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Abstract: Starting from a steady-state energy–balance law for noisy, linearly damped fields, we
derive an operator covariance equation in Lyapunov–Sylvester form. On the unit disk with self-
adjoint boundary conditions, the corresponding generator is diagonalized by the Zernike polynomials,
and finite-mode projection yields a matrix Lyapunov equation for modal covariances. We prove
explicit a priori truncation-error bounds tailored to Zernike systems: in the diagonal (or diagonally
dominant) case the operator-norm tail admits a closed-form expression and, for Kolmogorov-type
spectra, decays at a rate O(N−7/3); for general Hilbert–Schmidt noise covariances we obtain Hilbert–
Schmidt tail bounds with explicit dependence on system parameters and dissipation rates. We further
extend the formulation to exponentially correlated (Ornstein-Uhlenbeck) forcing via an augmented-
state Lyapunov/Sylvester construction, yielding closed-form denominator shifts and a covariance-
based inversion for the OU correlation time τ. Numerical examples validate the Lyapunov solves,
the derived error bounds, and the τ recovery procedure.
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1. Introduction: Energy-balance framework for steady-state covariance

Addressing the dynamics of spatially extended dissipative systems, such as atmospheric optics
or plasma physics, often requires navigating complex stochastic processes and high-dimensional
parameter spaces. Connecting between a system’s fundamental physical principles and its tractable
mathematical representation is paramount for predictive modeling and control. Our work tackles this
challenge by establishing a framework where fundamental physical principles naturally motivate the
mathematical structures used for analysis.

The interplay between mathematical structures and physical phenomena frequently reveals
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profound connections.
Classical orthogonal polynomial systems – such as Zernike polynomials in optics [1], Hermite

polynomials in quantum mechanics, and spherical harmonics in electromagnetism – emerge as
eigenfunctions of differential operators governing fundamental processes. Concurrently, matrix
Lyapunov equations are central to characterizing covariance evolution in stochastic systems,
underpinning modern control theory and statistical mechanics [2, 3].

Classical covariance closures for stochastic PDEs continue to evolve along two complementary
tracks. On the modeling side, recent SPDE frameworks refine how covariance operators arise and
are approximated in bounded domains and finite elements, including fractional and nonstationary
structures that map cleanly to linear operator forms used in our pipeline [4–6]. On the optics side,
Zernike-based representations remain the lingua franca for phase statistics: recent studies revisit
Zernike orthogonality under propagation, and propose hybrid Fourier–Zernike phase screens (and data-
driven variants) to better emulate Kolmogorov-type spectra–developments that justify our choice of a
Zernike spectral basis and inform the structure of Q [7–10]. Finally, large-scale covariance solvers
based on Lyapunov/Sylvester equations have seen steady algorithmic progress: integrated Krylov–
ADI schemes, projection methods for Sylvester equations, and low-rank ADI/Smith variants now
target parameterized and discrete-time settings, which directly support our finite-mode truncations
and OU-augmented blocks [11–14]. These strands together motivate our approach: a new Lyapunov
formulation with Zernike specialization and OU forcing, solved via modern low-rank linear-matrix-
equation methods.

This work presents a disk-adapted synthesis of classical connections between linear dissipative
dynamics, steady-state covariances, and Lyapunov/Sylvester equations. We organize the development
as a pipeline (see Figure 1) balance → geometry → finite solve: the steady-state balance motivates
the covariance equation, geometry suggests working in eigenbases adapted to the domain (Zernike
on the unit disk), and finite-mode truncation leads to a computable matrix Lyapunov system. Our
contributions are in (i) specializing this pipeline to the disk/Zernike setting, (ii) deriving rigorous
a priori truncation error bounds (operator and Hilbert–Schmidt), and (iii) extending the steady-
state covariance construction to OU-colored forcing via an augmented-state Lyapunov formulation,
including a covariance-based identification map for the OU correlation time τ.

It is useful to contrast this approach with standard numerical workflows for linear PDE/SPDE
covariance computation. On general domains, steady-state covariances are often obtained either by
simulating sample paths and estimating covariances by Monte Carlo, or by discretizing the associated
operator Lyapunov equation on a grid (e.g., finite-element Lyapunov formulations for parabolic
SPDEs [15]). In such grid-based settings the resulting matrix equations can be very large and typically
require large-scale low-rank Lyapunov solvers (ADI/Krylov and related methods; see, e.g., [11,13,14]).
In contrast, on the unit disk the Zernike basis diagonalizes the generator, so the steady covariance
admits the entrywise representation P jk = Q jk/(R j + Rk), and our main focus becomes (i) casting
physically meaningful noise models into the same basis and (ii) providing a priori truncation guidance
via explicit error bounds.

1.1. Contributions (classical ingredients vs. new contributions)

• Classical ingredients used: Lyapunov/Sylvester characterization of steady-state covariances for
linear dissipative systems, and the augmented-state Lyapunov formulation for OU (exponentially
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correlated) forcing.

• New contributions of this work: (i) Zernike/disk-specialized truncation error bounds in operator
and Hilbert–Schmidt norms, (ii) explicit disk-scaling laws using Zernike eigenvalue growth and
Kolmogorov-type modal spectra; and (iii) structured incorporation of Kolmogorov-type forcing
in the Zernike basis, together with an explicit distinction between exact symmetry/selection rules
and practical modeling approximations.

We now summarize and present several rigorously quantified results, including:

Energy Balance
Covariance
Equation

(Lyapunov)
Disk Operator

Zernike
EigenbasisTruncation to N

Finite Lyapunov
Solve

OU
Augmentation

(colored forcing)

A Priori
Truncation

Bounds

optional

Figure 1. Schematic flow-chart of the analysis pipeline. The solid arrows give the core
white-noise route; the dashed arrows show the optional OU-coloured-forcing branch that
leads to the same a-priori bounds box but with modified denominators.

(1) We rigorously incorporate and leverage the known mode-coupling structure of realistic optical
forcings, such as atmospheric turbulence (Kolmogorov model), by casting them as the noise
operator Q directly in the Zernike basis. This concretely grounds the abstract operator in a
physically observable phenomenon [16].

(2) We derive precise, disk-specific error bounds for finite-dimensional approximations of the steady-
state covariance operator P. These bounds, explicitly tailored for Zernike systems, include the
operator norm for diagonally dominant noise and the Hilbert-Schmidt norm for general noise.
They detail their explicit dependence on system parameters (α, γ) and truncation order (N), and
uniquely lead to explicit analytical rules for determining the required modal truncation order for
a given accuracy.

Furthermore, we significantly extend this framework to handle both exponentially correlated
(Ornstein-Uhlenbeck) forcing and generalized rational-transfer-function colored noise. This is
achieved via an augmented-state Sylvester formulation, revealing a simple uniform denominator shift
(or product of shifts for general rational noise) in modal covariance that preserves the pipeline structure.
We also establish a new identifiability condition for noise correlation parameters directly from modal
covariances.
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2. The master energy dissipation framework

Consider a general stochastic dynamical system evolving on a separable Hilbert spaceH with inner
product 〈·, ·〉 and induced norm ‖ · ‖. The system is governed by the stochastic evolution equation:

du
dt

= Lu + ξ(t), (2.1)

where u(t) ∈ H .

