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Abstract: A high-order nonuniform compact difference scheme coupled with an adaptive mesh
method for solving singularly perturbed convection-diffusion equations is proposed. The core idea
of the proposed method lies in constructing a nonuniform grid scheme with the same fourth-order
accuracy at both inner and boundary points, and this construction is based on an adaptive mesh method.
This approach effectively eliminates numerical oscillation near the boundaries, a common challenge
in singularly perturbed problems. Specifically, we first formulate the fourth-order compact scheme on
nonuniform grids, then integrate it with the adaptive mesh method and elaborate on the corresponding
numerical implementation procedure. Finally, numerical experiments are conducted against exact
solutions, with the proposed scheme further compared against three benchmark methods: the fourth-
order compact scheme on uniform grids, the identical scheme on adaptive nonuniform grids, and the
other established methods reported in existing literature. Results of all test cases demonstrate that the
proposed scheme generates accurate and stable numerical solutions and exhibits enhanced resolution
for singularly perturbed convection-diffusion problems.
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1. Introduction

The singularly perturbed convection-diffusion equation with parameters is a type of partial
differential equation in which the convection term involves a very small parameter. The small
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parameters change the solution rapidly in a certain small region, such as near boundaries, forming
what are known as boundary layers. These abrupt changes pose considerable challenges for traditional
numerical methods, particularly when uniform grids are employed, as such grids may fail to accurately
capture these fine-grained features. More and more researchers are paying attention to the numerical
solution of this problem [1].

The main numerical methods for solving singularly perturbed convection-diffusion equation are
the finite difference method [2], finite element method [3, 4], finite volume method [5, 6], spectral
method [7, 8], and others. To overcome the difficulties caused by boundary layers, several effective
solution strategies have been proposed. Common strategies include the fitted operator method [9],
adaptive mesh method [10, 11], and layer-adapted method [12—-14]. Each of these methods has its own
advantages and disadvantages. The adaptive mesh method, which refines the mesh, moves the mesh,
or increase the order of basis functions, better reflects the essence of the problem and has gradually
gained favor among many scholars [15, 16]. The adaptive mesh method only needs to find a control
function to continuously help optimize the mesh. In this paper, the adaptive mesh method is a grid
generation algorithm that dynamically adjusts the distribution of grid nodes based on problem-solving
requirements. Its core idea is to automatically refine the mesh in regions, where the solution changes
rapidly and reduce mesh density in smooth regions by monitoring the change gradient of the solution on
a nonuniform grid, thereby optimizing computational efficiency while ensuring calculation accuracy.

To couple with the adaptive mesh method, the first step is to construct a high-order finite difference
scheme with a nonuniform grid. However, high-order difference schemes generally only achieve high
order at the inner point, and it is much harder to achieve the same accuracy at the boundary. Wang
Tao [17] et al. proposed the construction of a principle of a consistent high-order scheme. The
consistent high-order scheme is used to solve the problem of the low-order scheme in the boundary
that affects the calculation accuracy of the whole scheme. Therefore, coupled with the adaptive
mesh method, we construct a nonuniform fourth-order compact difference scheme for solving the
singularly perturbed convection-diffusion equation on nonuniform grids. It can efficiently alleviate or
even eliminate numerical difficulties caused by boundary layers, making the numerical solution closer
to the proper solution.

This work aims to develop a nonuniform scheme with the same fourth-order accuracy at both inner
and boundary points, and this construction is coupled with the adaptive mesh method for solving
the singularly perturbed convection-diffusion equation. The outline of the paper is as follows: In
Section 2, we propose a consistent fourth-order accuracy scheme with nonuniform meshes for solving
the singularly perturbed convection-diffusion equation. In Section 3, the accuracy of the proposed
scheme is verified using an exact solution problem. We also simulate a numerically different singularly
perturbed convection-diffusion problem based on the method proposed in this paper. Some concluding
remarks are given in Section 4.

2. Numerical method

Let us consider the following one-dimensional singularly perturbed convection-diffusion equation:

2.1
u(a) = uq, u(b) = uy, @D

{—su" +b(X)uU + c(x)u = f(x), x¢€(a,b),
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where ¢ is constant, with € > 0, and is the diffusion coefficient; b(x) is the convection coefficient;
f(x) is the source term; u(x) is the unknown quantity to be computed; b(x), c(x) , f(x), and u(x)
are all sufficiently smooth functions that are known to be sufficiently smooth functions of x.

2.1. Interior scheme

In this work, Eq (2.1) will be solved by the fourth-order compact difference scheme with a
nonuniform grid.

We denote the nonuniform grid with step sizes h; (h; # h;;1) and the grid node x; = a + ih;,
i =0,..., N. We use ; to represent the value of u at grid node x;, #; and u, to represent approximations
of u” and u’ at node x;, i = 0,..., N. We note k; = ’% Figure 1 shows the computational stencil for
interior nodes. l

2 B

4

Xi-1 X Xitl

1
Figure 1. Computational stencil for interior nodes.

By the Taylor expansion, the fourth-order compact scheme with a nonuniform grid of the second
derivative is given:
10ki(k; — ki — 1), . 10K +k—1)
- u;,_; + 10u,
k> + 4k + 4k; + 1

+ .
I TE A

(2.2)
120 Ujr1 — U 120](1 U1 — U .
= + . l:2,3,...,N—2.
(k; + 1)(1‘[2 +3k;+ 1) hf (k; + 1)(kl.2 +3k;+ 1) hl.2
It is noted that the truncation error of scheme (2.2) is
k,-(3kj‘ + Zkf - 7kl.2 +2ki+3) , ¢ 6
- h*u; + O(h°). (2.3)
12(/’(1.2 + 3k + 1)
When k; = 1 in scheme (2.2), the scheme corresponds to the uniform grid scheme [18]. That is,
" ” ’” 12 .
u,_; +10u; +u,,, = ﬁ(ui_l —2u; +uppy), i=2,3,.,N-=2. 2.4)

The truncation error of scheme (2.4) is —5:h* u'® + ond).

1

By the Taylor expansion, the fourth-order compact scheme with a nonuniform grid of the first
derivative is given:

wo ,
& + 1)2”1'—1 +4u; + & + l)gui+l s
82k + 1) (w1 — uy) Sk,'z(ki +2) (i — uy) . ()
RS T o R S
It is noted that the truncation error of scheme (2.5) is
k?
- L' + o). (2.6)

30
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When k; = 1 in scheme (2.5), the scheme corresponds to the uniform grid scheme [19]. That is,

’

’ ’ 3
iy +4u; +u, = E(_ui_l +Uip), 1=2,3,.,N-2. (2.7)
The truncation error of scheme (2.7) is —h*u; + O(1°).

2.2. Boundary scheme

To solve the singularly perturbed convection-diffusion equation with the above interior scheme, we
must give the value for the first and second derivatives of the boundary points u ati = 1, N — 1.

In Ref. [17], it is noted that the consistent fourth-order compact scheme used here means that
the difference schemes applied have fourth-order accuracy and maintain this precision through the
computational domain, even where the grid changes. So, we construct the consistent fourth-order
boundary scheme with a nonuniform grid. The consistent boundary scheme must satisfy the following
three conditions [17]: (i) The order of accuracy of the boundary scheme is the same as the interior
scheme; (i1) The major truncation error term of the boundary scheme is identical to that of the interior
scheme; (ii1) The coeflicient matrix of the algebraic system is strictly diagonally dominant. From the
above definition, it is easy to conclude that the entire computation is numerically stable if a consistent
scheme is applied.

2.2.1. Diffusion term boundary scheme

Theorem 2.1. The consistent fourth-order boundary nonuniform scheme of the second derivative
exists.

Proof. By using Taylor series expansion, the fourth-order boundary scheme of the second derivative
with boundary parameters is derived.

We give the fourth-order left boundary nonuniform scheme of the second derivative as

a Uy + Qally + @3Uy + Qalty + Aslls = ﬁ(aouo + ajuy + axuy), (2.8)
1

where the notation in Figure 2 is used.

Figure 2 shows the schematic of nonuniform left boundary nodes, where 0O represents the boundary
node, 1 represents the near-boundary point, and 2 represents the internal node adjacent to the near-
boundary point (i.e., the sub-near-boundary point). Let h; = x; — x;—1, k; = hins where i = 1,2,...,5.

hi *
4 I I | | I

ﬂ()lz 3 4 5

Figure 2. Computational stencil for left boundary nodes.
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The expression (2.8) of the parameters is as follows:

ap = Ag1as + Apas,
a; = Ayay + Apas,
ay = Ayiay + Apas,
a; = Az1ay + Axas,
@ = Aq1ay + Apas,

a3 = As1ay + Aspas.

