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1. Introduction

Chesneau et al. [4] introduced a generalized form of the Lindley distribution, known as the
modified Lindley (ML) distribution. This model is characterized by a single parameter and possesses
several desirable statistical properties, offering a middle ground between the exponential and Lindley
distributions. Its primary advantage is the enhanced flexibility it provides for modeling lifetime data,
making it particularly useful in reliability and survival analysis. The cumulative distribution function
(CDF) of the ML distribution is expressed as

FX(x; θ) = 1 −
[
1 +

θx
1 + θ

e−θ x
]

e−θ x, x > 0, θ > 0. (1.1)

The corresponding probability density function (PDF) and hazard rate function (HRF) are given,
respectively, by

fX(x; θ) =
θ

1 + θ
e−2θ x

[
(1 + θ)eθ x + 2θx − 1

]
, x > 0, θ > 0 , (1.2)

and
hX(x; θ) =

θ(θx − 1)
(1 + θ)eθ x + θx

+ θ, x > 0, θ > 0. (1.3)

Despite the usefulness of the ML distribution, its single-parameter form restricts its capacity to
represent datasets with varying levels of skewness and dispersion. Adding an extra parameter can
significantly enhance its flexibility, enabling it to capture diverse distributional shapes observed in
complex real-world applications. To overcome the limitations of the original ML distribution, several
generalized versions have been introduced in the literature. Examples include the Marshall–Olkin
modified Lindley (MOML) distribution [8], the sine modified Lindley (SML) distribution [19],
the power modified Lindley (PML) distribution [13], and the new Lindley extension (NLE)
distribution [11], each proposing distinctive structural adjustments that yield improved modeling
performance.

In this paper, we extend the ML distribution by applying the exponentiation technique introduced
by Zacks [20] and then applied by several authors, among them are Mudholkar and Srivastava [14],
Gupta and Kundu [10], Sarhan and Kundu [17], Sarhan and Apaloo [15], and Sarhan et al. [16].
The resulting model, termed the exponentiated modified Lindley (EML) distribution, incorporates an
additional shape parameter that increases its flexibility and enhances its capability to represent a wider
variety of data patterns.

The EML distribution is particularly useful in survival analysis, where it can characterize different
forms of lifetime behavior associated with biological organisms, medical treatment outcomes, and
the durability of mechanical devices. In reliability engineering, it provides an effective framework
for modeling the operational lifespan of industrial components and systems under varying stress
conditions. Beyond these areas, the EML distribution also proves valuable in environmental studies
for modeling extreme phenomena, in actuarial science for assessing insurance-related risks, and in
financial applications where skewed or heavy-tailed loss data often arise. Its ability to accommodate
diverse distributional shapes makes it a versatile and powerful tool for analyzing a wide range of real-
world datasets.

The remainder of this paper is structured as follows. Section 2 introduces the formulation of the
proposed model and discusses the asymptotic behavior of both the PDF and HRF, and the effects
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of the shape parameters. Section 3 explores several important statistical properties of the EML
distribution, including its quantile, moments, moment generating function, incomplete moments,
skewness, and kurtosis. Moreover, Section 4 develops the estimation framework for the EML
distribution, encompassing classical approaches, a tailored Bayesian estimation algorithm, and a
bootstrap procedure for constructing confidence intervals. Section 5 presents a simulation setup
and a comparative analysis of maximum likelihood estimation and Bayesian estimators, evaluating
their accuracy and reliability using average point estimates (APEs), mean square errors (MSEs), and
coverage probabilities (CPs) of 95% confidence and credible intervals across different sample sizes.
Section 6 showcases the versatility of the EML model and its robust estimation framework through
applications to four medical datasets. Finally, Section 7 summarizes the key findings, highlights the
advantages of the EML distribution, and outlines potential avenues for future research.

2. The exponentiated modified Lindley distribution

The CDF of the EML distribution is obtained by raising the CDF of the ML distribution to a power
α, where α > 0. That is, the CDF of the EML distribution is defined as

F(x; θ, α) = [FX(x; θ)]α =
[
1 −

(
1 +

θx
1 + θ

e−θ x
)

e−θ x
]α
, x > 0, θ, α > 0. (2.1)

The PDF of the EML distribution is given as

f (x; θ, α) =
αθ

[
(1 + θ)eθ x + 2θx − 1

]
e−2θ x

1 + θ

[
1 −

(
1 +

θx
1 + θ

e−θ x
)

e−θ x
]α−1

. (2.2)

The corresponding survival function is obtained as

S (x; θ, α) = 1 −
[
1 −

(
1 +

θx
1 + θ

e−θ x
)

e−θ x
]α
. (2.3)

Using the results presented in Eqs (2.1) and (2.2), the corresponding HRF can be expressed as

h(x; θ, α) =
αθe−2θ x

[
(1 + θ)eθ x + 2θx − 1

] [
1 −

(
1 + θx

1+θ e−θ x
)

e−θ x
]α−1

(1 + θ)
{
1 −

[
1 −

(
1 + θx

1+θ e−θ x
)

e−θ x
]α} (2.4)

and the reversed hazard rate function is given in the form

r(x; θ, α) =
αθe−2θ x

[
(1 + θ)eθ x + 2θx − 1

]
(1 + θ)

[
1 −

(
1 + θx

1+θ e−θ x
)

e−θ x
] . (2.5)

We note that the parameter α serves as a shape parameter, controlling the accumulation of
probability mass. It affects the shape and concentration of the PDF without altering the scale parameter
θ. The following two subsections examine the limiting behavior of the model and illustrate the effect
of α on both the PDF and the HRF of the EML distribution.
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2.1. Asymptotic behavior of the PDF

For small values of x (i.e., as x→ 0), we have

αθ
[
(1 + θ)eθ x + 2θx − 1

]
e−2θ x

1 + θ
∼

αθ2

1 + θ
.

Moreover, using the expansions e−θx = 1 − θx + O(x2) and e−2θx = 1 − 2θx + O(x2), it follows that

[
1 −

(
1 +

θx
1 + θ

e−θ x
)

e−θ x
]α−1

=

[
θ2x

1 + θ
+ O(x2)

]α−1

∼

(
θ2x

1 + θ

)α−1

,

where O(x2) represents terms that vanish at least as fast as x2 near zero. Consequently,

f (x; θ, α) ∼
αθ2

1 + θ

(
θ2x

1 + θ

)α−1

=
αθ2α

(1 + θ)α
xα−1, (x→ 0).

Therefore, the asymptotic behavior of the PDF as x→ 0 is given by

lim
x→0

f (x; θ, α) =


0, α > 1,

θ2

1 + θ
, α = 1,

∞, 0 < α < 1.

(2.6)

Moreover, the limit behavior of the PDF of the EML distribution as x→ ∞ is given as

lim
x→∞

f (x; θ, α) = 0.

