
https://www.aimspress.com/journal/Math

AIMS Mathematics, 11(1): 2481–2526.
DOI: 10.3934/math.2026101
Received: 31 October 2025
Revised: 20 January 2026
Accepted: 21 January 2026
Published: 26 January 2026

Research article

Risk aversion, safe-haven assets, and Bitcoin’s evolving role in global
financial markets: Insights from quantile spillover analysis

Seung Ho Choi1, Hayoung Choi1,2 and Sun-Yong Choi3,*

1 Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea
2 Nonlinear Dynamics & Mathematical Application Center, Kyungpook National University, Daegu

41566, Republic of Korea
3 Department of Finance and Big Data, Gachon University, Seongnam 13120, Republic of Korea

* Correspondence: Email: sunyongchoi@gachon.ac.kr.

Abstract: In this study, we used a rolling-window quantile vector autoregression (QVAR) spillover
framework to analyze how shocks associated with investor risk aversion propagate across major asset
classes under different market states. The study spanned July 2014 to July 2024 and included gold,
silver, Bitcoin, crude oil, major currencies, real estate investment trusts (REITs), U.S. Treasuries,
dividend-paying equities, and broad equity indices. By estimating spillovers at the 10th, 50th, and
90th conditional return quantiles, we distinguished risk transmitters and risk absorbers in stressed,
normal, and euphoric regimes. We then tested robustness across forecast horizons and alternative
fear measures (our baseline risk-aversion index versus the VIX). The results indicated that, under
normal conditions, Bitcoin is a dominant net transmitter of shocks, exporting risk to other assets,
while traditional safe-haven assets, such as gold and silver, primarily absorb risk. In bull markets,
Bitcoin’s transmitting role intensifies and aligns with other high-beta assets, such as REITs, suggesting
that Bitcoin amplifies risk-taking during periods of market optimism. However, under bear markets,
Bitcoin’s spillover power weakens sharply. Instead, U.S. Treasuries and gold emerge as key shock
absorbers, reinforcing their defensive status during crisis periods. These findings suggest that Bitcoin
is valuable for upside-oriented diversification but remains less reliable than Treasuries or gold as a
downside hedge. The consistency of these patterns across horizons and fear proxies highlights the
broader applicability of our framework for studying systemic risk, portfolio allocation, and safe-haven
behavior.
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1. Introduction

Risk aversion in financial markets reflects psychological and economic forces, shaping investors’
preference for low-risk assets to limit potential losses, often at the expense of higher returns. This
behavior varies across market conditions and individual risk preferences. Traders in foreign exchange
markets commonly adopt safety-first strategies during periods of heightened uncertainty to reduce
insolvency risk [1]. Similarly, equity pricing models show that unexpected changes in profitability,
interest rates, and inflation affect stock returns through shifts in investors’ risk aversion [2]. Investors’
heterogeneous preferences imply asymmetric attitudes toward losses and gains, potentially generating
risk premiums in markets with limited downside risk and strong upside potential [3]. Accordingly,
we classify market conditions using quantiles, lower, median, and upper quantiles corresponding to
downturns, normal states, and booms, respectively, to examine how risk aversion relates to safe-haven
assets.

Safe-haven assets are characterized by low risk and high liquidity, enabling them to store value,
support short-term consumption smoothing, and serve as collateral to sustain market liquidity [4].
During periods of financial stress, such as the COVID-19 crisis and episodes of heightened geopolitical
risk, assets such as gold and certain currencies function as effective hedges [5]. At the global
level, widely recognized safe-haven assets can strengthen financial stability by mitigating sovereign
default risk [6]. As economic uncertainty increases and alternative secure investments become scarce,
investors increasingly concentrate capital in perceived safe assets [7]. Consequently, the relationship
between risk aversion and safe-haven assets has been extensively examined across diverse market
regimes.

The link between risk aversion and safe-haven assets becomes especially pronounced during periods
of market turbulence. Assets such as gold and major safe-haven currencies tend to preserve or
increase their value amid heightened volatility, making them attractive to risk-averse investors. Because
asset returns are constructed from U.S. dollar-denominated price series, the U.S. dollar serves as
the numéraire and is therefore not included as a standalone return series. Instead, we incorporate
major exchange rates quoted against the U.S. dollar to capture currency safe-haven dynamics in a
consistent measurement framework [8]. While not all assets qualify as safe havens, global shifts in
risk aversion are often reflected in the returns of recognized safe-haven assets [9]. However, strong
performance during periods of crisis highlights the trade-off between protection in stress episodes and
relatively lower returns during tranquil periods. Consequently, rising risk aversion prompts investors
to reallocate capital toward assets such as gold and U.S. Treasury bonds [10]. The effectiveness of
safe-haven assets also differs markedly across advanced and emerging markets and during systemic
crises [11]. Accordingly, we analyze the relationship between selected safe-haven asset candidates and
risk aversion across market regimes and over time.

Despite the growing literature on risk aversion and safe-haven assets, several important gaps
remain. First, much of the research relies on mean-based econometric frameworks, which obscure
heterogeneity across the return distribution and fail to capture asymmetric behavior during extreme
market conditions. Second, researchers typically focus on a narrow set of assets or specific crisis
episodes, limiting the ability to draw general conclusions about how risk aversion propagates through
a broader financial network. Third, although Bitcoin has attracted significant academic and investor
attention, its role as a transmitter or absorber of risk relative to traditional safe-haven assets has not
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been systematically examined across market states.
Or primary motivation of this study is to address these gaps by developing a unified, distribution-

sensitive framework that explicitly links global risk aversion to a broad set of safe-haven asset
candidates under different market regimes. To this end, we adopts a unified framework that enables
a comprehensive examination of the relationship between global risk aversion and safe-haven asset
candidates across market states. In particular, we analyzes changes in safe-haven asset prices
in relation to different levels of risk aversion and investigate the dynamic relationships between
these variables. Methodologically, we employ a rolling-window quantile vector autoregression
(QVAR)–based spillover framework to capture the impact of risk aversion on safe-haven assets across
the conditional distribution of returns. By analyzing relationships at various quantiles, this approach
enables us to differentiate asset behavior under normal market conditions from that observed during
periods of extreme stress or exuberance. Moreover, spillover measures are incorporated to quantify
how shocks propagate between variables across horizons and quantiles. Our study enhances the
understanding of the nonlinear and state-dependent dynamics between global risk aversion and safe-
haven assets and provides a more nuanced toolkit for researchers and practitioners to identify and
manage risk across market conditions. Notably, the QVAR-based spillover framework has been
increasingly applied in financial research due to its ability to capture asymmetric and state-dependent
interdependencies across assets [12–18].

An additional motivation for adopting a nonlinear modeling framework is the growing empirical
evidence that spillovers in financial markets are state-dependent and asymmetric. Studies have shown
that linear, mean-based models often fail to capture heterogeneous shock transmission, particularly
during periods of extreme market stress. For example, spillovers between precious metals and oil vary
substantially across quantiles, with tail-risk transmission dominating during turbulent periods [19].
Similarly, sectoral and real estate market analyses document strongly nonlinear and regime-dependent
responses to downturns and monetary policy shocks [20, 21]. Motivated by this literature, we employ
a rolling-window QVAR-based spillover framework to capture the asymmetric and state-dependent
transmission of risk aversion across traditional and emerging safe-haven assets.

In this study, we employ the risk-aversion index (RAI) introduced by the researchers in [22].
This index captures variations in global risk aversion by quantifying the degree to which investors
require additional compensation for holding riskier assets. A higher index value indicates a stronger
preference for safer investments. Additionally, we incorporate several well-established safe-haven
assets to investigate their dynamic relationship with the degree of risk aversion, as measured by the
risk aversion index. A detailed review of the risk aversion index and selected safe-haven assets is
provided in the following section.

We investigate how the connectedness between risk aversion and safe-haven assets evolves over
time and capture these dynamic relationships across market conditions (quantiles) using a rolling-
window QVAR-based spillover framework. This approach assumes homogeneity in spillover effects at
the center of the distribution while enabling heterogeneity in the tails. It enables us to assess how the
strengths and directions of spillover effects between the RAI and safe-haven assets differ under normal
market conditions (middle quantiles) and extreme market movements (tails). A detailed explanation of
the methodology is provided in the section QVAR-Based Spillover Framework.

This study makes several contributions to the literature. First, by incorporating an RAI, we directly
measure the degree of market participants’ risk aversion and examine its linkage with safe-haven assets.
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Second, we empoly a rolling-window QVAR-based spillover framework to analyze the interactions
between traditional and emerging safe-haven assets and a direct, model-based measure of global risk
aversion. This approach captures state-dependent and time-varying spillover dynamics across bear,
normal, and bull market regimes. Rather than proposing a new econometric model, we demonstrates
how an established quantile-based spillover methodology can be systematically applied to examine
distribution-dependent dynamics and asymmetric shock transmission. The empirical analysis serves as
an illustrative application, highlighting the framework’s ability to capture tail-dependent and regime-
specific interactions, with particular emphasis on Bitcoin’s evolving role relative to traditional safe-
haven assets.

Research has shown that connectedness and spillover transmission mechanisms are strongly state-
dependent and may differ substantially across quantiles (and, in some applications, across frequencies),
meaning that mean-based VAR connectedness can mask tail-specific propagation patterns. Quantile
connectedness approaches have been applied to monetary policy transmission channels (e.g., interest-
rate swap markets) and to sustainable, green, and clean-energy related asset systems, documenting
pronounced asymmetries across distributional states [23, 24]. Similar quantile dependence has also
been observed in cryptocurrency and commodity-related networks, where tail regimes exhibit stronger
and more asymmetric connectedness, and the identity of net transmitters and receivers may switch
across quantiles [19,25,26]. Motivated by this literature, we interpret our QVAR-based connectedness
estimates as a risk-aversion-driven propagation mechanism that can vary across stress (lower tail),
normal (median), and exuberant (upper tail) regimes within a broad multi-asset safe-haven system.

Furthermore, we conduct robustness checks by varying the forecast horizon and find that the
spillover estimates remain stable across horizons, confirming the reliability of our results. Additionally,
we compare the baseline (RAI) with the VIX as an alternative proxy. The consistent spillover patterns
observed across both measures highlight the robustness of our findings and demonstrate the broader
applicability of our framework in capturing market fear and uncertainty.

