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Abstract: According to the World Health Organization (WHO), toxoplasmosis affects more than 60% 

of the global population. The prevalence of this infection is particularly high in hot, humid, and 

low-altitude regions, as such environments favor the survival of oocysts in the ecosystem. In this study, 

we investigated the transmission dynamics of toxoplasmosis using a stochastic model with an implicit 

delay effect approach. The host populations were divided into compartments representing susceptible 

cats 𝑆(𝑡), infected cats 𝐼𝑐(𝑡), recovered cats 𝑉𝑅(𝑡), susceptible mice 𝑆𝑚(𝑡), infected mice 𝐼𝑚(𝑡), 

and the number of oocysts in the environment 𝑂(𝑡). In the delayed deterministic model, fundamental 

mathematical properties such as positivity, boundedness, existence, and uniqueness of solutions were 

established. Furthermore, the local and global stability of the steady states were analyzed using 

second-order stability conditions. In the stochastic delayed formulation, we investigated the positivity, 

boundedness, extinction, and persistence of the infection under random environmental fluctuations. To 

address the nonlinear complexity of the proposed system, several computational methods were 

employed, including the Euler–Maruyama, stochastic Euler, stochastic Runge–Kutta, and the 

stochastic non-standard finite difference (SNSFD) schemes. A comparative numerical analysis 

demonstrated that the SNSFD scheme preserves the qualitative features of the continuous model and 

remains stable under large time steps, confirming its suitability for modeling biologically realistic 

epidemic dynamics. 
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1. Introduction 

Toxoplasmosis is a biting infection caused by Toxoplasma gondii, named after the rounded 

figure of its infectious phase. People often get infected from eating undercooked meat, ingesting 

unfiltered water and raw seafood, and coming into contact with cat feces; additionally, these parasites 

can pass to a baby during pregnancy. Often, individuals with toxoplasmosis do not have any sort of 

symptom of the disease; others have flu-like symptoms, including fever, muscle aches, headaches, 

body aches, fatigue, and tender lymph nodes. People with a weakened immune system are much 

more prone to disease.  

T. gondii infection occurs all over the world, but the infection rate is country-specific. In 1908, 

Nicolle and Manceaux in Tunisia and Splendore in Brazil described Toxoplasma gondii for the first 

time. In 1923, the first case of toxoplasmosis was recorded. In 1937, Sabin and Olitsky examined T. 

gondii in research laboratory mice and monkeys and established it as a pathogen transmissible 

between animals [1]. Toxoplasmosis is more common in women than in men. At the international 

level, around six billion individuals are infected with T. gondii. Its seropositivity rate is much lower 

in developed than in developing countries. The seroprevalence of toxoplasmosis varies with age 

groups within an area and also in diverse topographical sections within a country. Limited studies 

from Pakistan have stated that toxoplasmosis prevalence was 11.33%–29.45% [2]. As cats are the 

transmission vector of toxoplasmosis, in areas where they are not present, the prevalence of 

toxoplasmosis is zero [3]. More than 200,000 humans are infected with toxoplasmosis. Infection 

during pregnancy mostly results in miscarriage, stillbirth, or abnormal birth.  

In 2008, Aranda proposed a mathematical model to study the dynamics of toxoplasmosis 

infection in Colombia. By using a linear system of ODEs, the initial system was formulated and 

converted to obtain comparative values and to characterize the qualitative behavior of the system. 

The modified system is a nonlinear system of ordinary differential equations [3]. In 2012, Sullivan 

introduced a mathematical model to examine the intra-host dynamics of T. gondii, including 

incursion, reproduction, and stage conversion [4]. In 2018, Peng et al. studied a dynamics of a model 

of toxoplasmosis disease in cats and humans with varying population sizes [5]. In 2017, Ferreira et al. 

studied a stability and bifurcation in epidemic models describing the transmission of toxoplasmosis 

in human and cat populations [6]. In 2024, Raza et al. studied well-established techniques to 

investigate disease modeling with delay strategies and demonstrated how such delay mechanisms can 

effectively control disease dynamics within a population [7]. In 2021, Zafar et al. proposed an 

epidemiological model to examine the dynamics of random-order toxoplasmosis infection in the 

hominid and catlike populations with the support of non-integer Multistep Generalized Differential 

Transform method (MSGDTM) [8]. In 2021, a non-integer and nonlinear mathematical model was 

described by Zafar for toxoplasmosis infection in human and cat populations. The special effects of 

toxoplasmosis infection were evaluated on humans by taking cats as a diffusion trajectory [9]. In 

2019, Raza et al. proposed a mathematical framework to examine vector-borne disease transmission 

in a population and implemented several numerical methods to solve the resulting complex 
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stochastic system, evaluating the efficiency and reliability of the proposed approaches [10]. In 2018, 

Kelting et al. proposed a mathematical model for the effects of T. gondii on the cat population in 

order to understand its dynamics and develop preventative measures against this parasite [11]. 