Furthermore, since the PDF of the EML can be expressed in the form

f (x; θ, α) = α fX(x; θ) [FX(x; θ)]α−1,

the factor [FX(x; θ)]α−1 directly governs the shape of the density as:

• For α > 1, this term suppresses the density near the origin, causing the PDF to flatten near
x = 0 and shift its mode toward larger x. The distribution therefore becomes more spread out and
assigns greater probability to larger values.
• For α < 1, the opposite occurs: The density is amplified near x = 0, producing a sharply peaked

PDF that concentrates probability close to the origin.

In summary, increasing α shifts the distribution to the right and increases its spread, while
decreasing α shifts it to the left and increases the concentration near smaller values of x. Thus, α
determines how rapidly the distribution accumulates probability and where the bulk of its mass lies.
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2.2. Asymptotic behavior of the HRF

Based on the results in Eq (2.6), the HRF exhibits the same limiting behavior as the PDF.
Furthermore, since the HRF can be defined as

h(x; θ, α) =
f (x; θ, α)

1 − F(x; θ, α)
=
α fX(x; θ) [FX(x; θ)]α−1

1 − [FX(x; θ)]α
,

we note that the direction of the hazard rate depends on the value of α. In other words, increasing
α lowers the instantaneous failure rate (or hazard) at every x. This reduction becomes negligible in
the right tail as the survival probability approaches zero. Hence, larger α values correspond to a more
resilient system or process, where failure becomes less likely at each fixed time x.

We present the possible shapes of the PDF and HRF of the EML distribution for different values of
α and θ in Figures 1 and 2, respectively.

Figure 1. The PDF of the EML models at different values of α and θ.

Figure 2. The HRF of the EML models at different values of α and θ.
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3. Statistical properties

Let X follow EML(θ, α), and then we can get the qth quantile by solving the following equation
in x:

g(x) = 1 − q
1
α −

[
1 +

θx
1 + θ

e−θ x
]

e−θ x = 0 , q ∈ (0, 1). (3.1)

Equation (3.1) lacks a closed-form analytic solution for x. To determine the quantile for EML(θ, α), we
must solve this equation numerically. A suitable approach is the bisection method, a reliable numerical
technique that finds roots of a continuous function on a specified interval. This method iteratively
narrows the interval containing the root, ensuring convergence to the desired solution.

Figure 3 illustrates the quantile function defined in Eq (3.1) for representative values of α and θ.
The figure demonstrates how the distribution of the variable characterized by its quantiles (Q1, median,
and Q3) changes under different parameter settings. The main observations drawn from Figure 3 are
summarized below:

• Quantiles as a function of α (with θ fixed): Smaller values of α correspond to distributions
with greater skewness and dispersion, whereas larger α values produce less skewed and more
concentrated distributions.
• Quantiles as a function of θ (with α fixed): The parameter θ primarily influences the horizontal

position of the quantiles without substantially altering the overall shape, skewness, or relative
spread (e.g., the interquartile range-to-median ratio). Its effect is largely one of stretching rather
than reshaping.

Figure 3. Fundamental quantiles (Q1, median, Q3) obtained for several values of the
parameters θ and α.
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3.1. Various measures of moments

The r−th ordinary moment of the EML distribution can be written as

µ
′

r =

∫ ∞

0
xr f (x; θ, α)dx =

∞∑
i=0

i∑
j=0

ψr,i, j(α, θ)
(

θ + 1
(i + j + 1)r+ j+1 +

2(r + j) + 1
(i + j + 2)r+ j+1

)
, (3.2)

where ψr,i, j(α, θ) =
(
α−1

i

)(
i
j

)
(−1)iαΓ(r+ j+1)
θr(1+θ) j+1 .

The moment-generating function is expressed as

MX(t) =
∫ t

0
etx f (x; θ, α)dx

=

∞∑
s=0

∞∑
i=0

i∑
j=0

tsψs,i, j(α, θ)
s!

(
θ + 1

(i + j + 1)s+ j+1 +
2(s + j) + 1

(i + j + 2)s+ j+1

)
. (3.3)

The r−th incomplete moment of the EML distribution is determined by

Ir(t) =
∫ t

0
xr f (x; θ, α)dx

=

∞∑
i=0

i∑
j=0

ϕr,i, j(α, θ)
(
(θ + 1) κr,i, j(θ; t)
(i + j + 1) r+ j+1 +

κr,i, j(θ; t) − 2tr+ j+1e−(i+ j+2)θt

(i + j + 2) r+ j+1

)
, (3.4)

where ϕr,i, j(t;α, θ) =
(
α−1

i

)(
i
j

)
(−1)iα

θr(1+θ) j+1 , κr,i, j(θ; t) = γ(r + j + 1, (i + j + 1)θt), and γ(s, t) =
∫ t

0
vs−1e−vdv is

the lower incomplete gamma function.
Using the first four ordinary moments of the EML distribution, the corresponding measures of

skewness Sk(Y) and kurtosis Ku(Y) can be derived as follows:

Sk(Y) =
µ
′

3 − 3µ
′

1µ
′

2 + 2(µ
′

1)3[
µ
′

2 − (µ′1)2
] 3

2

(3.5)

and

Ku(Y) =
µ
′

4 − 4µ
′

1µ
′

3 + 6(µ
′

1)2µ
′

2 − 3(µ
′

1)4[
µ
′

2 − (µ′1)2
]2 . (3.6)

Table 1 presents the descriptive statistics of the EML distribution based on its first four raw moments.
The table lists the values of the mean (µ

′

1), variance (σ2), skewness (Sk(Y)), and kurtosis (Ku(Y)) for
various combinations of the parameters α and θ. These statistics describe how the location, spread, and
shape of the distribution change as the values of the parameters vary.

From Table 1, it is observed that the mean and higher-order moments decrease as θ increases,
indicating that larger values of the scale parameter shift the distribution toward smaller magnitudes.
The variance also decreases with higher θ, showing that the distribution becomes more concentrated
around the mean. Conversely, increasing the shape parameter α leads to higher mean and variance
values, suggesting a wider and more dispersed form. Moreover, it is evident that both skewness and
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kurtosis are influenced by the parameters α and θ. As α increases, the distribution tends to become
more positively skewed while its kurtosis decreases, indicating a flatter peak. In contrast, increasing
θ generally reduces both skewness and kurtosis, suggesting a more symmetric and lighter-tailed form.
Overall, these results demonstrate the EML distribution’s flexibility in modeling data with different
degrees of asymmetry and tail thickness.

Table 1. Descriptive statistics of the EML distribution.