The coefficients of the free unknown parameters are respectively

Ap

02

All

12 —

A2]

22

Az

Az

Ay

42

As

Asp

where

~60K3 K3 ks (ks + 1)(ky + koks + 1)

(ki + D)(Thy + Skiky + 5Kk — 53k + 3K3 = 35 + 3)
60K K3 ks (ky + 1)(ks + kaky + 1)(ky + koks + koksky + 1)
 (ky + 1D)(Thy + Skiky + 5Kk — 5Kk + 3K — 310 + 3)

60K k3 k3 (ky + 1)(ky + koks + 1)
(Thy + Skiky + 5K2ky — 5K3 ks + 3k = 3k + 3)°
60K K3 ks (ky + 1)(ks + kaky + 1)(ky + koks + koksky + 1)
(Tky + Skiky + Skiky — Skky + 3k3 — 3k} + 3)
— 60k k2 ks (ks + 1)(ky + koks + 1)

(ki + 1)(Tky + Skiky + 5ky — 5Kky + 3k3 = 3K +3)
—60kk2ks (kg + 1)(ks + kaky + 1)(ky + koks + koksky + 1)
(ki + D(Tky + Skiky + 5Kk — 5Kk + 33 = 3k +3)

_ —kgks(ka + D(az; + 3)

(ki + D)(Thy + Skiky + 5Kk — 53k + 3K3 = 3k + 3)
Ik (ks + 1)(ks + ksks + 1)(az + 3)

(ki + 1)(Tky + Skiky + 5K3ky — 5Kky + 3k = 313 +3)

_ ks(ka + koks + 1)(as; + 3)

(Tky + Skiky + 5Kk — 5Ky + 33 — 3K +3)

_ kalka + D(ka + kaks + koksky + 1)(ag +3)

" (Tky + Skiky + 5Kk — 5Ky + 33 — 3K +3)

3 —(ks + 1)(ky + koks + 1)(as; + 3)

(ky + 1)(Tky + Skiky + 53ky — 5Kky + 3k3 = 363 +3)

_ —(ks + kskq + D)(ky + koks + koksky + 1)(asy + 3)

(ky + 1)(Tky + Skiky + 53ky — 5Kky + 3k3 = 3K +3)

b

as; = 12k, + 18k7 + 12k} + 10k k, + 30ktks + 30kiky + 10kTks + 20k3 k5 + 10kihksks
+ 20k} koks + Skikaks + 15k koks + 15k kaks + 3,
aszp = asz; + 5k1k2k3k4 + 15k%k2k3k4 + 15k?k2k3k4 + 10k%k§k3k4 + 20](?]{%/{3/{4,
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ay = Tky + 3ki = 3k; + 10k ky + 10ktky — 10Kk, + 10kik; — 10k5k5 + 10kikaks
— 10k} ksks + Skikaks + Skikoks — Skikoks + 3,
agp = ayg + Skikyksky + Skikoksky — Skikaksky + 10k koksky — 10k kaksky,
asy = Tky + 3ki — 3k} + Skiky + 5kiky — 5kika + Skikaks + Skikoks — 5kikoks,
asy = asy + Skikyksky + Skikoksky — Skikyksky.
The truncation error of the scheme (2.8) is (Cyja4 + Cpoas)h{u$ + O(hY), where there are two free

unknown a4, a5 for optional adjustments.
In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

ki(3k? +2k3 — T2 + 2k; + 3)

Cnag +Craas = - 1202 + 3k + 1)

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, we let

120k;
(ki + D(k? +3k; + 1)

Apias + Apas =

So, we get
—(2kics)
a4 = X
PTGk (ks + 1)(ks + D + 3k; + D (ky + koks + 1)
2kiC5
a5 = ,
DT IRk ks + Dy + D + 3k + 1)(ks + ksky + 1)(ky + koks + kokaky + 1)
Co o —(Ek3ks (ks + 1) (ka + kaks + 1)(cy + 2))
T 24(Tky + Skiky + 5Kk, — 5Kk + 3K2 — 3K +3)
_ —(k?k%kg(k;; + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(02 + 2))
e 24(Tk; + Skiky + 5K2k; — 5k3ky + 3K2 = 3K + 3) ’
where

c1 =Tky + 8ki + 2k} — 2k| + 6kiky + 14kiks + 6k ky — 6kky + Skiks + Skiks — Skilo
+ Skikks + Skikaks — Skikoks + 3kikyks + Thikoks + 3kikaks — 3kikaks,
¢y =c1 + 3kikoksky + Thikaksky + 3k koksky — 3kikaksky + Skikaksky + Skikiksky — Skikaksky,
cs =5k; — 5k — 5k} + 5k} + 3k} + 9k, + 15k + 10k; — 2k; + 6k ky + 20kik, + 20k; k;
— 6k ky + 5kik; + 10k k5 — Skyks + Skikoks + 10k koks — Skykoks + 3kikaks
+ 10kTkoks + 10k koks — 3k kaoks + 5,
¢4 =cs + 3kikoksky + 10k koksky + 10k kaksky — 3k3 koksky + Skiksksky + 10k kiksks — 5k kaksky.

Then, the consistent fourth-order left boundary scheme of the second derivative is

" ” 4 ” ”
a Uy + aaly + @3y + Qalty + Asits = ﬁ(aouo + ajuy + axuy). (2.9)
1
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The coeflicients of the free unknown parameters of scheme (2.9) are given (see Appendix A). The
truncation error of scheme (2.9) is
ki(3k} + 2k = Tk? + 2k; + 3)

Wu'® + o). 2.10
120 + 3k + 1) ey + O 2.10)

The boundary scheme is a uniform grid scheme with k; = 1. Then, the boundary scheme with a uniform
grid is
" 4 4 4 4 12
15u; —9u, + 10u; — Su, + us = ﬁ(uo = 2u; + u). 2.11)
Similarly, we develop the fourth-order right boundary nonuniform scheme as

UN-1Up_1 T ANn2UyN_» T AN-3UN_ 3+ ANaUpy_4 + AN-_5UN_5
(2.12)

ZE(GNMN +an-1uy-1 + ay-oun-2),

N
where the notation in Figure 3 is used.

Figure 3 shows the schematic of nonuniform right boundary nodes, where N represents the boundary
node, N-1 represents the near-boundary point, and N-2 represents the internal node adjacent to the
near-boundary point (i.e., the sub-near-boundary point). Let h; = x; — x;—1, k; = bt \where @ =

hi
N,N-1,...,N-5.
l | | | I k

N-5 N—4 N-3 N2 Nl Nk

Figure 3. Computational stencil for right boundary nodes.

The expression (2.12) of the parameters is as follows

ay = Ano1@n-4 + Ayo2ay-s,
an-1 = An11@n-4 + Aypay-s,
an—z = An21an_4 + Aynay_s,
an-1 = An31@y-—4 + An2an_s,
N2 = ANs1@N-4 + Anpan_s,

ay-3 = Ansi@y-4 + Aysay_s.
The coefficients of the free unknown parameters are respectively

3 —(60ky kx_ kn-2) (k- + 1)(ky-1kn—o + 1)

 (ky + D)(Thy + Sky_tky + 5K2ky_y — Sk ky_y + 3k% = 3k}, +3)°

(60K ky_ kn2(kns + 1) (kn—y + kn-oky—3 + D(kn-1 + kn-1ky- + ky_1kn-sky_3 + 1)

oz = (ky + 1)) " (Thy + Skyky_y + 5K ky-1 — Skl ky_1 + 3K3 — 313, + 3)
(60kxky,  kn-2)(kn-a + D(kn-1ky-o + 1)

(Tky + Sky-1ky + 5k3kn-1 — Sk3kn-1 + 3k3, = 3k}, +3)’

Apoi

2

Ay =

AIMS Mathematics Volume 11, Issue 1, 2279-2312.
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_ (60ky ks, _ kn-2)(kn—s + 1)(kn—2 + kn-oky—3 + 1) (k-1 + ky-1ky—p + ky_tkyoky-3 + 1)

(Tky + Skykn-1 + 5k3kn-1 — Sk3kn-1 + 3k3, — 3k, + 3) 1 ’
3 —(60k3 k%, ky—2)(kn—o + D)(kn_tkn—o + 1)

(kN + 1)(7](1\/ + Skyky_1 + SkIZVkN_l - Sk?VkN—l + 3](12\] — 3](13\] + 3)’
3 —(60kyky,_ kn-2)(kn-3 + D)(kn—a + kn_oky_3 + 1)
N2 = Vet 1)

_ (kn-1 + ky_1ky_o + kn_1ky_2ky_3 + 1)
(Thy + Skyky_1 + Sk ky_1 — Sk ky_y + 3k2, — 33, +3)’
_(kIZV_lkN—Z)(kN—Z + D(anz1 + 3)