Assumption 2.1 (Self-adjoint dissipative structure). The operatorL : D(L) ⊂ H → H is self-adjoint,
densely defined, and strictly dissipative. Specifically, there exists γ0 > 0 such that 〈φ,Lφ〉 ≤ −γ0‖φ‖

2

for all φ ∈ D(L). L possesses a complete orthonormal system of eigenfunctions {φk}
∞
k=1 with real

eigenvalues {λk}
∞
k=1 satisfying λk ≤ −γ0 < 0.

Assumption 2.2 (White-in-time stochastic forcing). The noise ξ(t) is a white-in-time process
characterized by its covariance structure via a positive, self-adjoint trace-class operator Q : H → H:
〈〈φ, ξ(t)〉〈ψ, ξ(s)〉〉 = 〈φ,Qψ〉δ(t − s). Q represents the spatial (and instantaneous temporal) structure
of energy injection.

Proposition 2.1 (Steady-state energy covariance law). Under Assumptions 2.1 and 2.2, the unique,
positive, self-adjoint steady-state energy covariance operator P : H → H solves the infinite-
dimensional Lyapunov equation:

LP + PL = −Q. (2.2)

In the eigenbasis {φk} of L, the matrix elements of P are:

(P) jk = 〈φ j, Pφk〉 =
〈φ j,Qφk〉

−(λ j + λk)
. (2.3)

For clarity, let δ j := −λ j > 0 be the modal dissipation rates, and then (P) jk = (Q) jk/(δ j + δk).

Proof. The proof relies on standard results from infinite-dimensional stochastic systems theory,
including the absolute convergence of the energy dissipation integral and properties of self-adjoint
dissipative operators. Details are provided in Appendix A. �

3. Spectral reduction and finite-dimensional projections

Proposition 3.1 (Matrix Lyapunov system). Let ΠN be the orthogonal projection onto
span{φ1, . . . , φN}. The finite-dimensional energy covariance PN = ΠN PΠN is an N × N matrix with
entries (PN) jk = 〈φ j, Pφk〉 for j, k ∈ {1, . . . ,N}. This matrix satisfies the finite-dimensional Lyapunov
equation:

ΛN PN + PNΛN = −QN , (3.1)

where ΛN = diag(λ1, . . . , λN) and (QN) jk = 〈φ j,Qφk〉 for j, k ∈ {1, . . . ,N}. The solution is explicitly
given by (PN) jk =

(QN ) jk

−(λ j+λk) .

Remark 3.1. The restriction to self-adjoint operators (Assumption 2.1) ensures real eigenvalues
(physical decay rates) and a positive definite covariance matrix, which is fundamental for physical
consistency.
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4. Geometric realization: Zernike polynomials on the unit disk

The unit disk is not merely a convenient example: it is a central application geometry in optics and
wave-based systems. Circular apertures arise in telescope and microscope pupils (including adaptive
optics), laser beams and resonators, and other disk-shaped sensing/actuation configurations. In these
settings, Zernike modes provide a standard, geometry-adapted basis for representing spatial fields and
their statistics, which motivates specializing the abstract Hilbert-space covariance framework to the
disk.

In this work the Zernike basis arises because we model disk dynamics using a self-adjoint dissipative
operator whose eigenfunctions are the Zernike modes; this is a modeling choice for tractability and disk
geometry, not a logical necessity implied by energy balance alone.

We apply the framework to a field on the unit disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, which is crucial
for optical systems. The Hilbert space is L2(D, dµ) with the normalized area measure dµ = 1

π
r dr dθ,

making Zernike polynomials orthonormal.
From a modeling standpoint, we adopt a minimal dissipative operator that captures two generic

physical effects for disk-defined fields: (i) linear relaxation/smoothing through a self-adjoint elliptic
term (here realized by the Zernike operator LZ, which plays a Laplacian-like role on the disk), and
(ii) uniform damping through the term −γu. The parameter α > 0 controls the strength of spatial
smoothing (spectral roll-off), while γ > 0 sets a baseline decay rate. This choice is made for physical
plausibility and computational tractability: it preserves self-adjoint dissipation and admits a disk-
adapted eigenbasis (Zernike), enabling closed-form modal covariance structure and rigorous a priori
truncation control. We emphasize that this is a modeling choice, not a uniquely derived law from first
principles.

The system’s dissipative dynamics, specifically, defines the operator L from Eq (2.1) in the form:

Lu = −α2LZu − γu, so that
∂u
∂t

= −α2LZu − γu + ξ(x, y, t), (4.1)

where α > 0 scales the spectral response, γ > 0 provides uniform dissipation, and ξ(x, y, t) is white-in-
time noise.

Theorem 4.1 (Zernike operator and eigenvalues). The (real) Zernike circle polynomials Znm(x, y) (with
radial degree n and azimuthal frequency m) are eigenfunctions of the differential operator LZ f =

−1
r ∂r

(
r(1 − r2) ∂r f

)
− 1

r2 ∂θθ f , with natural boundary conditions. Their eigenvalues are [17]:

LZZnm = µnmZnm, where µnm = n(n + 2) − m2. (4.2)

For valid Zernike indices (n ≥ |m|, n−|m| even), these eigenvalues are non-negative. The full dissipative
operator L = −α2LZ − γI (from Eq (4.1)) thus has eigenvalues:

λnm = −α2µnm − γ. (4.3)

As µnm ≥ 0, α2 > 0, and γ > 0, it follows that λnm ≤ −γ < 0, satisfying Assumption 2.1. The least
negative eigenvalue is λ00 = −γ (piston mode, µ00 = 0).

This theorem establishes that the Zernike polynomials form a physically natural eigenbasis for
analyzing dissipative processes on a disk, a fundamental geometric step in our proposed pipeline.
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Proof. See Appendix B for the derivation using polar coordinates and properties of Zernike radial
polynomials. �

4.1. Energy covariance in the Zernike basis: Quantification of optical forcing

The general energy framework, when applied to the Zernike system, yields energy covariance matrix
elements (P)nm,n′m′ = (Q)nm,n′m′/(α2(µnm + µn′m′) + 2γ). The structure of P (diagonal, block-diagonal,
or full) is dictated by the spatial correlations of the noise operator Q. For optical systems, Q typically
represents stochastic phase distortions from atmospheric turbulence.

Theorem 4.2 (Kolmogorov noise operator in the Zernike basis). For a phase perturbation ξ(x, t)
following the Kolmogorov turbulence model on a circular aperture, Noll’s seminal work [16]
rigorously derived the mode-coupling structure of the noise operator Q in the Zernike basis Z j(x). Its
matrix elements (Q) jk = 〈Z j,QZk〉µ are proportional to r−5/3

0 (Fried parameter) and exhibit a structured
sparse form for statistically isotropic Kolmogorov turbulence:

• (Q) jk = 0 if m j , mk.

• (Q) jk = 0 if m j = mk and n j and nk have different parity (n j − nk is odd).

This results in a block-diagonal structure for Q in the Zernike basis, reflecting inherent symmetries in
the turbulence model. This rigorous quantification illustrates how Q is explicitly structured by physical
parameters, with coupling primarily for lower modes, leading to efficient truncation.

Remark 4.1 (Exact versus modeling structure). The selection rules stated above (block structure
in azimuthal frequency and parity constraints) are exact consequences of statistical isotropy on an
ideal circular aperture for Kolmogorov turbulence. Additional simplifications often used in practice—
such as near-diagonality, power-law proxies for modal variances, or empirically calibrated decay
of off-diagonal couplings—are modeling approximations introduced for validation and tractable
computation. In measured turbulence phase screens, finite-aperture and experimental effects can
deviate from idealized symmetries (e.g., aperture obscurations, nonstationarity, finite outer scale, and
measurement artifacts); therefore, the structured noise models used in this work should be understood
as physically motivated approximations used to test the theory and demonstrate computational
tractability.