α θ µ
′

1 µ
′

2 µ
′

3 µ
′

4 σ2 Sk(Y) Ku(Y)

0.1

0.1 2.2508 31.9211 789.8869 27625.36 25.9444 4.2824 28.3789
0.5 0.4002 1.1398 5.6279 38.8189 0.9862 4.7875 35.8969
1.0 0.1855 0.2763 0.7046 2.4879 0.2489 5.1235 40.3393
2.0 0.0859 0.0642 0.0839 0.1537 0.0570 5.2392 42.5185
5.0 0.0332 0.0099 0.0054 0.0042 0.0092 5.5169 47.5184

0.5

0.1 8.0943 139.7546 3783.905 141533.3 74.5460 3.0711 10.9869
0.5 1.5026 5.2363 28.7027 219.2054 2.9569 2.9413 11.2849
1.0 1.5026 1.2335 3.4049 13.0962 0.7323 2.9234 11.3832
2.0 0.3398 0.2965 0.4144 0.7948 0.1849 2.9517 11.9916
5.0 0.1285 0.0456 0.0257 0.0197 0.0287 2.9671 12.3605

1

0.1 12.2858 247.4630 7103.4010 269200.4 96.1352 3.8399 8.8623
0.5 2.3328 9.2870 53.0554 399.9258 3.8859 3.4908 8.4828
1.0 1.1258 2.2689 6.6329 25.6757 0.9789 3.3262 8.4791
2.0 0.5448 0.5434 0.8079 1.6182 0.2518 3.2000 8.7910
5.0 0.2079 0.0829 0.0484 0.0373 0.0396 3.0964 8.8650

2

0.1 17.2107 409.4108 12715.89 497387.3 110.7000 5.9768 7.4931
0.5 3.3442 15.7249 98.6770 790.1646 4.6498 5.3037 7.2397
1.0 1.6284 3.8553 12.2584 50.1418 1.1795 4.9809 7.3914
2.0 0.9589 0.9293 1.4703 2.9785 0.2990 4.6292 7.0342
5.0 0.3106 0.1437 0.0917 0.0752 0.0497 4.3145 7.2078

3

0.1 20.4302 535.8324 17776.13 731166.9 119.6287 8.0014 6.7077
0.5 3.9929 20.8924 139.6440 1165.54 4.9810 7.2015 6.7201
1.0 1.9621 5.0955 17.0857 71.7469 1.2856 6.6839 6.9445
2.0 0.9589 1.2507 2.1031 4.4162 0.3276 6.1774 6.5461
5.0 0.3773 0.1934 0.1296 0.1086 0.0538 5.7768 6.5669

4

0.1 22.7655 643.3591 22370.18 947561.2 125.5584 9.8296 6.4735
0.5 4.4726 25.04817 174.4835 1487.038 5.1248 9.1116 6.2679
1.0 2.1992 6.1763 21.5939 92.1937 1.3156 8.4429 6.1764
2.0 1.0807 1.5117 2.6603 5.7733 0.3349 7.8928 6.1296
5.0 0.4260 0.2353 0.1641 0.1404 0.0556 7.3195 6.5436

7

0.1 27.5197 894.5016 34265.56 1549907 134.4116 14.7398 6.1442
0.5 5.4324 34.9573 266.2326 2387.277 5.5144 13.7353 6.1926
1.0 2.6917 8.6207 32.8857 148.2505 1.4094 12.9795 6.0167
2.0 1.3285 2.1390 4.1171 9.4242 0.3599 12.1729 6.0272
5.0 0.5259 0.3344 0.2556 0.2320 0.0587 11.5084 5.7421
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4. Parameters’ estimation

In this section, we investigate parameter estimation by applying multiple estimation methods,
comparing their assumptions, strengths, and suitability for the data at hand.

4.1. The maximum likelihood method

The likelihood function, for a simple random sample x1, x2, · · · , xn taken from the EML(θ, α), is
given in the form

L(θ, α) =
αnθn

(θ + 1)n

n∏
i=1

[
(1 + θ)eθxi + 2θxi − 1

]
e−2θxi

[
1 −

(
1 +

θxi

1 + θ
e−θxi

)
e−θxi

]α−1

. (4.1)

The log-likelihood function is

L(θ, α) = n lnα + n ln θ − n ln(1 + θ) − 2θ
n∑

i=1

xi +

n∑
i=1

ln
[
(1 + θ)eθxi + 2θxi − 1

]
+ (α − 1)

n∑
i=1

ln
[
1 −

(
1 +

θxi

1 + θ
e−θxi

)
e−θxi

]
.

∂L

∂θ
=

n
θ
−

n
1 + θ

− 2
n∑

i=1

xi +

n∑
i=1

(1 + θ)xieθxi + eθxi + 2xi

(1 + θ)eθxi + 2θxi − 1

+(α − 1)
n∑

i=1

xieθxi(1 + θ)2 + 2θ(1 + θ)x2
i − xi

(1 + θ)2e2θxi
[
1 −

(
1 + θxi

1+θ

)
e−θxi

] ; (4.2)

∂L

∂α
=

n
α
+

n∑
i=1

ln
[
1 −

(
1 +

θxi

1 + θ
e−θxi

)
e−θxi

]
. (4.3)

Using Eq (4.3), we obtain
α̂ = −

n∑n
i=1 ln

[
1 −

(
1 + θxi

1+θe
−θxi

)
e−θxi

] . (4.4)

By substituting expression (4.4) into the right-hand side of Eq (4.2), the maximum likelihood estimate
(MLE) of θ is obtained numerically by solving the following equation:

n
θ
−

n
1 + θ

− 2
n∑

i=1

xi +

n∑
i=1

(1 + θ)xieθxi + eθxi + 2xi

(1 + θ)eθxi + 2θxi − 1

+

− n∑n
i=1 ln

[
1 −

(
1 + θxi

1+θe
−θxi

)
e−θxi

] − 1

 n∑
i=1

xieθxi(1 + θ)2 + 2θ(1 + θ)x2
i − xi

(1 + θ)2e2θxi
[
1 −

(
1 + θxi

1+θ

)
e−θxi

] = 0.

(4.5)

Equation (4.5) does not have a closed-form analytical solution for θ; therefore, a numerical approach
is required. In this study, the bisection method is employed to obtain a numerical estimate of θ, and the
algorithm is implemented using the R software environment.
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To construct confidence intervals for the vector of parameters η = (θ, α), we utilize the asymptotic
properties of the MLEs. Under the standard regularity assumptions, the MLE vector η̂ = (θ̂, α̂) follows
an approximate normal distribution N(η,△−1

n (η)), where △n(η) is the expected Fisher information matrix
given by:

△n(η) = −E
[
∂2L

∂η ∂ηT

]
= −E

 ∂2L
∂θ2

∂2L
∂θ∂α

∂2L
∂α∂θ

∂2L
∂α2

 . (4.6)

Since the analytical expressions for the expected second-order partial derivatives of L are intractable,
the Fisher information matrix cannot be obtained in closed form. Therefore, we employ the observed
Fisher information matrix as a practical alternative. This matrix is evaluated by substituting the
unknown parameters θ and α with their corresponding MLEs, θ̂ and α̂, respectively. The resulting
observed information provides a consistent estimate of the true Fisher information and can be used for
large-sample inference, including the estimation of standard errors and the construction of confidence
intervals. The observed Fisher information matrix is given as

F (η̂) = −

 ∂2L
∂θ2

∂2L
∂θ∂α

∂2L
∂α∂θ

∂2L
∂α2


∣∣∣∣∣∣∣
θ=θ̂, α=α̂

. (4.7)

By inverting the information matrix, one can obtain the asymptotic variances and covariances of the
MLEs corresponding to the vector η̂. Moreover, the approximate 100(1−δ)% confidence intervals (CI)
for the vector of parameters η can then be constructed as follows:

η̂i ± z1− δ2

√
V(η̂i), i = 1, 2,

where V(η̂i) is the ith diagonal element of the inverse observed Fisher information matrix F −1(η̂) and
zq is the upper qth quantile of the standard normal distribution.