We further enhance its practical relevance by including an analysis of Bitcoin, one of the most
closely watched assets in recent financial markets and academic research. By incorporating Bitcoin into
the empirical framework, this study provides insights that are academically meaningful and directly
applicable to current market dynamics.

The remainder of this paper is structured as follows. In the next section, we review the relevant
literature. In the data section, we introduce the RAI and the selected safe-haven assets. In the QVAR-
Based Spillover Framework section, we provide a brief overview of the QVAR-based spillover
methodology employed in this study. In the Spillover Analysis: Results and Discussion section, we
present and interpret the empirical findings. Finally, in the Concluding Remarks section, we outline
this study’s key implications and contributions.

2. Literature review

In this section, we begin by reviewing studies on the RAI. Specifically, we first discuss key research
that entails the RAI introduced in the previous section. Subsequently, we examine studies that use the
VIX as a proxy for risk aversion. Consistent with this study’s objectives, we also review the literature
on the relationship between safe-haven assets and financial markets. Furthermore, we highlight several
studies that investigate Bitcoin’s potential role as a safe-haven asset.
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Recent cryptocurrency literature supports the view that cross-market linkages are strongly state-
dependent. Using high-frequency data and a GMM-based regime classification, Joshi (2025) reported
that interdependencies intensify in volatile regimes, with Bitcoin frequently acting as a shock
transmitter [27]. Ko and Chen (2025) further documented pronounced time–frequency co-movements
between Bitcoin and AI-related tokens, arguing that Bitcoin provides limited hedging benefits against
these tokens across horizons [28]. These findings complement our quantile-regime interpretation (bear,
normal, bull) and provide external support explaining why Bitcoin tends to align with risk-on assets in
bull regimes within our multi-asset connectedness system.

2.1. Risk aversion index

The RAI has been widely used in financial research, with studies demonstrating its explanatory
power across asset classes and market conditions. The researchers in [22] developed a daily RAI
constructed from six market indicators, showing that, when embedded in the stochastic discount
factor, it captures a large portion of equity and corporate bond excess returns, along with risk-
neutral equity volatility. Building on this foundation, the researchers in [29] employed the
index as a global uncertainty factor in analyzing the connectedness between real estate tokens,
real estate investment trusts (REITs), gold, and Bitcoin. Their results revealed that heightened
risk aversion during bear markets amplifies spillover effects across these assets, increasing total
connectedness. Further extending its applications, the researchers in [30] incorporated the index into an
extended Heterogeneous Autoregressive (HAR) model to improve volatility forecasts and cross-market
correlation predictions. Their approach not only enhances predictive accuracy but also delivers greater
economic value, leading to lower portfolio risk compared to competing models. The index also serves
as a real-time barometer of market stress, as evidenced by the researchers in [31], who documented a
sharp spike in risk aversion during the March 2020 COVID-19 crash, reinforcing their experimental
findings that financial professionals become significantly more risk-averse when aggregate market
uncertainty rises.

In addition to direct RAIs, alternative measures such as the VIX have been widely used in the
literature to capture market risk aversion. The researchers in [32] employed three distinct RAIs,
the Global Risk Aversion Index (GRAI), a principal component analysis (PCA)-based index, and the
VIX, to estimate crisis probabilities across 20 foreign exchange and equity markets. Using logit and
multinomial logit models, they demonstrated that these indices serve as reliable leading indicators of
financial stress. Further refining the interpretation of the VIX, the researchers in [33] decomposed
it into separate risk aversion and uncertainty components. Their findings revealed that expansionary
monetary policy has a stronger dampening effect on risk aversion than on uncertainty, with the impact
becoming statistically significant after approximately nine months.

2.2. Safe-haven assets and the financial market

Safe assets underpin economic stability by serving as stores of value and collateral, thereby
smoothing consumption and supporting credit. The interaction between public and private safe assets
shapes their supply and perceived safety. These dynamics influence the broader economic performance
and efficiency of financial markets [4]. Similarly, the researchers in [5] examined the safe-haven
properties of gold, Bitcoin, and major currencies during major global events from 2014 to 2022,
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including the COVID-19 pandemic and Russia’s invasion of Ukraine. They found that the Japanese
yen is the strongest safe-haven asset, whereas Bitcoin is a weak safe-haven asset that shows no negative
correlation with stock indices over the period. The researchers in [6] argued that addressing the
combined challenges of sovereign default risk and safe-asset scarcity is critical for global financial
stability, underscoring the importance of understanding how safe assets function and how defaults
constrain their supply. Such insights can inform the design of international financial institutions aimed
at stabilizing the financial system and maintaining a steady global supply of safe assets. According
to [7], an asset’s safety is a coordination outcome rooted in investors’ shared beliefs. When few
substitute safe assets are available, these beliefs concentrate demand and, in turn, reinforce the asset’s
perceived and realized safety.

Researchers have examined Bitcoin’s potential as a safe-haven asset. The researchers in [34]
employed a bivariate cross-quantilogram approach to compare Bitcoin with gold and commodities
across global equity markets, revealing divergent safe-haven properties. Bitcoin demonstrates
moderate effectiveness in emerging markets (e.g., China) but exhibits limited and inconsistent
performance in developed economies, suggesting that it functions as a weak and market-dependent safe
haven. The researchers in [35] critiqued Bitcoin’s practical viability through a comparative analysis
of volatility, liquidity, and transaction costs, highlighting structural limitations, including excessive
price fluctuations, illiquidity, and high trading fees, that undermine its reliability relative to traditional
hedges, such as gold. These findings imply that Bitcoin market maturation is a prerequisite for its
adoption as a stable safe haven. Complementing these insights, The researchers in [36] utilized wavelet
quantile and Granger causality methods to demonstrate Bitcoin’s asymmetric responsiveness to U.S.
uncertainty shocks; while it intermittently functions as a hedge during periods of heightened turmoil, its
efficacy is highly sensitive to time horizons and prevailing market regimes. Collectively, these studies
underscore that Bitcoin’s safe-haven attributes are conditional and non-uniform, warranting cautious
interpretation by investors and researchers alike.

2.3. Risk aversion and safe-haven assets

Researchers investigating the link between risk-averse behavior and safe-haven assets have shown
that Bitcoin exhibits limited safe-haven properties, particularly during extreme market downturns in
Chinese and Asia-Pacific stocks [37]. Despite its appeal to risk-averse investors in these regions,
Bitcoin’s broader safe-haven characteristics are constrained by high volatility, low liquidity, and
transaction costs relative to gold [35]. Although Bitcoin, gold, and other commodities provide weak
safe-haven protection against global stock indices, Bitcoin’s role is highly time- and region-dependent.
It serves as a safe-haven asset in crisis-stricken Venezuela, a diversifier in Japan and China, and a weak
hedge in Sweden and Estonia [38]. Its safe-haven appeal is more prominent in Chinese markets than
in developed ones [34]. Wavelet analysis suggests that Bitcoin offers better diversification benefits and
safe-haven properties than gold and other commodities during extreme downturns [39]. However, gold
consistently serves as a reliable safe-haven asset across G7 markets, whereas Bitcoin’s effectiveness
is weaker and varies by region, as seen in Canada and France [40]. In the U.S., Bitcoin’s safe-haven
role fluctuates during periods of political and economic uncertainty and is influenced by events such
as elections, COVID-19, and policy shifts [36]. Furthermore, global risk aversion predicts safe-haven
asset returns, with silver and oil exhibiting consistent safe-haven properties, whereas Bitcoin and gold
show time-varying behaviors shaped by market and investor dynamics [9].
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Although the literature provides valuable insights into risk aversion, safe-haven assets, and their
interactions, several important gaps remain. First, most empirical studies rely on mean-based or linear
frameworks that implicitly assume homogeneous responses across market conditions. Such approaches
are ill-suited to capturing the asymmetric and nonlinear dynamics that emerge during extreme market
states, particularly in the tails of the return distribution, where risk aversion is most pronounced.

Second, researchers typically focus on a limited subset of assets or specific crisis episodes, thereby
restricting the ability to generalize findings across asset classes and market regimes. While individual
studies examine gold, currencies, or Bitcoin in isolation, relatively few adopt a unified framework
that simultaneously evaluates traditional safe-haven assets, cryptocurrencies, equities, bonds, and real
estate securities within a single interconnected system.

Third, the literature on Bitcoin’s safe-haven role remains inconclusive. Evidence suggests that
Bitcoin’s hedging properties are highly time-varying and regime-dependent; however, most researchers
do not explicitly distinguish downside, normal, and upside market conditions when assessing its
spillover behavior relative to conventional safe-haven assets.

In this study, we directly address these gaps by employing a rolling-window QVAR–based
spillover framework that enables spillover effects to vary across market states and over time. By
examining connectedness at multiple conditional quantiles, we capture tail-specific and regime-
dependent transmission mechanisms overlooked in mean-based analyses. Moreover, by incorporating
a broad set of asset classes alongside a model-based RAI and alternative fear proxies, our framework
provides a comprehensive assessment of how global risk aversion propagates through financial markets
and clarifies Bitcoin’s evolving role relative to established safe-haven assets.

2.4. Hypothesis development

The empirical literature suggests that the relationship between risk aversion and financial assets is
inherently nonlinear and state dependent. During periods of elevated uncertainty, investors rebalance
portfolios toward assets perceived as safe, whereas during normal or euphoric market conditions,
riskier assets tend to dominate capital flows. However, these dynamics are not uniform across assets
or market regimes, motivating the formulation of testable hypotheses that reflect asymmetric spillover
behavior.

Researchers have documented that traditional safe-haven assets, such as gold and U.S. Treasuries,
tend to absorb shocks during market downturns, thereby acting as net receivers of risk when investor
risk aversion rises [7, 10, 41].

Conversely, during stable or bullish periods, these assets play a more passive role as investors shift
toward higher-yielding alternatives. This leads to the first hypothesis:

H1: Traditional safe-haven assets (e.g., gold and U.S. Treasuries) act as net receivers of risk-
aversion spillovers during bearish market conditions, while their spillover influence weakens under
normal and bullish regimes.