Proof. A detailed proof building on angular and radial symmetries of the Kolmogorov kernel is given
in Appendix B. �

5. Exponentially correlated forcing via the augmented-state Sylvester law

Building on the white-in-time noise framework, we now significantly extend it to include temporally
correlated forcing, specifically covering Ornstein-Uhlenbeck (OU) processes and generalized rational
colored noise. This provides a more realistic representation for many physical systems where noise
has a finite correlation time. Let x(t) ∈ H solve ẋ = Lx + η, where L is defined as in Section 4, and
η(t) is an OU process inH solving:

dη = −τ−1η dt +
√

2τ−1 Q1/2 dWt. (5.1)
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Here, τ > 0 is the correlation time, and Q is the stationary spatial covariance operator of η(t) (meaning
〈ηη∗〉 = Q). We augment the state to z = (x, η).

Theorem 5.1 (OU forcing preserves pipeline: Covariance shift). Assume L is self-adjoint and
dissipative with eigenvalues {λ j} and τ > 0. The steady covariance P of the augmented state z = (x, η)
solves AP + PA∗ = −GG∗. For its Pxx block (the covariance of x(t)), the modal elements are given by:

(Pxx) jk =
(Q) jk

(−λ j)(−λk)
·

(−λ j − λk + 2τ−1)
((−λ j + τ−1)(−λk + τ−1))

. (5.2)

If Q is diagonal in the eigenbasis of L, meaning (Q) jk = q jδ jk, then (Pxx) j j simplifies to:

(Pxx) j j =
q j

(−λ j)(−λ j + τ−1)
. (5.3)

Proof. The proof involves setting up an augmented-state Lyapunov system and solving the resulting
block equations. Details are given in Appendix C. �

Corollary 5.1 (Zernike specialization with OU forcing). With λnm = −(α2µnm +γ), the diagonal modal
covariance for Zernike systems under diagonal Q is:

(Pxx)nm,nm =
(Q)nm,nm

(α2µnm + γ)(α2µnm + γ + τ−1)
. (5.4)

Thus, exponentially correlated forcing introduces an additional uniform damping factor of (· + τ−1)
in the covariance denominators. This effectively reflects how finite-bandwidth noise suppresses long-
time power contributions to each mode, preserving the Zernike block structure (in azimuthal index m)
inherited from the input Q.

5.1. Identifiability and estimation of the correlation time τ

A crucial aspect of applying the OU-forced model is the ability to determine its correlation time
τ from observational data. Here, we present a direct approach to identify and estimate τ from the
steady-state modal variances, assuming modal noise strengths q j = (Q) j j and system dissipation rates
R j = −λ j are known.

Estimating parameters of OU processes is classical when time series are available, including
likelihood- and moment-based estimators under discrete or low-frequency sampling [18]. In high
dimensions, a substantial literature focuses on estimating the drift (and related parameters) under
structural assumptions such as sparsity [19, 20]. The viewpoint adopted here is complementary:
we exploit the modal steady-state covariance formula to obtain a closed-form inversion for τ from
stationary modal variances, which is useful when covariance information is available (or estimated)
but long, finely sampled trajectories are not.

From Eq (5.3), for diagonal Q, the steady-state variance of mode j is given by:

(Pxx) j j =
q j

R j(R j + τ−1)
. (5.5)

This equation can be rearranged to directly solve for τ−1:

τ−1 =
q j

R j(Pxx) j j
− R j. (5.6)
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This formula demonstrates that the inverse correlation time τ−1 is point-identifiable from a single mode
j (provided q j > 0, (Pxx) j j > 0, and R j > 0). It leverages steady-state variances directly, rather than
relying on full time-lagged autocovariance functions, which are generally more complex for output
processes driven by OU noise. A more robust estimator for τ can be obtained by aggregating across a
set J of sufficiently excited modes, for example, by computing a weighted average:

τ̂−1 =

∑
j∈J w j

( q j

R j(Pxx) j j
− R j

)
∑

j∈J w j
, (5.7)

with appropriate weights w j (e.g., inversely proportional to the variance of the estimate for each
mode, or signal-to-noise ratio-based choices). This provides a simple, closed-form identification
procedure for τ within the established modal OU theory. A practical choice of weights can be justified
by uncertainty propagation. If the modal variances (Pxx) j j are estimated with approximately mode-
independent relative error, then the induced uncertainty in the per-mode inversion τ̂−1

j =
q j

R j(Pxx) j j
− R j

scales like (Pxx)−1
j j , and inverse-variance weighting suggests w j ∝ (Pxx)2

j j. More generally, any
monotone signal-to-noise proxy (e.g., w j ∝ (Pxx) j j) emphasizes well-excited modes; the trimming
step is included only to remove nonphysical inversions that may arise from noisy covariance estimates.

Numerical robustness. While the inversion map τ−1 =
q j

R j(Pxx) j j
− R j is exact under the model

assumptions, it can be numerically ill-conditioned for modes with small (Pxx) j j or when (Pxx) j j is
estimated with substantial noise. Uncertainty in q j (forcing calibration) and in R j (dissipation rates)
propagates directly into τ̂ through the same formula. For practical estimation we therefore recommend:
(i) using multiple well-excited modes (thresholding or excluding very small variances), (ii)
robust aggregation across modes (trimmed mean/median-type estimators and discarding nonphysical
inversions with τ̂−1

j ≤ 0), and (iii) signal- or inverse-variance-type weights (as motivated above by
uncertainty propagation). The sensitivity experiment in Section 7 (Figure 3(b)) provides an empirical
illustration of how τ̂ degrades as multiplicative noise increases.

5.2. General rational colored forcing via companion augmentation

We extend the OU case to a general temporally colored forcing whose scalar transfer function is a
stable rational

H(s) =

p∑
i=1

βi

s + ai
, ai > 0, βi ∈ R, (5.8)

so that the forcing takes the form η(t) =
∑p

i=1 ηi(t) with

η̇i(t) = −ai ηi(t) +
√

2ai Q1/2Ẇi(t), i = 1, . . . , p, (5.9)

and mutually independent Wiener processes Wi. Define the augmented state z = [ x, η1, . . . , ηp ]> and
operators

A =



L I I · · · I
0 −a1I 0 · · · 0
0 0 −a2I · · · 0
...

...
...

. . .
...

0 0 0 · · · −apI


, G =



0
√

2a1 Q1/2
√

2a2 Q1/2

...√
2ap Q1/2


. (5.10)
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Let P = E[zz∗] with blocks Pxηi and Pηiη j . The augmented Lyapunov equation AP + PA∗ + GG∗ = 0
yields:

(−aiI)Pηiηi + Pηiηi(−aiI) + 2aiQ = 0 ⇒ Pηiηi = Q, (5.11)

LPxηi + Pxηi(−aiI) + Pηiηi = 0 ⇒ Pxηi = −(L − aiI)−1Q, (5.12)

LPxx + PxxL
∗ +

p∑
i=1

(
Pxηi + Pηi x

)
= 0. (5.13)

Hence, the covariance Pxx solves the Lyapunov equation with a modified forcing:

LPxx + PxxL
∗ + Q̃{ai} = 0, Q̃{ai} B

p∑
i=1

[
(L − aiI)−1Q + Q(L∗ − aiI)−1

]
. (5.14)

In the Zernike basis, writing LZ j = λ jZ j, we obtain the modal formula:

(Pxx) jk =

p∑
i=1

( Q jk

λ j − ai
+

Q jk

λk − ai

)
− (λ j + λk)

. (5.15)

In particular, if Q is diagonal and λ j ∈ R,

P j j =
q j

−λ j

p∑
i=1

1
−λ j + ai

, (5.16)

which exhibits a sum of generalized denominator shifts ai. The simple product generalization of the
OU shift would hold if the rational noise was modeled differently (e.g., as a cascaded filter of white
noise), but for the adopted model of summed independent OU processes, it is a sum.

