02 0.01 0.022 0.025 4.73161224 x 1075 -0.01024285714  (d)
0.02 0.01 0.011 0.0108 9.3355918 x 107’ -0.004768571428 (e)

While cross-diffusion promotes the occurrence of Turing instability, the movement driven by the

AIMS Mathematics Volume 11, Issue 1, 2595-2612.
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interaction between predators and prey can trigger and amplify small spatial random fluctuations,
ultimately forming a stable spatial pattern.

In short, the complex spatial patterns observed in ecosystems are not always driven by
environmental heterogeneity, such as topography and resource distribution. It can be spontaneously
generated through the cross-diffusion mechanism of behavioral responses (chasing and dodging)
between individual organisms. The spatial structure generated by biological interactions itself is of
crucial importance for the long-term coexistence of populations, the maintenance of biodiversity, and
the stability of ecosystems.

5. Conclusions

In this paper, we investigate a predator-prey system with time delay, and self and cross diffusion.
Initially, the existence and local stability of two boundary equilibria and a coexistence equilibrium
of system (1.3) without time delay and diffusion are analyzed. Subsequently, we utilize multi-scale
analysis near the Hopf bifurcation curve to investigate the effect of time delay on the system (1.3).
Finally, the correctness of the theoretical results is verified through numerical simulations, and some
interesting phenomena are revealed.

Time delay is an important parameter for studying Hopf bifurcation and is necessary for the
oscillatory behavior of the predator-prey system. When the time delay is less than the critical time
delay, the two populations will tend to the density value of the coexisting equilibrium. When the
delay exceeds the critical time delay, the topological structure of the coexisting equilibrium changes,
that is, it loses its stability through Hopf bifurcation and produces periodic oscillations. Next, we
further investigate the direction of Hopf bifurcation at the coexistence equilibrium and the stability of
periodic solutions by using the normal form theory. In multiple population dynamics systems, periodic
oscillations may have dual ecological significance: positive aspects, such as promoting population
learning of new survival strategies or triggering adaptive physiological changes, and negative aspects,
such as inducing population variation or exacerbating environmental risks. Therefore, the generation
and evolution of periodic behavior become an important issue when studying inter-species or intra-
species relationships. Finally, we investigate the impact of diffusion on system dynamics, and find
that self-diffusion suppresses the occurrence of Turing instability, while cross-diffusion promotes the
occurrence of Turing instability. The movement behavior of organisms tends to maintain a uniform
distribution of populations and stabilize ecosystems. The movement of organisms due to interactions
such as avoidance or search will drive the formation of spatial heterogeneity patterns, thereby reshaping
the structure of ecosystems.

Based on some research findings in this paper, we can consider high-dimensional bifurcation
phenomena, such as Turing-Hopf bifurcation [22], Bogdanov-Takens bifurcation, double Hopf
bifurcation, etc. Random phenomena are very common in life sciences; therefore, adding random
factors to the predator-prey system in this paper and studying random phenomena is a hot topic. All of
this will become our future research work.
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Appendix

The delay term in (3.2) is v(x,t — 1) = v(x,To — 1,T, — &,T> — &2, ...). The Taylor expansion of
vix,t— 1D atv(x,Ty—1,T,,T,,..) is as follows:

v(ix,t—=1)

=v(x,To—-1,Ty—&,T, — &%, )
=evi(x, Ty - 1,T)—&,T, — &%, )+ 82\12()6, To—1,T,—-&,T5— &%, )
+ (0 To— 1,T) — &, Ty —&%,..) + ...

=s(vi(x, To = 1,71, Ta, ...) — eDyvy (5, To = 1,11, T, .)

- 82D2V1(x, TO -1, T,T>, ) + ) + 82(\/2()6, T() -1, T, T, )

— &Dvy(x, Ty — 1, T}, T, ...) + ) + 80, To— 1,T1,Ta, ) + ...

2 3
=evi1+& (a1 —Divig)+e (31 —Divayy — Dovyg) + ..,

where Vin1 = vm(x, T() - 1, Tl, Tz, o).
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