
https://www.aimspress.com/journal/Math

AIMS Mathematics, 11(1): 2279–2312.
DOI: 10.3934/math.2026092
Received: 10 October 2025
Revised: 02 January 2026
Accepted: 12 January 2026
Published: 23 January 2026

Research article

A high-order nonuniform compact difference scheme coupled with adaptive
mesh method for solving singularly perturbed convection-diffusion
equations

Tao Wang1,2,*, Jinhua Ma1 and Qiong Chen1

1 School of Mathematics and Information Science, North Minzu University, Yinchuan, 750021,
China

2 Ningxia Collaborative Innovation Center for Scientific Computing and Intelligent Information
Processing, Yinchuan, 750021, China

* Correspondence: Email: wangtao@nmu.edu.cn.

Abstract: A high-order nonuniform compact difference scheme coupled with an adaptive mesh
method for solving singularly perturbed convection-diffusion equations is proposed. The core idea
of the proposed method lies in constructing a nonuniform grid scheme with the same fourth-order
accuracy at both inner and boundary points, and this construction is based on an adaptive mesh method.
This approach effectively eliminates numerical oscillation near the boundaries, a common challenge
in singularly perturbed problems. Specifically, we first formulate the fourth-order compact scheme on
nonuniform grids, then integrate it with the adaptive mesh method and elaborate on the corresponding
numerical implementation procedure. Finally, numerical experiments are conducted against exact
solutions, with the proposed scheme further compared against three benchmark methods: the fourth-
order compact scheme on uniform grids, the identical scheme on adaptive nonuniform grids, and the
other established methods reported in existing literature. Results of all test cases demonstrate that the
proposed scheme generates accurate and stable numerical solutions and exhibits enhanced resolution
for singularly perturbed convection-diffusion problems.
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1. Introduction

The singularly perturbed convection-diffusion equation with parameters is a type of partial
differential equation in which the convection term involves a very small parameter. The small
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parameters change the solution rapidly in a certain small region, such as near boundaries, forming
what are known as boundary layers. These abrupt changes pose considerable challenges for traditional
numerical methods, particularly when uniform grids are employed, as such grids may fail to accurately
capture these fine-grained features. More and more researchers are paying attention to the numerical
solution of this problem [1].

The main numerical methods for solving singularly perturbed convection-diffusion equation are
the finite difference method [2], finite element method [3, 4], finite volume method [5, 6], spectral
method [7, 8], and others. To overcome the difficulties caused by boundary layers, several effective
solution strategies have been proposed. Common strategies include the fitted operator method [9],
adaptive mesh method [10,11], and layer-adapted method [12–14]. Each of these methods has its own
advantages and disadvantages. The adaptive mesh method, which refines the mesh, moves the mesh,
or increase the order of basis functions, better reflects the essence of the problem and has gradually
gained favor among many scholars [15, 16]. The adaptive mesh method only needs to find a control
function to continuously help optimize the mesh. In this paper, the adaptive mesh method is a grid
generation algorithm that dynamically adjusts the distribution of grid nodes based on problem-solving
requirements. Its core idea is to automatically refine the mesh in regions, where the solution changes
rapidly and reduce mesh density in smooth regions by monitoring the change gradient of the solution on
a nonuniform grid, thereby optimizing computational efficiency while ensuring calculation accuracy.

To couple with the adaptive mesh method, the first step is to construct a high-order finite difference
scheme with a nonuniform grid. However, high-order difference schemes generally only achieve high
order at the inner point, and it is much harder to achieve the same accuracy at the boundary. Wang
Tao [17] et al. proposed the construction of a principle of a consistent high-order scheme. The
consistent high-order scheme is used to solve the problem of the low-order scheme in the boundary
that affects the calculation accuracy of the whole scheme. Therefore, coupled with the adaptive
mesh method, we construct a nonuniform fourth-order compact difference scheme for solving the
singularly perturbed convection-diffusion equation on nonuniform grids. It can efficiently alleviate or
even eliminate numerical difficulties caused by boundary layers, making the numerical solution closer
to the proper solution.

This work aims to develop a nonuniform scheme with the same fourth-order accuracy at both inner
and boundary points, and this construction is coupled with the adaptive mesh method for solving
the singularly perturbed convection-diffusion equation. The outline of the paper is as follows: In
Section 2, we propose a consistent fourth-order accuracy scheme with nonuniform meshes for solving
the singularly perturbed convection-diffusion equation. In Section 3, the accuracy of the proposed
scheme is verified using an exact solution problem. We also simulate a numerically different singularly
perturbed convection-diffusion problem based on the method proposed in this paper. Some concluding
remarks are given in Section 4.

2. Numerical method

Let us consider the following one-dimensional singularly perturbed convection-diffusion equation:−εu
′′

+ b(x)u
′

+ c(x)u = f (x), x ∈ (a, b),
u(a) = ua, u(b) = ub,

(2.1)
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where ε is constant, with ε > 0, and is the diffusion coefficient; b(x) is the convection coefficient;
f (x) is the source term; u(x) is the unknown quantity to be computed; b(x), c(x) , f (x), and u(x)
are all sufficiently smooth functions that are known to be sufficiently smooth functions of x.

2.1. Interior scheme

In this work, Eq (2.1) will be solved by the fourth-order compact difference scheme with a
nonuniform grid.

We denote the nonuniform grid with step sizes hi (hi , hi+1) and the grid node xi = a + ihi,
i = 0, ...,N. We use ui to represent the value of u at grid node xi, u

′′

i and u
′

i to represent approximations
of u

′′

and u
′

at node xi, i = 0, ...,N. We note ki = hi+1
hi

. Figure 1 shows the computational stencil for
interior nodes.

Figure 1. Computational stencil for interior nodes.

By the Taylor expansion, the fourth-order compact scheme with a nonuniform grid of the second
derivative is given:

−
10ki(k2

i − ki − 1)
k3

i + 4k2
i + 4ki + 1

u
′′

i−1 + 10u
′′

i +
10(k2

i + ki − 1)
k3

i + 4k2
i + 4ki + 1

u
′′

i+1

=
120

(ki + 1)(k2
i + 3ki + 1)

ui+1 − ui

h2
i

+
120ki

(ki + 1)(k2
i + 3ki + 1)

ui−1 − ui

h2
i

, i = 2, 3, ...,N − 2.
(2.2)

It is noted that the truncation error of scheme (2.2) is

−
ki(3k4

i + 2k3
i − 7k2

i + 2ki + 3)
12(k2

i + 3ki + 1)
h4u6

i + O(h6). (2.3)

When ki = 1 in scheme (2.2), the scheme corresponds to the uniform grid scheme [18]. That is,

u
′′

i−1 + 10u
′′

i + u
′′

i+1 =
12
h2 (ui−1 − 2ui + ui+1), i = 2, 3, ...,N − 2. (2.4)

The truncation error of scheme (2.4) is − 1
20h4u(6)

i + O(h6).
By the Taylor expansion, the fourth-order compact scheme with a nonuniform grid of the first

derivative is given:

4k2
i

(ki + 1)2 u
′

i−1 + 4u
′

i +
4

(ki + 1)2 u
′

i+1

=
8(2ki + 1)
ki(ki + 1)3

(ui+1 − ui)
hi

−
8k2

i (ki + 2)
(ki + 1)3

(ui−1 − ui)
hi

, i = 2, 3, ...,N − 2.
(2.5)

It is noted that the truncation error of scheme (2.5) is

−
k2

i

30
h4u5

i + O(h5). (2.6)
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When ki = 1 in scheme (2.5), the scheme corresponds to the uniform grid scheme [19]. That is,

u
′

i−1 + 4u
′

i + u
′

i+1 =
3
h

(−ui−1 + ui+1), i = 2, 3, ...,N − 2. (2.7)

The truncation error of scheme (2.7) is − 1
60h4u5

i + O(h5).

2.2. Boundary scheme

To solve the singularly perturbed convection-diffusion equation with the above interior scheme, we
must give the value for the first and second derivatives of the boundary points u at i = 1,N − 1.

In Ref. [17], it is noted that the consistent fourth-order compact scheme used here means that
the difference schemes applied have fourth-order accuracy and maintain this precision through the
computational domain, even where the grid changes. So, we construct the consistent fourth-order
boundary scheme with a nonuniform grid. The consistent boundary scheme must satisfy the following
three conditions [17]: (i) The order of accuracy of the boundary scheme is the same as the interior
scheme; (ii) The major truncation error term of the boundary scheme is identical to that of the interior
scheme; (iii) The coefficient matrix of the algebraic system is strictly diagonally dominant. From the
above definition, it is easy to conclude that the entire computation is numerically stable if a consistent
scheme is applied.

2.2.1. Diffusion term boundary scheme

Theorem 2.1. The consistent fourth-order boundary nonuniform scheme of the second derivative
exists.

Proof. By using Taylor series expansion, the fourth-order boundary scheme of the second derivative
with boundary parameters is derived.

We give the fourth-order left boundary nonuniform scheme of the second derivative as

α1u
′′

1 + α2u
′′

2 + α3u
′′

3 + α4u
′′

4 + α5u
′′

5 =
1
h2

1

(a0u0 + a1u1 + a2u2), (2.8)

where the notation in Figure 2 is used.
Figure 2 shows the schematic of nonuniform left boundary nodes, where 0 represents the boundary

node, 1 represents the near-boundary point, and 2 represents the internal node adjacent to the near-
boundary point (i.e., the sub-near-boundary point). Let hi = xi − xi−1, ki = hi+1

hi
, where i = 1, 2, . . . , 5.