6. Mathematical structure and rigorous error bounds

Related numerical literature. Large-scale algebraic Lyapunov and Sylvester equations are the
subject of extensive numerical literature, including low-rank ADI and projection/Krylov-type methods
and their variants [11,13,14]. In addition, recent work has considered differential Lyapunov equations
and fractional differential Sylvester/Lyapunov equations with dedicated time-stepping and Krylov-
based approaches [21–23]. Our contribution is complementary to these general-purpose solvers: we
leverage the disk-adapted Zernike eigenbasis to expose closed-form covariance structure and to derive
explicit a priori truncation bounds tailored to disk geometry.

Notation. We use cumulative indexing j ↔ (n j,m j) for Zernike modes, and write µ j for the
corresponding eigenvalues of the disk operator (Section 4). The modal decay rates are R j := α2µ j + γ.
In the Zernike basis, Q jk := 〈Z j,QZk〉µ denotes noise-covariance entries, and in the diagonal case
q j := Q j j = 〈Z j,QZ j〉µ. For truncation level N, ΠN denotes projection onto the first N modes and
PN := ΠN PΠN . We also use the complement index set ΩN := {( j, k) ∈ N2 : max( j, k) > N} to describe
residual tails.

AIMS Mathematics Volume 11, Issue 1, 2406–2429.
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We establish rigorous error bounds for finite-dimensional Zernike approximations. These bounds
explicitly characterize the approximation quality for various noise structures and are crucial for the
practical implementation of modal control systems. The formulation extends verbatim to the OU-
forced setting by replacing −(λ j + λk) with the more complex denominator structure of Eq (5.2) and
appropriately interpreting Q.

Remark 6.1 (Zernike mode indexing and eigenvalue growth). On the unit disk, Zernike modes Znm

satisfy the eigenvalue relation LZZnm = µnmZnm with µnm = n(n + 2) − m2 (see Eq (4.2)). Under
cumulative indexing j ↔ (n j,m j) (e.g., Noll-like [16]), the number of modes up to radial degree n
scales as ∼ (n + 1)(n + 2)/2, so n j ' c

√
j. For admissible indices (n ≥ |m| and n − |m| even),

µnm ≥ n(n + 2) − n2 = 2n, hence the minimal eigenvalue at radial degree n is µmin
n = 2n and therefore

µmin
j := min

m: (n j,m) admissible
µn jm ' Cµ

√
j. (6.1)

Consequently, α2µmin
N+1 + γ = O(α2

√
N + γ), and similarly δN := min( j,k)∈ΩN

(
α2(µ j + µk) + 2γ

)
=

O(α2
√

N + γ).

Remark 6.2 (Scope of disk-scaling rates). Any explicit rate statements obtained by combining tail
assumptions on Q (or on the diagonal spectrum q j) with eigenvalue growth rely on the Zernike
eigenvalue formula and the chosen cumulative indexing on the disk. The same derivation does not
transfer verbatim to arbitrary orthogonal systems on other domains without re-checking the spectral
growth and the indexing geometry.

Theorem 6.1 (Zernike operator-norm truncation error). Let P be the (infinite-dimensional) steady-
state covariance and PN = ΠN PΠN , its N-mode projection. Write R j := α2µ j + γ and define µmin

N+1 :=
min j>N µ j.

(1) Exact diagonal-Q case (equality). If Q is diagonal in the Zernike basis, i.e., Q jk = q j δ jk, with
q j = 〈Z j,QZ j〉µ ≥ 0, then

‖P − PN‖op = sup
j>N
〈Z j, PZ j〉µ = sup

j>N

q j

2R j
= sup

j>N

q j

2(α2µ j + γ)
. (6.2)

(2) Controlled off-diagonal case (explicit assumption). Decompose Q = Qdiag + Qoff , where Qdiag is
diagonal in the Zernike basis, and let Qoff,rest := (Qoff)|ΩN denote the off-diagonal residual restricted
to ΩN = {( j, k) : max( j, k) > N}. If there exists εN ≥ 0 such that

‖Qoff,rest‖op ≤ εN sup
j>N

q j, (6.3)

then the truncation tail satisfies the explicit bound

‖P − PN‖op ≤
sup j>N q j + ‖Qoff,rest‖op

2(α2µmin
N+1 + γ)

≤
(1 + εN) sup j>N q j

2(α2µmin
N+1 + γ)

. (6.4)

In particular, when Q is diagonal-dominant in the sense of Eq (6.3) with small εN , the operator-norm
tail is controlled by the diagonal spectrum.
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(3) Rate statements under additional assumptions. If µmin
N+1 ∼ Cµ

√
N (Remark 6.1) and sup j>N q j =

O(N−p), then
‖P − PN‖op = O(N−(p+1/2)). (6.5)

For Kolmogorov-type modal spectra in cumulative indexing, sup j>N q j = O(N−11/6), hence ‖P −
PN‖op = O(N−(11/6+1/2)) = O(N−7/3).

Proof. The proof involves analysis of the spectral representation of P and careful partitioning of the
operator into truncated and untruncated parts. Full details are provided in Appendix D. �

Theorem 6.2 (Zernike Hilbert–Schmidt truncation error). Assume Q ∈ HS(H) (Hilbert–Schmidt).
Then the Hilbert–Schmidt truncation tail admits the exact identity

‖P − PN‖
2
HS =

∑
( j,k)∈ΩN

|Q jk|
2(

α2(µ j + µk) + 2γ
)2 , ΩN = {( j, k) ∈ N2 : max( j, k) > N}. (6.6)

Consequently, defining

Qrest := Q|ΩN , δN := min
( j,k)∈ΩN

(
α2(µ j + µk) + 2γ

)
, (6.7)

we obtain the practical bound

‖P − PN‖HS ≤
‖Qrest‖HS

δN
. (6.8)

Any simplified rate statement (e.g., ‖Qrest‖HS = O(N−β)) is an assumption about the forcing tail
motivated by a specific noise model; combined with δN = O(α2

√
N+γ) (Remark 6.1), such assumptions

yield corresponding algebraic convergence rates for ‖P − PN‖HS.

Proof. The Hilbert-Schmidt norm directly sums squared entries of the operator. The proof details
the decomposition of P − PN and utilizes the spectral representation. Full details are provided in
Appendix D. �

Remark 6.3 (Physical interpretation of convergence). The derived bounds explicitly show dependence
on key system parameters: large γ (uniform dissipation) and large α2 (geometric scaling of spatial
dissipation) both enhance convergence by increasing modal dissipation. Critically, convergence rates
depend on the decay of noise modal contributions (q j or (Q) jk), with structured noise (Theorem 4.2)
enabling significantly higher rates. These results provide quantitative guidance for designing Zernike-
based modal control systems by predicting the necessary truncation order for a given accuracy.