4.2. Likelihood intervals

In many parametric settings, closed-form expressions for the sampling distributions of MLEs are
not available. In such cases, likelihood-based interval estimation offers a practical and theoretically
grounded alternative. For each model parameter, we construct what we refer to as a maximum
likelihood interval (MLI), derived from the corresponding relative profile likelihood function.

LetL(θ, α) denote the log-likelihood function, and let (θ̂, α̂) be the MLEs obtained from the sample.
For a fixed parameter of interest θ, the profile log-likelihood is defined as

Lp(θ) = L(θ, α̂),

that is, by fixing θ and maximizing the log-likelihood with respect to the nuisance parameter α. The
100p% MLI for θ is the set of values satisfying r(θ) ≥ log p, 0 < p < 1 (see [12]), where r(θ) is the
relative log-likelihood for θ defined by r(θ) = Lp(θ) − L(θ̂, α̂).

An analogous procedure yields the MLI for the second parameter α. The 100p% MLI for α is the
set of α values satisfying the inequality r(α) = L(θ̂, α) − L(θ̂, α̂) ≥ log p.

For clarity, we note that, asymptotically, a 100(1 − δ)% confidence interval (CI) coincides with a
100p% MLI, where

p = exp
{
− 1

2χ
2
1, 1−δ

}
.
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For example, a 95% CI corresponds to a 14.7% MLI. To illustrate the connection between the standard
likelihood ratio χ2 approximation and the MLI, we provide further details in Appendix A.

Because the profile likelihood functions for θ and α do not yield closed-form solutions for these
inequalities, numerical optimization is required. In this study, the MLIs are computed using iterative
root-finding techniques, such as the Newton–Raphson algorithm. The resulting likelihood intervals are
presented in the application section, where they provide a likelihood-based quantification of uncertainty
for the parameter estimates.

4.3. Bootstrap confidence intervals

Bootstrap methods, introduced by Efron [6], offer a flexible nonparametric framework for
approximating the sampling distribution of a statistic and for constructing confidence intervals when
analytic derivations are unavailable or intractable (see Davison and Hinkley [5]). Let θ̂ = s(X)
denote an estimator of a parameter of interest θ, such as a mean, variance, or regression coefficient,
computed from an observed random sample X = (x1, x2, . . . , xn). The bootstrap procedure involves
repeatedly resampling, with replacement, from the original data to generate B bootstrap samples,
denoted as X∗(1), X∗(2), . . . , X∗(B). For each bootstrap sample, we compute the corresponding statistic
θ̂∗(b) = s(X∗(b)). The empirical distribution of {θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B)} serves as an estimate of the sampling
distribution of θ̂.

Several types of bootstrap confidence intervals (CIs) can be constructed from these resamples.
Appendix B describes four commonly used approaches to bootstrap confidence intervals.

The following algorithm outlines the computational steps that can be implemented in R to obtain
the four types of bootstrap confidence intervals described in Appendix B.

Algorithm 1: Bootstrap confidence intervals for a parameter θ.
Input: Sample x = (x1, . . . , xn), number of bootstrap samples B
Output: Normal, Basic, Percentile, and BCa confidence intervals for θ
for b = 1 to B do

Draw a bootstrap sample x∗(b) of size n from x;
Compute θ̂∗(b) = s(x∗(b));

Compute Ŝ Eboot =

√
1

B−1

∑B
b=1(θ̂∗(b) −

¯̂θ∗)2;

Normal CI: θ̂ ± zδ/2 Ŝ Eboot;
Basic CI: (2θ̂ − θ̂∗(1−δ/2), 2θ̂ − θ̂∗(δ/2));
Percentile CI: (θ̂∗(δ/2), θ̂

∗
(1−δ/2));

BCa CI:
(
θ̂∗
Φ(z0+

z0+zδ/2
1−a(z0+zα/2) )

, θ̂∗
Φ(z0+

z0+z1−δ/2
1−a(z0+z1−α/2) )

)
.

As shown in Algorithm 1, the lower bounds of the normal and basic bootstrap confidence intervals
may become negative when θ̂ < zδ/2Ŝ Eboot and θ̂ < 1

2 θ̂
∗(1 − δ/2), respectively. Since the model

parameters are restricted to be non-negative, these two types of confidence intervals are therefore not
recommended in this setting.
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4.4. Bayesian method

In this section, we employ the Bayesian approach to estimate the two parameters of the EML(θ, α)
distribution. Since both parameters are positive, we assume that they are independent and follow
gamma prior distributions with hyperparameters (a1, b1) and (a2, b2) corresponding to θ and α,
respectively. The joint prior density of (θ, α), up to a normalized constant, is

g(θ, α) ∝ θa1−1αa2−1e−b1θ−b2α. (4.8)

Combining the prior density in (4.8) with the likelihood function in (4.1), we can derive the posterior
density function of (θ, α), given data x, up to a normalized constant, using Bayes’ theorem.

g(θ, α | x) ∝
α n+a2−1 θ n+a1−1

(1 + θ)n e−b1θ−b2α
n∏

i=1

[
(1 + θ)eθxi + 2θxi − 1

]
e−2θxi

×

[
1 −

(
1 +

θxi

1 + θ
e−θxi

)
e−θxi

]α−1

.

It is clear that the posterior distribution of (θ, α) does not belong to any standard family of distributions,
and the corresponding normalizing constant cannot be evaluated analytically. To overcome this
challenge, we employ the Markov chain Monte Carlo (MCMC) method to generate samples directly
from the posterior distribution without requiring the computation of the normalizing constant. The
simulated draws are then used to approximate the Bayesian point estimates, credible intervals, and
other posterior summaries.

To implement the MCMC algorithm, an appropriate proposal distribution that approximates the
shape of the posterior distribution and is easy to sample from must be selected. A natural choice is
the bivariate normal distribution; however, since the normal distribution is defined over the entire real
line, it does not align with the support of the model parameters, which are strictly positive. To address
this issue, we apply a logarithmic transformation to the parameters such that ϕ1 = log(θ) ∈ R and
ϕ2 = log(α) ∈ R. This transformation allows us to use a bivariate normal proposal distribution to
generate samples for the transformed parameters (ϕ1, ϕ2). Once the MCMC sampling is completed,
the inverse transformation is applied to obtain the corresponding chain of simulated samples for the
original parameters (θ, α).

Explanation. This algorithm (Algorithm 2) implements a random walk Metropolis–Hastings
(RWMH) sampler to obtain draws from the posterior distribution of the transformed parameters
(ϕ1, ϕ2) = (log θ, logα) given the observed data x. A bivariate normal proposal distribution is used with
mean equal to the current state and covariance matrix Σ. Each proposed point is accepted or rejected
based on the Metropolis–Hastings acceptance probability r. After generating N posterior draws, the
inverse transformations θ = eϕ1 and α = eϕ2 are applied to recover samples on the original scale of
the model parameters. These posterior samples are then used to compute Bayesian estimates, credible
intervals, and diagnostic plots.
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Algorithm 2: Random walk Metropolis–Hastings for g(ϕ1, ϕ2 | y).