Figure 2. Computational stencil for left boundary nodes.
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The expression (2.8) of the parameters is as follows:

a0 = A01α4 + A02α5,

a1 = A11α4 + A12α5,

a2 = A21α4 + A22α5,

α1 = A31α4 + A32α5,

α2 = A41α4 + A42α5,

α3 = A51α4 + A52α5.

The coefficients of the free unknown parameters are respectively

A01 =
−60k3

1k2
2k3(k3 + 1)(k2 + k2k3 + 1)

(k1 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A02 =
60k3

1k2
2k3(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)

(k1 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A11 =
60k2

1k2
2k3(k3 + 1)(k2 + k2k3 + 1)

(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A12 =
60k2

1k2
2k3(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)

(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A21 =
−60k2

1k2
2k3(k3 + 1)(k2 + k2k3 + 1)

(k1 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A22 =
−60k2

1k2
2k3(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)

(k1 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A31 =
−k2

2k3(k3 + 1)(a31 + 3)

(k1 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A32 =
k2

2k3(k4 + 1)(k3 + k3k4 + 1)(a32 + 3)

(k1 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A41 =
k3(k2 + k2k3 + 1)(a41 + 3)

(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A42 =
k3(k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(a42 + 3)

(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A51 =
−(k3 + 1)(k2 + k2k3 + 1)(a51 + 3)

(k2 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

A52 =
−(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(a52 + 3)

(k2 + 1)(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

where

a31 = 12k1 + 18k2
1 + 12k3

1 + 10k1k2 + 30k2
1k2 + 30k3

1k2 + 10k2
1k2

2 + 20k3
1k2

2 + 10k2
1k2

2k3

+ 20k3
1k2

2k3 + 5k1k2k3 + 15k2
1k2k3 + 15k3

1k2k3 + 3,
a32 = a31 + 5k1k2k3k4 + 15k2

1k2k3k4 + 15k3
1k2k3k4 + 10k2

1k2
2k3k4 + 20k3

1k2
2k3k4,
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a41 = 7k1 + 3k2
1 − 3k3

1 + 10k1k2 + 10k2
1k2 − 10k3

1k2 + 10k2
1k2

2 − 10k3
1k2

2 + 10k2
1k2

2k3

− 10k3
1k2

2k3 + 5k1k2k3 + 5k2
1k2k3 − 5k3

1k2k3 + 3,
a42 = a41 + 5k1k2k3k4 + 5k2

1k2k3k4 − 5k3
1k2k3k4 + 10k2

1k2
2k3k4 − 10k3

1k3
2k3k4,

a51 = 7k1 + 3k2
1 − 3k3

1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 5k1k2k3 + 5k2
1k2k3 − 5k3

1k2k3,

a52 = a51 + 5k1k2k3k4 + 5k2
1k2k3k4 − 5k3

1k2k3k4.

The truncation error of the scheme (2.8) is (C11α4 + C12α5)h4
1u6

1 + O(h5
1), where there are two free

unknown α4, α5 for optional adjustments.
In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

C11α4 + C12α5 = −
ki(3k4

i + 2k3
i − 7k2

i + 2ki + 3)
12(k2

i + 3ki + 1)
.

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, we let

A01α4 + A02α5 =
120ki

(ki + 1)(k2
i + 3ki + 1)

.

So, we get

α4 =
−(2kic4)

k4
1k3

2k2
3k4(ki + 1)(k3 + 1)(k2

i + 3ki + 1)(k2 + k2k3 + 1)
,

α5 =
2kic5

k4
1k3

2k2
3k4(ki + 1)(k4 + 1)(k2

i + 3ki + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)
,

C11 =
−(k3

1k2
2k3(k3 + 1)(k2 + k2k3 + 1)(c1 + 2))

24(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

C12 =
−(k3

1k2
2k3(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(c2 + 2))

24(7k1 + 5k1k2 + 5k2
1k2 − 5k3

1k2 + 3k2
1 − 3k3

1 + 3)
,

where

c1 =7k1 + 8k2
1 + 2k3

1 − 2k4
1 + 6k1k2 + 14k2

1k2 + 6k3
1k2 − 6k4

1k2 + 5k2
1k2

2 + 5k3
1k2

2 − 5k4
1k2

2

+ 5k2
1k2

2k3 + 5k3
1k2

2k3 − 5k4
1k2

2k3 + 3k1k2k3 + 7k2
1k2k3 + 3k3

1k2k3 − 3k4
1k2k3,

c2 =c1 + 3k1k2k3k4 + 7k2
1k2k3k4 + 3k3

1k2k3k4 − 3k4
1k2k3k4 + 5k2

1k2
2k3k4 + 5k3

1k2
2k3k4 − 5k4

1k2
2k3k4,

c5 =5ki − 5k2
i − 5k3

i + 5k4
i + 3k5

i + 9k1 + 15k2
1 + 10k3

1 − 2k5
1 + 6k1k2 + 20k2

1k2 + 20k3
1k2

− 6k5
1k2 + 5k2

1k2
2 + 10k3

1k2
2 − 5k5

1k2
2 + 5k2

1k2
2k3 + 10k3

1k2
2k3 − 5k5

1k2
2k3 + 3k1k2k3

+ 10k2
1k2k3 + 10k3

1k2k3 − 3k5
1k2k3 + 5,

c4 =c5 + 3k1k2k3k4 + 10k2
1k2k3k4 + 10k3

1k2k3k4 − 3k5
1k2k3k4 + 5k2

1k2
2k3k4 + 10k3

1k2
2k3k4 − 5k5

1k2
2k3k4.

Then, the consistent fourth-order left boundary scheme of the second derivative is

α1u
′′

1 + α2u
′′

2 + α3u
′′

3 + α4u
′′

4 + α5u
′′

5 =
1
h2

1

(a0u0 + a1u1 + a2u2). (2.9)
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The coefficients of the free unknown parameters of scheme (2.9) are given (see Appendix A). The
truncation error of scheme (2.9) is

−
ki(3k4

i + 2k3
i − 7k2

i + 2ki + 3)
12(k2

i + 3ki + 1)
h4

1u(6)
1 + O(h6

1). (2.10)

The boundary scheme is a uniform grid scheme with ki = 1. Then, the boundary scheme with a uniform
grid is

15u
′′

1 − 9u
′′

2 + 10u
′′

3 − 5u
′′

4 + u
′′

5 =
12
h2 (u0 − 2u1 + u2). (2.11)

Similarly, we develop the fourth-order right boundary nonuniform scheme as

αN−1u
′′

N−1 + αN−2u
′′

N−2 + αN−3u
′′

N−3 + αN−4u
′′

N−4 + αN−5u
′′

N−5

=
1

h2
N

(aNuN + aN−1uN−1 + aN−2uN−2),
(2.12)

where the notation in Figure 3 is used.
Figure 3 shows the schematic of nonuniform right boundary nodes, where N represents the boundary

node, N-1 represents the near-boundary point, and N-2 represents the internal node adjacent to the
near-boundary point (i.e., the sub-near-boundary point). Let hi = xi − xi−1, ki = hi−1

hi
, where i =

N,N − 1, . . . ,N − 5.

Figure 3. Computational stencil for right boundary nodes.

The expression (2.12) of the parameters is as follows

aN = AN01αN−4 + AN02αN−5,

aN−1 = AN11αN−4 + AN12αN−5,

aN−2 = AN21αN−4 + AN22αN−5,

αN−1 = AN31αN−4 + AN32αN−5,

αN−2 = AN41αN−4 + AN42αN−5,

αN−3 = AN51αN−4 + AN52αN−5.

The coefficients of the free unknown parameters are respectively

AN01 =
−(60k3

Nk2
N−1kN−2)(kN−2 + 1)(kN−1kN−2 + 1)

(kN + 1)(7kN + 5kN−1kN + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

AN02 =
−(60k3

Nk2
N−1kN−2(kN−3 + 1)
(kN + 1))

·
(kN−2 + kN−2kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

AN11 =
(60k2

Nk2
N−1kN−2)(kN−2 + 1)(kN−1kN−2 + 1)

(7kN + 5kN−1kN + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,
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AN12 =
(60k2

Nk2
N−1kN−2)(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)

(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
·

(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)
1

,

AN21 =
−(60k2

Nk2
N−1kN−2)(kN−2 + 1)(kN−1kN−2 + 1)

(kN + 1)(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

AN22 =
−(60k2

Nk2
N−1kN−2)(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)

(kN + 1)

·
(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

AN31 =
−(k2

N−1kN−2)(kN−2 + 1)(aN31 + 3)

(kN−1 + 1)(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

AN32 =
−(k2

N−1kN−2)(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)(aN32 + 3)

(kN−1 + 1)(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

AN41 =
kN−2(kN−1 + kN−1kN−2 + 1)(aN41 + 3)

7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3
,

AN42 =
kN−2(kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)(aN42 + 3)

7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3
,

AN51 =
−(kN−2 + 1)(kN−1 + kN−1kN−2 + 1)(aN51 + 3)

(kN−1 + 1)(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3
),

AN52 =
−(kN−2 + kN−2kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)(aN52 + 3)

(kN−1 + 1)(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3
,

where

aN31 =12kN + 18k2
N + 12k3

N + 10kNkN−1 + 30k2
NkN−1 + 30k3

NkN−1 + 10k2
Nk2

N−1

+ 20k3
Nk2

N−1 + 10k2
Nk2

N−1kN−2 + 20k3
Nk2

N−1kN−2 + 5kNkN−1kN−2

+ 15k2
NkN−1kN−2 + 15k3

NkN−1kN−2 + 3,
aN32 =aN31 + 5kNkN−1kN−2kN−3 + 15k2

NkN−1kN−2kN−3 + 15k3
NkN−1kN−2kN−3

+ 10k2
Nk2

N−1kN−2kN−3 + 20k3
Nk2

N−1kN−2kN−3,

aN41 =7kN + 3k2
N − 3k3

N + 10kNkN−1 + 10k2
NkN−1 − 10k3

NkN−1 + 10k2
Nk2

N−1

− 10k3
Nk2

N−1 + 10k2
Nk2

N−1kN−2 − 10k3
Nk2

N−1kN−2 + 5kNkN−1kN−2

+ 5k2
NkN−1kN−2 − 5k3

NkN−1kN−2 + 3,
aN42 =aN41 + 5kNkN−1kN−2kN−3 + 5k2

NkN−1kN−2kN−3 − 5k3
NkN−1kN−2kN−3

+ 10k2
Nk2

N−1kN−2kN−3 − 10k3
Nk3

N−1kN−2kN−3,

aN51 =7kN + 3k2
N − 3k3

N + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 5kNkN−1kN−2

+ 5k2
NkN−1kN−2 − 5k3

NkN−1k2,

aN52 =aN51 + 5kNkN−1kN−2kN−3 + 5k2
NkN−1kN−2kN−3 − 5k3

NkN−1kN−2kN−3.