N12

AN

Ans = 5 3 5 3 ,
(kn-1 + D)(Tkyn + Skyky_1 + Skykn_y — Sky k-1 + 3ky, — 3k3, + 3)
Ay = —(k_ kn—2)(kn_3 + D)(kn—a + kn_okn—3 + D)(ans + 3) ’
(ky_1 + D)(Tky + Skyky_1 + Sk]%,kN,l - Sk?ka,l + 3k12\, - 3k13\, +3)
Awa = ky-2(kn-1 + kn-1tkn—2 + 1)(aya1 + 3) ,
Tky + Skyky_1 + 5k12\,kN_1 - Sk?VkN_l + 3k12v - 31’(?v +3
Away = kn-a(kn-3 + D)(kn-1 + kn-1kn-2 + kn_1tkn2kn_3 + 1)(anaz + 3)’
Tky + Skykn_1 + Sk]ZVkN_l - Sk?ka_l + 3k12\, - 3k13\, +3
Ans) = —(kn—2 + D)(kn_1 + ky-1ky—2 + 1)(ans1 + 3) ),
(ky_1 + D)(Tky + Skyky_1 + Skf;,kN_l - Sk?ka_l + 3k12\, - 3k13\, +3
Ansy = —(kn-o + knokn_3 + 1)(kn_1 + kn_1kn-2 + ky_1ky2kn—3 + 1)(ans2 + 3),
(ky_1 + D)(Tky + Sknky_1 + 5k12ka_1 - 5k13\,kN_1 + 3k12\, - 3ka +3
where

ans =12ky + 18k%, + 12k3 + 10kyky_ + 30k3ky_; + 30kyky_1 + 10kaks_,
+ 20k kx| + 10kyky,_ kn_o + 20kykn_ kn_o + Skyky_1ky_o
+ 15kykn_1kn_o + 15kyky_1ky_2 + 3,

an3y =ays + Skykn_1ky_2ky_3 + 15k12ka—lkN—2kN—3 + 15k/3ka—1kN—2kN—3
+ 10k ks kn_okn_3 + 20k ka_ ky_oky_3,

ana1 =Tky + 3ky, — 3ky + 10kyky_y + 10kxky_y — 10kyky_ + 10kxky_,
— 10kyky,_; + 10kyky,_kn_o — 10kyky_ kn_o + Skyky_1ky_»
+ SkXkn_1ky_o — Skyky_1ky_o + 3,

ansy =ana1 + Skyky_1ky_rky_3 + 5k12ka—1kN—2kN—3 - 5k13ka—1kN—2kN—3
+ 10kyky_ kn—okn_3 — 10k ky_2ky_3,

ans) =Tky + 3ky — 3ky, + Skyky_1 + Skykn_1 — Skaky_1 + Skyky_1ky_»
+ SkXkn_1ky_a — Skyky_1ks,

ansy =aysy + Skyky_1ky_rky-_3 + 5k;2vk1v—1k1v—2k1v—3 - Sk?ka—lkN—ZkN—&

Its truncation error is (Cyjay—_s + CNzaN_5)hj‘v_]u16\,_l + 0(h16\/—1)’ where there are two free

unknowns ay_4, @y_s for optional adjustments.
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In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

ki(3kE + 2k3 = Th + 2k; + 3)
120 + 3k + 1)

Cnian—g + Cypay_s = —

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, we let

120k;

A 4+ A s = )
NN T ANZENS = G DR + 3k + 1)

So, we get
—2kicng
AN-4 = 03 5 _ 2 . J
(kykn_ ki _okn-3)(ki + D(ky_o + D)(k; + 3k; + D(ky_1 + ky_1ky—2 + 1)
2kicys
aAN_5 = s
VST KA k) (ki + Dk + D2 + 3k + ey
B —(ky ke, k-2 (ko + D)(kn—1 + kn—1kn— + D)(cy1 +2)
N 24(7kN + Sknkn_1 + 5k12\,kN_1 - Sk?VkN—l + 3k12\/ - 3k]3\/ + 3)’
Cror = —(k3ky,_ kn—2) (k-3 + Denlen +2)
N2 24(Tky + Sknkn_y + 5K kn_y — Skaky_ + 3Kk3 = 3k3, +3)°
where

ey =(kn-o + ky_okn_3 + D(ky_1 + kn_1ky_o + kn_1ky_2kn_3 + 1),
eyt =Tky + 8k3 + 2k3, — 2k + Okyky_y + 14k3ky_; + 6k kn_1 — 6knky_1
+ Skyka_| + Skyka | — Sknki | + Skks_kn_o + Skyka_ky_o
— Sk, ko + Sknkn_1kn_o + Thykn_1kn_a + 3knky_1ky-2 — 3knkn_1kn_2,
cn2 =cnt1 + 3kykn_1ky-okn-3 + 7k12ka—1kN—2kN—3 + 3k13ka—lkN—2kN—3
— 3kvkn_1kn_okn_3 + Skka_ kn_okn_3 + Skyks_kn_okn_3 — Sknky_ kn_okn_3,
s =5k — 5k7 — 5k + 5k + 3k + 9ky + 15kx, + 10ky, — 2k + 6kyky_1 + 20knky_;
+ 20k ky_y — Okyky_y + Skyky,_, + 10kyky, | — Skyky | + Skyky_kn_»
+ 10kyky_ kn_o — Skakay_kn_o + knky_1ky_o + 10kyky_1ky_»
+ 10kykn_1kn_o — 3kyky_1ky_2 + 5,
Cna =Cns + 3knky_1ky_2ky_3 + 10k12ka—1kN—2kN—3 + 10k13ka—1kN—2kN—3
— 3k ky 1k oky_3 + Sk ky_oky_s + 10kyky_ ky_oky_3 — Skaka_ky_2ky 3.

Then, the consistent fourth-order right boundary scheme of the second derivative is

UN-_1Uy_1 T ANn2Uy_» T AN3UN_ 3+ ANalUy_4 + AN-_5UN_5
(2.13)

—h_z(aNuN +ay-1Uy-1 + ay-oUn-2).
N
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The coefficients of the free unknown parameters of scheme (2.13) are given (see Appendix B). The
truncation error of scheme (2.13) is

ki(3k? + 2k — Tk7 + 2k; + 3)

T et O, (2.14)

The boundary scheme is a uniform grid scheme with k; = 1. Then, the boundary scheme with a uniform
grid is

2
(uy — 21/[1\/_] + Uy_n). (215)

15upy_; —Quy_» + 10uy_5 — Suy_y +uy_s = o

O

By combining the interior scheme (2.2), the left boundary scheme (2.9), and the right boundary
scheme (2.13) into a unified system, the matrix form is given as follows:

MiU” = AU + H3, (2.16)
2 2
where
a s s “e - 0 0 0
—10ky (k3 —ky—1) 10 10(k3+k2—1) 0 0 0
KB+413+4ky+1 K3 +413+4ky+1
4
M2 = ’
—10ky_2 (K3, —kyn_2—1) 10(k3,_+ky_2—1)
0 0 0 . N-2 2N 2 KN-2 10 . N22 N-2
kN72+4kN72+4kN_2+1 kN72+4kN72+4kN_2+]
0 0 0 T an-3 an-2 anN-1
4
u, up [N
14
u, U 0
U, U3 0
’” . 4
U = : ,U = ’Hz = ,
MN—3 Uuy-_3 0
”
Uy s Un_2 0
”
Un_y Un—1 anuy
a as s 0 0
120ky —120ky—120
2 : . 0 0
12 (k2+1)(k3+3k+1) (ka+1)(k5+3k2+1)
4 — —
A, = 2 ..
i 0 0 . —120ky—p—120 120ky—,
(koo +1)(k3,_,+3kn-o+1) (kn—o+1)(k%_,+3kn_2+1)
0 0 T an- an-1

The matrices M;*, A‘Z‘ are (N — 1) x (N — 1) dimensions, and the matrices U, U, Hg are (N -1)x1
dimensions.
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When k; = 1 (i = 2,...,N — 2) in (2.16), the discretization employs a uniform grid, and the
corresponding matrix is

15 -9 10 -5 1 0O 0 0 0 O
1 10 1. 0 0 --- 0 O O O O
o 1 10 1 O.--- 0 0O O O O
M; = ,

O 0o 0 0 o0 - 0 1 10 1 O
O 0 0 0 0 - 0O 0 1 10 1
0O 0 0 0 O 1 -5 10 -9 15

M,I, u %MQ

u, 125
u; Uz 0
U' = U = JHS = :

u;,_3 UN_3 0

l/t;;/_2 Un-2 0

”;:/_1 Un_1 L—%MN

-2 1 0 0O 0 O

1 -2 1 0O 0 O

1 0O 1 =2 0O 0 O

Ag:ﬁ

o o o .-~ =2 1 0

o o o --- 1 =21

o o o --- 0 1 =2

2.2.2. Convection term boundary scheme
Theorem 2.2. The consistent fourth-order boundary nonuniform scheme of the first derivative exists.