Input: Data y, initial (ϕ(0)
1 , ϕ(0)

2 ), iterations N, covariance Σ
Output: Posterior samples {(θ(t), α(t))}Nt=1
for t = 1 to N do

Generate proposal: (ϕ∗1, ϕ
∗
2) ∼ N2((ϕ(t−1)

1 , ϕ(t−1)
2 ),Σ);

Compute acceptance ratio: r =
g(ϕ∗1, ϕ

∗
2 | y)

g(ϕ(t−1)
1 , ϕ(t−1)

2 | y)
;

Draw u ∼ Uniform(0, 1);
if u < min(1, r) then

(ϕ(t)
1 , ϕ

(t)
2 )← (ϕ∗1, ϕ

∗
2);

else
(ϕ(t)

1 , ϕ
(t)
2 )← (ϕ(t−1)

1 , ϕ(t−1)
2 );

Compute transformed parameters: θ(t) = eϕ
(t)
1 , α(t) = eϕ

(t)
2 for t = 1, . . . ,N;

return {(θ(t), α(t))}Nt=1.

5. Simulation study

In this section, we present a simulation study designed to evaluate and compare the performance of
ML and Bayesian estimation methods for the parameters (θ, α) of the EML distribution. The primary
goal of this study is to assess the accuracy and reliability of both estimation approaches in terms of
the APEs, MSEs, and CPs of 95% confidence and credible intervals under different sample sizes and
parameter settings.

5.1. Simulation design

Independent random samples of sizes n = 30, 50, 100, 150, 200, and 500 were generated from the
EML distribution. The random samples were simulated using the inverse transform method derived
from the cumulative distribution function of the EML distribution. To examine the effects of different
parameter combinations, we considered three parameter settings: (θ, α) = (1.5, 2.0), (2.0, 3.0), and
(3.0, 5.0). These parameter values were chosen to reflect typical behavior of the EML distribution.

For each parameter setting and sample size, M = 2000 replications were generated. For every
replication, both the ML and Bayesian estimation methods were applied, and the corresponding
estimates of θ and α were recorded.

5.2. Estimation procedures

For the maximum likelihood estimation, the log-likelihood function of the EML model was
maximized numerically using the optim() function in R, employing the BFGS quasi-Newton
optimization algorithm. The observed Fisher information matrix was used to approximate the standard
errors and construct the asymptotic 95% confidence intervals for θ and α.

For the Bayesian estimation, we assumed independent gamma priors for both parameters,
θ ∼ Gamma(a1, b1) and α ∼ Gamma(a2, b2), with small hyperparameter values (a1, a2, b1, b2) =
(0.001, 0.001, 0.001, 0.001) to represent vague or noninformative priors. Since the posterior
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distribution does not have a closed form, we implemented the Metropolis–Hastings algorithm within
a Markov chain Monte Carlo (MCMC) framework to generate posterior samples. The proposal
distribution was chosen to be a bivariate normal on the log-transformed parameters (ϕ1, ϕ2) =
(log θ, logα), ensuring that the back-transformed values remain positive, and the variance–covariance
matrix is obtained as the inverse of the observed Fisher information matrix for the transformed
parameters. Each chain consisted of 15000 iterations, with the first 5000 discarded as burn-in.
Convergence diagnostics, including trace plots and autocorrelation functions, confirmed satisfactory
convergence and mixing of the simulated chains.

5.3. Evaluation criteria

The performance of both estimation methods was evaluated using the following summary statistics,
computed across all M = 2000 replications:

(1) The APE of each parameter, given by ψ̄ =
1
M

M∑
i=1

ψ̂i, where ψ ∈ {θ, α}.

(2) The MSE, defined as MSE(ψ̂) =
1
M

M∑
i=1

(ψ̂i − ψ)2.

(3) The empirical CP of the 95% confidence or credible intervals, computed as the proportion of
intervals that contained the true parameter value.

5.4. Simulation results and discussion

The simulation results are summarized in Table 2. From these results, we observe that both
estimation methods perform well across all sample sizes, and their accuracy improves as n increases.
The Bayesian estimates are slightly more stable for small samples, showing smaller MSEs and CPs
closer to the nominal 95% level. For large samples (n ≥ 200), both methods yield nearly identical
results, confirming their consistency and asymptotic equivalence.

Furthermore, the Bayesian credible intervals tend to be shorter and more accurate than the
asymptotic ML intervals. Overall, the findings indicate that while both methods provide reliable
inference for the EML model, the Bayesian approach offers more robust performance for small to
moderate sample sizes, whereas the ML method remains computationally efficient and accurate for
larger samples.
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6. Applications

In this section, we analyze the proposed EML distribution and compare its performance with several
closely related lifetime models, including the ML [4], SML [19], PML [13], MOML [8], and NLE [11]
distributions, using four medical datasets drawn from different applied contexts. The CDFs of these
distributions are provided in Appendix C.
Data 1: The first dataset consists of the estimated time from the initiation of growth hormone therapy
to the point at which children reached the targeted developmental age. The data were obtained from
the Hormonal Program of the Health Secretariat of Minas Gerais [1]. The data values are given in
Appendix D.
Data 2: The second dataset, introduced by Bantan et al. [3], comprises 106 observations representing
mortality rates during the COVID-19 pandemic in Mexico, recorded between March 4 and July 20,
2020. For analytical convenience, all observations were rescaled by dividing them by five. Such linear
rescaling does not affect the inferential conclusions for the model parameters. The resulting data are
given in Appendix D.
Data 3: The third dataset consists of 20 patient lifetimes under analgesic therapy. The data were
originally reported by Gross and Clark [9] and later revisited by Shah et al. [18]. The data values are
given in Appendix D.
Data 4: The fourth dataset contains daily COVID-19 mortality rate from the Netherlands between
March 31 and April 30, 2020 [2]. The data values are given in Appendix D.

Figures 4–7 provide nonparametric diagnostic plots (boxplot, total time on test (TTT) plot,
violin plot, and Q–Q plot) for all datasets. These graphical tools allow preliminary assessment of
distributional shape and tail behavior:

• Data 1: The data are moderately dispersed and right-skewed, with several large values (above
10) indicating a heavy right tail.
• Data 2: This dataset has the smallest IQR, showing a tightly concentrated distribution with right

skewness and a few high-end observations. Deviations in the upper tail of the Q–Q plot confirm
heavy-tail behavior.
• Data 3: The data exhibit pronounced right skewness with a high outlier.
• Data 4: This dataset shows the greatest dispersion, strong right skewness, and one outlier.

Moreover, the TTT plot for all data sets suggests an increasing failure rate (IFR).

Figure 4. Graphical nonparametric representations of Dataset 1.
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2329

Figure 5. Graphical nonparametric representations of Dataset 2.