Its truncation error is (CN1αN−4 + CN2αN−5)h4
N−1u6

N−1 + O(h6
N−1), where there are two free

unknowns αN−4, αN−5 for optional adjustments.
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In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

CN1αN−4 + CN2αN−5 = −
ki(3k4

i + 2k3
i − 7k2

i + 2ki + 3)
12(k2

i + 3ki + 1)
.

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, we let

AN1αN−4 + AN2αN−5 =
120ki

(ki + 1)(k2
i + 3ki + 1)

.

So, we get

αN−4 =
−2kicN4

(k4
Nk3

N−1k2
N−2kN−3)(ki + 1)(kN−2 + 1)(k2

i + 3ki + 1)(kN−1 + kN−1kN−2 + 1)
,

αN−5 =
2kicN5

(k4
Nk3

N−1k2
N−2kN−3)(ki + 1)(kN−3 + 1)(k2

i + 3ki + 1)cN
,

CN1 =
−(k3

Nk2
N−1kN−2)(kN−2 + 1)(kN−1 + kN−1kN−2 + 1)(cN1 + 2)

24(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

CN2 =
−(k3

Nk2
N−1kN−2)(kN−3 + 1)cN(cN2 + 2)

24(7kN + 5kNkN−1 + 5k2
NkN−1 − 5k3

NkN−1 + 3k2
N − 3k3

N + 3)
,

where

cN =(kN−2 + kN−2kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1),
cN1 =7kN + 8k2

N + 2k3
N − 2k4

N + 6kNkN−1 + 14k2
NkN−1 + 6k3

NkN−1 − 6k4
NkN−1

+ 5k2
Nk2

N−1 + 5k3
Nk2

N−1 − 5k4
Nk2

N−1 + 5k2
Nk2

N−1kN−2 + 5k3
Nk2

N−1kN−2

− 5k4
Nk2

N−1kN−2 + 3kNkN−1kN−2 + 7k2
NkN−1kN−2 + 3k3

NkN−1kN−2 − 3k4
NkN−1kN−2,

cN2 =cN1 + 3kNkN−1kN−2kN−3 + 7k2
NkN−1kN−2kN−3 + 3k3

NkN−1kN−2kN−3

− 3k4
NkN−1kN−2kN−3 + 5k2

Nk2
N−1kN−2kN−3 + 5k3

Nk2
N−1kN−2kN−3 − 5k4

Nk2
N−1kN−2kN−3,

cN5 =5ki − 5k2
i − 5k3

i + 5k4
i + 3k5

i + 9kN + 15k2
N + 10k3

N − 2k5
N + 6kNkN−1 + 20k2

NkN−1

+ 20k3
NkN−1 − 6k5

NkN−1 + 5k2
Nk2

N−1 + 10k3
Nk2

N−1 − 5k5
Nk2

N−1 + 5k2
Nk2

N−1kN−2

+ 10k3
Nk2

N−1kN−2 − 5k5
Nk2

N−1kN−2 + 3kNkN−1kN−2 + 10k2
NkN−1kN−2

+ 10k3
NkN−1kN−2 − 3k5

NkN−1kN−2 + 5,
cN4 =cN5 + 3kNkN−1kN−2kN−3 + 10k2

NkN−1kN−2kN−3 + 10k3
NkN−1kN−2kN−3

− 3k5
NkN−1kN−2kN−3 + 5k2

Nk2
N−1kN−2kN−3 + 10k3

Nk2
N−1kN−2kN−3 − 5k5

Nk2
N−1kN−2kN−3.

Then, the consistent fourth-order right boundary scheme of the second derivative is

αN−1u
′′

N−1 + αN−2u
′′

N−2 + αN−3u
′′

N−3 + αN−4u
′′

N−4 + αN−5u
′′

N−5

=
1

h2
N

(aNuN + aN−1uN−1 + aN−2uN−2).
(2.13)
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The coefficients of the free unknown parameters of scheme (2.13) are given (see Appendix B). The
truncation error of scheme (2.13) is

−
ki(3k4

i + 2k3
i − 7k2

i + 2ki + 3)
12(k2

i + 3ki + 1)
h4

N−1u6
N−1 + O(h6

N−1). (2.14)

The boundary scheme is a uniform grid scheme with ki = 1. Then, the boundary scheme with a uniform
grid is

15u
′′

N−1 − 9u
′′

N−2 + 10u
′′

N−3 − 5u
′′

N−4 + u
′′

N−5 =
12
h2 (uN − 2uN−1 + uN−2). (2.15)

�

By combining the interior scheme (2.2), the left boundary scheme (2.9), and the right boundary
scheme (2.13) into a unified system, the matrix form is given as follows:

M4
2U′′ = A4

2U + H4
2 , (2.16)

where

M4
2 =



α1 α2 α3 · · · 0 0 0
−10k2(k2

2−k2−1)
k3

2+4k2
2+4k2+1

10 10(k2
2+k2−1)

k3
2+4k2

2+4k2+1
· · · 0 0 0
. . .

0 0 0 · · ·
−10kN−2(k2

N−2−kN−2−1)
k3

N−2+4k2
N−2+4kN−2+1

10 10(k2
N−2+kN−2−1)

k3
N−2+4k2

N−2+4kN−2+1

0 0 0 · · · αN−3 αN−2 αN−1


,

U
′′

=



u
′′

1
u
′′

2
u
′′

3
...

u
′′

N−3
u
′′

N−2
u
′′

N−1


,U =



u1

u2

u3
...

uN−3

uN−2

uN−1


,H4

2 =



a0u0

0
0
...

0
0

aNuN


,

A4
2 =

12
h2

i



a1 a2 · · · 0 0
120k2

(k2+1)(k2
2+3k2+1)

−120k2−120
(k2+1)(k2

2+3k2+1) · · · 0 0
. . .

0 0 · · ·
−120kN−2−120

(kN−2+1)(k2
N−2+3kN−2+1)

120kN−2
(kN−2+1)(k2

N−2+3kN−2+1)

0 0 · · · aN−2 aN−1


.

The matrices M4
2 , A4

2 are (N − 1) × (N − 1) dimensions, and the matrices U
′′

, U, H4
2 are (N − 1) × 1

dimensions.
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When ki = 1 (i = 2, ...,N − 2) in (2.16), the discretization employs a uniform grid, and the
corresponding matrix is

M4
2 =



15 −9 10 −5 1 · · · 0 0 0 0 0
1 10 1 0 0 · · · 0 0 0 0 0
0 1 10 1 0 · · · 0 0 0 0 0

. . .

0 0 0 0 0 · · · 0 1 10 1 0
0 0 0 0 0 · · · 0 0 1 10 1
0 0 0 0 0 · · · 1 −5 10 −9 15


,

U
′′

=



u
′′

1
u
′′

2
u
′′

3
...

u
′′

N−3
u
′′

N−2
u
′′

N−1


,U =



u1

u2

u3
...

uN−3

uN−2

uN−1


,H4

2 =



12
h2 u0

0
0
...

0
0

12
h2 uN


,

A4
2 =

12
h2



−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0

. . .

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2


.

2.2.2. Convection term boundary scheme

Theorem 2.2. The consistent fourth-order boundary nonuniform scheme of the first derivative exists.

Proof. By using Taylor series expansion, the fourth-order boundary scheme of the first-order derivative
with boundary parameters is derived.

We give the fourth-order left boundary nonuniform scheme of the first derivative as

β1u
′

1 + β2u
′

2 =
1
h1

(b0u0 + b1u1 + b2u2 + b3u3 + b4u4 + b5u5), (2.17)

where the notation in Figure 2 is used.
The expression (2.17) of the right parameter is as follows:

b0 = B01b5 + B02β1 + B03β2,

b1 = B11b5 + B12β1 + B13β2,

b2 = B21b5 + B22β1 + B23β2,

b3 = B31b5 + B32β1 + B33β2,

b4 = B41b5 + B42β1 + B43β2.
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The coefficients of the free unknowns are respectively given out as follows:

B01 =
−(k4

1k3
2k2

3k4)(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)
(k1 + 1)(k1 + k1k2 + 1)(k1 + k1k2 + k1k2k3 + 1)

,

B02 =
−k3

1(k2 + 1)(k2 + k2k3 + 1)
(k1 + 1)(k1 + k1k2 + 1)(k1 + k1k2 + k1k2k3 + 1)

,

B03 =
k3

1k2
2(k3 + 1)

(k1 + 1)(k1 + k1k2 + 1)(k1 + k1k2 + k1k2k3 + 1)
,

B11 =
(k3

2k2
3k4(k4 + 1)(k3 + k3k4 + 1)(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)

(k2 + 1)(k2 + k2k3 + 1)
,

B12 =
(k1 − 4k2 + 2k1k2 − 2k2k3 + k1k2

2 − k2
2k3 − k2

2 + k1k2k3 + k1k2
2k3 − 3)

k1(k2 + 1)(k2 + k2k3 + 1)
,

B13 =
−k2

2(k1 + 1)(k3 + 1)
k1(k2 + 1)(k2 + k2k3 + 1)

,

B21 =
−k2

3k4(k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)
(k1 + 1)(k3 + 1)

,

B22 =
(k2 + 1)(k2 + k2k3 + 1)
(k1k2

2)(k1 + 1)(k3 + 1)
,

B23 =
−(2k1 − k2 + k3 − 2k1k2 + k1k3 − 2k1k2k3 + 2)

k1k2(k1 + 1)(k3 + 1)
,

B31 =
k4(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)

(k2 + 1)(k1 + k1k2 + 1)
,

B32 =
−(k2 + k2k3 + 1)

k1k2
2k3(k2 + 1)(k1 + k1k2 + 1)

,

B33 =
(k1 + 1)(k3 + 1)

k1k2k3(k2 + 1)(k1 + k1k2 + 1)
,

B41 =
−(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)

(k3 + 1)(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)
,

B42 =
(k2 + 1)

(k1k2
2k3)(k3 + 1)(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)

,

B43 =
−(k1 + 1)

(k1k2k3)(k3 + 1)(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)
.