The literature further indicates that spillover dynamics intensify during extreme market conditions.
Researchers employing quantile-based or tail-focused approaches show that connectedness across
assets is substantially stronger in the lower and upper tails of the return distribution than around the
mean [42, 43]. This suggests that risk transmission mechanisms are asymmetric and regime-specific:

H2: Total and directional spillovers associated with risk aversion are significantly stronger in the
tails of the return distribution (bear and bull markets) than in the median state.
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Finally, empirical evidence on Bitcoin’s role as a safe-haven asset remains mixed. While some
researchers document hedging or diversification benefits under specific conditions, others find that
Bitcoin behaves more like a speculative, high-risk asset, particularly during periods of market
stress [34, 37, 44]. Studies also suggest that Bitcoin may transmit rather than absorb shocks during
periods of heightened risk-taking, raising questions about its reliability as a downside hedge:

H3: Bitcoin acts primarily as a net transmitter of risk-aversion spillovers during normal and bullish
market conditions, while its spillover influence weakens during bearish regimes relative to traditional
safe-haven assets.

These hypotheses are empirically tested using a rolling-window QVAR-based spillover framework
that enables spillover effects to vary across market states and over time. By jointly examining
multiple asset classes and conditional quantiles, the analysis directly evaluates how risk-aversion
shocks propagate through financial markets under different regimes.

3. Data

3.1. Risk aversion index

We employ the RAI introduced by the researchers in [22], which integrates financial market data
such as stocks, bonds, derivatives, implied volatility, and market-sentiment indicators. Unlike static
measures of risk aversion, this index captures time-varying changes, facilitating a more nuanced
analysis of investor behavior across economic cycles. This index has been widely used in financial
research [30, 45–49]. The RAI is obtained from the authors’ website*.

The RAI offers a dynamic, model-based measure of investors’ risk preferences over time (see
Figure 1). In contrast to conventional approaches that assume constant risk aversion, the RAI
aggregates macroeconomic and market-based inputs, such as return variances, credit spreads, and
option-implied indicators, including the VIX, to track fluctuations in economy-wide risk appetite,
particularly during periods of market stress [22].

Figure 1. Risk-Aversion Index from 2014 to 2024. This figure plots the RAI used in
the multivariate system. Higher values indicate higher aggregate risk aversion (lower risk
appetite), which is expected to coincide with heightened market stress.

*https://www.nancyxu.net/risk-aversion-index
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3.2. Safe-haven assets

Daily market price data are downloaded from Yahoo Finance using the yfinance Python package
(https://pypi.org/project/yfinance/) and converted into USD-denominated returns. The risk-
aversion index (raBEX/RABEX) is obtained from Nancy Xu’s Risk Aversion Index data page (https:
//www.nancyxu.net/risk-aversion-index). A detailed description of each asset, including its
full name and abbreviation, is provided in the Appendix Table A.1.

We collect and analyze 18 variables, along with risk aversion, from July 1, 2014, to July 14,
2024, to examine their interconnectedness and underlying dynamics (see Table A.1). The selected
variables span a diverse range of asset classes, including traditional safe-haven assets (e.g., gold and
U.S. Treasuries), precious metals and commodities (e.g., silver and crude oil), national equity market
indices, currencies, digital assets (e.g., Bitcoin), dividend-paying stocks, and REITs. Incorporating
this broad set of instruments enables us to capture the multifaceted nature of safe-haven behavior,
hedging characteristics, and nonlinear state-dependent transmission of risk across segments of the
global financial market.

Gold is a canonical safe-haven asset that responds positively to spikes in implied volatility (VIX)
and provides stability during episodes of severe market stress [41,50]. Similarly, silver exhibits certain
hedging characteristics attributable to its sensitivity to inflation uncertainty and geopolitical risks,
although its safe-haven role diminished during the COVID-19 crisis [51, 52]. Crude oil, which is not
traditionally classified as a safe-haven asset, has shown potential in stabilizing properties in specific
contexts, such as when evaluated alongside clean-energy investments [53]. Moreover, commodity
futures generally offer important portfolio-diversification benefits and display low correlation with
conventional assets such as equities and bonds, enabling investors to mitigate portfolio risk and improve
risk-adjusted returns [54]. Notably, speculative activity in crude-oil futures is inversely correlated with
market risk aversion, with heightened speculation (e.g., 2005–2008) associated with diminished risk
aversion and lower risk premiums [55].

Regarding equity markets, certain national stock market indices and their corresponding ETFs
can serve as effective hedges during the mature phases of financial crises, demonstrating capabilities
akin to traditional safe-haven assets such as precious metals [56]. Although gold and silver are
more suitable for hedging abrupt shocks, well-established equity benchmarks function reliably during
prolonged downturns. Additionally, investing in a diversified basket of stocks, such as those comprising
a national index, can reduce idiosyncratic risk and provide hedging benefits against inflation and
currency depreciation in stable markets, aligning these instruments with conventional safe-haven
assets [2,57,58]. To reflect regional differences in market sentiment and investor behavior, we include
ETFs corresponding to the stock indices of Korea, the U.S., Japan, China, and Europe.

Currencies are integral to understanding the global landscape of risk aversion. The Japanese yen
(JPY) consistently exhibits safe-haven attributes across major global equity indices, underscoring its
role as a reliable financial refuge [5]. The internationalization of the Chinese yuan (CNY) may confer
greater macroeconomic flexibility and leverage on China, suggesting its potential emergence as a safe-
haven currency [59]. The British pound (GBP), while theoretically plausible as a safe-haven asset,
remains contingent on broader economic conditions and investor perceptions [60], whereas the euro
(EUR) has demonstrated resilience during Eurozone financial turmoil, potentially aiding more effective
risk-sharing among member states [61]. Thus, foreign exchange rates serve as critical indicators of
market sentiment, and heightened risk aversion often constrains speculative activities and increases
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demand for safe-haven currencies, linking exchange rates directly to global risk transmission [1]. All
series in our dataset are constructed from U.S.-dollar-denominated prices; hence, the U.S. dollar serves
as the numéraire in our system. Accordingly, we do not include the U.S. dollar (or a dollar index) as a
separate variable; instead, we use major exchange rates involving the U.S. dollar, reported in standard
market conventions (EUR/USD, GBP/USD, USD/JPY, and USD/CNY), to capture currency safe-haven
dynamics [8].

In addition to traditional and semi-conventional assets, emerging instruments have garnered
attention. For example, Bitcoin has maintained its safe-haven status over extended periods, even
as market uncertainty subsides. This suggests that Bitcoin can act as an effective refuge under
specific market conditions [62]. Moreover, Bitcoin is a leading transmitter of risk-aversion spillovers
within and between traditional financial markets, reflecting its integral role in capturing evolving risk
preferences [44].

Dividend-paying equities are also included to investigate how high-dividend-yield companies
operate under risk-averse market conditions. Researchers have linked dividend payouts to expected
returns in risk-averse environments, with higher dividend yields serving as indicators of investor
sentiment and underlying uncertainty [63, 64]. Companies with stable and substantial dividends
attract more investor attention when risk aversion is elevated, because dividends can help moderate
severe price declines and provide relatively stable returns. Hence, we incorporate Coca-Cola, Johnson
& Johnson, and AT&T, which are prominently represented in dividend-focused ETFs. Coca-Cola
constitutes 1.57% of the Vanguard High Dividend Yield ETF (VYM) and 2.34% of the WisdomTree
U.S. Quality Dividend Growth Fund (DGRW). Johnson & Johnson accounts for 2.21% of VYM and
3.08% of DGRW, whereas AT&T represents 0.89% of VYM and 2.4% of the Global X SuperDividend
U.S. ETF (DIV). Their substantial presence in ETFs reinforces their status as leading dividend-paying
stocks and justifies their inclusion as representative assets.

U.S. Treasury bonds are incorporated because of their established standing as classic safe-haven
securities. The sizeable U.S. debt scale and consistent market confidence in Treasuries underscore
their function as benchmark assets, reflecting shifts in risk aversion through yield spreads and risk
premiums [7, 65]. Finally, we include REITs to assess the role of real-estate securities in mitigating
stock market volatility. The Vanguard Real Estate ETF exhibits smaller drawdowns than non-REIT
equities during market downturns, suggesting partial insulation from heightened uncertainty [66].
Additionally, time-varying risk aversion is a significant predictor of regime shifts in REIT markets,
enabling more effective forward-looking hedging strategies that substantially reduce portfolio risk [67].

Taken together, these carefully selected variables, ranging from traditional safe-haven assets and
commodities to equities, currencies, digital assets, dividend-paying stocks, bonds, and REITs, provide
a comprehensive basis for examining how changes in global risk aversion diffuse through intricate
financial networks.

4. Theoretical mechanisms and testable expectations

Our empirical design is motivated by the view that aggregate risk aversion is a state variable that
governs the pricing of risk and, consequently, the strength of cross-market transmission. Habit-based
asset-pricing models formalize this idea by generating time variation in the effective price of risk (risk
premiums) over the business cycle [68].
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A risk-aversion shock can be interpreted as a tightening of financial conditions that triggers
portfolio rebalancing and balance-sheet adjustments across asset classes. Importantly, this propagation
mechanism is unlikely to remain constant across market states: Lower-tail regimes tend to feature
binding funding and margin constraints and reduced market liquidity, whereas upper-tail regimes
are associated with risk-taking and reach-for-yield behavior. These channels provide an economic
rationale for employing a quantile-based system rather than a mean-based VAR. The key implication of
these channels is that cross-asset transmission should re-rank across distributional states. In lower-tail
regimes (bear markets), tighter funding liquidity and higher margin requirements can trigger liquidity
spirals and forced deleveraging, which strengthen spillovers among risky assets while increasing the
relative hedging demand for traditional safe havens [69,70]. In upper-tail regimes (bull markets), risk-
taking and speculative positioning can increase common-factor co-movement among high-volatility
assets. In this environment, Bitcoin is often reported to behave more like a speculative asset than
a stable safe haven, providing an economic rationale for its stronger alignment with high-risk assets
in bull markets [35, 71, 72]. Hence, a quantile framework is not only a statistical device but also an
economically interpretable way to map the system onto risk-off (lower-tail) versus risk-on (upper-tail)
regimes [25, 43].

4.1. Why spillovers differ across quantiles

In bearish conditions, increased risk aversion can amplify spillovers through reinforcing channels.
First, tighter funding and margin conditions reduce intermediaries’ risk-bearing capacity. When
funding liquidity deteriorates, market liquidity is impaired, generating liquidity spirals that lead to
synchronized deleveraging and larger price dislocations across markets [69]. Second, flight-to-quality
episodes can induce liquidity hoarding and a broad contraction in risk exposure, which, in turn,
may increase systemic risk and create a “gridlock” environment in which shocks propagate more
sharply [70]. Together, these mechanisms imply that shocks may propagate more strongly in the lower
tail and that directional spillovers can intensify when many investors rebalance simultaneously.