Figure 6. Graphical nonparametric representations of Dataset 3.

Figure 7. Graphical nonparametric representations of Dataset 4.

Our analysis has three main objectives:

(1) To demonstrate the practical applicability of the EML model using real medical datasets.
(2) To assess whether extending the ML distribution improves fitting performance.
(3) To compare the two generalizations of the ML, PML, and EML based on likelihood and distance-

based criteria.

To accomplish this, we compute MLEs, evaluate the log-likelihood at the MLEs, and
calculate several model selection criteria: AIC, BIC, CAIC, and HQIC. Additionally, we employ
nonparametric goodness-of-fit measures: the Anderson–Darling (A∗), Cramér–von Mises (W∗), and
Kolmogorov–Smirnov (K–S) statistics along with their P-values. A model is considered superior when
it yields smaller values of the information criteria and test statistics, and larger P-values.

We also conduct likelihood ratio tests (LRTs) comparing the ML and EML models to quantify the
improvement gained through model generalization.
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6.1. Concluding remarks on data analysis

Parametric results. Table 3 presents the MLEs, standard errors, negative log-likelihood values, and
information criteria for all competing models and datasets. Across all four applications, the EML
model consistently achieves the smallest AIC, BIC, CAIC, and HQIC values, confirming its superior
parametric performance.
Nonparametric results. Table 4 reports the W∗, A∗, and K–S statistics and corresponding P-values.
For every dataset, the EML distribution attains the smallest test-statistic values and the largest P-values,
further confirming its excellent goodness-of-fit relative to the alternative models.

Table 3. The MLE(SE), −L, AIC, BIC, CAIC, and HQIC for all models using the four
datasets.

Model θ̂(SE) α̂(SE) −L AIC BIC CAIC HQIC
Data 1

ML θ̂ = 0.2189(0.0285) - 86.5219 175.0440 176.5993 175.1652 175.5809
SML θ̂ = 0.1487(0.0167) - 84.4437 170.8874 172.4428 171.0087 171.4243
PML θ̂ = 0.0834(0.0271) α̂ = 1.5575(0.1788) 80.8252 165.6503 168.7610 166.0253 166.7242
MOML θ̂ = 0.5243(0.1140) α̂ = 9.9372( 6.9927) 82.5778 169.1555 172.2662 169.5305 170.2293
NLE θ̂ = 0.2036(0.0167) α̂ = 1.7614(0.2479) 80.1305 164.2610 167.3716 164.6360 165.3348
EML θ̂ = 0.4481(0.0799) α̂ = 4.4901(1.7426) 78.8368 161.6737 164.7844 162.0487 162.7475

Data 2
ML θ̂ = 0.9359(0.0745) - 110.4736 222.9472 225.6106 222.9857 224.0267
SML θ̂ = 0.6168(0.0417) - 104.3267 210.6534 213.3168 210.6918 211.7329
PML θ̂ = 0.7828(0.0700) α̂ = 1.6130(0.1168) 93.67205 191.3441 196.6710 191.4606 193.5031
MOML θ̂ = 0.9686(0.0734) α̂ = 1.4959(0.0943) 94.2649 192.5299 197.8567 192.6464 194.6889
NLE θ̂ = 0.8385(0.0436) α̂ = 1.7164(0.1391) 92.9019 189.8038 195.1307 189.9203 191.9628
EML θ̂ = 1.7166(0.1735) α̂ = 3.2614(0.6029) 91.3096 186.6192 191.9461 186.7357 188.7782

Data 3
ML θ̂ = 0.5774(0.1017) - 29.0072 60.0144 61.0102 60.2366 60.2088
SML θ̂ = 0.3954(0.0591) - 27.0303 56.0605 57.0563 56.2828 56.2549
PML θ̂ = 0.2274(0.0709) α̂ = 2.3398(0.3374) 19.2199 42.4399 44.4314 43.1458 42.8287
MOML θ̂ = 0.3899(0.0865) α̂ = 2.0343(0.2622) 19.7845 43.5690 45.5605 44.2749 43.9578
NLE θ̂ = 0.5137(0.0322) α̂ = 3.1547(0.5996) 17.2014 38.4028 40.3943 39.1086 38.7916
EML θ̂ = 2.1765(0.4487) α̂ = 32.1017(23.4038) 16.1809 36.3619 38.3533 37.0678 36.7506

Data 4
ML θ̂ = 0.19009(0.0267) - 79.5508 161.1017 162.5029 161.2445 161.5499
SML θ̂ = 0.1279(0.0155) - 78.1325 158.2649 159.6661 158.4078 158.7132
PML θ̂ = 0.0906(0.0342) α̂ = 1.3914(0.1803) 76.8322 157.6644 160.4668 158.1089 158.5609
MOML θ̂ = 0.3835(0.0985) α̂ = 6.2689(4.8853) 77.4315 158.8630 161.6654 159.3075 159.7595
NLE θ̂ = 0.1768(0.0185) α̂ = 1.4686(0.2274) 76.9250 157.8500 160.6524 158.2945 158.7465
EML θ̂ = 0.2883(0.0564) α̂ = 2.2302(0.7518) 76.8178 157.6356 160.4380 158.0800 158.5321
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Table 4. The values of non-parametric statistics for the four datasets.
Model W∗ A∗ K-S P-value W∗ A∗ KS P-value

Data 1 Data 2
ML 0.0798 0.4760 0.0918 0.2307 0.0619 0.3617 0.1762 0.0028
SML 0.1131 0.7253 0.1979 0.1291 0.0751 0.4584 0.1499 0.0171
PML 0.1179 0.7535 0.1235 0.6596 0.0992 0.6259 0.0718 0.6460
MOML 0.1552 0.9609 0.1304 0.5909 0.1105 0.7007 0.0689 0.6957
NLE 0.0891 0.5893 0.0937 0.9182 0.0849 0.4954 0.0749 0.5907
EML 0.0618 0.4251 0.0916 0.9306 0.0576 0.3184 0.0676 0.7185

Data 3 Data 4
ML 0.1026 0.6078 0.3571 0.0122 0.0235 0.1767 0.1671 0.3340
SML 0.1143 0.6771 0.3419 0.0186 0.0291 0.2015 0.1359 0.5898
PML 0.1471 0.8679 0.1779 0.5513 0.0281 0.1967 0.0815 0.9789
MOML 0.1622 0.9509 0.1683 0.6230 0.0445 0.2898 0.0845 0.9707
NLE 0.0773 0.4593 0.1273 0.9024 0.0217 0.1724 0.0818 0.9781
EML 0.0524 0.3071 0.1335 0.8680 0.0214 0.1749 0.0761 0.9897

Likelihood-based confidence intervals. Approximate 95% confidence intervals using 14.7% MLI for
the EML parameters are provided in Table 5. These intervals quantify parameter uncertainty and are
consistent with the MLE-based conclusions.