The truncation error of the scheme (2.17) is (C01b5 + C02β1 + C03β2)h4
1u5

1 + O(h5
1), where are three

free unknowns b5, β1, β2 for optional adjustment.
In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

C01b5 + C02β1 + C03β2 = −
k2

i

30
.

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, it is required that
β1 = 4, β2 = 4

(ki+1)2 .
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Then, we get

b5 = −
120

k4
1k3

2k2
3k4(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)

·
( k2

i
30 +

k3
1(k2+1)(k2+k2k3+1)

30 −
k3

1k2
2(k1+1)(k3+1)
30(ki+1)2 )

(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)
,

where

C01 =
−(k4

1k3
2k2

3k4)(k4 + 1)(k3 + k3k4 + 1)(k2 + k2k3 + k2k3k4 + 1)
120

·
(k1 + k1k2 + k1k2k3 + k1k2k3k4 + 1)

1
,

C02 =
k3

1(k2 + 1)(k2 + k2k3 + 1)
120

,

C03 =
−(k3

1k2
2)(k1 + 1)(k3 + 1)

120
.

Then, the consistents fourth-order left boundary scheme of the first derivative is

β1u
′

1 + β2u
′

2 =
1
h1

(b0u0 + b1u1 + b2u2 + b3u3 + b4u4 + b5u5). (2.18)

The coefficients of the free unknown parameters of scheme (2.18) are given (see Appendix C). The
truncation error of scheme (2.18) is

−
k2

i

30
h4

1u5
1 + O(h5

1). (2.19)

The boundary scheme is a uniform grid scheme with ki = 1. Then, the boundary scheme with a uniform
grid is

4u
′

1 + u
′

2 =
1
h

(−5u1 + 8u2 −
10
3

u3 +
5
4

u4 −
1
5

u5) −
43
60h

u0. (2.20)

Similarly, we develop the fourth-order right boundary nonuniform scheme as

βN−1u
′

N−1 + βN−2u
′

N−2 =
1
h
(
bNuN + bN−1uN−1 + bN−2uN−2 + bN−3uN−3 + bN−4uN−4 + bN−5uN−5

)
, (2.21)

where the notation in Figure 3 is used.
The expression (2.21) of the right parameter is as follows:

bN = BN1bN−5 + BN2βN−1 + BN3βN−2,

bN−1 = BN11bN−5 + BN12βN−1 + BN13βN−2,

bN−2 = BN21bN−5 + BN22βN−1 + BN23βN−2,

bN−3 = BN31bN−5 + BN32βN−1 + BN33βN−2,

bN−4 = BN41bN−5 + BN42βN−1 + BN43βN−2.

The coefficients of the free unknowns are respectively given out as follows:

BN1 =
−(k4

Nk3
N−1k2

N−2kN−3)(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)
(kN + 1)(kN + kNkN−1 + 1)
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·
(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

(kN + kNkN−1 + kNkN−1kN−2 + 1)
,

BN2 =
4k3

N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)
(kN + 1)(kN + kNkN−1 + 1)(kN + kNkN−1 + kNkN−1kN−2 + 1)

,

BN3 =
−(k3

Nk2
N−1)(kN−2 + 1)

(kN + 1)(kN + kNkN−1 + 1)(kN + kNkN−1 + kNkN−1kN−2 + 1)
,

BN11 =
(k3

N−1k2
N−2kN−3)(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)

(kN−1 + 1)

·
(kN + kNkN−1 + kNkN−1kN−2 + kNkN−1kN−2kN−3 + 1)

(kN−1 + kN−1kN−2 + 1)
,

BN12 =
−(kN − 4kN−1 + 2kNkN−1 − 2kN−1kN−2 + kNk2

N−1 − k2
N−1kN−2 − k2

N−1)
kN(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

−
(kNkN−1kN−2)kNk2

N−1kN−2 − 3)
kN(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

,

BN13 =
k2

N−1(kN + 1)(kN−2 + 1)
kN(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

,

BN21 =
−(k2

N−2kN−3)(kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)
(kN + 1)

·
(kN + kNkN−1 + kNkN−1kN−2 + kNkN−1kN−2kN−3 + 1)

(kN−2 + 1)
,

BN22 =
−(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

kNk2
N−1(kN + 1)(kN−2 + 1)

,

BN23 =
(2kN − kN−1 + kN−2 − 2kNkN−1 + kNkN−2 − 2kNkN−1kN−2 + 2)

kNkN−1(kN + 1)(kN−2 + 1)
,

BN31 =
kN−3(kN−2 + kN−2kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

(kN−1 + 1)

·
(kN + kNkN−1 + kNkN−1kN−2 + kNkN−1kN−2kN−3 + 1)

(kN + kNkN−1 + 1)
,

BN32 =
(kN−1 + kN−1kN−2 + 1)

(kNk2
N−1kN−2)(kN−1 + 1)(kN + kNkN−1 + 1)

,

BN33 =
−(kN + 1)(kN−2 + 1)

kNkN−1kN−2(kN−1 + 1)(kN + kNkN−1 + 1)
,

BN41 =
−(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

(kN−2 + 1)(kN−1 + kN−1kN−2 + 1)

·
(kN + kNkN−1 + kNkN−1kN−2 + kNkN−1kN−2kN−3 + 1)

(kNkNkN−1 + kNkN−1kN−2 + 1)
,

BN42 =
−(kN−1 + 1)

kNk2
N−1kN−2(kN−2 + 1)(kN−1 + kN−1kN−2 + 1)(kN + kNkN−1 + kNkN−1kN−2 + 1)

,

BN43 =
(kN + 1)

kNkN−1kN−2(kN−2 + 1)(kN−1 + kN−1kN−2 + 1)(kN + kNkN−1 + kNkN−1kN−2 + 1)
.
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The truncation error is

(CN1bN−5 + CN2βN−1 + CN3βN−2)h4
N−1u5

N−1 + O(h5
N−1),

where there are three free unknowns bN−5, βN−1, βN−2 for optional adjustment.
In order to ensure that the error of the boundary scheme is the same as the interior scheme, we let

CN1bN−5 + CN2βN−1 + CN3βN−2 = −
k2

i

30
.

If we require the system to be stable when the boundary scheme is coupled with the above interior
scheme, i.e., the coefficient matrix of the resultant system is diagonally dominant, it is required that
βN−1 = 4, βN−2 = 4

(ki+1)2 .
So, we get

bN−5 =
120( k2

i
30 +

k3
N (kN−1+1)(kN−1+kN−1kN−2+1)

30 −
k3

Nk2
N−1(kN−2+1)(kN+1)

30(ki+1)2

b51
,

where

CN1 =
−(k4

Nk3
N−1k2

N−2kN−3)(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)
120

·
(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

1

·
(kN + kN−1kN + kN−1kN−2kN + kN−1kN−2kN−3kN + 1)

1
,

CN2 =
k3

N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)
120

,

CN3 =
−(k3

Nk2
N−1)(kN−2 + 1)(kN + 1)

120
,

b51 = k4
Nk3

N−1k2
N−2kN−3(kN−3 + 1)(kN−2 + kN−2kN−3 + 1)(kN−1 + kN−1kN−2

+ kN−1kN−2kN−3 + 1)(kN + kN−1 + kN + kN−1kN−2kN + kN−1kN−2kN−3kN + 1).

Then, the consistent fourth-order right boundary scheme of the first derivative is

βN−1u
′

N−1 + βN−2u
′

N−2 =
1
h
(
bNuN + bN−1uN−1 + bN−2uN−2 + bN−3uN−3 + bN−4uN−4 + bN−5uN−5

)
. (2.22)

The coefficients of the free unknown parameters of scheme (2.22) are given (see Appendix D). The
truncation error of scheme (2.22) is

−
k2

i

30
h4

N−1u5
N−1 + O(h5

N−1). (2.23)

The boundary scheme is a uniform grid scheme with ki = 1. Then, the boundary scheme with a uniform
grid is

4u
′

N−1 + u
′

N−2 =
1
h

(5uN−1 − 8uN−2 +
10
3

uN−3 −
5
4

uN−4 +
1
5

uN−5) +
43

60h
uN . (2.24)

�
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By combining the interior scheme (2.5), the left boundary scheme (2.18), and the right boundary
scheme (2.22) into a unified system, we obtain the matrix form as follows:

A4
1U′ = M4

1U + H4
1 , (2.25)

where,

A4
1 =



4 4
(k1+1)2 0 · · · 0 0 0

4k2
2

(k2+1)2 4 4
(k2+1)2 · · · 0 0 0

. . .