In contrast, in bullish conditions, the dominant channel is often risk-on reallocation, where
improving risk appetite encourages exposure to risky assets and can alter the magnitude and direction
of spillovers relative to stressed regimes. Therefore, the same innovation to risk aversion can produce
asymmetric transmission patterns across quantiles; specifically, the type of state dependence that the
QVAR connectedness framework is designed to capture.

4.2. Variable selection and expected spillover patterns

The selected variables represent distinct hedging and risk-bearing channels through which risk-
aversion shocks can be transmitted. Traditional safe-haven assets such as gold are expected to absorb
risk during stress episodes, which is with evidence that gold can act as a safe haven during extreme
stock-market downturns [41]. Major currencies and broad equity indices capture international risk
transmission and global portfolio rebalancing. REITs and dividend-oriented equities represent interest-
rate- and cash-flow-sensitive segments, which may respond strongly to tightening financial conditions.
Commodities (e.g., crude oil) reflect macroeconomic and geopolitical risk, as well as demand-side
shocks that can be amplified during tail events. Thus, digital assets (e.g., Bitcoin) are included to
evaluate whether their role resembles that of a Diversifier, safe haven, or a risk asset, noting that
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empirical evidence suggests Bitcoin’s hedge and safe-haven properties can be market-specific and may
differ across stress episodes [37].

These mechanisms imply testable expectations. In the lower tail, risk-aversion shocks are more
likely to generate greater total connectedness and stronger directional spillovers due to funding
constraints, liquidity spirals, and flight-to-quality dynamics. Safe-haven assets are expected to act
as relative absorbers (higher FROM than TO), whereas riskier assets may act as net transmitters of
distress. In the upper tail, spillovers may be driven more by risk-on reallocation, potentially altering
the net spillover roles of certain assets, including Bitcoin, relative to stressed states. The empirical
sections evaluate these regime-dependent predictions using quantile-specific connectedness measures.

5. The QVAR-based spillover framework

A QVAR-based spillover framework is employed to capture the dynamic interrelationships across
levels of risk aversion and various quantiles of the conditional distribution. Our analysis builds on
the QVAR-model-based spillover methodology proposed [43], which we implement in a rolling-
window setting for a multi-asset safe-haven system that includes a model-based risk-aversion proxy
as an endogenous variable. Throughout, the resulting indices are interpreted as directional spillovers
(predictive shock transmission) rather than indicators of structural causality.

A QVAR model is employed to analyze the interdependencies among m variables across
quantiles [43]. The data can be expressed as an n × m matrix, where n represents the number of
observations. Let Yt ∈ R

m denote the observed vector of the m variables at time t, and let Ft−1 be the
information set available up to time t − 1. For notational convenience, the quantile-specific system
representation is defined as

Yt(τ) ≡ Qτ(Yt | Ft−1) ∈ Rm.

The QVAR model is defined as follows:

Yt(τ) = α(τ) +

p∑
k=1

Φk(τ) Yt−k + εt(τ), (5.1)

where α(τ) denotes a quantile-specific constant vector of size m × 1; Φk(τ) represents the m × m
autoregressive coefficient matrix at lag k; and εt(τ) is the error term of size m × 1, satisfying the
componentwise quantile restriction Qτ(εt(τ) | Ft−1) = 0.

Here, the error term captures quantile-idiosyncratic shocks. To analyze the temporal propagation
of shocks within the system, the QVAR model is transformed into a moving-average (VMA)
representation, enabling impulse responses and forecast error variance decompositions to be interpreted
in a dynamic, quantile-specific manner:

Yt(τ) ≡ Qτ(Yt | Ft−1) =

∞∑
k=0

Ψk(τ) εt−k(τ), (5.2)

with the contemporaneous coefficient normalized to the identity matrix Im (i.e., Ψ0(τ) = Im); higher-
order moving-average coefficients are then generated recursively by premultiplying each autoregressive
matrix Φ j(τ) with the obtained coefficient at lag (k− j) and summing over all j = 1, . . . , p for every k ≥
1 [73]. For completeness and reproducibility, Appendix A provides the full mathematical derivations,
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from the QVAR(p) specification and check-loss estimation to the VMA recursion, generalized FEVD,
and the connectedness measures.

Generalized forecast-error variance decomposition (GFEVD) is used to further investigate spillover
effects. GFEVD provides a quantile-specific measure of the extent to which future uncertainty in
each variable is attributable to shocks from other variables, thereby quantifying spillover dynamics.
Specifically, it decomposes the forecast error variance of each variable over a forecast horizon h into
components attributable to shocks from other variables. GFEVD at quantile τ and horizon h is defined
as follows:

θ(τ)
i j (h) =

σ−1
j j (τ)

h−1∑
k=0

(
e′iΨk(τ) Σ(τ) e j

)2

h−1∑
k=0

e′iΨk(τ) Σ(τ) Ψ′k(τ) ei

, i, j = 1, . . . ,m, (5.3)

where Σ(τ) = Var
[
εt(τ)

]
is the quantile-specific covariance matrix of residuals and σ j j(τ) is its j-th

diagonal element (the variance of the j-th shock).
Because θ(τ)

i j (h) does not guarantee that the elements in each row sum to one, we follow [74] and
normalize row-wise:

θ̃(τ)
i j (h) =

θ(τ)
i j (h)

m∑
r=1

θ(τ)
ir (h)

,

m∑
j=1

θ̃(τ)
i j (h) = 1. (5.4)

At a forecast horizon h, the total connectedness index (TCI) for each quantile τ is calculated to
assess the dynamics of interdependencies within the system [75]:

TCI(τ)(h) =
1

m − 1

m∑
i=1

m∑
j=1
j,i

θ̃(τ)
i j (h). (5.5)

More explicitly, the total spillover received by variable i from all other variables is defined as

F(τ)
i←·(h) =

m∑
j=1
j,i

θ̃(τ)
i j (h). (5.6)

Following the directional measurement framework proposed by the researchers in [75], we compute
the directional spillovers transmitted to others (TO), received from others (FROM), and the net position
(NET):

TO(τ)
i (h) =

m∑
j=1
j,i

θ̃(τ)
ji (h), (5.7)

FROM(τ)
i (h) =

m∑
j=1
j,i

θ̃(τ)
i j (h), (5.8)
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NET(τ)
i (h) = TO(τ)

i (h) − FROM(τ)
i (h). (5.9)

Our empirical implementation rigorously adheres to the outlined QVAR spillover methodology.
Moreover, to better capture the mechanism linking risk aversion to cross-asset spillovers, we introduce
a risk-aversion-centered decomposition that separates the transmission of innovations from the risk-
aversion variable to the rest of the system from the absorption of system-wide innovations into risk
aversion (see Appendix A for the formal definitions and properties). The lag order (p = 1) is selected
using the Bayesian information criterion (BIC). Additionally, we employ a rolling-window estimation
of 200 trading days to capture the time-varying dynamics.

Importantly, because quantiles are defined relative to the estimation sample within each rolling
window, the numerical return cutoff associated with a given quantile level τ can vary over time (e.g.,
a 75th-quantile cutoff in calm periods may be smaller than that in turmoil periods). Accordingly, τ
should be interpreted as a probability-based distributional regime within each window rather than a
time-invariant return threshold. The forecast horizon is set to 10 days, and the generalized FEVD
methodology is chosen for its robustness and invariance to variable ordering [74, 75]. Moreover,
observations containing missing values are excluded through listwise deletion to ensure data integrity
and estimation consistency. This comprehensive methodological description ensures the clarity,
transparency, and reproducibility of our empirical findings.

Unlike a standard VAR, which characterizes dynamic interactions at the conditional mean, the
QVAR models the system at a given quantile level τ of the conditional return distribution. This enables
the propagation mechanism to differ across distributional states (e.g., bear vs. bull markets), capturing
nonlinearities and asymmetries that are often salient in financial data. In our setting, quantile-specific
connectedness measures quantify how shocks transmit conditional on a lower-tail, median, or upper-
tail regime, rather than describing an average (mean-based) transmission channel. This quantile-based
perspective is economically well-motivated because safe-haven behavior and risk transmission are
inherently state-dependent; during episodes of stress, tighter funding conditions and liquidity frictions
can amplify spillovers, whereas in tranquil periods, cross-market linkages may be weaker. Quantile
models provide a parsimonious way to accommodate such state dependence and tail-risk dynamics,
which are central to evaluating safe-haven assets under varying levels of risk aversion.

Established theoretical mechanisms in econometrics and finance support the use of quantile models.
First, quantile regression has a clear decision-theoretic interpretation: It characterizes conditional

distributional states by minimizing an asymmetric loss function, which is well suited to settings in
which downside and upside outcomes are valued differently [76].

Second, theories of funding constraints and liquidity frictions imply that shock propagation can
become nonlinear and state-dependent. During stress episodes, tighter funding conditions and liquidity
spirals may amplify cross-market transmission, whereas such linkages can be substantially weaker in
tranquil periods [77].

These arguments justify focusing on quantile-dependent dynamics when evaluating connectedness
and safe-haven properties under varying levels of risk aversion.

Applying a QVAR-based spillover framework enables us to capture the nonlinear and state-
dependent effects that emerge under market regimes. This approach enhances our understanding of the
complex interdependencies governing risk aversion and asset performance while providing valuable
insights for policymakers, portfolio managers, and researchers seeking to identify and manage risks in
an increasingly interconnected and unpredictable financial environment.
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6. Empirical results

In this section, we presents the pairwise spillover results for the 10%, 50%, and 90% quantiles,
which correspond to bear, normal, and bull market conditions, respectively. Because quantiles are
defined relative to the estimation sample within each rolling window, the numerical return cutoff

associated with a given quantile level can vary over time. Accordingly, these quantile-specific results
should be interpreted as state-dependent spillovers across distributional regimes rather than as effects
tied to fixed return thresholds. The analyses reveal that the relationships between the variables shift
with changing market conditions. For comparisons, Tables 3–5 present the spillover results for each
market condition. We also report descriptive statistics and stationarity diagnostics, including the
Phillips–Perron test, for all variables to help interpret the empirical results.