Table 5. The 14.7% likelihood intervals for the EML parameters, using the four datasets.
Par Data 1 Data 2 Data 3 Data 4
θ (0.3848, 0.5215) (1.5474, 1.9033) (1.9328, 2.4715) (0.2337, 0.3535)
α (3.1665, 6.1407) (2.6828, 3.9193) (20.2305, 48.5471) (1.5269, 3.1186)

Bootstrap confidence intervals. To further assess parameter uncertainty, we computed four types
of bootstrap confidence intervals for θ and α (normal, basic, percentile, and BCa), as summarized in
Table 6. Figure 8 displays the empirical bootstrap sampling distributions of the parameter estimates.

Table 6. The bootstrap 95% confidence intervals for θ and α using all datasets.
Data 1 Data 2

Method θ α θ α

Normal (0.2471, 0.6066) (-0.6339, 8.0885) (1.3779, 2.0020) (2.0261, 4.2474)
Basic (0.2179, 0.5725) (-2.0885, 6.3296) (1.3491, 1.9726) (1.8359, 4.0518)
Percentile (0.3236, 0.6782) (2.6512, 11.0693) (1.4598, 2.0834) (2.4700, 4.6860)
BCa (0.2961, 0.6283) (2.3596, 8.7507) (1.4227, 2.0315) (2.3524, 4.3930)

Data 3 Data 4
Normal (0.7697, 3.2071) (-645.94, 608.38) (0.1600, 0.3832) (-0.5089, 4.1706)
Basic (0.5423, 2.9459) (-298.25, 54.343) (0.1358, 0.3605) (-1.1055, 3.0412)
Percentile (1.4148, 3.8184) (10.301, 362.89) (0.2162, 0.4409) (1.4212, 5.5679)
BCa (1.1983, 3.2912) (7.6839, 174.73) (0.1988, 0.3954) (1.2709, 4.2212)

As noted earlier, the lower bounds of the normal and basic confidence intervals for α are negative,
which is not permissible. Therefore, we prefer the remaining two confidence intervals.
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Figure 8. Bootstrap sampling distributions for θ̂ and α̂, using the four datasets.

Hypothesis testing (LRT). We conducted likelihood ratio tests to evaluate whether the EML
generalization provides a statistically significant improvement over the ML model. Specifically, we
tested

H0 : α = 1 (ML model) vs. H1 : α , 1 (EML model).

The LRT statistic Λ = −2(L0 − L1) is asymptotically χ2
1 under H0. Table 7 reports the LRT statistics

and P-values for all four datasets. In all cases, the null hypothesis is rejected, indicating that the EML
model provides a significantly better fit.

Table 7. Likelihood ratio test statistics and corresponding P-values.

Statistic Data 1 Data 2 Data 3 Data 4
Λ 15.3902 38.3280 25.6526 5.4660
P-value 8.744 × 10−5 5.9798 × 10−10 4.0874 × 10−7 0.01939

Relative log-likelihood and uniqueness of MLE. Figure 9 displays the relative log-likelihood
functions and the likelihood intervals for each model and dataset. Each plot shows a single global
maximum, supporting the uniqueness and stability of the MLEs reported above.

Figure 9. Relative log-likelihood functions along with the likelihood intervals for the four
datasets.

Empirical and fitted CDFs/PDFs. Figures 10 and 11 show the empirical vs. fitted CDFs and PDFs
for the four datasets under the competing models, illustrating visually the improved fit of the EML
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distribution.

Figure 10. Empirical and fitted CDFs of the four datasets using the competing models.

Figure 11. Empirical and estimated PDFs of the four datasets using the competing models.

6.2. Bayesian inferences

We assumed the absence of prior information about the model parameters; therefore, the
hyperparameters of the gamma prior distributions were set to small values (a1 = a2 = b1 = b2 = 0.001),
representing vague or noninformative priors. Based on this assumption, we implemented the MCMC
algorithm described earlier to generate 10,000 samples of (θ, α) from the joint posterior distribution.
To ensure convergence and reduce the influence of the initial values, the first 50% of the samples were
discarded as burn-in, and the remaining 50% were retained for posterior inference.

As a diagnostic assessment of the simulated draws, Figure 12 presents the contour plot of the joint
posterior distribution of (θ, α), overlaid with the simulated draws, together with the marginal posterior
densities of θ and α. Furthermore, Figure 13 displays the trace plots of the marginal draws along with
their corresponding autocorrelation functions. The figures clearly show that the simulated samples
align well with the high-density regions of the posterior distribution, confirming that the MCMC
algorithm adequately explored the target distribution. Additionally, the autocorrelation function (ACF)
decays to nearly zero by lag 12, indicating that the Markov chain achieved good mixing and that
successive draws became approximately independent.
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Figure 12. Contour plots for the posterior distributions along with the simulated draws from
from the MCMC method and the approximated marginal posterior distributions of the model
parameters.

Figure 13. Trace plots and corresponding autocorrelation plots for θ and α based on Data 1
and 2 (left to right, first row) and Data 3 and 4 (left to right, second row).
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Table 8 presents the Bayesian point estimates, the corresponding minimum Bayes risks (MBRs), and
the 95% credible intervals for each parameter across all datasets. As expected, the Bayesian estimates
closely align with the MLEs, demonstrating consistency between the two approaches.

Table 8. The Bayesian results.

Data 1 Data 2
Par BE MBR 95% CI BE MBR 95% CI
θ 0.4444 0.0064 (0.3025, 0.6085) 1.7031 0.0263 (1.3906, 2.0228)
α 4.7256 4.2775 (2.0545, 9.9444) 3.2603 0.3464 (2.2675, 4.5649)

Data 3 Data 4
θ 2.1409 0.2165 (1.2715, 3.096) 0.281 0.0031 (0.179, 0.4001)
α 37.939 1059.09 (6.1286, 121.5953) 2.1978 0.5757 (1.0709, 3.9937)

A comparison between the frequentist results presented in Table 4 and the Bayesian estimates
reported in Table 8 reveals a strong agreement between the two approaches. Specifically, the Bayesian
estimates are nearly identical to the corresponding MLEs. This close correspondence is anticipated,
as the hyperparameters of the prior distributions were deliberately set to very small values, thereby
representing vague or noninformative priors that exert minimal influence on the posterior inference.

This consistency between the Bayesian and frequentist approaches demonstrates the robustness of
the proposed estimation framework and validates the numerical stability of the developed methods.
Moreover, it highlights that the likelihood function plays a dominant role in shaping the inference
when prior information is weak or unavailable. Consequently, the proposed model can be confidently
applied in practical situations where prior knowledge about the parameters is limited, ensuring reliable
and data-driven parameter estimation.

7. Conclusions

In this work, we proposed a versatile two-parameter extension of the modified Lindley distribution,
termed the exponentiated modified Lindley (EML) distribution. Several theoretical arguments were
presented to justify the development of this new model. A comprehensive investigation of its
fundamental properties was carried out, including the behavior of its density and hazard functions,
its moments and incomplete moments, the moment generating function, and associated measures of
skewness and kurtosis.