6.1. A priori truncation index for a target tolerance

Assume Q is diagonal in the Zernike basis with q j ↘ 0 and let µ j denote the Zernike eigenvalues of
LZ ordered nondecreasingly. From P j j = q j/(2(α2µ j + γ)) (white-in-time case), the tail operator error
equals ‖P − PN‖op = sup j>N P j j. Hence any N satisfying

sup
j>N

q j

2(α2µ j + γ)
≤ ε (6.9)
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achieves ‖P−PN‖op ≤ ε. If q j ≤ Cq j−p with p > 0 and µ j ≥ Cµ

√
j (Zernike growth), then the monotone

envelope yields

‖P − PN‖op ≤
Cq

2(α2Cµ

√
N + γ)

N−p ≤ ε, (6.10)

which implies the explicit design rule

N ≥
(
Cq

2ε

) 2
2p+1

(
1

α2Cµ

) 2
2p+1

(dominant α2Cµ

√
N � γ regime). (6.11)

For OU forcing with correlation time τ, P j j = q j/[(α2µ j + γ)(α2µ j + γ + τ−1)] and the same argument
gives

‖P − PN‖op ≤ sup
j>N

q j

(α2µ j + γ)(α2µ j + γ + τ−1)
≤ ε, (6.12)

leading to a more favorable N(ε) due to the additional uniform shift τ−1 in the denominator.

7. Results and examples

7.1. Numerical protocol and reference configuration

To validate the theoretical results, we compute steady-state covariances in the Zernike eigenbasis
under white and colored forcing and compare empirical truncation errors to the bounds derived in
Theorems 6.1 and 6.2. Throughout, R j = α2µ j + γ denotes the (positive) decay rate associated with the
jth Zernike mode, where µ j is the corresponding eigenvalue of the Zernike operator on the disk.

For a truncation level N, we denote by ΠN the projection onto the first N Zernike modes
(cumulative/Noll-like indexing) and define PN := ΠN PΠN . We also define the complement index
set

ΩN := {( j, k) ∈ N2 : max( j, k) > N}. (7.1)

Since the infinite-dimensional P is not available in closed form for general non-diagonal forcing, we
compute a high-resolution reference solution at size Nref and measure truncation errors relative to this
reference:

Pref := PNref , Eop(N) := ‖Pref − PN‖op, EHS(N) := ‖(Pref − PN)|ΩN‖HS. (7.2)

(Here, |ΩN denotes a restriction to index pairs ( j, k) ∈ ΩN .)
Unless otherwise stated, we use Nref = 600 and truncations N ∈ {50, 100, 150, 200, 300, 400, 500},

with parameters
α = 1, γ = 0.5, τ = 1.5, (7.3)

and we exclude the piston mode ( j = 1) from the forcing for clarity in the spectral tails.

7.2. White-noise case: Kolmogorov-type forcing and operator-norm equality

We first consider white-in-time forcing with a Kolmogorov-type spectrum in the Zernike basis. The
Kolmogorov operator in Zernike coordinates is not perfectly diagonal; rather, it exhibits a structured
mode-coupling pattern dictated by isotropy and Zernike symmetries (Theorem 4.2). To isolate and
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visually validate the sharp operator-norm truncation statement of Theorem 6.1, we use a standard
diagonal Kolmogorov-type proxy with modal variances

q j ∝ (n j + 1)−11/3, (7.4)

where n j is the radial degree of the jth Zernike mode. (The next subsection addresses genuinely non-
diagonal Q consistent with Theorem 4.2).

Remark 7.1 (Proxy versus full Kolmogorov structure). In the diagonal experiment below we use a
standard diagonal Kolmogorov-type proxy for q j to isolate and visually validate the sharp operator-
norm tail statement. This proxy should not be interpreted as asserting that the full Kolmogorov
covariance is diagonal in Zernike coordinates; rather, the exact symmetry/selection rules are described
in Theorem 4.2, and the subsequent non-diagonal experiments illustrate the truncation bounds in
genuinely coupled power-spectral-density (PSD), Hilbert–Schmidt settings.

For the diagonal generator L = −diag(R1, . . . ), the steady covariance P solves the Lyapunov
equation

LP + PL = −Q, (7.5)

and admits the closed-form entries

P jk =
Q jk

R j + Rk
. (7.6)

We compute PN in two ways: (i) by solving the truncated Lyapunov equation (Eq (3.1)), truncated at
N), and (ii) by evaluating Eq (7.6) on the truncated block. These agree to machine precision for each
tested N.

Validation of Theorem 6.1 (operator norm, diagonal Q). In the diagonal case, Theorem 6.1
implies an equality for the operator-norm truncation tail:

‖P − PN‖op = sup
j>N
〈Z j, PZ j〉µ = sup

j>N

q j

2R j
. (7.7)

Figure 2(a) shows a log–log plot of the measured operator-norm tail Eop(N) = ‖Pref − PN‖op

overlaid with the theoretical curve Bop(N) = sup j>N
q j

2R j
. The two curves coincide across all tested

truncations, confirming Eq (7.7). Table 1 reports representative values and the ratio Eop(N)/Bop(N) ≡ 1
(numerically exact in this experiment).

Table 1. Representative operator-norm truncation values in the diagonal Kolmogorov-type
experiment. The ratio Eop(N)/Bop(N) = 1 for all tested N, validating the equality form of
Theorem 6.1.

N Eop(N) Bop(N) E/B
50 5.82 × 10−6 5.82 × 10−6 1.000
200 2.20 × 10−7 2.20 × 10−7 1.000
500 2.42 × 10−8 2.42 × 10−8 1.000
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7.3. White-noise case: non-diagonal PSD forcing and Hilbert–Schmidt bounds

We next validate the general Hilbert–Schmidt truncation theory with non-diagonal PSD, HS noise
covariances Q in the Zernike basis. Theorem 4.2 implies that physically realistic Kolmogorov forcing is
structured (block-diagonal in azimuthal frequency and constrained by Zernike symmetries). Motivated
by this, we test two distinct non-diagonal models:

(1) Structured HS model (Kolmogorov symmetry proxy). Off-diagonal couplings are permitted
only between modes with the same azimuthal frequency and matching radial parity (consistent
with the selection rules in Theorem 4.2), and decay with radial-degree separation. In the present
configuration, the off-diagonal HS mass fraction is ‖Q − diag(Q)‖HS/‖Q‖HS ≈ 0.43%.

(2) General HS model (broad but decaying couplings). Off-diagonal couplings are broadly
present and decay with index distance. Here, the off-diagonal HS mass fraction is ‖Q −
diag(Q)‖HS/‖Q‖HS ≈ 2.95%.

Both models share the same diagonal spectrum (Kolmogorov-type q j), but differ in their correlation
structure; in particular, their relative HS difference satisfies ‖Q(gen) − Q(str)‖HS/‖Q(str)‖HS ≈ 2.94%.

In both cases, since the generator remains diagonal in the Zernike basis, we compute the steady
covariance P by solving the truncated Lyapunov equation and (equivalently) by evaluating the closed
form of Eq (7.6) at the chosen truncation.

Validation of Theorem 6.2 (Hilbert–Schmidt tail bound). Theorem 6.2 yields an HS truncation
bound of the form

‖P − PN‖HS ≤
‖Qrest‖HS

δN
, δN := min

( j,k)∈ΩN

(
α2(µ j + µk) + 2γ

)
, (7.8)

where Qrest denotes the restriction of Q to ΩN . Figures 2(b) and 3(a) show the measured HS tail
EHS(N) = ‖(Pref − PN)|ΩN‖HS overlaid with the theoretical bound BHS(N) = ‖Qrest‖HS/δN . In both
noise models the bound holds across all tested truncations, with ratios EHS(N)/BHS(N) in the range
≈ 0.14–0.27.
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(a) Diagonal Kolmogorov-type proxy: Eop(N) vs.
Bop(N) (Theorem 6.1 equality).