0 0 0 · · ·
4k2

N−2
(kN−2+1)2 4 4

(kN−2+1)2

0 0 0 · · · 0 4
(kN−1+1)2 4


,

U
′

=



u
′

1
u
′

2
u
′

3
...

u
′

N−3
u
′

N−2
u
′

N−1


,U =



u1

u2

u3
...

uN−3

uN−2

uN−1


,H4

1 =



b0u0

0
0
...

0
0

bNuN


,

M4
1 =

1
hi



b1 b2 · · · 0 0
−8k2

2(k2+2)
(k2+1)3

8(k3
2(k2+2)−(2k2+1))

k2(k2+1)3 · · · 0 0
. . .

0 0 · · ·
8(k3

N−2(kN−2+2)−(2kN−2+1))
kN−2(kN−2+1)3

8(2kN−2+1)
kN−2(kN−2+1)3

0 0 · · · bN−2 bN−1


.

The matrices A4
1, M4

1 are (N − 1) × (N − 1) dimensions, and the matrices U
′

, U, H4
1 are (N − 1) × 1

dimensions.
When ki = 1 (i = 2, ...,N − 2) in (2.25), the discretization employs a uniform grid, and the

corresponding matrix is:

A4
1 =



4 1 0 · · · 0 0 0
1 4 1 · · · 0 0 0
0 1 4 · · · 0 0 0

. . .

0 0 0 · · · 4 1 0
0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 4


,U′ =



u′1
u′2
u′3
...

u′N−3
u′N−2
u′N−1


,H4

1 =



− 43
60hu0

0
0
...

0
0

43
60huN


,
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M4
1 =

1
h



−5 8 −10
3

5
4 −1

5 · · · 0 0 0 0 0
−3 0 3 0 0 · · · 0 0 0 0 0
0 −3 0 3 0 · · · 0 0 0 0 0

. . .
. . .

. . .

0 0 0 0 0 · · · 0 −3 0 3 0
0 0 0 0 0 · · · 0 0 −3 0 3
0 0 0 0 0 · · · 1

5 −5
4

10
3 −8 5


.

2.3. The adaptive mesh algorithm description

The adaptive mesh method is an algorithm that automatically adjusts the solution accuracy in
regions with significant variations. Generally, the numerical solutions are defined on a predefined
computational grid. In many numerical simulations, fine grids are necessary in regions with steep
gradients, whereas coarser grids can be used in smooth regions with slowly varying solutions. The
adaptive mesh method provides a dynamic environment that can achieve different solution accuracies
based on different requirements.

The basis of the proposed adaptive mesh algorithm lies in the derivative change rate of the numerical
solution obtained from the fourth-order compact scheme on uniform grids. The basis of our algorithm
is described as follows: The derivative change rate directly reflects the smoothness of the solution
large absolute values indicate rapid solution changes (e.g., boundary layers), where dense grids are
needed to capture details; and small values correspond to smooth regions, allowing coarser grids
to optimize efficiency. This basis aligns with the core demand of singularly perturbed convection-
diffusion equations, namely, accurately resolving boundary layers while maintaining computational
efficiency. It avoids numerical oscillations caused by inappropriate grid density in traditional uniform
schemes. First, the fourth-order compact scheme with uniform grids is used throughout the entire
region to obtain a preliminary numerical solution. Then, based on the derivative change rate of the
numerical solution, the grid step size is adjusted to obtain a nonuniform grid distribution. Finally,
updated numerical results are obtained using the high-order scheme proposed in this paper. This
process is repeated until the grid distribution reaches the optimal distribution effect.

3. Numerical experiments

In this section, we perform numerical experiments to demonstrate the accuracy, dependability, and
effectiveness of the proposed nonuniform fourth-order compact difference scheme coupled with the
adaptive mesh method. All computations were conducted on a PC with Intel core i7-1075H CPU
and 8GB memory.

L∞ − error is defined by

L∞ − error = max|uie − uin|,

where uie is the exact solution of u, and uin is the numerical solution of u.
L2 − error is defined by

L2 − error =

√√
1

N + 1

N+1∑
i=1

(uie − uin),
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where uie is the exact solution of u, and uin is the numerical solution of u.
The rate of convergence is defined by

Rate =
Ln(err(N1)/err(N2))

Ln(N2/N1)
,

where err(N1) and err(N2) are the maximum absolute errors computed with the nodes N1 and N2,
respectively.

Based on the above discussion, we present the following iterative algorithm. The specific iterative
algorithm steps are as follows:

1. The adaptive mesh algorithm based on the fourth-order nonuniform compact difference scheme.

1: Input the value of h(0)
min, h(0)

max, u
′

min, ε.
2: Resolve on uniform grids:

(a) Generate a uniform grid with a step size of h(0)
max.

(b) Resolve the Eq (2.1) using the fourth-order uniform compact difference schemes (2.4), (2.7),
(2.11), (2.15), (2.20), and (2.24) get the numerical solution u(0)

i .
3: Resolve the optimal hi by iterative method:

(a) For k = 0, 1, 2, ... until a certain convergence criterion is met.

(b) Calculate u
′

(xi) =
u(k)

i+1−u(k)
i

hmax
.

(c) Determine the derivative threshold. If |u
′

(xi)| > u
′

min, then the grid encryption will be performed
within the interval [xi, xi+1] where this node is located.
(d) Generate nonuniform grids. The encrypted step size hi is determined using the minimum step
size hmin and the sensitivity parameter p (p = 4( f loor)(log2(|u

′
(xi)|)) as follows:

h(k+1)
i = max(h(k)

min,
h(k)

max

p
).

(e) Calculate a new h(k+1)
min , h(k+1)

max .
4: Resolve on nonuniform grids:

Resolve the Eq (2.1) by the fourth-order compact difference nonuniform schemes (2.2), (2.5),
(2.9), (2.13), (2.18), and (2.22) get the numerical solution u(k+1)

i .
5: Determine step size:

If |h(k+1)
i − h(k)

i | < ε, then
Stop;
else
go to 4.
end if

6: Output the numerical solution u(k+1)
i .

3.1. Example 1

We consider the following constant coefficient singularly perturbed problem:{
−εu

′′

+ u
′

= επ2 sin (πx) + π cos (πx), x ∈ (0, 1),
u(0) = 0, u(1) = 1.
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The exact solution to this problem is given as

u(x) = sin(πx) +
e

x
ε − 1

e
1
ε − 1

.

When ε is small, the solution to the problem has a boundary layer at x = 1. Table 1 gives the
L∞−error and the convergence rate for Example 1 by using the present scheme, uniform scheme, and
Zhao’s fourth-order scheme. It is observed that the present scheme, uniform scheme, and Zhao’s
fourth-order scheme are stable and effective when ε = 1, 10−1, 10−2, but when ε = 10−3, ε = 10−4, the
errors of the Zhao [20] and uniform schemes are large and no longer decrease as the number of grids
increases.That is, the two schemes don’t achieve fourth-order accuracy, while the present scheme can
obtain very exact solutions with enough computational nodes distributed in the boundary layer because
of coupling with the adaptive mesh and can reach the theoretical fourth order, thereby demonstrating
superior computational accuracy and resolution.

Table 1. The L∞-errors and rate of the convergence under different ε for Example 1.

Zhao [20] uniform scheme present scheme

N L∞-error Rate L∞-error Rate L∞-error Rate
ε = 1
40 1.557(-7) – 1.613(-7) – 7.864(-9) –
60 3.129(-8) 3.958 3.166(-8) 4.015 1.479(-9) 4.115
80 9.949(-9) 3.983 1.000(-8) 4.006 4.893(-10) 3.845
100 4.082(-9) 3.992 4.095(-9) 4.001 1.927(-10) 4.176
ε = 10−1

40 4.091(-6) – 2.480(-6) – 6.866(-8) –
60 5.677(-7) 4.170 4.347(-7) 4.294 1.129(-8) 4.452
80 1.566(-7) 4.016 1.326(-7) 4.127 3.218(-9) 4.299
120 2.781(-8) 4.263 2.556(-8) 4.060 7.023(-10) 3.800
ε = 10−2

40 1.151(-2) – 7.291(-3) – 4.240(-6) –
100 1.157(-3) 2.507 1.200(-3) 1.969 1.455(-7) 3.680
120 6.416(-4) 3.234 6.080(-4) 3.757 7.209(-8) 3.852
160 2.274(-4) 3.601 1.782(-4) 4.248 2.192(-8) 4.138
ε = 10−3

200 3.394(-2) – 1.942(-2) – 2.209(-3) –
400 1.151(-2) 1.560 7.291(-3) 1.413 1.843(-4) 3.583
520 6.541(-3) 2.154 6.166(-3) 0.638 6.943(-5) 3.721
ε = 10−4

250 7.598(-2) – 3.892(-2) – 1.522(-2) –
300 7.520(-2) 0.057 3.852(-2) 0.057 7.808(-3) 3.700

Note: 1.557(−7) = 1.557 × 10−7.

From Figure 4, when the perturbation parameters gradually decrease, the present scheme has
obvious advantages over the other two schemes in terms of computational accuracy and resolution.
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Figure 4. The exact and numerical solutions with three schemes with N = 100 under
different ε.
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Table 2 indicates that when the perturbation parameters ε gradually decrease, the error of the present
scheme is much smaller than that of the other two schemes, and the error of the present scheme is 1–2
orders of magnitude smaller than those of the other two schemes. This is consistent with the numerical
results in Figure 4. It fully demonstrates the superiority of the scheme calculation with the adaptive
mesh method. Consequently, the present scheme employs a non-uniform adaptive mesh algorithm to
mitigate the oscillation within the boundary layer.