Proof. By using Taylor series expansion, the fourth-order boundary scheme of the first-order derivative
with boundary parameters is derived.
We give the fourth-order left boundary nonuniform scheme of the first derivative as

’ ’ 1
ﬁlul +,82u2 = h—(b()uo + blul + b2M2 + b3u3 + b4u4 + b5u5), (217)
1

where the notation in Figure 2 is used.
The expression (2.17) of the right parameter is as follows:
bo = Bo1bs + Boof31 + Bosfa,
by = Bi1bs + Biof1 + B3,
by = Ba1bs + Bnf + Bxfho,
by = B31bs + B3 + Bfho,
by = B41bs + By + Bysfs.
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The coefficients of the free unknowns are respectively given out as follows:

—(k?k;k§k4)(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)
(k1 + 1)(k1 + k1k2 + 1)(k1 + klkz + k1k2k3 + 1) ’
—k?(kz + 1)(](2 + koks + 1)

01

Bo = G D + kil + Dk + ki + kikaks + 1)
K (ks + 1)
Bos = (k] + 1)(k1 + kiky + 1)(k1 + kik, + k1k2k3 + 1),
(k3k2k4(k4 + 1)(k3 + k3ky + 1)(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)
B = (ky + (ks + koks + 1)
(k] — 4k, + 2k1ky — 2k2k3 + k1k2 k2k3 k2 + k1k2k3 + klk k3 - 3)
Bro = e (ky + 1) (ks + kokes + 1)
—kg(kl + 1)(k3 +1)
b= o D+ b+ 1)’
—k2k4(k4 + 1)(k2 + k2k3 + k2k2k4 + 1)(k1 + klkz + klkzkg + k1k2k3k4 + 1)
Bar = (ky + 1)(ks + 1)
(kz + 1)(k2 + k2k3 + 1)
Bzz = ) ’
(kiky)(ki + 1)(ks + 1)
Box = —(2k1 - k2 + k3 - 2k1k2 + k1k3 - 2k1k2k3 + 2)
oo kika(k + D(ks + 1) ’
B k4(k3 + k3k4 + 1)(k2 + kzkg + k2k3k4 + 1)(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)
! (ky + D(ky + kiky + 1)
—(kz + k2k3 + 1)
B32 = ) >
k1k2k3(k2 + (kg + kikp + 1)
Bus = (ki + D(ks + 1)
7 kkoks(ks + D(ky + kiky + 1)
B, = —(ky + 1) (k3 + ksky + 1)(ky + koks + koksks + 1) (k1 + kiky + kikoks + kikoksks + 1)
e (k3 + 1)(k2 + k2k3 + 1)(k1 + kiky + k1k2k3 + 1)
. (ks + 1)
(k]k%k3)(k3 + 1)(](2 + k2k3 + 1)(](1 + k1k2 + k1k2k3 + 1),
—(kl + 1)
By =

(k1k2k3)(k3 + 1)(](2 + k2k3 + 1)(](1 + k]kz + k1k2k3 + 1)

The truncation error of the scheme (2.17) is (Co1bs + CooBi + CosB)hiu; + O(RY), where are three
free unknowns bs, 51, B8, for optional adjustment.

In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let
k2
Coi1bs + Coof1 + CoPa = ~30°

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, it is required that

ﬁ 4 ﬁz (k; +1)2
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Then, we get
be = — 120
> k?k;k§k4(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)
(ﬁ + I3 (ka+1)(ka+kok3+1) _ kfkg(k1+1)(k3+1))
130 30 30(k;+1)?
(kl + klkz + k1k2k3 + k1k2k3k4 + 1) ’
where
c _—(k?kgk%k;;)(k;; + 1)(](3 + k3k4 + 1)(](2 + k2k3 + k2k3k4 + 1)
o 120
(kl + kiky + k1k2k3 + k1k2k3k4 + 1)
1 b
_kf(kz + D)(ky + koks + 1)
02 — 120 B
_—(kfk%)(kl + 1)(]{3 + 1)
"= 120 '

Then, the consistents fourth-order left boundary scheme of the first derivative is
’ ’ 1
ﬁlul +,82u2 = h—(b()uo + blul + bzbtz + b3u3 + b4u4 + b5u5). (218)
1

The coefficients of the free unknown parameters of scheme (2.18) are given (see Appendix C). The

truncation error of scheme (2.18) is
2

k;
- %h‘l‘u? +O(h). (2.19)
The boundary scheme is a uniform grid scheme with k; = 1. Then, the boundary scheme with a uniform
grid is

5 1 43

’ ’ 1
4Lt1 +u, = E(—Sul + 8uy — ?l/lg + Zl/t4 - 5”5) - @Mo. (2.20)

Similarly, we develop the fourth-order right boundary nonuniform scheme as

’ ’ 1
Br-1tty_y + By-alty_p = E(bNuN + by uy-1 + byouy_y + by 3un_3 + by_sity_4 + Dy_suy_s), (2.21)

where the notation in Figure 3 is used.
The expression (2.21) of the right parameter is as follows:

by = Bniby-s + BnoBn-1 + BnsBn-2,
by-1 = Bn11Dbn-s + BnioBn-1 + Byi3Bn-2,
by-2 = Bn21bn-s + Bn2oBn-1 + BnvasBn-2,
by-3 = Bn31bn-5s + Bn3oBn-1 + By3sBn-2,
by-4 = Bnaibn-s + ByaPBn-1 + ByasBn-o.
The coefficients of the free unknowns are respectively given out as follows:
B —(kyka,kx_okn-3)(kn-z + D(kn— + ky_oky_3 + 1)
N (ky + D(ky + kyky_y + 1)
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BNZ =

Bys =

N11 =

Bnio =

Byi3 =

Bnoy =

By =
Bnos =

Bn3i =

By3, =

Bn3z =

By =

Bnsy =

Bnsz =

AIMS Mathematics

(k-1 + ky_1ky-p + ky_tknoky-3 + 1)
(ky + knkn-1 + knky-tkyo +1)
4k}%\,(k1v—1 + D(ky-1 + kn_thky—2 + 1)
(ky + Dky + kyky-y + Dky + knky_y + knky-1ky—o + 1)’
—(k3ky_ )k + 1)
(ky + Dky + kyky-1 + Dky + knky_1 + knky-1ky—o + 1)’
(k3 kx_okn-3)(kn—3 + D(kn-p + kn_oky-3 + 1)
(ky-1 + 1)
. (ky + knkn-1 + knky_1ky—> + kyky_1ky_2ky_3 + 1)
(kn-1 + kn_1ky2 + 1) ’
—(ky — dky_1 + 2kykn_1 — 2kn_1ky_o + k,\,klzv_1 - k12\,_1k1v_2 — k12v—1)
kn(ky-1 + D) (k-1 + kn_1ky—2 + 1)
_ (knkn-1hkn-2)knky_ kn-2 = 3)
ky(ky-y + D(ky-1 + kny_tky— + 1)
kzzv_l(kzv + D(ky_o + 1)
ky(ky-1 + Dky-y + ky-1ky_o + 1)
—(kx_okn—3)(kn_3 + D)(kn—1 + kn-_1kn—a + kn_1kny_2ky_3 + 1)
(ky + 1)
_ (kn + kykn_y + kyky_1kn_o + knkn_1ky_2ky_3 + 1)
(kn—2 + 1) ’
—(kn-1 + D(kn-1 + kn_1thky2 + 1)
Kk (ki + Dk + 1)
(ky — kn-y + kn—p — 2knky_1 + knky—o — 2kyky_1ky_2 +2)
knky_1(ky + D(ky— + 1) ’
kn-3(kn-2 + knokn-3 + 1)(kn-1 + kn_1kn—2 + kn_1kn2kn-3 + 1)
(ky-1 + 1)
_ (ky + knkn-1 + knky_1ky—> + kyky_1ky_2ky_3 + 1)
(ky + kykn-1 + 1) ’
(ky-1 + kn_1ky2 + 1)
(kaIZV_lkN—Z)(kN—l + D)(ky + knky_1 + 1)
—(ky + D(ky—2 + 1)
knky_1ky-o(kn-1 + D(ky + knky-1 + 1)’
—(kn-3 + D)(kn_o + ky_oky_3 + 1)(kn_1 + kn_1ky_o + kn_1ky_2ky_3 + 1)
(ky—a + D)(kn-1 + ky-tky2 + 1)
. (ky + knky-1 + knkn_1kn-2 + knky_1kn2ky-3 + 1)
(knknky-1 + knky-1ky—2 + 1) ,
—(ky-1+ 1)
ka12V_1kN—2(kN—2 + D(kn-1 + kn_1kn—o + D(ky + knky_1 + knky_tky—o + 1)’
(ky + 1)
knky-1ky-o(ky—o + D(kn-1 + kn-1ky—o + D(ky + knkn-1 + kykn_tky—o + 1)’

b
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The truncation error is

(Cniby-s + Cxofy-1 + Cxsfn-2)hin_ur_, + OUny_ ),

where there are three free unknowns by_s, By_1,By-2 for optional adjustment.
In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