(b) Structured non-diagonal PSD, HS Q (Kolmogorov
symmetry proxy): EHS(N) vs. BHS(N) (Theorem 6.2).

Figure 2. White-noise validation of truncation theory in the Zernike basis. (a) Diagonal
Kolmogorov-type proxy: the measured operator-norm tail Eop(N) coincides with the
theoretical curve Bop(N) = sup j>N

q j

2R j
, confirming the equality case of Theorem 6.1. (b)

Structured non-diagonal PSD, HS forcing consistent with the symmetry constraints of
Theorem 4.2: the measured HS tail stays strictly below the theoretical bound BHS(N) =

‖Qrest‖HS/δN from Theorem 6.2.

7.4. OU colored-noise case: Augmented Lyapunov solution and τ identifiability

We finally consider colored forcing modeled by an OU process with correlation time τ. Following
Section 5 of the paper, we form the augmented state and solve a finite-dimensional Lyapunov equation
in the augmented space to obtain the stationary covariance block Pxx.

Validation of the augmented-state covariance formula. For diagonal Q = diag(q j), the diagonal
entries admit the closed-form expression (cf. Eq (5.3) and Corollary 5.1):

(Pxx) j j =
q j

R j (R j + τ−1)
. (7.9)

Our augmented-state Lyapunov computation matches this closed form to machine precision in the
tested configuration (relative error ≈ 10−16), confirming correctness of the OU formulation and its
numerical implementation.

Validation of τ recovery. We validate the identifiability mapping in Section 5.1 via the per-mode
inversion

τ−1 =
q j

R j(Pxx) j j
− R j, (7.10)

and recover τ from synthetic (Pxx) j j values. To mimic estimation uncertainty, we perturb (Pxx) j j

by multiplicative noise and aggregate the resulting τ̂−1
j robustly: we discard nonphysical values with

τ̂−1
j ≤ 0, apply a trimmed mean, and use signal weights proportional to (Pxx) j j. Figure 3(b) reports

the recovered τ̂ versus the noise level. As expected, the mapping recovers τ accurately in the noise-
free and small-noise regimes; at larger noise the estimate degrades, providing a quantitative sensitivity
assessment of the procedure.

AIMS Mathematics Volume 11, Issue 1, 2406–2429.



2421

(a) General non-diagonal PSD, HS Q: EHS(N) vs.
BHS(N) (Theorem 6.2).

(b) OU forcing: recovered τ̂ vs. multiplicative noise
level on synthetic (Pxx) j j.

Figure 3. Additional validations beyond the diagonal setting. (a) A broadly coupled (yet
HS) non-diagonal PSD noise model also satisfies the HS truncation bound of Theorem 6.2
across all tested truncations. (b) OU colored-noise validation: the identifiability map from
Section 5.1 recovers the true τ accurately in the noise-free and small-noise regimes; the plot
quantifies degradation at higher noise levels.

8. Conclusions

This paper develops a disk-adapted synthesis of classical connections between linear dissipative
dynamics, steady-state covariances, and Lyapunov/Sylvester equations, and provides rigorous
quantification for Zernike systems on the unit disk.

Our main results include:

• Zernike-specialized steady covariance construction: For the unit disk, the Zernike eigenbasis
yields a direct modal representation of steady covariances via finite-dimensional Lyapunov
equations.

• Quantified truncation control: We prove explicit a priori truncation-error bounds for Zernike
covariance truncations in both operator and Hilbert–Schmidt norms. In particular, for diagonal
Kolmogorov-type spectra the operator-norm tail decays asO(N−7/3), enabling principled selection
of truncation order for a target accuracy.

• OU-colored forcing and identifiability: We extend the steady-state covariance formulation to
exponentially correlated (OU) forcing via an augmented-state Lyapunov/Sylvester construction,
yielding closed-form denominator shifts and a covariance-based inversion map for the OU
correlation time τ.

Finally, the numerical examples in Section 7 validate the Lyapunov solves, confirm the sharp
diagonal operator-norm tail formula, verify the Hilbert–Schmidt truncation bounds for non-diagonal
PSD forcing models, and demonstrate τ recovery from synthetic modal covariance data.
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A. Proofs for the master energy dissipation framework

A.1. Proof of Proposition 2.1

Under Assumption 2.1 (L is self-adjoint, dissipative with eigenvalues λk ≤ −γ0 < 0) and
Assumption 2.2 (Q is positive, self-adjoint trace-class), the unique, positive, self-adjoint steady-state
energy covariance operator P exists and is given by the absolutely convergent energy dissipation
integral [2, 3]:

P =

∫ ∞

0
eLtQeLt dt. (A.1)

To show that this P solves the Lyapunov equation LP + PL = −Q, we differentiate:
d
dt

(eLtQeLt) = LeLtQeLt + eLtQeLtL∗. (A.2)

Since L is self-adjoint, L∗ = L. Integrating from 0 to∞:

[eLtQeLt]∞0 =

∫ ∞

0
(LeLtQeLt + eLtQeLtL) dt = LP + PL. (A.3)
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As t → ∞, eLt → 0 due to the dissipative nature of L (eigenvalues are negative). At t = 0, eL0 = I.
Thus, 0 − Q = LP + PL, which is LP + PL = −Q.

To obtain the spectral formula (2.3), we test the Lyapunov equation in the eigenbasis {φk} of L:

〈φ j, (LP + PL)φk〉 = 〈φ j,−Qφk〉. (A.4)

Using Lφ j = λ jφ j and the self-adjointness of L, we have 〈Lφ j, Pφk〉 = λ j〈φ j, Pφk〉 and 〈φ j, PLφk〉 =

λk〈φ j, Pφk〉. Summing these gives:

(λ j + λk)〈φ j, Pφk〉 = −〈φ j,Qφk〉. (A.5)

Since λ j, λk ≤ −γ0 < 0, we have λ j + λk < 0. Therefore, we can divide to get:

(P) jk =
〈φ j,Qφk〉

−(λ j + λk)
, (A.6)

where (P) jk = 〈φ j, Pφk〉 and (Q) jk = 〈φ j,Qφk〉.

B. Proofs for Zernike geometry

B.1. Proof of Theorem 4.1

The Hilbert space for optical systems on the unit disk is L2(D, dµ), with the normalized area
measure dµ = 1

π
r dr dθ. In polar coordinates (r, θ), the complex Zernike circle polynomials are

Znm(r, θ) = R|m|n (r) eimθ, where n ≥ |m| and n − |m| is even. These form an orthonormal basis.
Consider the differential operator LZ defined as:

LZ f = −
1
r
∂r

(
r(1 − r2) ∂r f

)
−

1
r2 ∂θθ f . (B.1)

This operator acts on functions with the natural boundary condition
[
(1−r2)∂r f

]∣∣∣
r=1

= 0, which ensures
regularity at r = 1 (boundary) and at r = 0 (center) for Zernike polynomials. Applying this operator to
a Zernike mode Znm:

∂θθZnm = −m2Znm. (B.2)

For the radial part, we use the well-known radial ODE satisfied by R|m|n (r) (from its definition as a
hypergeometric polynomial transformation, specifically the Jacobi polynomial part):

(1 − r2)
d2R|m|n

dr2 +
1 − 3r2

r
dR|m|n

dr
+

(
n(n + 2) − m2

)
R|m|n = 0. (B.3)

The first term for Znm involves the radial part of LZ: −1
r

d
dr

(
r(1 − r2) dR|m|n

dr

)
= −

(
(1 − r2)d2R|m|n

dr2 + ( 1
r −

3r) dR|m|n
dr

)
. From the radial ODE, we directly have: (1 − r2)d2R|m|n

dr2 + 1−3r2

r
dR|m|n

dr = −
(
n(n + 2) − m2

)
R|m|n .