6.1. Quantile-based spillover analysis

Table 1 reports summary statistics for the daily returns of 19 variables, including commodities (Au,
Ag, Oil), Bitcoin (BTC), major currencies (EUR, GBP, JPY, and CNY), bonds (10Y), the REIT index,
dividend stocks (KO, JNJ, T), regional ETFs (KR ETF, JP ETF, US ETF, CN ETF, and EU ETF),
and a risk aversion proxy. The statistics include the mean, maximum, minimum, standard deviation,
skewness, kurtosis, Jarque–Bera (JB) test for normality, and augmented Dickey–Fuller (ADF) test for
stationarity. We also report the Phillips–Perron (PP) unit-root test in Table 1. The PP statistics strongly
reject the null hypothesis of a unit root (non-stationarity) for all series at conventional significance
levels, which is consistent with the ADF results and supports treating the variables as stationary inputs
for the subsequent QVAR-based connectedness analysis.

According to Table 1, Bitcoin (BTC) exhibits the highest mean return (0.003) and volatility
(0.04381) among the assets, along with heavy tails (kurtosis = 9.277). Gold (Au) and silver (Ag)
exhibit relatively low returns and moderate volatility, with leptokurtic return distributions. Oil exhibits
extreme tail behavior, reflecting its susceptibility to large shocks and outliers.
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Table 1. Descriptive statistics.
Asset (abbr.) Mean Max. Min. Std. Dev. Skewness Kurtosis J.-B. ADF PP
Gold (Au) 0.00031 0.05948 -0.04979 0.00932 0.021 6.713 1400.31† -50.83† -51.09†

Silver (Ag) 0.00035 0.09286 -0.11649 0.01816 -0.245 8.028 2593.15† -33.88† -51.75†

Bitcoin (BTC) 0.00300 0.25247 -0.37169 0.04381 0.003 9.292 4023.32† -27.43† -50.01†

Crude oil (Oil) -0.00115 0.37662 -3.05966 0.07320 -31.813 1284.045 167324610.56† -11.38† -35.72†

Euro (EUR) -0.00006 0.03084 -0.02775 0.00517 0.077 5.755 772.80† -21.66† -50.70†

Pound (GBP) -0.00007 0.03791 -0.07604 0.00605 -0.826 16.529 18845.23† -15.46† -48.75†

Yen (JPY) 0.00017 0.03322 -0.04552 0.00572 -0.325 7.663 2249.08† -50.12† -51.62†

Yuan (CNY) 0.00007 0.02143 -0.02135 0.00311 -0.253 11.936 8120.21† -58.41† -50.14†

S&P REIT (REIT) 0.00033 0.08997 -0.17728 0.01319 -1.111 23.367 42671.74† -15.83† -52.85†

10yr Treasury (10Y) 0.00069 0.49900 -0.29320 0.03174 1.862 44.616 177458.36† -8.66† -35.49†

Dividend Stock KO (KO) 0.00038 0.06480 -0.09672 0.01138 -0.770 13.054 10503.64† -15.73† -52.89†

Dividend Stock JNJ (JNJ) 0.00033 0.07998 -0.10038 0.01149 -0.174 12.267 8725.78† -14.87† -52.10†

Dividend Stock T (T) 0.00027 0.10022 -0.10406 0.01429 -0.286 11.390 7174.85† -14.79† -52.15†

Korea Index ETF (KR ETF) 0.00020 0.12445 -0.15805 0.01515 -0.469 11.874 8081.56† -16.14† -52.59†

Japan Index ETF (JR ETF) 0.00029 0.06944 -0.09805 0.01071 -0.433 9.303 4104.94† -17.12† -52.27†

USA Index ETF (US ETF) 0.00055 0.09060 -0.10942 0.01116 -0.546 15.728 16576.38† -15.57† -52.43†

China Index ETF (CN ETF) 0.00007 0.21241 -0.10291 0.01744 0.697 14.059 12622.51† -52.87† -50.48†

Europe Index ETF (EU ETF) 0.00028 0.09057 -0.11778 0.01211 -1.097 17.051 20536.33† -16.11† -52.64†

Risk aversion (RA) 0.00226 2.66179 -0.69245 0.08513 19.394 563.997 32289145.53† -9.51† -48.63†

Notes: The sample comprises daily observations from July 1, 2014, to July 14, 2024 (N = 2451). Returns are computed as simple
arithmetic changes, rt =

(
Pt

Pt−1
− 1

)
(reported in decimal form). JB denotes the Jarque–Bera test statistic for normality (H0: the series is

normally distributed). ADF and PP denote the Augmented Dickey–Fuller and Phillips–Perron unit-root test statistics, respectively (H0:
unit root/non-stationarity). † indicates rejection of the corresponding null hypothesis at the 1% significance level.

Major currencies (EUR, GBP, JPY, and CNY) exhibit near-zero mean returns and low volatility,
which is with characteristics of developed foreign exchange markets. The 10-year U.S. Treasury yield
(10Y) shows elevated volatility, right skewness, and extreme kurtosis, indicating abrupt yield shifts
during monetary tightening cycles. The REIT index is characterized by negative skewness and high
kurtosis, reflecting downside risks in real estate markets.

Dividend-paying stocks (KO, JNJ, and T) exhibit low returns and volatility, which is with their
defensive nature. They also display negative skewness and moderate excess kurtosis. Regional equity
ETFs (Korea, Japan, the U.S., China, and Europe) exhibit relatively stable return behaviors. Among
them, the China ETF has the highest volatility, whereas the EU ETF shows notable downside risk.

Finally, risk aversion displays substantial positive skewness and extreme kurtosis, capturing its
spiky response to market stress. Overall, the ADF, PP, and JB test results show that all series are
stationary and deviate significantly from normality.
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Table 2 presents the Pearson correlation matrix of daily returns across the full sample. Correlations
are higher within asset classes than across them: Gold and silver exhibit a correlation of 0.78, EUR
and GBP of 0.72, and U.S. and European equity ETFs of 0.83. Cross-asset correlations are notably
lower, with gold–Bitcoin at 0.08 and gold–oil at 0.04. The RA index is negatively correlated with
risk-on assets, with correlations of −0.61 for U.S. equities, −0.56 for European equities, and −0.22 for
Bitcoin. These patterns suggest that higher risk aversion coincides with weaker returns on risky assets.
However, since correlations do not imply causality or directionality, we use Table 2 as a complementary
baseline to the QVAR-based spillover results in Tables 3, 4, and 5, which capture state-dependent
transmission patterns.

Table 4 reports the relationship between each asset and global risk aversion under stable market
conditions (quantile τ = 50%). Under normal market conditions, spillovers between assets are
relatively balanced; however, certain assets emerge as primary transmitters or receivers of risk.
Notably, the Europe Index ETF (EU ETF) and the U.S. Index ETF (US ETF) record the highest TO
values, at 132.47 and 129.32, respectively, highlighting their roles as major spillover transmitters in
stable markets. This indicates that ETFs significantly influence the transmission of risk aversion across
financial networks. Conversely, gold (Au) and silver (Ag), with FROM values of 43.57 and 49.25%,
respectively, act as stable recipient assets for investors, reinforcing their status as safe-haven assets that
absorb risk during stable periods [41, 50–52].

Additionally, the interaction between EUR and GBP is particularly pronounced under normal
market conditions (τ = 50%), with spillovers of 9.92 from EUR to GBP and 9.67 in return. This finding
reflects the strong interconnectedness of major European currencies and their joint role in stabilizing
investor sentiment within the Eurozone [5, 61].

Furthermore, the S&P REIT exhibits a TO spillover of 9.27 to Dividend Stock KO, with a FROM
spillover of 11.26 in return under normal market conditions. This finding highlights the strengthened
link between real estate and dividend stocks under normal market conditions. Tables 3 and 5 present
the pairwise spillover results for bear and bull markets, respectively. Compared with normal market
conditions, bull (quantile 0.9) and bear (quantile 0.1) markets exhibit increased spillover intensity
among specific asset pairs, with TO and FROM values delineating the roles of safe and risky assets.
Under bull market conditions (τ = 90%), high-risk assets such as Bitcoin (BTC) and the S&P REIT
serve as major spillover transmitters, with TO values of 75.27 and 101.96, respectively. Notably,
Bitcoin generates a spillover of 1.23 to oil, highlighting the intensified interactions among high-
risk assets and their collective influence on market dynamics during prosperous periods [44, 53, 62].
Additionally, the S&P REIT shows a TO spillover of 7.50 to Dividend Stock KO, with a FROM
spillover of 7.92 in return, emphasizing the reinforced connections between real estate and dividend
stocks under bull market conditions. This finding indicates that investors continue to incorporate REITs
and dividend-paying stocks to mitigate portfolio risk through diversification [66, 67, 78].

In bear markets, the 10-year Treasury bond (10Y), with a high FROM value of 82.57, serves as
a stable safe-haven asset by absorbing substantial spillovers from other assets, reinforcing its crucial
role in risk mitigation under distressed conditions [7, 65]. Similarly, gold (Au) records a FROM value
of 85.37, further underscoring its status as a reliable safe-haven asset to which investors turn during
heightened uncertainty [41, 50]. The pairwise interaction between gold (Au) and the Japanese Yen
(JPY) is strengthened in bear markets, with spillovers of 4.34 from gold to Yen and 5.26 from Yen to
gold, reflecting increased connectivity among safe-haven assets and their collective role in stabilizing
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investor portfolios [5].
Under normal market conditions, Bitcoin (BTC) records a TO value of 8.75, positioning it as a

spillover contributor. However, this value increases to 75.07 in bear markets and remains at 75.27 in
bull markets, suggesting that Bitcoin acts as a relatively stable spillover source under extreme market
conditions. These results indicate that while Bitcoin acts as a risk transmitter during stable periods,
its influence remains consistent when markets are booming or in recession, reflecting shifts in investor
behavior toward higher-return or safe-haven assets under different conditions [44, 62].

The primary distinction between bull and bear markets is reflected in the TO and FROM values and
in the pairwise interactions among safe-haven assets. In bull markets, gold and the S&P REIT emerge
as prominent spillover transmitters, with TO values of 88.94 and 101.96, respectively. Notably, a
spillover of 5.12 from gold to oil highlights the increased influence of traditional safe-haven assets
during economic expansion. In bear markets, the 10-year Treasury bond, with a FROM value of 82.57,
and gold, with a FROM value of 85.37, play pivotal roles in absorbing risk spillovers, reaffirming
their status as dependable safe-haven assets during periods of heightened uncertainty. The pairwise
interaction between gold and Yen is particularly pronounced in bear markets, with spillovers of 4.13
from gold to Yen and 6.15 from Yen to gold, indicating heightened interconnectivity between these
assets in stabilizing investor portfolios during market downturns.