Table 2. The errors with three schemes under different ε for Example 1.

Zhao [20] uniform scheme present scheme

ε L∞-error L2-error L∞-error L2-error L∞-error L2-error

1 4.082(-9) 2.854(-9) 4.095(-9) 2.864(-9) 1.927(-10) 1.354(-10)

10−1 5.995(-8) 2.642(-8) 5.334(-8) 2.384(-8) 1.553(-9) 6.977(-10)

10−2 1.157(-3) 1.583(-4) 1.200(-3) 1.489(-4) 1.455(-7) 1.976(-8)

10−3 5.948(-2) 1.134(-2) 3.042(-2) 6.061(-3) 4.678(-3) 2.267(-4)

10−4 2.520(-1) 1.658(-1) 2.114(-1) 1.644(-1) 2.116(-2) 7.573(-4)

3.2. Example 2

We consider the following variable coefficient singularly perturbed problem:

 −εu
′′

− (1 + x)u
′

+ u = 1 − e−
1√
ε − (1 + x) 1

√
ε
· e−

x√
ε , x ∈ (−1, 1),

u(−1) = 0, u(1) = 1.

The exact solution to this problem is given as

u(x) = xe−
1√
ε − e−

x√
ε + 1.

When ε is small, the solution to the problem has a boundary layer at x = 1. We calculate the
solution for parameter ε = 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6 using the present scheme, uniform
scheme, and Zhao’s fourth-order scheme. As shown in Table 3, when ε = 1, 10−1, 10−2, 10−3 the
computational accuracy of all schemes can reach the theoretical fourth-order accuracy. However, when
ε = 10−4, 10−5, 10−6 the computational errors of the Zhao [20] and uniform schemes are large, while
the present scheme can still obtain the fourth-order accuracy solution.

As shown in Figure 5 (a)–(c), the numerical solution is in good agreement with the exact solution
by using the three schemes. As shown in Figure 5 (d)–(g), the numerical solutions obtained with
the Zhao [20] and uniform schemes all produce nonphysical oscilations near x = 1, while the present
scheme matches well with the exact solution because there are enough computational nodes distributed
in the boundary layer.
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Table 3. The L∞-errors and rate of the convergence under different ε for Example 2.

Zhao [20] uniform scheme present scheme

N L∞-error Rate L∞-error Rate L∞-error Rate
ε = 1
40 1.020(-10) – 1.022(-10) – 1.023(-10) –
60 2.013(-11) 4.002 2.014(-11) 4.006 2.014(-11) 4.008
80 6.323(-12) 4.025 6.319(-12) 4.029 6.374(-12) 3.996
100 2.612(-12) 3.962 2.646(-12) 3.901 2.548(-12) 4.112
ε = 10−1

40 7.369(-8) – 7.868(-8) – 1.780(-8) –
60 1.508(-8) 3.912 1.554(-8) 4.003 3.513(-9) 4.002
80 4.832(-9) 3.956 4.014(-9) 4.002 1.112(-9) 3.999
100 1.991(-9) 3.973 2.013(-9) 3.999 4.554(-10) 4.001
ε = 10−2

40 1.643(-5) – 1.249(-5) – 6.461(-8) –
80 8.323(-7) 4.303 8.804(-7) 3.827 4.549(-9) 3.828
120 1.666(-7) 3.967 1.748(-7) 3.987 8.640(-10) 4.097
160 5.352(-8) 3.947 5.547(-8) 3.989 2.629(-10) 4.136
ε = 10−3

100 5.439(-5) – 3.494(-5) – 1.223(-8) –
140 1.423(-5) 3.985 1.044(-5) 3.576 2.704(-9) 4.485
220 2.278(-6) 4.053 1.902(-6) 3.778 3.717(-10) 4.390
ε = 10−4

150 7.789(-4) – 3.456(-4) - 5.154(-7) –
190 3.846(-4) 2.985 1.942(-4) 2.438 1.866(-7) 4.298
300 6.866(-5) 3.778 4.181(-5) 3.211 3.329(-8) 3.774
ε = 10−5

40 1.372(0) – 1.337(0) – 3.804(-5) –
60 1.261(0) 0.298 1.171(0) 0.327 1.026(-5) 3.232
70 1.099(0) 0.656 1.048(0) 0.719 6.219(-6) 3.174
80 0.971(0) 0.927 0.913(0) 1.033 3.982(-6) 3.339
ε = 10−6

80 1.406(0) – 1.363(0) – 5.817(-6) –
90 1.356(0) 0.044 1.399(0) 0.042 3.365(-6) 4.647
100 1.348(0) 0.056 1.391(0) 0.054 2.310(-6) 3.570
110 1.383(0) 0.061 1.338(0) 0.078 1.637(-6) 3.613
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Figure 5. The exact and numerical solutions with three schemes with N = 100 under
different ε.
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As further shown in Table 4, which presents the L∞− and L2− errors for Example 2, using the
present scheme, the uniform scheme, and Zhao’s fourth-order scheme [20], Table 4 indicates that
when 10−1 < ε < 1, the error of the present scheme is similar to that of the uniform scheme and Zhao’s
fourth-order scheme [20]. When 10−6 < ε < 10−2, the error of the present scheme is much smaller than
that of the other two schemes, and the error of the present scheme is 2–3 orders of magnitude smaller
than those of the other two schemes. This is consistent with the numerical results in Figure 5.

Table 4. The errors with three schemes under different ε for Example 2.

Zhao [20] uniform scheme present scheme

ε L∞-error L2-error L∞-error L2-error L∞-error L2-error

1 2.662(-12) 1.904(-12) 2.646(-12) 1.892(-12) 2.548(-12) 1.823(-12)

10−1 1.991(-9) 1.086(-9) 2.013(-9) 1.100(-9) 4.554(-10) 2.498(-10)

10−2 3.339(-7) 9.225(-8) 3.585(-7) 9.836(-8) 2.371(-9) 6.497(-10)

10−3 5.439(-5) 6.818(-6) 3.494(-5) 5.474(-6) 1.223(-8) 1.693(-9)

10−4 9.410(-3) 6.796(-3) 5.266(-3) 3.845(-3) 2.295(-6) 1.725(-7)

10−5 7.160(-1) 5.057(-1) 6.524(-1) 4.751(-1) 2.659(-6) 1.121(-7)

10−6 1.392(0) 9.823(-1) 1.348(0) 0.981(-1) 2.310(-6) 5.453(-8)

3.3. Example 3

We consider the following nonlinear singularly perturbed problem:

 −εu′′ + uu′ = f (x), x ∈ (0, 1),

u(0) = 1 + e + e−
1
ε , u(1) = e−1 + 1.

The exact solution to this problem is given as

u(x) = e−x + e
(x−1)(1+ε)

ε .

When ε is small, the solution to the equation exhibits a boundary layer at x = 1. Table 5 lists
the computational error and convergence order when different values of parameters ε. As shown in
Table 5, when ε = 10−1, 10−2, 10−3, 10−4, the errors of the Zhao [20] and the uniform schemes fail
to achieve fourth-order accuracy, while the present scheme can obtain highly accurate solutions and
reach the theoretical fourth–order convergence. Furthermore, the present scheme in this paper for
solving nonlinear singularly perturbed convection–diffusion equations also has advantages over the
uniform scheme in terms of computational accuracy and resolution.
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Table 5. The L∞-errors and rate of the convergence under different ε for Example 3.

Zhao [20] uniform scheme present scheme

N L∞-error Rate L∞-error Rate L∞-error Rate

ε = 10−1

5 4.768(-2) – – – 6.817(-3) –

10 8.824(-4) 5.765 5.784(-2) – 5.260(-4) 3.696

20 1.918(-4) 2.202 3.315(-2) 0.803 4.343(-5) 3.598

30 5.300(-5) 3.172 2.541(-2) 0.656 1.013(-5) 3.590

ε = 10−2

190 3.203(-4) – 3.649(-2) – 7.025(-5) –

300 6.072(-5) 3.641 2.681(-2) 0.675 1.383(-5) 3.558

450 7.085(-6) 5.298 2.157(-2) 0.536 3.165(-6) 3.637

750 1.381(-6) 3.199 1.505(-2) 0.705 2.131(-6) 3.661

ε = 10−3

160 3.956(-2) – 2.067(-1) – 2.987(-2) –

320 4.370(-2) -0.144 1.412(-1) 0.550 2.318(-3) 3.688

850 1.816(-3) 3.256 7.325(-2) 0.672 5.587(-5) 3.814

1280 1.015(-3) 1.421 5.212(-2) 0.831 9.744(-6) 4.266

ε = 10−4

8 7.108(+0) – 8.701(+0) – 2.052(+0) –

20 1.554(+0) 1.659 1.025(+0) 2.334 3.510(-2) 4.440

As shown in Figure 6 (a) and (b),the numerical solution is in good agreement with the exact solution
by using the three schemes. As shown in Figure 6 (c) and (d), the numerical solutions obtained with the
Zhao [20] and the uniform schemes all produce nonphysical oscilations near x = 1, while the present
scheme matches well with the exact solution because there are enough computational nodes distributed
in the boundary layer.

Table 6 shows the errors of the present scheme are 3–4 orders of magnitude smaller than those of
the other two schemes. This is consistent with the numerical results in Figure 6. It fully demonstrates
the superiority of the scheme calculation under the adaptive mesh method.
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Figure 6. The exact and numerical solutions with three schemes with h = 1/100 under
different ε.

Table 6. The errors with different ε for Example 3.