Therefore, substituting this back: −1
r

d
dr

(
r(1 − r2) dR|m|n

dr

)
=

(
n(n + 2) − m2)R|m|n .

Thus, Znm are eigenfunctions of LZ with eigenvalues µnm = n(n + 2) −m2. Since n ≥ |m| and n − |m|
is even, we can write µnm = (n− |m|)(n+ |m|+2) ≥ 0. The operatorLZ is self-adjoint with respect to the
inner product 〈·, ·〉µ due to Green’s identity and the stated boundary condition, ensuring a real spectrum
and orthonormal eigenbasis. Finally, the full dissipative operator is L = −α2LZ − γI. Its eigenvalues
are λnm = −α2µnm − γ. Since α2 > 0, γ > 0, and µnm ≥ 0, it follows that λnm ≤ −γ < 0, satisfying
Assumption 2.1. The piston mode (n = 0,m = 0) has µ00 = 0, yielding the least negative eigenvalue
λ00 = −γ.
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B.2. Proof of Theorem 4.2 (Structure of Q in the Zernike basis)

The matrix elements of the noise operator Q in the Zernike basis are given by:

(Q) jk = 〈Z j,QZk〉µ =

"
D×D

Z j(x) C(x, x′) Zk(x′) dµ(x) dµ(x′). (B.4)

For atmospheric turbulence following the Kolmogorov model, the spatial phase covariance function
C(x, x′) (for circular apertures and statistically isotropic conditions) is rotationally invariant. This
means C(x, x′) depends only on r, r′ and the angular difference ∆θ = θ − θ′, and not on the absolute
angles θ, θ′. Therefore, C(r, r′,∆θ) can be expanded in a Fourier series:

C(r, r′,∆θ) =
∑
`∈Z

c`(r, r′) ei`(θ−θ′). (B.5)

Substitute Z j(r, θ) = R|m j |
n j (r) eim jθ and Zk(r′, θ′) = R|mk |

nk (r′) eimkθ
′

, and integrate over θ and θ′:" 2π

0

∫ 2π

0
Z j(r, θ)C(r, r′,∆θ)Zk(r′, θ′) dθ dθ′ (B.6)

=

" 2π

0

∫ 2π

0
R|m j |

n j (r)eim jθ
∑
`∈Z

c`(r, r′) ei`(θ−θ′)R|mk |
nk

(r′)eimkθ
′

dθ dθ′

= R|m j |
n j (r)R|mk |

nk
(r′)

∑
`∈Z

c`(r, r′)
(∫ 2π

0
ei(m j+`)θ dθ

) (∫ 2π

0
ei(mk−`)θ′ dθ′

)
.

The angular integrals are non-zero only if m j +` = 0 and mk−` = 0, which implies ` = −m j and ` = mk.
Therefore, m j = mk. If m j , mk, then (Q) jk = 0. This confirms the first condition (block-diagonal in m).

For a fixed m j = mk = m, the expression for (Q) jk becomes (after normalizing for dµ):

(Q) jk =
1
π2

∫ 1

0

∫ 1

0
R|m|n j

(r)cm(r, r′)R|m|nk
(r′) r dr r′ dr′. (B.7)

For statistically isotropic Kolmogorov turbulence, Noll’s derivations show that the radial covariance
function cm(r, r′) is highly structured. While the general theory does not universally demand vanishing
integrals purely based on radial index parity for all m, specific forms of cm(r, r′) lead to significant decay
or even orthogonality for modes with different parity or large index differences. Thus, for practical
applications, the coupling between modes with significantly different radial degrees (for a fixed m) or
different parities is often negligible, especially for higher modes, consistent with the description of Q
having a structured sparse form and coupling primarily for lower modes.

C. Proofs for the OU extension

C.1. Proof of Theorem 5.1

We analyze the stochastic system:

ẋ(t) = Lx(t) + η(t), (C.1)
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dη(t) = −τ−1η(t) dt +
√

2τ−1 Q1/2 dWt.

Let z(t) B
[
x(t)
η(t)

]
be the augmented state. The system can be written as:

dz(t) = Az(t) dt + G dWt, (C.2)

where

A =

[
L I
0 −τ−1I

]
, G =

[
0

√
2τ−1 Q1/2

]
. (C.3)

The unique steady-state covariance P = E[zz∗] solves the augmented Lyapunov equation:

AP + PA∗ + GG∗ = 0. (C.4)

Let P be partitioned as P =

[
Pxx Pxη

Pηx Pηη

]
. The term GG∗ is

[
0 0
0 2τ−1Q

]
. Substituting these blocks into the

Lyapunov equation gives the following system of operator equations:

LPxx + PxxL
∗ + Pxη + Pηx = 0, (C.5)

LPxη + Pxη(−τ−1I) + Pηη = 0, (C.6)
(−τ−1I)Pηη + Pηη(−τ−1I) + 2τ−1Q = 0. (C.7)

We solve this system sequentially:

(1) From Eq (C.7): −2τ−1Pηη + 2τ−1Q = 0 =⇒ Pηη = Q. This confirms that Q is indeed the
stationary covariance of η.

(2) From Eq (C.6), we substitute Pηη = Q: LPxη − τ
−1Pxη = −Q. This is an operator Sylvester

equation (L − τ−1I)Pxη = −Q. Since L is self-adjoint with eigenvalues λ j and I commutes with
L, we can express the solution in the eigenbasis:

(λ j − τ
−1)(Pxη) jk = −(Q) jk =⇒ (Pxη) jk =

−(Q) jk

λ j − τ−1 . (C.8)

Since Pηx = P∗xη, we have (Pηx) jk = (Pxη)k j =
−(Q)k j

λk−τ−1 . Assuming Q and L are real for simplicity,

(Pηx) jk =
−(Q)k j

λk−τ−1 . If Q is symmetric, then (Q) jk = (Q)k j.

(3) Substitute Pxη and Pηx into Eq (C.5): LPxx + PxxL
∗ = −(Pxη + P∗xη). In the eigenbasis, for j, k:

(λ j + λk)(Pxx) jk = −

(
−(Q) jk

λ j − τ−1 +
−(Q)k j

λk − τ−1

)
. (C.9)

If L and Q are real-valued (as is the case for Zernike systems when Z j are real, and Kolmogorov
Q in the standard Noll basis), then (Q)k j = (Q) jk:

(λ j + λk)(Pxx) jk = (Q) jk

(
1

λ j − τ−1 +
1

λk − τ−1

)
= (Q) jk

λk − τ
−1 + λ j − τ

−1

(λ j − τ−1)(λk − τ−1)
. (C.10)
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Therefore,

(Pxx) jk =
(Q) jk

(λ j + λk)
λ j + λk − 2τ−1

(λ j − τ−1)(λk − τ−1)
. (C.11)

This can be rewritten using the modal dissipation rates δ j = −λ j > 0:

(Pxx) jk =
(Q) jk

(δ j + δk)
−(δ j + δk) − 2τ−1

(−δ j − τ−1)(−δk − τ−1)
=

(Q) jk

−(δ j + δk)
(δ j + δk + 2τ−1)

(δ j + τ−1)(δk + τ−1)
. (C.12)

Or, using −λ j as in the theorem statement:

(Pxx) jk =
(Q) jk

(−λ j)(−λk)
·

(−λ j − λk + 2τ−1)
((−λ j + τ−1)(−λk + τ−1))

. (C.13)

For diagonal Q, where j = k, we have (Pxx) j j =
(Q) j j

(−λ j)(−λ j+τ−1) , as given in Eq (5.3).