Gold and silver consistently exhibit stability across market conditions, reinforcing their reputations
as robust safe-haven assets. Gold records FROM values of 85.37 in bear markets, 43.57 in normal
markets, and 88.94 in bull markets, maintaining its role as a reliable spillover recipient regardless of
market dynamics. Similarly, silver remains stable in bear, normal, and bull markets, with FROM values
of 85.53, 49.25, and 85.71, respectively. The risk aversion indicator also reflects consistent investor
behavior favoring risk-averse strategies, with FROM values of 52.42 in bear markets, 30.07 in normal
markets, and 30.07 in bull markets, underscoring its role in capturing shifts in market sentiment during
periods of economic stress [5, 41, 50–52].

In summary, the spillover analysis across quantiles reveals that, even among safe-haven
candidates, relationships between assets and global risk aversion are dynamic and depend on market
conditions. Assets such as gold, silver, and U.S. Treasuries consistently exhibit strong risk-
absorbing characteristics across market states, reaffirming their reputations as reliable safe-haven
assets. Conversely, other safe-haven candidates, including the S&P REIT and Bitcoin, demonstrate
a higher propensity to transmit risk, particularly during stable and boom conditions. These findings
underscore the importance of understanding the nuanced roles of safe-haven assets within diversified
portfolios, as their spillover behaviors vary significantly across market environments, influencing the
resilience and stability of investment strategies under different levels of risk aversion.

The net spillover shows the dynamic process of shock transmission and reception among diverse
asset classes, including equities, bonds, commodities, currencies, and BTC, from 2014 to 2024. This
period includes major economic events such as the Brexit referendum (2016–2017), the U.S.–China
trade war (2018–2019), the COVID-19 pandemic (2019–2021), and the Federal Reserve’s tapering of
asset purchases (2022–2023). The analysis employs a rolling-window approach with a window size of
200. Rolling-window estimations are performed across quantiles to capture evolving relationships over
time. To provide a benchmark for contemporaneous co-movement among variables, Table 2 reports
the pairwise Pearson correlation matrix for the system.

The resulting data are visualized using a net heatmap, which highlights the transmission patterns
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of shocks among assets. Sharp intensity shifts in red and blue during specific periods reveal moments
when assets transition from shock transmitters to shock receivers, or vice versa, in response to global
events such as pandemics, monetary policy adjustments, or changes in international conditions. This
analysis is essential for understanding the dynamics of asset interactions as they evolve in response to
economic events. The net spillover heatmaps are presented in Figures 2–5, organized by asset class for
readability and logical flow, and are interpreted across bear, normal, and bull market regimes.

To strengthen the economic interpretation, the heatmaps in Figures 2–5 are analyzed jointly with the
numerical summaries in Tables 2–4, which report net directional positions and identify the leading net
transmitters and receivers by quantile. This combined presentation links the time-varying patterns in
the heatmaps to the table-based rankings, making regime dependence transparent. In bear markets,
the system is characterized by risk-off dynamics, in which hedging demand and flight-to-quality
considerations dominate; thus, traditional safe-haven instruments tend to exhibit receiver-like profiles,
while spillovers among risky assets intensify. In normal markets, these effects are muted, and net
positions are closer to zero, which is consistent with more balanced two-way transmissions. In
bull markets, Bitcoin often co-moves with high-risk assets and can appear transmitter-like, which is
consistent with the mechanism described in Section 4: Under elevated risk appetite and looser financial
constraints, Bitcoin is primarily priced as a speculative, high-beta instrument, and shocks propagate
through portfolio rebalancing and liquidity-driven positioning rather than through safe-haven demand.

From an economic perspective, the heatmaps reveal a clear state-dependent re-ranking of net
spillovers across asset classes. In the lower-tail regime, the patterns are consistent with a risk-off

environment, in which funding and margin constraints amplify spillovers among risky assets while
increasing hedging demand for traditional safe-haven assets [69, 70]. In contrast, in the upper-tail
regime, Bitcoin becomes more closely coupled with high-risk assets, which is consistent with evidence
that it frequently behaves as a speculative asset rather than a robust safe haven [35,71,72]. To integrate
visual evidence with quantitative interpretation, we report in the main text, alongside each heatmap,
the leading net transmitters and receivers and their re-ordering across quantiles, following the tail- and
state-dependent connectedness literature [24, 25, 43].

6.2. Time-varying net spillover heatmaps

According to Figures 2–5, which display net heatmaps for major stock indices in the U.S., Europe,
and Asia (specifically Figure 5(a)–(e)), stock markets act as shock transmitters. This tendency is
particularly pronounced during periods of heightened economic uncertainty, when volatility spreads
to other asset classes. For example, Figure 5(c) shows that stock markets acted as strong shock
transmitters during events such as the global financial crisis and the COVID-19 pandemic. During
these periods, they assume a critical role in transmitting shocks to other assets. This role varies before
and after major events; for example, in the early stages of the 2020 pandemic, it functioned as a
strong shock transmitter. As the pandemic progressed and relative stability returned, it transitioned to
the receiver role, absorbing shocks from other assets. Gold (Figure 3(a)) and Bitcoin exhibit distinct
volatility characteristics, revealing contrasting patterns in the net heatmaps. As a traditional safe-haven
asset, gold generally serves as a shock receiver, predominantly appearing in blue during financial crises,
indicating its role in absorbing shocks from other assets [41, 50].
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(a) BTC (b) EUR

(c) JPY (d) CNY

(e) GBP

Figure 2. The net spillover index for digital asset and major currencies (Bitcoin, Euro,
Yen, Yuan, and Pound). Each panel shows a time–quantile heatmap of the net directional
connectedness, defined as NETi,τ(t) = TOi,τ(t) − FROMi,τ(t), computed from the rolling-
window QVAR at quantile level τ ∈ (0, 1). Warm (red) colors indicate that the asset is a
net shock transmitter (NET > 0), whereas cool (blue) colors indicate a net shock receiver
(NET < 0). Values close to zero are shown in white, and color intensity increases with |NET|
up to 75; values exceeding 75 are displayed using the darkest end of the scale (i.e., the color
scale saturates beyond 75). The x-axis is calendar time and the y-axis is the quantile index.
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(a) Au (b) Ag

(c) Oil (d) REIT

(e) 10Y

Figure 3. The net spillover index for traditional safe-haven and real asset markets (Gold,
Silver, Oil, S&P REIT, and 10yr Treasury). Each panel shows a time–quantile heatmap of
the net directional connectedness, defined as NETi,τ(t) = TOi,τ(t) − FROMi,τ(t), computed
from the rolling-window QVAR at quantile level τ ∈ (0, 1). Warm (red) colors indicate that
the asset is a net shock transmitter (NET > 0), whereas cool (blue) colors indicate a net shock
receiver (NET < 0). Values close to zero are shown in white, and color intensity increases
with |NET| up to 75; values exceeding 75 are displayed using the darkest end of the scale
(i.e., the color scale saturates beyond 75). The x-axis is calendar time and the y-axis is the
quantile index.
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(a) KO (b) JNJ

(c) T (d) RA

Figure 4. The net spillover index for dividend-paying equities and the risk-aversion index
(Dividend Stock Ko, Dividend Stock JNJ, Dividend Stock T, and Risk Aversion). Each
panel shows a time–quantile heatmap of the net directional connectedness, defined as
NETi,τ(t) = TOi,τ(t)−FROMi,τ(t), computed from the rolling-window QVAR at quantile level
τ ∈ (0, 1). Warm (red) colors indicate that the asset is a net shock transmitter (NET > 0),
whereas cool (blue) colors indicate a net shock receiver (NET < 0). Values close to zero are
shown in white, and color intensity increases with |NET| up to 75; values exceeding 75 are
displayed using the darkest end of the scale (i.e., the color scale saturates beyond 75). The
x-axis is calendar time and the y-axis is the quantile index.
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(a) KR ETF (b) JP ETF

(c) US ETF (d) CN ETF

(e) EU ETF

Figure 5. The net spillover index for major regional stock market index
ETFs (Korea Index ETF, Japan Index ETF, USA Index ETF, China Index ETF, and
Europe Index ETF). Each panel shows a time–quantile heatmap of the net directional
connectedness, defined as NETi,τ(t) = TOi,τ(t) − FROMi,τ(t), computed from the rolling-
window QVAR at quantile level τ ∈ (0, 1). Warm (red) colors indicate that the asset is a
net shock transmitter (NET > 0), whereas cool (blue) colors indicate a net shock receiver
(NET < 0). Values close to zero are shown in white, and color intensity increases with |NET|
up to 75; values exceeding 75 are displayed using the darkest end of the scale (i.e., the color
scale saturates beyond 75). The x-axis is calendar time and the y-axis is the quantile index.

In contrast, Bitcoin exhibits high volatility, alternately functioning as a shock transmitter during
certain periods and as a shock receiver in others, thereby playing a dual role in the market. During
Bitcoin surges, it acts as a transmitter and imparts shocks to other assets. Conversely, when global

AIMS Mathematics Volume 11, Issue 1, 2481–2526.



2508

financial instability intensifies, it transitions to a receiver role, responding to shocks from safe-haven
assets. These shifts are evident when investors seek to safely diversify assets, suggesting that the time-
varying roles of gold and Bitcoin are closely linked to market risk-aversion tendencies. Following
Figures 2– 4, currencies and commodities such as the Euro, Yen, and Oil dynamically shift between
shock receiver and transmitter roles in response to changes in the international economic environment.
Oil prices respond sensitively to major events, such as shifts in international relations or OPEC policies.
Occasionally, oil functions as a shock transmitter, imparting shocks to other assets. However, during
sharp price declines or supply instabilities, it transitions to a receiver role, absorbing shocks from other
assets.

The Euro and Yen predominantly serve as shock receivers during global financial crises and
frequently display negative NET values. In response to monetary policy changes, they may temporarily
shift to shock-transmitting roles. These transitions demonstrate the sensitivity of each asset to
international economic conditions, highlighting the continuously evolving roles of currencies and
commodities within a network of interconnected markets. The RAI (Figure 4(d)) and 10-year U.S.
Treasury (Figure 3(e)) consistently act as shock receivers across most periods in the net heatmap,
although the intensity of their responses varies over time. In recessionary situations, such as a pandemic
or global financial crisis, these assets exhibit strongly negative NET values, reinforcing their role in
mitigating instability within financial markets by absorbing shocks from other asset classes. As risk
aversion decreases and markets stabilize, the intensity of shocks received by these assets diminishes,
as reflected in the reduction of the absolute value of their negative NET scores in the heatmap. This
suggests that these assets serve as primary shock receivers during high-risk periods. However, as
stability returns, their influence on the market diminishes, reflecting weaker interactions with other
assets over time [7, 65].