Zhao [20] uniform scheme present scheme

ε L∞-error L2-error L∞-error L2-error L∞-error L2-error

10−1 3.893(-4) 1.625(+0) 1.176(-2) 5.777(-3) 1.963(-5) 6.131(-6)

10−2 1.469(-3) 2.559(+3) 6.364(-2) 5.843(-2) 9.432(-5) 2.794(-5)

10−3 3.265(-2) 3.845(+4) 2.458(-1) 2.112(-1) 4.495(-2) 2.445(-3)

10−4 1.021(-1) 4.889(+5) 2.682(-1) 2.135(-1) 7.115(-2) 1.648(-3)
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4. Concluding remarks

In this paper, we developed a consistent fourth-order nonuniform compact scheme coupled with an
adaptive method for solving singularly perturbed convection-diffusion equations with boundary layers.

(1) A fourth-order nonuniform compact difference scheme coupled with an adaptive mesh method
for solving singularly perturbed convection-diffusion equations was developed. The method can
efficiently alleviate or even eliminate numerical difficulties caused by boundary layers, making the
numerical solution closer to the proper solution.

(2) To efficiently solve singularly perturbed convection-diffusion equations and boundary-layer
problems, we extended the obtained difference scheme on uniform grids and coupled them with an
adaptive mesh method. It is shown that the calculation results of the present scheme in this paper are
and thus better suited to solving singularly perturbed convection-diffusion equations well.

(3) Several typical numerical cases were selected for solutions to demonstrate the advantages of
the present scheme proposed in this paper in terms of accuracy validity, and stability. Numerical
experiments show that the present scheme has better scale resolution and is more fit to solve convection-
dominated singularly perturbed problems precisely.

In follow-up research, we aim to focus on the following three aspects: (i) conducting high-
accuracy numerical simulations of flow and heat transfer problems based on the present scheme
for convection–diffusion equations; (ii) theoretically analyzing the stability and convergence of the
proposed difference scheme; and (iii) Extending the present scheme to two-dimensional cases and
solving two-dimensional singularly perturbed convection–diffusion equations. We look forward to
reporting the results of these studies in future work.
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A. Appendix A

The consistent fourth-order left boundary scheme of the second derivative is

α1u
′′

1 + α2u
′′

2 + α3u
′′

3 + α4u
′′

4 + α5u
′′

5 =
1
h2

1

(a0u0 + a1u1 + a2u2).

The coefficients of the free unknown parameters in the uniform fourth-order left boundary scheme of
the second derivative are respectively

a0 =
120ki

k3
i + 4k2

i + 4ki + 1
,

a1 = −
120ki(k1 + 1)

k1(k3
i + 4k2

i + 4ki + 1)
,

a2 =
120ki

k1(k3
i + 4k2

i + 4ki + 1)
,
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α1 =
2kiA1

k4
1(k2 + 1)(k2 + k2k3 + 1)(k3

i + 4k2
i + 4ki + 1)(k2 + k2k3 + k2k3k4 + 1)

,

α2 =
2kiA2

k4
1k3

2(k3 + 1)(k3 + k3k4 + 1)(k3
i + 4k2

i + 4ki + 1)
,

α3 =
2kiA3

k4
1k3

2k2
3(k2 + 1)(k4 + 1)(k3

i + 4k2
i + 4ki + 1)

,

where

A3 =5ki − 5k2
i − 5k3

i + 5k4
i + 3k5

i + 9k1 + 15k2
1 + 10k3

1 − 2k5
1 + 6k1k2 + 20k2

1k2 + 20k3
1k2

− 6k5
1k2 + 5k2

1k2
2 + 10k3

1k2
2 − 5k5

1k2
2 + 10k2

1k2
2k3 + 20k3

1k2
2k3 − 10k5

1k2
2k3 + 6k1k2k3

+ 5k2
1k2

2k2
3 + 10k3

1k2
2k2

3 − 5k5
1k2

2k2
3 + 20k2

1k2k3 + 20k3
1k2k3 − 6k5

1k2k3 + 3k1k2k3k4

+ 5k2
1k2

2k2
3k4 + 10k3

1k2
2k2

3k4 − 5k5
1k2

2k2
3k4 + 10k2

1k2k3k4 + 10k3
1k2k3k4 − 3k5

1k2k3k4

+ 5k2
1k2

2k3k4 + 10k3
1k2

2k3k4 − 5k5
1k2

2k3k4 + 5,
A2 =A3 + 3k1k2 + 10k2

1k2 + 10k3
1k2 − 3k5

1k2 + 10k2
1k2

2 + 20k3
1k2

2 − 10k3
1k3

2 − 10k5
1k2

2 − 10k5
1k3

2

+ 10k2
1k2

2k3 + 20k3
1k2

2k3 + 20k3
1k3

2k3 − 10k5
1k2

2k3 − 20k5
1k3

2k3 − 10k5
1k3

2k2
3 + 10k3

1k3
2k2

3k4

− 10k5
1k3

2k2
3k4 + 5k2

1k2
2k3k4 + 10k3

1k2
2k3k4 + 10k3

1k3
2k3k4 − 5k5

1k2
2k3k4 − 10k5

1k3
2k3k4,

A1 =A2 + 3k1 + 15k2
1 + 30k3

1 + 30k4
1 + 12k5

1 + 15k2
1k2 + 60k3

1k2 + 90k4
1k2 + 45k5

1k2 + 30k3
1k2

2

+ 90k4
1k2

2 + 30k4
1k3

2 + 60k5
1k2

2 + 30k5
1k3

2 + 40k3
1k2

2k3 + 120k4
1k2

2k3 + 60k4
1k3

2k3 + 80k5
1k2

2k3

+ 60k5
1k3

2k3 + 10k3
1k2

2k2
3 + 30k4

1k2
2k2

3 + 30k4
1k3

2k2
3 + 20k5

1k2
2k2

3 + 30k5
1k3

2k2
3 + 10k2

1k2k3

+ 40k3
1k2k3 + 60k4

1k2k3 + 30k5
1k2k3 + 10k3

1k2
2k2

3k4 + 30k4
1k2

2k2
3k4 + 30k4

1k3
2k2

3k4 + 20k5
1k2

2k2
3k4

+ 30k5
1k3

2k2
3k4 + 5k2

1k2k3k4 + 20k3
1k2k3k4 + 30k4

1k2k3k4 + 15k5
1k2k3k4 + 20k3

1k2
2k3k4

+ 60k4
1k2

2k3k4 + 30k4
1k3

2k3k4 + 40k5
1k2

2k3k4 + 30k5
1k3

2k3k4.

B. Appendix B

The consistent fourth-order right boundary scheme of the second derivative is

αN−1u
′′

N−1 + αN−2u
′′

N−2 + αN−3u
′′

N−3 + αN−4u
′′

N−4 + αN−5u
′′

N−5 =
1

h2
N

(aNuN + aN−1uN−1 + aN−2uN−2).
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The coefficients of the free unknown parameters in the uniform fourth-order right boundary scheme of
the second derivative are respectively

aN =
120ki

k3
i + 4k2

i + 4ki + 1
,

aN−1 = −
120ki(kN + 1)

kN(k3
i + 4k2

i + 4ki + 1)
,

aN−2 =
120ki

kN(k3
i + 4k2

i + 4ki + 1)
,

αN−1 =
2kiAN1

k4
N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

.
1

(k3
i + 4k2

i + 4ki + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)
,

αN−2 =
2kiAN2

k4
Nk3

N−1(kN−2 + 1)(kN−2 + kN−2kN−3 + 1)(k3
i + 4k2

i + 4ki + 1)
,

αN−3 =
2kiAN3

k4
Nk3

N−1k2
N−2(kN−1 + 1)(kN−3 + 1)(k3

i + 4k2
i + 4ki + 1)