2

Cnibn-s + Cnofin-1 + Cn3fn-2 = 30

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefﬁcient matrix of the resultant system is diagonally dominant, it is required that

ﬂN1_4ﬂN2 (k+1)2
So, we get

120( k2 " I3 k-1 + (k-1 +ky -1k - 2tl) I3 k% ey 2+ 1) (kn+1)
30 30 30(ki+1)?

b
bs;

by-s =

where

_(k;k?\/_lkav_sz—ﬁ(kN—B + 1)(kN—2 + kN—ZkN—?a + 1) ) (kN—l + kN—lkN—Z + kN—lkN—ZkN—3 + 1)

N1 =

120 1
_ (kn + ky_1ky + kn_1kn_okn + kn_1ky_2ky_3ky + 1)
1 b
I (ky—1 + D) (kn-1 + ky-1ky-—a + 1)
N2 = 120
Cor = —(k3, k% kn—a + Dky + 1)
N3 — 120 )

bsi = kyky_ ky_okn—3(kn_3 + 1)(ky-2 + kn_okn—3 + Dkn_1 + ky_1ky—2
+ kn_1kn_oky_3 + 1)(kn + kn_1 + kn + ky_1ky_oky + kn_1kn_okn_3kn + 1).

Then, the consistent fourth-order right boundary scheme of the first derivative is

7’ ’ 1
Bn-1uy_y + Bn-alty_ = Z(bNuN + by_un-1 + byouy_ + by 3uy_3 + by_sity_4 + Dy_suy_s). (2.22)

The coefficients of the free unknown parameters of scheme (2.22) are given (see Appendix D). The
truncation error of scheme (2.22) is

k2
36/1;; [y + OUy_)). (2.23)
The boundary scheme is a uniform grid scheme with k; = 1. Then, the boundary scheme with a uniform
grid is
' , 1 10 5 1 43
4MN_1 +t Uy, = —(5MN 1 — 8uy_y + ?MN 3 — ZMN 4+ SMN 5) + @MN (2.24)
O
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By combining the interior scheme (2.5), the left boundary scheme (2

.18), and the right boundary

scheme (2.22) into a unified system, we obtain the matrix form as follows:

AU = MU + HY,

(2.25)

where,
4
4 (ky+1)? 0
4]‘% 4 4
(kp+1)? (kp+1)?
4
Al = ,
4/‘%/—2 4
0 0 0 (ky-2+1)? j (ky-2+1)?
o 0o 0 - 0 g 4
”} U boug
u,2 U 0
U, U3 0
U = N U = ) Héll = D
M{\,_3 Uun-3 0
Uy Un_> 0
Upy_y Uun-_1 bNI/lN
by b, e 0 0
—8K5(ka+2) 8(K3(ka+2)—-Qhkat1) 0
1 (ka+1) ky(ka+1)
4 _
M| = " .
' 0 0 8k (kv t2)~Qhky2+ D) 8(2ky-a+1)
kn_a(ky—o+1)3 kn_a(ky-2+1)?
0 0 e by by

The matrices A‘l‘, Mf' are (N — 1) X (N — 1) dimensions, and the matrices U’, U, H;‘ are (N -1)x1

dimensions.

When k; = 1 (i = 2,...,N — 2) in (2.25), the discretization employs a uniform grid, and the

corresponding matrix is:

10 000 |
141 000 A
1 4 000 A

Al = U= 1 |LH =
000 - 10 Uy_s
000 - 141 Uy,
000 - 1 4 wy_,

AIMS Mathematics
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-5 g -0 s I 00 0 0 0

-3 0 3 0 O 0O 0 0 0 O

| O -3 0 3 O 0O 0 0 0 O
M?:E

O 0 o0 0 O 0O -3 0 3 O

0O 0 O 0 O 0O 0 -3 0 3

0O 0 0 0 0 15 0 g5

2.3. The adaptive mesh algorithm description

The adaptive mesh method is an algorithm that automatically adjusts the solution accuracy in
regions with significant variations. Generally, the numerical solutions are defined on a predefined
computational grid. In many numerical simulations, fine grids are necessary in regions with steep
gradients, whereas coarser grids can be used in smooth regions with slowly varying solutions. The
adaptive mesh method provides a dynamic environment that can achieve different solution accuracies
based on different requirements.

The basis of the proposed adaptive mesh algorithm lies in the derivative change rate of the numerical
solution obtained from the fourth-order compact scheme on uniform grids. The basis of our algorithm
is described as follows: The derivative change rate directly reflects the smoothness of the solution
large absolute values indicate rapid solution changes (e.g., boundary layers), where dense grids are
needed to capture details; and small values correspond to smooth regions, allowing coarser grids
to optimize efficiency. This basis aligns with the core demand of singularly perturbed convection-
diffusion equations, namely, accurately resolving boundary layers while maintaining computational
efficiency. It avoids numerical oscillations caused by inappropriate grid density in traditional uniform
schemes. First, the fourth-order compact scheme with uniform grids is used throughout the entire
region to obtain a preliminary numerical solution. Then, based on the derivative change rate of the
numerical solution, the grid step size is adjusted to obtain a nonuniform grid distribution. Finally,
updated numerical results are obtained using the high-order scheme proposed in this paper. This
process is repeated until the grid distribution reaches the optimal distribution effect.

3. Numerical experiments

In this section, we perform numerical experiments to demonstrate the accuracy, dependability, and
effectiveness of the proposed nonuniform fourth-order compact difference scheme coupled with the
adaptive mesh method. All computations were conducted on a PC with Intel core i7-1075H CPU
and 8GB memory.

L> — error is defined by

L™ — error = max|u;, — ),

where u;, is the exact solution of u, and u;, is the numerical solution of u.
L? — error is defined by

L* — error = —_— (Uie — Uin),
N+1 —
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where u;, is the exact solution of u, and u;, is the numerical solution of u.
The rate of convergence is defined by
_ Ln(err(Ny)/err(N>))
C LaN/Ny)
where err(N;) and err(N,) are the maximum absolute errors computed with the nodes Ny and N,
respectively.

Based on the above discussion, we present the following iterative algorithm. The specific iterative
algorithm steps are as follows:

Rate

1. The adaptive mesh algorithm based on the fourth-order nonuniform compact difference scheme.

1: Input the value of hf,?l.)n, B, €.

2: Resolve on uniform grids:
(a) Generate a uniform grid with a step size of hﬁ,?}lx.
(b) Resolve the Eq (2.1) using the fourth-order uniform compact difference schemes (2.4), (2.7),
(2.11), (2.15), (2.20), and (2.24) get the numerical solution u'”.

3: Resolve the optimal 4; by iterative method:

(a) For k = 0,1,2,... until a certain convergence criterion is met.
k) _ (k)
—Uu

(b) Calculate u'(x;) = ==

hmax

’

(c) Determine the derivative threshold. If | (x;)| > u,.,
within the interval [x;, x;;;] where this node is located.
(d) Generate nonuniform grids. The encrypted step size A; is determined using the minimum step
size i, and the sensitivity parameter p (p = 4Ufoontog(’ D) ag follows:

then the grid encryption will be performed

(9]
(k) hmax )

min’

hgk”) = max(h

p+D )

min ° max *

(e) Calculate a new
4: Resolve on nonuniform grids:

Resolve the Eq (2.1) by the fourth-order compact difference nonuniform schemes (2.2), (2.5),

(2.9), (2.13), (2.18), and (2.22) get the numerical solution ugk“).
5: Determine step size:

If [h*D — 1| < €, then

Stop;

else

go to 4.

end if

6: Output the numerical solution ultth.

i

3.1. Example 1

We consider the following constant coefficient singularly perturbed problem:

—eu +u = en®sin (mx) + wcos (nx), x€(0,1),
u(0) =0,u(l) = 1.
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The exact solution to this problem is given as

X

ez — 1

u(x) = sin(zrx) + —

e: — 1

When & is small, the solution to the problem has a boundary layer at x = 1. Table 1 gives the
L*—error and the convergence rate for Example 1 by using the present scheme, uniform scheme, and
Zhao’s fourth-order scheme. It is observed that the present scheme, uniform scheme, and Zhao’s
fourth-order scheme are stable and effective when € = 1, 107", 1072, but when € = 1073, £ = 1074, the
errors of the Zhao [20] and uniform schemes are large and no longer decrease as the number of grids
increases.That is, the two schemes don’t achieve fourth-order accuracy, while the present scheme can
obtain very exact solutions with enough computational nodes distributed in the boundary layer because
of coupling with the adaptive mesh and can reach the theoretical fourth order, thereby demonstrating
superior computational accuracy and resolution.