To validate the model’s responsiveness to real-world shocks, we explicitly link salient red and blue
clusters in Figures 2–5 to major events in our sample. In particular, during the COVID-19 crash in
early 2020, the regional equity ETF heatmaps in Figure 5 exhibit intensified red blocks, consistent
with heightened shock transmission in stressed markets, while oil in Figure 3 shows a pronounced blue
cluster, reflecting the sharp oil-price collapse and receiver-like net positioning. These event-linked
patterns are most visible in the bear state and become more muted under normal conditions, whereas
several risk-sensitive assets display more transmitter-like behavior in the bull state, which is consistent
with the risk-on mechanism discussed in Section 4.

In summary, the spillover analysis across quantiles reveals that the relationship between assets and
global risk aversion is dynamic and conditionally dependent. Safe-haven assets such as gold, silver, and
U.S. Treasuries consistently absorb risk across market states, whereas high-risk assets such as Bitcoin
and the S&P REIT act as significant risk transmitters, mostly during stable and boom conditions. This
suggests that gold, silver, and U.S. Treasury securities are consistently regarded as safe-haven assets by
market participants, regardless of market conditions. In contrast, Bitcoin is perceived as a prominent
asset under bullish market conditions but is not widely recognized as a safe-haven asset during bearish
or uncertain periods [35, 38, 72, 79]. These findings underscore the importance of incorporating safe-
haven assets into diversified portfolios to mitigate risk across market environments, thereby enhancing
the resilience and stability of investment strategies under varying levels of risk aversion.
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6.3. Sensitivity and robustness analysis

A robustness test is conducted to validate the QVAR-based spillover analysis. Specifically, we
examine the sensitivity of the results to forecast horizon H. Although our main analysis is based on a
forecast horizon of H = 10, we compare these results with those obtained using alternative values of
H to determine whether the differences are statistically significant.

First, to assess the robustness of the spillover analysis over the period, we compute the TCI (5.5)
across values of the forecast horizon H for each quantile. As shown in Figure 6, the variation in TCI
across H values appears minimal, suggesting that the results are not sensitive to the choice of forecast
horizon H.

Figure 7 provides additional evidence of horizon-invariant spillovers by plotting the ratio of TCI
values at shorter and longer forecast horizons H = 5 and H = 15 relative to the benchmark horizon
H = 10. Except for the most extreme lower-tail quantiles, these ratios are close to unity across the 1 to
99 percentile range, indicating that the connectedness estimates are largely insensitive to the choice of
horizon. The minor deviations observed in the lowest quantiles indicate that the robustness documented
in Figure 6 extends to almost the full distribution of market states.

Second, Figure 8 illustrates the time-varying behavior of the TCI across the 0.1, 0.5, and 0.9
quantiles. The most notable distinction among the subfigures is that TCI levels observed under extreme
market conditions, represented by the 0.1 and 0.9 quantiles, are generally higher than those under
median market conditions (0.5 quantile). This finding suggests that shock transmissions across assets
intensify during extreme market stress.

Despite differences in magnitude, several common patterns emerge across all three quantiles. First,
we find evidence of time-varying systemic interconnectedness across quantile states. Notably, a sharp
spike in the TCI in early 2020 coincided with the outbreak of the COVID-19 pandemic. This surge
reflects an abrupt intensification of shock transmission among safe-haven assets, driven by heightened
uncertainty and synchronized market responses during a systemic crisis. Second, periods of relatively
low interconnectedness, such as mid-2017 and late 2023, indicate episodes in which asset markets
moved more independently, implying a reduction in systemic spillover risk. These intervals are
likely associated with a stable macroeconomic environment or the absence of major global shocks.
Third, the persistence of elevated TCI values following systemic events, particularly from 2020 to
2021, highlights the prolonged nature of market interconnectedness in response to global uncertainty.
This finding underscores the critical role of exogenous shocks in generating a temporal clustering of
spillover intensity.

Overall, Figures 6 and 8 empirically support our choice of setting the forecast horizon at H = 10 in
the QVAR-based spillover analysis.
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Figure 6. Total connectedness index (TCI) across quantile levels τ = 0.01 to 0.99 for forecast
horizons h = 5, 10, and 15. The results demonstrate a consistent U-shaped pattern across all
horizons, indicating the robustness of the quantile-dependent connectedness dynamics. To
improve visual clarity, a slight horizontal offset is applied between the lines.

Figure 7. TCI ratios for forecast horizons H = 5 days and H = 15 days relative to the
baseline H = 10 days across quantiles. Values close to 1 indicate that connectedness is
largely horizon invariant.
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(a) Quantile τ = 0.1

(b) Quantile τ = 0.5

(c) Quantile τ = 0.9

Figure 8. Rolling-window estimation of the total connectedness index (TCI) across quantile
levels (τ = 0.1, 0.5, and 0.9), with a window size of 200 trading days. Each subfigure
shows the TCI dynamics for three forecast horizons (H = 5, H = 10, and H = 15),
capturing variations in connectedness across short-, medium-, and long-term perspectives
under different market conditions, respectively.

In addition to the RAI proposed by the researchers in [22], several alternative proxies exist for
investor risk aversion. For instance, the VIX has been widely used in the literature as a measure of
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equity market participants’ risk aversion [32,80,81]. To examine the potential differences arising from
alternative risk-aversion measures, we replace the baseline RAI with the VIX and re-estimate the net
spillovers using the same forecast horizons (H = 5, 10, and 15) and quantile levels (τ = 0.10, 0.50,
and 0.90). The net spillover results are presented in Figures 9–11.

(a) H = 5

(b) H = 10

(c) H = 15

Figure 9. Net spillover comparison between the RAI and VIX. Each panel displays net
spillover estimates based on the baseline Risk Aversion Index (RAI, red) and the VIX (blue)
for a given forecast horizon H at the lower quantile level τ = 0.1. Positive (negative) values
indicate that the asset serves as a net transmitter (receiver) of shocks. Assets are ordered from
Gold to Europe Index ETF, following the sequence in Table A.1.

AIMS Mathematics Volume 11, Issue 1, 2481–2526.



2513

(a) H = 5

(b) H = 10

(c) H = 15

Figure 10. Net spillover comparison between RAI and VIX. Each panel displays net
spillover estimates based on the baseline Risk Aversion Index (RAI, red) and the VIX (blue)
for a given forecast horizon H at the lower quantile level τ = 0.5.
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(a) H = 5

(b) H = 10

(c) H = 15

Figure 11. Net spillover comparison between RAI and VIX. Each panel displays net
spillover estimates based on the baseline Risk Aversion Index (RAI, red) and the VIX (blue)
for a given forecast horizon H at the lower quantile level τ = 0.9.

The results based on the VIX show strong alignment with those from the baseline measure, revealing
consistent spillover patterns across assets and quantiles despite minor differences in absolute values.
Moreover, both proxies indicate heightened spillovers under extreme market conditions, reaffirming
the intensification of systemic connectedness during periods of stress or exuberance. These findings
support the robustness of our results and demonstrate the effectiveness of both measures in capturing
market fear and uncertainty.

7. Discussion

7.1. Economic implications

Our findings provide important economic insights into the propagation of risk-aversion across
financial markets under different regimes. Consistent with the literature on state-dependent safe-haven
behavior [7, 10, 41], traditional safe-haven assets, particularly gold and U.S. Treasuries, act as net
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absorbers of risk-aversion shocks in the lower tail of the return distribution. This behavior indicates
that, during periods of severe market stress, capital reallocation toward these assets mitigates systemic
risk transmission and enhances market stability.

The quantile-specific patterns can be explained by regime-dependent portfolio rebalancing and
liquidity conditions. In the lower tail, heightened risk aversion typically triggers flight-to-quality
and precautionary liquidity demand, reallocating capital away from risky assets toward high-quality
liquid instruments. Consequently, U.S. Treasuries and gold tend to absorb shocks (net receivers),
while riskier assets transmit shocks more strongly. In the upper tail, risk-on sentiment, leverage
expansion, and stronger co-movement among high-beta assets can amplify cross-market transmission,
explaining why Bitcoin and other pro-cyclical assets may appear as net transmitters in median-to-
upper quantiles. This stress-versus-risk-on switching mechanism aligns with evidence from quantile
connectedness studies, which show stronger and more asymmetric spillovers in tail regimes and role
changes between transmitters and receivers across quantiles in cryptocurrency and commodity-related
systems [19, 25, 26]. Similar quantile-dependent transmission has been documented in monetary
policy-related markets [23] and in regime- and frequency-dependent connectedness of sustainable
and clean-energy assets [24]. Our contribution includes documenting and interpreting these regime-
dependent propagation channels in a system explicitly conditioned on a global RAI that spans multiple
safe-haven candidates across asset classes.

In contrast, Bitcoin and REITs exhibit pronounced regime-dependent dynamics. Bitcoin functions
as a dominant net transmitter of risk-aversion shocks under normal and bullish market conditions,
reinforcing its characterization as a speculative or high-beta asset rather than a consistent safe
haven [34, 37, 44]. Importantly, Bitcoin’s spillover influence weakens sharply in the lower tail,
suggesting that its diversification benefits deteriorate when downside protection is most valuable. This
asymmetric behavior highlights the limitations of viewing Bitcoin as a crisis hedge and underscores its
sensitivity to market regimes.

7.2. Policy implications

The distinction between lower- and upper-tail spillovers has direct implications for financial stability
and regulatory oversight. Lower-tail spillovers capture downside systemic risk, in which adverse
shocks can trigger cascading losses and threaten market functioning. Our evidence that gold and
government bonds absorb risk in this regime supports the role of deep and liquid sovereign bond
and commodity markets as stabilizing anchors during crises. From a policy perspective, maintaining
liquidity and preventing market dysfunction in these assets are critical for mitigating systemic risk.