,

where

AN3 =5ki − 5k2
i − 5k3

i + 5k4
i + 3k5

i + 9kN + 15k2
N + 10k3

N − 2k5
N + 6kNkN−1 + 20k2

NkN−1

+ 20k3
NkN−1 − 6k5

NkN−1 + 5k2
Nk2

N−1 + 10k3
Nk2

N−1 − 5k5
Nk2

N−1 + 10k2
Nk2

N−1kN−2

+ 20k3
Nk2

N−1kN−2 − 10k5
Nk2

N−1kN−2 + 6kNkN−1kN−2 + 5k2
Nk2

N−1k2
N−2

+ 10k3
Nk2

N−1k2
N−2 − 5k5

Nk2
N−1k2

N−2 + 20k2
NkN−1kN−2 + 20k3

NkN−1kN−2

− 6k5
NkN−1kN−2 + 3kNkN−1kN−2kN−3 + 5k2

Nk2
N−1k2

N−2kN−3

+ 10k3
Nk2

N−1k2
N−2kN−3 − 5k5

Nk2
N−1k2

N−2kN−3 + 10k2
NkN−1kN−2kN−3

+ 10k3
NkN−1kN−2kN−3 − 3k5

NkN−1kN−2kN−3 + 5k2
Nk2

N−1kN−2kN−3

+ 10k3
Nk2

N−1kN−2kN−3 − 5k5
Nk2

N−1kN−2kN−3 + 5,
AN2 =AN3 + 3kNkN−1 + 10k2

NkN−1 + 10k3
NkN−1 − 3k5

NkN−1 + 10k2
Nk2

N−1 + 20k3
Nk2

N−1

− 10k3
Nk3

N−1 − 10k5
Nk2

N−1 − 10k5
Nk3

N−1 + 10k2
Nk2

N−1kN−2 + 20k3
Nk2

N−1kN−2

+ 20k3
Nk3

N−1kN−2 − 10k5
Nk2

N−1kN−2 − 20k5
Nk3

N−1kN−2 − 10k5
Nk3

N−1k2
N−2

+ 10k3
Nk3

N−1k2
N−2kN−3 − 10k5

Nk3
N−1k2

N−2kN−3 + 5k2
Nk2

N−1kN−2kN−3

+ 10k3
Nk2

N−1kN−2kN−3 + 10k3
Nk3

N−1kN−2kN−3 − 5k5
Nk2

N−1kN−2kN−3

− 10k5
Nk3

N−1kN−2kN−3,

AN1 =AN2 + 3kN + 15k2
N + 30k3

N + 30k4
N + 12k5

N + 15k2
NkN−1 + 60k3

NkN−1 + 90k4
NkN−1

+ 45k5
NkN−1 + 30k3

Nk2
N−1 + 90k4

Nk2
N−1 + 30k4

Nk3
N−1 + 60k5

Nk2
N−1 + 30k5

Nk3
N−1

+ 40k3
Nk2

N−1kN−2 + 120k4
Nk2

N−1kN−2 + 60k4
Nk3

N−1kN−2 + 80k5
Nk2

N−1kN−2

+ 60k5
Nk3

N−1kN−2 + 10k3
Nk2

N−1k2
N−2 + 30k4

Nk2
N−1k2

N−2 + 30k4
Nk3

N−1k2
N−2

+ 20k5
Nk2

N−1k2
N−2 + 30k5

Nk3
N−1k2

N−2 + 10k2
NkN−1kN−2 + 40k3

NkN−1kN−2

+ 60k4
NkN−1kN−2 + 30k5

NkN−1kN−2 + 10k3
Nk2

N−1k2
N−2kN−3 + 30k4

Nk2
N−1k2

N−2kN−3

+ 30k4
Nk3

N−1k2
N−2kN−3 + 20k5

Nk2
N−1k2

N−2kN−3 + 30k5
Nk3

N−1k2
N−2kN−3

+ 5k2
NkN−1kN−2kN−3 + 20k3

NkN−1kN−2kN−3 + 30k4
NkN−1kN−2kN−3
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+ 15k5
NkN−1kN−2kN−3 + 20k3

Nk2
N−1kN−2kN−3 + 60k4

Nk2
N−1kN−2kN−3

+ 30k4
Nk3

N−1kN−2kN−3 + 40k5
Nk2

N−1kN−2kN−3 + 30k5
Nk3

N−1kN−2kN−3.

C. Appendix C

The consistent fourth-order left boundary scheme of the first derivative is

β1u
′

1 + β2u
′

2 =
1
h1

(b0u0 + b1u1 + b2u2 + b3u3 + b4u4 + b5u5).

The coefficients of the free unknown parameters in the fourth-order left boundary scheme of the first-
order derivative are respectively

β1 =4,

β2 =
4

(ki + 1)2 ,

b0 =
4k2

i + 4k3
1(k2 + 1)(k2 + k2k3 + 1) − 4k3

1k2
2(k1+1)(k3+1)

(ki+1)2

(k1 + 1)(k1 + k1k2 + 1)(k1 + k1k2 + k1k2k3 + 1)(k1 + k1k2 + k1k2k3 + k2k3k4k1 + 1)

−
4k3

1(k2 + 1)(k2 + k2k3 + 1)
(k1 + 1)(k1 + k1k2 + 1)(k1 + k1k2 + k1k2k3 + 1)

+
4k3

1k2
2(k3 + 1)

(k1 + 1)(ki + 1)2(k1 + k1k2 + 1)(k1 + k1k2 + k1k2k3 + 1)
,

b1 =
4(k1 − 4k2 − 2k2k3 + 2k1k2 − k2

2k3 + k1k2
2 − k2

2 + k1k2k3 + k1k2
2k3 − 3)

k1(k2 + 1)(k2 + k2k3 + 1)

−
4k2

i + 4k3
1(k2 + 1)(k2 + k2k3 + 1) − 4k3

1k2
2(k1+1)(k3+1)

(ki+1)2

k4
1(k2 + 1)(k2 + k2k3 + 1)(k2 + k2k3 + k2k3k4 + 1)

−
4k2

2(k1 + 1)(k3 + 1)
k1(k2 + 1)(ki + 1)2(k2 + k2k3 + 1)

,

b2 =
4(k2 + 1)(k2 + k2k3 + 1)

k1k2
2(k1 + 1)(k3 + 1)

+
4k2

i + 4k3
1(k2 + 1)(k2 + k2k3 + 1) − 4k3

1k2
2(k1+1)(k3+1)

(ki+1)2

k4
1k3

2(k1 + 1)(k3 + 1)(k3 + k3k4 + 1)

−
4(2k1 − k2 + k3 − 2k1k2 − k2k3 + k1k3 − 2k1k2k3 + 2)

k1k2(k1 + 1)(k3 + 1)(ki + 1)2 ,

b3 =
4(k1 + 1)(k3 + 1)

k1k2k3(k2 + 1)(k1 + k1k2 + 1)(ki + 1)2 −
4(k2 + k2k3 + 1)

k1k2
2k3(k2 + 1)(k1 + k1k2 + 1)

−
4k2

i + 4k3
1(k2 + 1)(k2 + k2k3 + 1) − 4k3

1k2
2(k1+1)(k3+1)

(ki+1)2

k4
1k3

2k2
3(k2 + 1)(k4 + 1)(k1 + k2k1 + 1)

,

b4 =
4(k2 + 1)

k1k2
2k3(k3 + 1)(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)

+
4k2

i + 4k3
1(k2 + 1)(k2 + k2k3 + 1) − 4k3

1k2
2(k1+1)(k3+1)

(ki+1)2

k4
1k3

2k2
3k4(k3 + 1)(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)
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−
4(k1 + 1)

k1k2k3(k3 + 1)(ki + 1)2(k2 + k2k3 + 1)(k1 + k1k2 + k1k2k3 + 1)
.

D. Appendix D

The consistent fourth-order right boundary scheme of the first derivative is

βN−1u
′

N−1 + βN−2u
′

N−2 =
1
h
(
bNuN + bN−1uN−1 + bN−2uN−2 + bN−3uN−3 + bN−4uN−4 + bN−5uN−5

)
.

The coefficients of the free unknown parameters in the uniform fourth-order right boundary scheme of
the first derivative are respectively

βN−1 = 4,

βN−2 =
4

(ki + 1)2 ,

bN =
4k3

N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)
(kN + 1)(kN + kNkN−1 + 1)(kN + kNkN−1 + kNkN−1kN−2 + 1)

−
4k2

i + 4k3
N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1) − 4k3

Nk2
N−1(kN−2+1)(kN+1)

(ki+1)2

bN1

−
4k3

Nk2
N−1(kN−2 + 1)

(kN + 1)(ki + 1)2(kN + kN−1kN + 1)(kN + kN−1kN + kN−1kN−2kN + 1)
,

bN−1 =
4bN−11

kN(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

+
4k2

i + 2k3
N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1) − 4k3

Nk2
N−1(kN+1)(kN−2+1)

(ki+1)2

k4
N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)(kN−1 + kN−1kN−2 + kN−1kN−2kN−3 + 1)

+
4k2

N−1(kN−2 + 1)(kN + 1)
kN(kN−1 + 1)(ki + 1)2(kN−1 + kN−1kN−2 + 1)

,

bN−2 = −
4(kN−1 + 1)(kN−1 + kN−1kN−2 + 1)

kNk2
N−1(kN−2 + 1)(kN + 1)

−
4k2

i + 4k3
N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1) − 4k3

Nk2
N−1(kN−2+1)(kN+1)

(ki+1)2

k4
Nk3

N−1(kN−2 + 1)(kN + 1)(kN−2 + kN−2kN−3 + 1)

−
4(kN−1 − kN−2 − 2kN + 2kN−1kN + kN−1kN−2 − kN−2kN + 2kN−1kN−2kN − 2

kN−1kN(kN−2 + 1)(kN + 1)(ki + 1)2 ,

bN−3 =
4(kN−1 + kN−1kN−2 + 1)

k2
N−1kN−2kN(kN−1 + 1)(kN + kN−1kN + 1)

+
4k2

i + 4k3
N(kN−1 + 1)(kN−1 + kN−1kN−2 + 1) − 4k3

Nk2
N−1(kN−2+1)(kN+1)

(ki+1)2

k4
Nk3

N−1k2
N−2(kN−1 + 1)(kN−3 + 1)(kN + kN−1kN + 1)

−
4(kN−2 + 1)(kN + 1)

kN−1kN−2kN(kN−1 + 1)(kN + kNkN−1 + 1)(ki + 1)2 ,

bN−4 =
4(kN + 1)

kN−1kN−2kN(kN−2 + 1)(ki + 1)2(kN−1 + kN−1kN−2 + 1)
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·
1

(kN + kN−1kN + kN−1kN−2kN + 1)
−

4k2
i + 4k3

N(kN−1 + 1)

k4
Nk3

N−1k2
N−2kN−3(kN−2 + 1)

·
(kN−1 + kN−1kN−2 + 1) − 4k3

Nk2
N−1(kN−2+1)(kN+1)

(ki+1)2

(kN−1 + kN−1kN−2 + 1)(kN + kN−1kN + kN−1kN−2kN + 1)

−
4(kN−1 + 1)

k2
N−1kN−2kN(kN−2 + 1)(kN−1 + kN−1kN−2 + 1)(kN + kN−1kN + kN−1kN−2kN + 1)

,

where

bN1 = (kN + 1)(kN + kNkN−1 + 1)(kN + kNkN−1 + kN−1kN−2kN + 1)(kN + kN−1kN

+ kN−1kN−2kN + kN−1kN−2kN−3kN + 1),
bN−11 = 4kN−1 − kN + 2kN−1kN−2 − 2kN−1kN + kN−2k2

N−1 − k2
N−1kN + k2

N−1

− kN−1kN−2kN − kNk2
N−1 + 3.
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