Parameter estimation was explored through both maximum likelihood and Bayesian frameworks,
supported by an extensive simulation study designed to evaluate and compare estimator performance.
In addition, approximate likelihood-based confidence intervals for the EML parameters were
constructed, and a practical algorithm was provided for generating various bootstrap confidence
intervals. A likelihood ratio test was also employed to assess the adequacy of the EML distribution
relative to its baseline counterpart.

The utility of the EML model was illustrated through four real medical datasets. Across all empirical
analyses, the proposed distribution delivered superior goodness-of-fit results when compared with
several established competing models. Overall, the findings confirm that the EML distribution is a
flexible and powerful tool for modeling real-world data.
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Appendix

A. MLI and likelihood ratio χ2 approximation

Let L(θ) denote the log-likelihood function and θ̂ its MLE. The 100p% MLI for θ, 0 < p < 1, is
defined by the criterion

r(θ) = L(θ̂) − L(θ) ≥ log p.

For large samples, the likelihood ratio statistic

Λ(θ) = −2[L(θ) − L(θ̂)]

asymptotically follows a χ2
1 distribution under standard regularity conditions. Rewriting the MLI

criterion in terms of Λ(θ) gives
Λ(θ) ≤ −2 log p.

Comparing this with the χ2 quantiles, the threshold p is related to the nominal (1 − δ)100% CI by

p = exp
(
−

1
2
χ2

1,1−δ

)
,

which ensures that the MLI has approximately the desired coverage.
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B. Bootstrap approaches

(i) Normal approximation (standard bootstrap) interval

This interval assumes that the sampling distribution of θ̂ is approximately normal. The (1− δ)100%
confidence interval is given by

CINormal =
(
θ̂ − zδ/2Ŝ Eboot, θ̂ + zδ/2Ŝ Eboot

)
, (B1)

where Ŝ Eboot is the bootstrap estimate of the standard error,

Ŝ Eboot =

√√
1

B − 1

B∑
b=1

(
θ̂∗(b) −

¯̂θ∗
)2
,

and zδ/2 is the upper δ/2 quantile of the standard normal distribution. This approach is simple but may
perform poorly when the sampling distribution of θ̂ is skewed or non-normal.

(ii) Basic bootstrap interval

The basic (or pivotal) bootstrap interval is based on the symmetry of the bootstrap distribution
around the original estimate θ̂. It is defined as

CIBasic =
(
2θ̂ − θ̂∗(1−δ/2), 2θ̂ − θ̂∗(δ/2)

)
, (B2)

where θ̂∗(p) denotes the pth quantile of the bootstrap distribution. This interval corrects for potential
bias and is invariant under monotone transformations of the parameter.

(iii) Percentile bootstrap interval

The percentile interval directly uses the empirical quantiles of the bootstrap distribution of θ̂∗:

CIPercentile =
(
θ̂∗(δ/2), θ̂

∗
(1−δ/2)

)
. (B3)

This method is intuitive and easy to compute, as it does not require estimation of the standard error.
However, it assumes that the bootstrap distribution is centered at the true parameter value, which may
not always hold.

(iv) Bias-corrected and accelerated (BCa) bootstrap interval

The BCa interval, proposed by Efron [7], improves upon the percentile method by accounting for
both bias and skewness in the bootstrap distribution. It adjusts the percentiles using two parameters:
the bias-correction factor z0 and the acceleration constant a. The (1 − δ)100% BCa confidence interval
is given by

CIBCa =

θ̂∗(
Φ

[
z0+

z0+zδ/2
1−a(z0+zδ/2)

]), θ̂∗(
Φ

[
z0+

z0+z1−δ/2
1−a(z0+z1−δ/2)

])
 , (B4)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution. The
BCa interval generally provides superior coverage accuracy, particularly in small-sample or skewed
distributions.
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C. CDF used in Section 6

The CDF of distributions, used in Section 6, are listed below:

• For ML [4], this is already given in Eq (1.1).
• For SML [19]:

F(x; θ) = cos
[
π

2

(
1 +

θx
1 + θ

e−θx
)

e−θx
]
, x > 0, θ > 0. (C1)

• For PML [13]:

F(x; θ, α) = 1 −
(
1 +

θxα

1 + θ
e−θxα

)
e−θxα , x > 0, θ > 0, α > 0. (C2)

• For MOML [8]:

F(x; θ, α) = 1 −

α


1 +

θx
1 + θ

e−θx

1 + θ

 e−θx

1 − (1 − α)


1 +

θx
1 + θ

e−θx

1 + θ

 e−θx

, x > 0, θ, α > 0. (C3)

• For NLE [11]:

F(x; θ, α) =

[
1 − e−θx

(
1 + θxe−θx

θ+1

)]α[
1 − e−θx

(
1 + θxe−θx

θ+1

)]α
+

[
e−θx

(
1 + θxe−θx

θ+1

)]α , x > 0, θ, α > 0. (C4)

D. Data used in Section 6

Data 1:
2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51,
4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70.

Data 2:
1.7652, 1.2210, 1.8782, 2.9942, 2.0766, 1.4534, 2.6440, 3.2996, 2.3330, 1.2030, 2.1710, 1.2244,
1.3312, 0.6880, 1.1708, 2.1370, 2.0070, 1.0484, 0.8668, 1.0286, 1.5260, 2.9208, 1.5806, 1.2740,
0.7074, 1.2654, 0.9460, 0.6430, 1.8568, 2.5756, 1.7626, 2.0086, 1.4520, 1.1970, 1.2824, 0.6790,
0.8848, 1.9870, 1.5680, 1.9100, 0.6998, 0.7502, 1.3936, 0.6572, 2.0316, 1.6216, 1.3394, 1.4302,
1.3120, 0.4154, 0.7556, 0.5976, 0.6672, 1.3628, 1.5708, 1.6650, 1.7120, 0.6456, 1.4972, 1.3250,
1.2280, 0.9818, 0.9322, 1.0784, 2.4084, 1.7392, 0.3630, 0.6654, 1.0812, 1.2364, 0.2082, 0.3600,
0.9898, 0.8178, 0.6718, 0.4140, 0.6596, 1.0634, 1.0884, 0.9114, 0.8584, 0.5000, 1.3070, 0.9296,
0.9394, 1.0918, 0.8240, 0.7884, 0.6438, 0.2804, 0.4876, 0.6514, 0.7264, 0.6466, 0.6054, 0.4704,
0.2410, 0.6436, 0.5852, 0.5202, 0.4130, 0.6058, 0.4116, 0.4652, 0.5052, 0.3846.
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Data 3:
1.4, 1.1, 1.7, 1.3, 1.8, 1.9, 2.2, 1.6, 2.7, 1.7, 1.8, 4.1, 1.2, 1.5, 3.0, 1.4, 2.3, 1.7, 2.0, 1.6.

Data 4:
14.918, 10.656, 12.274, 10.289, 10.832, 7.968, 7.584, 5.555, 6.027, 7.099, 5.928, 13.211, 4.097, 3.611,
4.960, 7.498, 6.940, 5.307, 5.048, 2.857, 2.254, 5.431, 4.462, 3.883, 3.461, 3.647, 1.974, 1.273, 1.416,
4.235.
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