In contrast, upper-tail spillovers reflect periods of heightened risk-taking and market exuberance.
The strong spillover transmission from Bitcoin and equity-related assets during bullish regimes
suggests that speculative capital flows intensify market interconnectedness and may amplify boom–
bust cycles. Therefore, monitoring upper-tail spillovers can provide early warning signals of excessive
leverage, speculative behavior, and emerging asset price bubbles. Incorporating tail-sensitive spillover
measures into macroprudential frameworks can enhance regulators’ ability to detect and manage
systemic vulnerabilities.
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7.3. Portfolio implications

From a portfolio management perspective, our results underscore the importance of accounting
for state-dependent risk transmission across assets. Under stable and bullish market conditions,
Bitcoin acts as a major transmitter of risk-aversion spillovers, implying that its price movements
can substantially influence overall portfolio risk while offering return-enhancing opportunities during
market upswings [82]. Accordingly, institutional investors may view Bitcoin as a tactical asset in
expansionary regimes, provided that its spillover effects are carefully monitored.

In contrast, during downturns, Bitcoin becomes a source of risk transmission, while traditional safe-
haven assets, such as gold and U.S. Treasury bonds, serve as effective shock absorbers. This finding
suggests that dynamic portfolio rebalancing (reducing exposure to Bitcoin and increasing allocations to
safe-haven assets during periods of elevated risk aversion) can enhance downside protection and risk-
adjusted performance [82, 83]. Overall, these results highlight the importance of regime-aware and
tail-sensitive allocation strategies for institutional investors operating in increasingly interconnected
financial markets.

8. Concluding remarks

In this study, we comprehensively analyze the dynamic interplay between global risk aversion and
the returns of safe-haven assets using a quantile spillover framework. By employing a QVAR-based
spillover approach, we capture the nuanced relationships across quantiles of the conditional return
distribution. Our analysis covers a broad range of assets, including gold, silver, Bitcoin, crude oil,
major currencies, REITs, U.S. Treasury bonds, dividend-paying stocks, and equity market indices,
from July 2014 to July 2024, yielding significant insights into how these assets interact under varying
market conditions.

Under stable market conditions (50th quantile), Bitcoin emerges as a dominant spillover transmitter,
exerting a significant influence on the transmission of risk aversion across financial networks. This
underscores Bitcoin’s pivotal role in shaping broader market risk dynamics. In contrast, traditional
safe-haven assets such as gold and silver primarily act as risk absorbers, maintaining their roles as
refuges of stability. During bull market periods (90th quantile), Bitcoin, alongside higher-risk assets,
such as REITs, amplifies its influence as a risk transmitter, further impacting other asset classes and
demonstrating its heightened interconnectivity during market upswings. Even in bear market periods
(10th quantile), when U.S. Treasury bonds and gold emerge as reliable shock absorbers, Bitcoin’s
role as a risk transmitter is noteworthy. These findings emphasize the state-dependent nature of asset
interdependencies, highlighting Bitcoin’s evolving role in financial markets and its critical implications
for portfolio diversification and risk management.

Despite providing robust insights, this study has several limitations. First, the analysis period
(2014–2024) does not capture the most recent financial market developments, including emerging asset
classes. In future research, researchers could extend the analysis by incorporating novel digital assets,
such as non-fungible tokens (NFTs), decentralized finance (DeFi) products, and central bank digital
currencies (CBDCs), as well as a broader set of safe-haven candidates, including sector-specific ETFs
(e.g., utilities, food, and healthcare), additional commodities, and ESG-related assets.

Second, while we employ the RAI proposed by the researchers in [22], alternative proxies, such
as the VIX, credit default swap (CDS) spreads [84–86], and investor sentiment indices [87–89], have
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been widely used to measure investor risk aversion and may provide complementary information.

Finally, although the rolling-window QVAR-based spillover framework effectively captures time-
varying spillover patterns, researchers could consider models that explicitly incorporate parameter
evolution, such as time-varying parameter VAR (TVP-VAR) frameworks, to provide a more rigorous
representation of dynamic spillover effects.

Overall, this study makes meaningful contributions to the literature on risk management and
asset allocation. These findings have valuable implications for academic researchers and industry
practitioners seeking to optimize investment strategies in an increasingly complex and interconnected
financial landscape.

Appendix

A. Definitions of variables

Table A.1. Asset descriptions, abbreviations, and data sources.

Variable Name Description Abbreviation
Gold Gold prices from COMEX. Au
Silver Silver prices from COMEX. Ag
Bitcoin Bitcoin prices from cryptocurrency markets. BTC
Oil Crude oil prices from NYMEX. Oil
Euro Euro to US Dollar exchange rate from forex markets. EUR
Pound British Pound to US Dollar exchange rate from forex markets. GBP
Yen US Dollar to Japanese Yen exchange rate from forex markets. JPY
Yuan US Dollar to Chinese Yuan exchange rate from forex markets. CNY
S&P REIT Vanguard Real Estate ETF data representing US REIT. REIT
10yr Treasury US 10-Year Treasury yield data from US Treasury markets. 10Y
Dividend Stock KO Coca-Cola stock prices from equity markets. KO
Dividend Stock JNJ Johnson & Johnson stock prices from equity markets. JNJ
Dividend Stock T AT&T stock prices from equity markets. T
Korea Index ETF iShares MSCI South Korea ETF. KR ETF
Japan Index ETF iShares MSCI Japan ETF. JP ETF
USA Index ETF SPDR S&P 500 ETF Trust. US ETF
China Index ETF iShares China Large-Cap ETF. CN ETF
Europe Index ETF Vanguard FTSE Europe ETF. EU ETF
Risk Aversion Nancy Xu’s Risk Aversion index. RA

Notes: This table lists the full variable names, their descriptions, and abbreviations. The abbreviations
are used consistently across all figures and tables, including the spillover analyses at different
quantiles.
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B. Mathematical details of the QVAR-based spillover framework

B.1. QVAR specification and estimation

Let {Yt}
n
t=1 be an m×1 vector collecting the USD-denominated return series in the system (including

the risk-aversion proxy as one of the variables), and let Ft−1 denote the information set up to time t− 1.
For a quantile level τ ∈ (0, 1), the QVAR(p) is specified as

Yt = α(τ) +

p∑
k=1

Φk(τ) Yt−k + εt(τ), t = p + 1, . . . , n, (B.1)

with the componentwise quantile restriction

Qτ

(
εt(τ) | Ft−1

)
= 0. (B.2)

Equivalently,

Qτ

(
Yt | Ft−1

)
= α(τ) +

p∑
k=1

Φk(τ) Yt−k. (B.3)

Estimation proceeds equation-by-equation via quantile regression. For each i = 1, . . . ,m,

β̂i(τ) = arg min
β

n∑
t=p+1

ρτ
(
yi,t − X>t β

)
, ρτ(u) = u

(
τ − 1{u < 0}

)
, (B.4)

where Xt = [1,Y>t−1, . . . ,Y
>
t−p]>. Collecting {̂βi(τ)}mi=1 yields α̂(τ) and {Φ̂k(τ)}pk=1. Define fitted residuals

ε̂t(τ) = Yt − α̂(τ) −
p∑

k=1

Φ̂k(τ) Yt−k, t = p + 1, . . . , n, (B.5)

and the (plug-in) innovation covariance estimator

Σ̂(τ) =
1

n − p

n∑
t=p+1

ε̂t(τ) ε̂t(τ)>. (B.6)

B.2. Quantile-indexed impulse responses

For each fixed τ, the estimated coefficient matrices {Φ̂k(τ)} define a τ-indexed linear system. Under
standard stability conditions for this system, it admits a moving-average representation

Yt =

∞∑
k=0

Ψk(τ) εt−k(τ), Ψ0(τ) = Im, (B.7)

where {Ψk(τ)} are obtained recursively from {Φk(τ)} (in practice, we use the plug-in estimates). This
provides the quantile-indexed impulse responses used for the variance decomposition below.
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B.3. Generalized FEVD and connectedness measures

Let ei denote the m×1 selection vector with 1 in position i and zero otherwise. Let Σ(τ) = Var(εt(τ))
with diagonal entries σ j j(τ). Assume Σ(τ) is positive semidefinite with σ j j(τ) > 0, so that the
denominators below are strictly positive. For a forecast horizon h ∈ N, the generalized FEVD at
quantile τ is:

θ(τ)
i j (h) =

σ−1
j j (τ)

∑h−1
k=0

(
e>i Ψk(τ) Σ(τ) e j

)2∑h−1
k=0 e>i Ψk(τ) Σ(τ) Ψk(τ)>ei

, i, j = 1, . . . ,m, (B.8)

which is normalized row-wise as

θ̃(τ)
i j (h) =

θ(τ)
i j (h)∑m

`=1 θ
(τ)
i` (h)

,

m∑
j=1

θ̃(τ)
i j (h) = 1. (B.9)

In the implementation, we plug in Ψ̂k(τ) and Σ̂(τ).
We compute standard connectedness measures. The total connectedness index (TCI) is defined as

the average off-diagonal share:

TCI(τ)(h) =
1
m

m∑
i=1

m∑
j=1
j,i

θ̃(τ)
i j (h). (B.10)

Directional spillovers transmitted to others (TO), received from others (FROM), and the net position
(NET) are

TO(τ)
i (h) =

m∑
j=1
j,i

θ̃(τ)
ji (h), (B.11)

FROM(τ)
i (h) =

m∑
j=1
j,i

θ̃(τ)
i j (h), (B.12)

NET(τ)
i (h) = TO(τ)

i (h) − FROM(τ)
i (h). (B.13)

B.4. Risk-aversion-centered decomposition

Let r ∈ {1, . . . ,m} denote the index of the risk-aversion variable and S = {1, . . . ,m} \ {r}. We define
two directional channels involving risk aversion:

TCI(τ)
RA→SYS(h) =

1
m − 1

∑
i∈S

θ̃(τ)
ir (h), (B.14)

TCI(τ)
SYS→RA(h) =

∑
j∈S

θ̃(τ)
r j (h) = FROM(τ)

r (h), (B.15)

and the net risk-aversion position

NET(τ)
RA(h) = NET(τ)

r (h) = TO(τ)
r (h) − FROM(τ)

r (h). (B.16)
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B.5. Basic properties (by construction)

From (B.8) and (B.9), θ(τ)
i j (h) ≥ 0 and 0 ≤ θ̃(τ)

i j (h) ≤ 1, with
∑m

j=1 θ̃
(τ)
i j (h) = 1 for each i. Consequently,

0 ≤ TCI(τ)(h) ≤ 1. Moreover, the net connectedness is zero-sum:

m∑
i=1

NET(τ)
i (h) = 0, (B.17)

since
∑

i TO(τ)
i (h) =

∑
i FROM(τ)

i (h) by definition [73–75].
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