Table 1. The L*-errors and rate of the convergence under different € for Example 1.

Zhao [20] uniform scheme present scheme
N L*-error Rate L™ -error Rate L*-error Rate
e=1
40 1.557(-7) — 1.613(-7) — 7.864(-9) —
60 3.129(-8) 3.958 3.166(-8) 4.015 1.479(-9) 4.115
80 9.949(-9) 3.983 1.000(-8) 4.006 4.893(-10) 3.845
100 4.082(-9) 3.992 4.095(-9) 4.001 1.927(-10) 4.176
e=10"
40 4.091(-6) — 2.480(-6) — 6.866(-8) —
60 5.677(-7) 4.170 4.347(-7) 4.294 1.129(-8) 4.452
80 1.566(-7) 4.016 1.326(-7) 4.127 3.218(-9) 4.299
120 2.781(-8) 4.263 2.556(-8) 4.060 7.023(-10) 3.800
=107
40 1.151(-2) — 7.291(-3) — 4.240(-6) —
100 1.157(-3) 2.507 1.200(-3) 1.969 1.455(-7) 3.680
120 6.416(-4) 3.234 6.080(-4) 3.757 7.209(-8) 3.852
160 2.274(-4) 3.601 1.782(-4) 4.248 2.192(-8) 4.138
e=10"3
200 3.394(-2) — 1.942(-2) — 2.209(-3) —
400 1.151(-2) 1.560 7.291(-3) 1.413 1.843(-4) 3.583
520 6.541(-3) 2.154 6.166(-3) 0.638 6.943(-5) 3.721
e=10"
250 7.598(-2) - 3.892(-2) — 1.522(-2) —
300 7.520(-2) 0.057 3.852(-2) 0.057 7.808(-3) 3.700

Note: 1.557(=7) = 1.557 x 107",

From Figure 4, when the perturbation parameters gradually decrease, the present scheme has
obvious advantages over the other two schemes in terms of computational accuracy and resolution.
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Figure 4. The exact and numerical solutions with three schemes with N = 100 under
different &.
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Table 2 indicates that when the perturbation parameters € gradually decrease, the error of the present
scheme is much smaller than that of the other two schemes, and the error of the present scheme is 1-2
orders of magnitude smaller than those of the other two schemes. This is consistent with the numerical
results in Figure 4. It fully demonstrates the superiority of the scheme calculation with the adaptive
mesh method. Consequently, the present scheme employs a non-uniform adaptive mesh algorithm to
mitigate the oscillation within the boundary layer.

Table 2. The errors with three schemes under different € for Example 1.

Zhao [20] uniform scheme present scheme
€ L®-error  L*-error L>-error  L*-error L®-error L*-error
1 4.082(-9) 2.854(-9) 4.095(-9) 2.864(-9) 1.927(-10)  1.354(-10)
107" 5.995(-8)  2.642(-8) 5.334(-8) 2.384(-8) 1.553(-9) 6.977(-10)
1072 1.157(-3)  1.583(-4) 1.200(-3) 1.489(-4) 1.455(-7) 1.976(-8)
107 5.948(-2)  1.134(-2) 3.042(-2)  6.061(-3) 4.678(-3) 2.267(-4)
107* 2.520(-1)  1.658(-1) 2.114(-1)  1.644(-1) 2.116(-2) 7.573(-4)

3.2. Example 2

We consider the following variable coefficient singularly perturbed problem:

—eu -1 +x)u +u=1- e_# -1 +)c)\/Lg . e_%, xe(-1,1),
u(-1) =0,u(l) = 1.

The exact solution to this problem is given as

u(x) = Xe Vo —e Vo4 1.
When & is small, the solution to the problem has a boundary layer at x = 1. We calculate the
solution for parameter & = 1,107!,1072,1073,107*, 1075, 107 using the present scheme, uniform

scheme, and Zhao’s fourth-order scheme. As shown in Table 3, when ¢ = 1,107,107, 1073 the
computational accuracy of all schemes can reach the theoretical fourth-order accuracy. However, when
e =10",107,107° the computational errors of the Zhao [20] and uniform schemes are large, while
the present scheme can still obtain the fourth-order accuracy solution.

As shown in Figure 5 (a)—(c), the numerical solution is in good agreement with the exact solution
by using the three schemes. As shown in Figure 5 (d)—(g), the numerical solutions obtained with
the Zhao [20] and uniform schemes all produce nonphysical oscilations near x = 1, while the present
scheme matches well with the exact solution because there are enough computational nodes distributed
in the boundary layer.
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Table 3. The L*-errors and rate of the convergence under different € for Example 2.

Zhao [20] uniform scheme present scheme

N L™ -error Rate L>-error Rate L>-error Rate

e=1

40 1.020(-10) - 1.022(-10) - 1.023(-10) -

60 2.013(-11)  4.002 2.014(-11)  4.006 2.014(-11)  4.008

80 6.323(-12)  4.025 6.319(-12)  4.029 6.374(-12)  3.996

100 2.612(-12)  3.962 2.646(-12)  3.901 2.548(-12) 4.112

e=10"

40 7.369(-8) — 7.868(-8) - 1.780(-8) -

60 1.508(-8) 3.912 1.554(-8) 4.003 3.513(-9) 4.002

80 4.832(-9) 3.956 4.014(-9) 4.002 1.112(-9) 3.999

100 1.991(-9) 3.973 2.013(-9) 3.999 4.554(-10) 4.001

=107

40 1.643(-5) - 1.249(-5) - 6.461(-8) -

80 8.323(-7) 4.303 8.804(-7) 3.827 4.549(-9) 3.828

120 1.666(-7) 3.967 1.748(-7) 3.987 8.640(-10) 4.097

160 5.352(-8) 3.947 5.547(-8) 3.989 2.629(-10) 4.136

e=10"°

100 5.439(-5) - 3.494(-5) - 1.223(-8) -

140 1.423(-5) 3.985 1.044(-5) 3.576 2.704(-9) 4.485

220 2.278(-6) 4.053 1.902(-6) 3.778 3.717(-10)  4.390

e=10"

150 7.789(-4) - 3.456(-4) - 5.154(-7) -

190 3.846(-4) 2.985 1.942(-4) 2.438 1.866(-7) 4.298

300 6.866(-5) 3.778 4.181(-5) 3.211 3.329(-8) 3.774

=107

40 1.372(0) — 1.337(0) - 3.804(-5) -

60 1.261(0) 0.298 1.171(0) 0.327 1.026(-5) 3.232

70 1.099(0) 0.656 1.048(0) 0.719 6.219(-6) 3.174

80 0.971(0) 0.927 0.913(0) 1.033 3.982(-6) 3.339

e=10"°

80 1.406(0) - 1.363(0) - 5.817(-6) -

90 1.356(0) 0.044 1.399(0) 0.042 3.365(-6) 4.647

100 1.348(0) 0.056 1.391(0) 0.054 2.310(-6) 3.570

110 1.383(0) 0.061 1.338(0) 0.078 1.637(-6) 3.613
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Figure 5. The exact and numerical solutions with three schemes with N = 100 under
different ¢.
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As further shown in Table 4, which presents the L*— and L?>- errors for Example 2, using the
present scheme, the uniform scheme, and Zhao’s fourth-order scheme [20], Table 4 indicates that
when 107! < & < 1, the error of the present scheme is similar to that of the uniform scheme and Zhao’s
fourth-order scheme [20]. When 107 < & < 1072, the error of the present scheme is much smaller than
that of the other two schemes, and the error of the present scheme is 2-3 orders of magnitude smaller
than those of the other two schemes. This is consistent with the numerical results in Figure 5.

Table 4. The errors with three schemes under different £ for Example 2.

Zhao [20] uniform scheme present scheme

L*-error L*-error L*-error L*-error L™ -error L*-error
1 2.662(-12) 1.904(-12) 2.646(-12) 1.892(-12) 2.548(-12) 1.823(-12)
107" 1.991(-9)  1.086(-9) 2.013(-9) 1.100(-9) 4.554(-10) 2.498(-10)
1072 3.339(-7)  9.225(-8) 3.585(-7)  9.836(-8) 2.371(-9)  6.497(-10)
107 5.439(-5)  6.818(-6) 3.494(-5) 5.474(-6) 1.223(-8)  1.693(-9)
107% 9.410(-3)  6.796(-3) 5.266(-3)  3.845(-3) 2.295(-6)  1.725(-7)
10 7.160(-1)  5.057(-1) 6.524(-1)  4.751(-1) 2.659(-6)  1.121(-7)
107%  1.392(0) 9.823(-1) 1.348(0) 0.981(-1) 2.310(-6)  5.453(-8)

3.3. Example 3

We consider the following nonlinear singularly perturbed problem:

{ —ew’ +ud = f(x), x€(0,1),

wO0)=1l+e+ez, u(l)y=e'+1.