D. Proofs of error bounds

D.1. Proof of Theorem 6.1

Let P be the exact covariance operator and PN = ΠN PΠN its N-mode projection, where ΠN is the
orthogonal projection onto span{Z1, . . . ,ZN}. The error operator is EN = P − PN . In the Zernike basis,
P jk = (Q) jk/(α2(µ j + µk) + 2γ).

(1) Exactly diagonal noise: If Q is diagonal, (Q) jk = q jδ jk, and then P is also diagonal: (P) jk =

P j jδ jk =
q j

2(α2µ j+γ)δ jk. The operator PN keeps the first N diagonal entries, i.e., (PN) j j = P j j for
j ≤ N and (PN) j j = 0 for j > N. The error operator P − PN has entries (P − PN) j j = 0 for j ≤ N
and (P − PN) j j = P j j for j > N. The operator norm of a diagonal operator is the supremum of its
diagonal entries:

‖P − PN‖op = sup
j>N
|(P − PN) j j| = sup

j>N
P j j = sup

j>N

q j

2(α2µ j + γ)
. (D.1)

This proves Eq (6.2).

(2) Structured noise with diagonal dominance: For general Q, the operator P−PN can be decomposed
into three blocks corresponding to the truncation:

P − PN = ΠN PΠ⊥N + Π⊥N PΠN + Π⊥N PΠ⊥N , (D.2)

where Π⊥N = I −ΠN . For many physical systems (such as Kolmogorov turbulence as discussed in
Theorem 4.2), the noise operator Q is sparse or rapidly decaying away from the diagonal in the
Zernike basis. This structured nature of Q (e.g., block-diagonal or band-diagonal after sorting)
leads to P also exhibiting similar spectral properties. In such cases, off-diagonal terms involving
ΠN PΠ⊥N (coupling modes below N with modes above N) and Π⊥N PΠN are generally smaller and
decay faster than diagonal terms. Thus, the operator norm error is predominantly set by Π⊥N PΠ⊥N ,
whose entries are P jk for j, k > N. The largest entries in this block are typically the diagonal ones:

‖P − PN‖op ≈ ‖Π
⊥
N PΠ⊥N‖op = sup

j>N,k>N
|〈Z j, PZk〉|. (D.3)
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For a sufficiently diagonally dominant Q (in the sense that
∑

k, j |Q jk| � q j), the largest elements
are (P) j j. Therefore, we obtain the practical bound in Eq (6.4). This assumes that q j provides
the dominant scale of elements for j > N. The term min j>N(α2µ j + γ) provides the smallest
denominator among the modes excluded, controlling the upper bound. The minimum eigenvalue
µmin

N+1 refers to the smallest µ j among j > N. As shown in Remark 6.1, µmin
N+1 ∼ Cµ

√
N.

(3) Convergence rates: Substituting µ j ∼ Cµ

√
j into the bound:

‖P − PN‖op .
sup j>N q j

2(α2Cµ

√
N + 1 + γ)

. (D.4)

• If q j is bounded (e.g., q j ≈ C): The convergence is O(N−1/2).

• For q j ∼ j−p: The convergence is O(N−pN−1/2) = O(N−(p+1/2)).

• For Kolmogorov turbulence, (Q) j j modes with n j > 1, excluding piston/tilt, scale as (n j(n j +

1))−11/6 in a similar way as with to Noll [16]. Using the simpler scaling from Noll, the RMS
values for Zernike mode coefficients 〈a2

j〉 for Kolmogorov fall off as (n j)−11/3 for n j > 1. So,
q j ∼ n−11/3

j . Given n j ∼
√

j for the cumulative index, q j ∼ (
√

j)−11/3 = j−11/6. Therefore,
p = 11/6. The convergence rate for Kolmogorov turbulence becomes O(N−(11/6+1/2)) =

O(N−(11/6+3/6)) = O(N−14/6) = O(N−7/3).

D.2. Proof of Theorem 6.2

The Hilbert-Schmidt norm of an operator A is defined as ‖A‖2HS =
∑

j,k |(A) jk|
2 in an orthonormal

basis. Let EN = P − ΠN PΠN be the approximation error. In the Zernike basis, the matrix elements of
EN are:

(EN) jk =

0 if j ≤ N and k ≤ N,

(P) jk if j > N or k > N.
(D.5)

Thus, the Hilbert-Schmidt norm squared is:

‖P − PN‖
2
HS =

∑
j,k∈N

( j≤N∧k>N)∨( j>N∧k≤N)∨( j>N∧k>N)

|(P) jk|
2. (D.6)

Substituting the spectral form of (P) jk =
(Q) jk

(α2(µ j+µk)+2γ) , we get:

‖P − PN‖
2
HS =

∑
j,k∈N

( j≤N∧k>N)∨( j>N∧k≤N)∨( j>N∧k>N)

|(Q) jk|
2

(α2(µ j + µk) + 2γ)2 . (D.7)

This explicitly proves Eq (6.6).
For the practical bound in Eq (6.8), let ΩN = {( j, k) : max( j, k) > N}. This is the set of indices for

terms remaining in P − PN . For any ( j, k) ∈ ΩN , at least one index is greater than N. Therefore:

µ j + µk ≥ µ
min
N+1 + µ1 or µ j + µk ≥ µ1 + µmin

N+1 or µ j + µk ≥ 2µmin
N+1. (D.8)

More generally, minmax( j,k)>N(µ j + µk) ≥ µmin
N+1 (considering j or k minimums). The denominator for any

( j, k) ∈ ΩN is lower-bounded by 2γ + α2µmin
N+1.
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Thus, we can bound the sum by using the minimum possible value for the denominator term α2(µ j +

µk) + 2γ for ( j, k) ∈ ΩN . This minimum is bounded by α2µmin
N+1 + 2γ (occurring for ( j, k), where one

index is N + 1 and the other is 00, with µ00 = 0, or even for 2α2µmin
N+1 + 2γ if both j, k > N). Using the

conservative lower bound α2µmin
N+1 + 2γ:

‖P − PN‖
2
HS ≤

1
(α2µmin

N+1 + 2γ)2

∑
( j,k)∈ΩN

|(Q) jk|
2. (D.9)

Let ‖Qrest‖
2
HS =

∑
( j,k)∈ΩN

|(Q) jk|
2. This yields the bound:

‖P − PN‖HS ≤
1

α2µmin
N+1 + 2γ

‖Qrest‖HS. (D.10)

As discussed in Remark 6.1, µmin
N+1 ∼ Cµ

√
N. If the norm of the truncated part of Q, ‖Qrest‖HS, decays

as O(N−β) (which is typical for smooth noise kernels with decaying power in higher modes), then the
overall convergence rate is:

‖P − PN‖HS ∼ O(N−1/2 · N−β) = O(N−(1/2+β)). (D.11)
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