The exact solution to this problem is given as

(=D)(1+e)
ux)=e“+e ¢

When ¢ is small, the solution to the equation exhibits a boundary layer at x = 1. Table 5 lists
the computational error and convergence order when different values of parameters €. As shown in
Table 5, when € = 107',1072, 1073, 107#, the errors of the Zhao [20] and the uniform schemes fail
to achieve fourth-order accuracy, while the present scheme can obtain highly accurate solutions and
reach the theoretical fourth—order convergence. Furthermore, the present scheme in this paper for
solving nonlinear singularly perturbed convection—diffusion equations also has advantages over the
uniform scheme in terms of computational accuracy and resolution.
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Table 5. The L*-errors and rate of the convergence under different € for Example 3.

Zhao [20] uniform scheme present scheme

N L*-error Rate L*-error Rate L -error Rate
e=107"!

5 4.768(-2) - - - 6.817(-:3) -

10 8.824(-4) 5.765 5.784(-2) - 5.260(-4) 3.696
20 1.918(-4) 2.202 3.315(-2)  0.803 4.343(-5) 3.598
30 5.300(-5) 3.172 2.541(-2)  0.656 1.013(-5) 3.590
=107

190 3.203(-4) - 3.649(-2) - 7.025(-5) -
300 6.072(-5) 3.641 2.681(-2)  0.675 1.383(-5) 3.558
450 7.085(-6) 5.298 2.157(-2)  0.536 3.165(-6) 3.637
750 1.381(-6) 3.199 1.505(-2)  0.705 2.131(-6) 3.661
=107

160 3.956(-2) - 2.067(-1) - 2.987(-2) -
320 4.370(-2) -0.144 1.412(-1)  0.550 2.318(-3) 3.688
850 1.816(-3) 3.256 7.325(-2)  0.672 5.587(-5) 3.814
1280 1.015(-3) 1.421 5.212(-2)  0.831 0.744(-6)  4.266
e=10"

8 7.108(+0) - 8.701(+0) - 2.052(+0) -

20 1.554(+0)  1.659 1.025(+0) 2.334 3.510(-2)  4.440

As shown in Figure 6 (a) and (b),the numerical solution is in good agreement with the exact solution
by using the three schemes. As shown in Figure 6 (c) and (d), the numerical solutions obtained with the
Zhao [20] and the uniform schemes all produce nonphysical oscilations near x = 1, while the present
scheme matches well with the exact solution because there are enough computational nodes distributed
in the boundary layer.

Table 6 shows the errors of the present scheme are 3—4 orders of magnitude smaller than those of
the other two schemes. This is consistent with the numerical results in Figure 6. It fully demonstrates
the superiority of the scheme calculation under the adaptive mesh method.
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Zhao [20] uniform scheme present scheme
€ L®-error  L*-error L®-error  L*-error L®-error  L*-error
107" 3.893(-4) 1.625(+0) 1.176(-2) 5.777(-3) 1.963(-5) 6.131(-6)
1072 1.469(-3) 2.559(+3) 6.364(-2) 5.843(-2) 9.432(-5) 2.794(-5)
1073 3.265(-2) 3.845(+4) 2.458(-1) 2.112(-1) 4.495(-2) 2.445(-3)
107* 1.021(-1) 4.889(+5) 2.682(-1) 2.135(-1) 7.115(-2) 1.648(-3)
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4. Concluding remarks

In this paper, we developed a consistent fourth-order nonuniform compact scheme coupled with an
adaptive method for solving singularly perturbed convection-diffusion equations with boundary layers.

(1) A fourth-order nonuniform compact difference scheme coupled with an adaptive mesh method
for solving singularly perturbed convection-diffusion equations was developed. The method can
efficiently alleviate or even eliminate numerical difficulties caused by boundary layers, making the
numerical solution closer to the proper solution.

(2) To efficiently solve singularly perturbed convection-diffusion equations and boundary-layer
problems, we extended the obtained difference scheme on uniform grids and coupled them with an
adaptive mesh method. It is shown that the calculation results of the present scheme in this paper are
and thus better suited to solving singularly perturbed convection-diffusion equations well.

(3) Several typical numerical cases were selected for solutions to demonstrate the advantages of
the present scheme proposed in this paper in terms of accuracy validity, and stability. Numerical
experiments show that the present scheme has better scale resolution and is more fit to solve convection-
dominated singularly perturbed problems precisely.

In follow-up research, we aim to focus on the following three aspects: (i) conducting high-
accuracy numerical simulations of flow and heat transfer problems based on the present scheme
for convection—diffusion equations; (i1) theoretically analyzing the stability and convergence of the
proposed difference scheme; and (iii) Extending the present scheme to two-dimensional cases and
solving two-dimensional singularly perturbed convection—diffusion equations. We look forward to
reporting the results of these studies in future work.
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Appendix A

The consistent fourth-order left boundary scheme of the second derivative is

1

" ” 4 ” ”

QU + Uy + @3l + Qulty + sty = ﬁ((louo +au; + azuz).
1

The coeflicients of the free unknown parameters in the uniform fourth-order left boundary scheme of
the second derivative are respectively

120k,

ag = ,

O A2 Ak + 1

120k (K, + 1)

a = - )

Ky (3 + 412 + 4k, + 1)
120k,
az

T k(A + Akt 1)
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2k;A;
T Wi + Dk + koks + D + 42 + 4k, + DKy + koks + koksks + 1)
2kiA,
@2 =703 3. 412 ’
kiky (ks + D)(ks + ksky + 1)(k7 + 4k + 4k; + 1)
2kiAs
a3

T KRR + Dk + DE + 412+ 4k + 1)

where

Ay =5k; — 5k — 5k} + 5k} + 3K + Ok; + 15k7 + 10k; — 2k} + 6k ky + 20kik, + 20k; k,
— 6k ky + 5kiks + 10k k5 — 5Kk + 10ktkiks + 20k kaks — 10k, kaks + 6k kyks
+ Skl ks + 10k k5k3 — Skykaks + 20ktkaks + 20k kaks — 6k koks + 3k koksky
+ Skl kaky + 10k kakaky — Sk kakaky + 10k koksky + 10k kaksky — 3k kaksky
+ Skiksksky + 10k koksky — Sk koksky + 5,

Ay =A;z + 3kiky + 10k3ky + 10k ky — 3Kk, + 10345 + 20k k5 — 10k ks — 10Kk — 10Kk,
+ 10ktksks + 20k kaoks + 20k kaks — 10k, ksks — 20k kaks — 10k ko ks + 10k ko ksky
— 10k 5 kiky + Skikaksky + 10k kiksky + 10k kaksky — Sk kaksky — 10k kaksky,

Ay =A, + 3k + 15k7 + 30k} + 30k] + 12k; + 15kTky + 60k ky + 90kTky + 45k ky + 30Kk K3
+ 90k k; + 30ki k3 + 60k k5 + 30k5k; + 40k; kaks + 120k koks + 60k Ioks + 80k koks
+ 60k} ko ks + 10k kaks + 30k koks + 30k( ks + 20k koks + 30k kaks + 10kiksks
+ 40k3 koks + 60k koks + 30k koks + 10k k5 ksky + 30k ks ksky + 30ktkakaky + 20k kakiky
+ 30K} k3k3ky + Skikaksky + 20k koksky + 30k{koksky + 15k koksky + 20k koksky
+ 60k ksksky + 30k Ioksky + 40k kksky + 30k kyksks.

B. Appendix B

The consistent fourth-order right boundary scheme of the second derivative is

14 ’” ” ” "
AN_1Uy_| T AN2UN_» T AN3UN_3 T AN-gUN_4 + AN_5UN_5 = h—z(aNuN +ay_1un-1 + aN_QMN_z).
N
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The coefficients of the free unknown parameters in the uniform fourth-order right boundary scheme of
the second derivative are respectively
3 120k;
DI+ AR+ A+ 1
120](1(](1\] + 1)

ay

N T + 4 + 4k + 1)
120k;

an_p = ,

V2T k(3 + 42 + 4k + 1)

2kiAn 1

aAnN_1 = . s

A kﬁ(kN—l + Dky-1 + kn_1ky2 + 1) (k? + 4k,? +4k; + 1) (k-1 + kn_1tkn-o + kn_1ky2ky-3 + 1)

2k;A N>
N2 =018 (kya + D(kya + kyakns + D + 42 + 4k + 1)’
NN_1(N—2+ )(N—2+ N-2KN-3 + )([+ ,'+ it )
2kiAn3

aAN_3 = s

N T (ko + D(ky_s + DS + 42 + 4k + 1)
where

Ans =5k; — 5k7 — 5k + 5k} + 3k + 9ky + 15k, + 10ky, — 2k + 6kyky_1 + 20knyky_;
+ 20k ky_y — Okxky_1 + Skyky_, + 10kyky, | — Skyky | + 10kyky_ ky_»
+ 20k ky,_ kn_o — 10k ky_kn_o + 6knky_1ky_o + Skyky_kx_,
+ 10kyky_ kx_y — Skaka_ ko + 20knkn_1kn_o + 20k ky_1ky 2
— Ok kn_1hky_o + 3knkn_1ky_skn_s + Skaky Kk _okn_3
+ 10kyky_ ka_okn—s — Skaka_ ky_okn—3 + 10kykn_1kn_okn_3
+ 10k ky_1kn_okn_3 — Sknkn_1kn_okn_3 + Skiky_ ky_2ky_3
+ 10ky ky,_ kn_okn_3 — Skykn_kn_okn_3 + 5,
Ay =Anz + 3kyky_1 + 10kyky_y + 10kyky_y — 3kky_1 + 10kyky_, + 20kyky,_,
— 10kyky,_ — 10kyky,_, — 10k ks, + 10knky,_ kn_o + 20k ky_kn_»
+ 20k k3, ko — 10k k% ky_o — 20kyky_ ky_o — 10kyky, kx5
+ 10ky ko, ko _okn—s — 10Kk, kyy ok 3 + Skaky_ kn-akn_3
+ 10kyky_ kn—okn_3 + 10kyka,_ ky_oky_3 — Skak_ kn-okn_3
— 10k ks, kn_okn_3,
At =Ans + 3ky + 15k% + 30ky, + 30ky, + 12ky, + 15kyky_1 + 60kyky_1 + 90knky_;
+ 45k k1 + 30ky ks + 90kyky,_, + 30kyky, | + 60k ky,_, + 30kyky,
+ 40k ky,_ kn_o + 120kyky,_ ky_o + 60knky,_ kn_o + 80kyky_1ky_2
+ 60kn ks, ko + 10k k% k%, + 30knky_ kxy_ + 30kyky, kx ,
+ 20ky ki kx_y + 30Kk ko + 10kyky_1ky_o + 40ky ky_1ky_»
+ 60kykn_1kn_o + 30kyky_1ky_o + 10kyky_ ky_okn_3 + 30knka_ kx_kn_3
+ 30knky_ ke _okn_s + 20kyky  ky okn_3 + 30kyky,_kn_okn -3
+ Skiky_1ky_2ky_3 + 20kyky_1kn_akn_3 + 30knkn_1kn_okn_3

AIMS Mathematics Volume 11, Issue 1, 2279-2312.
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+ 15kyky_1kn_okn_3 + 20kyka_ ky_oky_3 + 60knky,_kn_oky_3
+ 30knky_ kn_okn_3 + 40k ky_ kn_okn_3 + 30kyky_ kn_okn 3.
C. Appendix C

The consistent fourth-order left boundary scheme of the first derivative is

Buuy + Pty = h—(bouo + buy + byuy + bsus + bauy + bsus).
1

The coefficients of the free unknown parameters in the fourth-order left boundary scheme of the first-
order derivative are respectively

Bi =4,
By = 4

4k + 4k (ky + Dk + koks + 1) — 4 (ki + D (ks +1)
bo

(+1)2
Tkt + Dk + kiky + D(ky + kaky + kikaks + D)(ky + kika + kykoks + kokakak; + 1)
416 (ky + 1)(ky + koks + 1)
T+ Dk + Kk + Dk + kiky + kikoks + 1)
. 4K (k3 + 1)
(ki + D(k; + D2(ky + kiky + D)(ky + kiko + kijkoks + 1)
A(ky — 4k — 2koks + 2kyky — K2ks + Ky K2 — K2 + kykoks + ki K2ks — 3)
1= Ky (y + 1)(ky + koks + 1)

312
42 + 43 (ky + 1) (ky + koks + 1) — XD

_ (ki+1)?
kzlt(kz + 1)(k2 + koks + 1)(k2 + koks + koksks + 1)

4]{%(](1 + 1)(k3 + 1)
k](k2 + 1)(kl + 1)2(](2 + k2k3 + 1)’
b _4(k2 + 1)(](2 + k2k3 + 1)
2T kK2 + (ks + 1)

4R + 4y + Dk + ok + 1) — Sl )
+ 1

ki‘k;(kl + D)(ks + 1)(ks + kzks + 1)

4(2k1 -k + k3 — 2kiky — k2k3 + k]k3 - 2k1k2k'; + 2)

kiky(ky + 1) (ks + 1)(k; + 1)?
b 4(ky + 1)(ks + 1) 4(ky + koks + 1)
3

" lalkoka(ky + Dk + ki + Dk + 12 kik2ks(k + DKy + kika + 1)
4k + 4k (ko + D)k + koks + 1) — 43 (ki + 1) (ks +1)

)

(ki+1)?
kHoka(ky + 1)(ky + 1)(ky + koky + 1) ’

- 4(ky + 1)
* T ks (ks + D(ky + koks + 1)(ky + ki + kikoks + 1)

|+ Dl + ok + 1) - M
ki‘kik%]ﬂ(k?, + D)(ky + koks + 1) (k1 + kiky + kikoks + 1)

AIMS Mathematics
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ki + 1)
k1k2k3(k3 + 1)(]{, + 1)2(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)

D. Appendix D

The consistent fourth-order right boundary scheme of the first derivative is

’ ’ 1
Bn-1uy_y +ByoUy_, = Z(b/vu/v + by_un-1 + bysuy_ + by _sun_3 + Dy_stin_s + by_suy_s).

The coefficients of the free unknown parameters in the uniform fourth-order right boundary scheme of
the first derivative are respectively

Bn-1 =4,
B 4
Bn-2 = m,
by 4k13\,(k1v—1 + Dkn-1 + kn-1ky- + 1)

 (ky + D(ky + kyky_1 + D(ky + knky_1 + knky-1ky— + 1)
AK2 + 4K (ky—y + Dkt + K-ty + 1) = TR0 O
by
A2, (kya + 1)

- (ky + D)(k;i + 1)2(ky + kn_1ky + D) (ky + kn_1ky + kn_1ky_oky + 1)’
4by_1

by 1 =
YT ko + Dlkvoy + ky-ikyo + 1)
312
42 + 243 (vt + Dkyoy + K-ty + 1) — g i)
+ 1
kn(ky-1 + D(ky-1 + ky-1ky—o + D(kn-1 + kn_tkn—o + kn_tkn_2kn_3 + 1)
4k§,_1(kN_2 + Dky + 1)
+ )
kn(ky-1 + 1)(ki + 1)*(kn-y + ky_1ky_ + 1)
b s = Alkn-1 + Dky-1 + kn-1ky—2 + 1)
N-2 = —
kajzv_l(kN—Z + 1)(](1\/ + 1)
4k + 4k (ky-y + Dky-1 + kn_thky—o + 1) — 4k13vk?vfl((/,3v:;zl)(klv+l)
kvl (ky-o + Dky + D(kn— + ky_aky_3 + 1)
_ A(ky-1 — kn-o — 2kn + 2kn_1ky + kn_1kn_o — ky_okn + 2kn_1kn_2ky — 2
ky_1ky(ky—o + D)(ky + 1)(k; + 1) ’
b = Akn-1 + kn-1ky2 + 1)
N-3 =
kav_lkN—ZkN(kN—l + D(ky + ky_1ky + 1)
42 + 406 (ko + Dk + k- rhy—p + 1) — oD
+ 1
kj‘\,k?\,_lklz\,_z(k,v_l + D(ky_s + D(ky + ky_1ky + 1)
Akn_r + D(ky + 1)
kn_tkn_okn(ky-1 + D)(ky + knky_y + D(k; + 1)?°
4ky + 1)
by-4

- kn—1kn_okn(kn_o + D)(ki + 1)*(kn_1 + ky-1ky—2 + 1)
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1 4kl.2 + 4k13v(kN_1 +1)
(kN + kN—lkN + kN—lkN—ZkN + 1) k?\/k?\’—lklz\’—ZkN_3(kN_2 + 1)

4312, ey + 1) (ky+1
) (kyoy + ky_thkyo + 1) — 2 N—l((k7+i; Y(kn+1)
(k-1 + kn_i1ky_o + D(ky + ky_1kn + kn_1ky_oky + 1)
4(kn-_y + 1)

- k2, kn—okn(ky_a + D(kn-t + kn—1kn—o + D(kn + ky-1ky + ky_1ky_oky + 1)

where

by1 = (ky + D(ky + knky-1 + D(ky + knkn-1 + kn_1kyoky + D(ky + kn-1ky
+ kn-1kn-2ky + kn-1kn2ky-3ky + 1),

by_11 = dky_y — ky + 2kn_tkn_o — 2ky_1ky + ky_oky_, — ky_ ky + ky_,
— kn_1ky_oky — knky,_, + 3.
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