Effects of leucocytes, antibiotics, and immunologic adjuvants against T. gondii were studied by Liu 

et al. in 2012, by proposing three models. In leucocytes, toxoplasmosis depends on the immune 

strength of the host. Antibiotics seem to have a significant impact on toxoplasmosis infection, and 

the immune strength of the host is improved by ingestion of an immunological adjuvant that ends up 

killing T. gondii [12].  

Toxoplasmosis spread in the Netherlands and in the rest of Europe directly by infected cats and 

raw meat. In 2020, Marinović et al. suggested a system of cat immunization for dipping oocytes that 

originated from T. gondii human contagions; it is still unclear whether this system is effective [13]. 

In 2022, Parra et al. projected an epidemiological system to study toxoplasmosis infection with 

numerous congregations. They included mouse populations as an intermediary host and showed that 

the basic reproduction number 𝑅0 governs the outcome of the infection [14]. In 2016, Li et al. 

developed a mathematical system to stimulate toxoplasmosis spread between cats and oocyte 

populations. They studied asymptotic behaviors around the equilibrium by using stochastic 

Lyapunov functions [15].  

Here, a stochastic model with an implicit delay effect model is established for the study of 

toxoplasmosis transmission between cats, mice, and environmental oocyst populations. Mathematical 

results on positivity, boundedness, threshold behavior, and stability of steady states are obtained for 

the deterministic and stochastic models. In addition, a stochastic non-standard finite difference 

method is designed and computationally tested, outperforming the classical stochastic schemes in 

terms of stability and qualitative behavior. Furthermore, stochastic modeling employs efficient 

computational methods to identify essential epidemiological risk factors and guide public health 

innovations. Stochastic techniques offer a unique perspective on the complex dynamics of 

toxoplasmosis, resulting in enhanced recovery strategies and informed decision-making. The 

stochastic terms capture environmental randomness and uncertainties in transmission events 

associated with the variability in survival times of oocysts and host–environment interactions. This 

could not be represented by the OSE model. 

This paper is organized as follows: Section II presents the formulation of the stochastic model 

and the basic deterministic model attributes. Sections II and IV present the model’s stability analysis at 

both local and global levels. Section V describes the sensitivity of the model equilibria. Sections VI 

and VII describe the stochastic methods developed for the stochastic model. Section VIII presents 

asymptotic behavior of the model. Section IX presents an investigation of the stochastic NSFD 

scheme. Finally, a conclusion is provided. 

1.1. Basic notations 

Definition 1. A deterministic system is one in which the evolution of the state variables is completely 

determined by a set of differential equations without random perturbations. 

Formally, a deterministic system is expressed as 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋(𝑡), 𝑡), 

where 𝑋(𝑡) ∈ ℝ𝑛  is the state vector and 𝐹:ℝ𝑛 × ℝ → ℝ𝑛 is a continuously differentiable 

vector function. 
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Given an initial condition 𝑋(0) = 𝑋0, the system’s trajectory is uniquely defined for all 𝑡 > 0. 

Definition 2. A stochastic differential equation (SDE) introduces randomness into the system 

dynamics through a stochastic term, usually modeled by Brownian motion. 

It is generally represented as 

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑡) 𝑑𝑡 + 𝑔(𝑋(𝑡), 𝑡) 𝑑𝐵(𝑡), 

where: 

 𝑓(𝑋(𝑡), 𝑡) is the drift term, representing the deterministic trend of the process. 

 𝑔(𝑋(𝑡), 𝑡) is the diffusion term, representing the stochastic fluctuations. 

 𝐵(𝑡) denotes standard Brownian motion, satisfying 𝐸[𝑑𝐵(𝑡)] = 0 and 𝐸[𝑑𝐵(𝑡)2] = 𝑑𝑡. 

Definition 3. A stochastic model with an implicit delay effect is a stochastic differential equation in 

which memory or latency effects are incorporated through survival or weighting functions, rather 

than explicit delayed state variables. 

In particular, the delay effect is modeled via a survival factor of the form 

𝑒−𝜇𝜏, 

which represents the probability that individuals or pathogens survive a latent or maturation period of 

length 𝜏 under a constant mortality or decay rate 𝜇. Such formulations capture biologically realistic 

incubation or environmental survival processes without introducing explicit delay terms. 

Definition 4. An equilibrium point (or steady state) of a dynamical system is a constant solution 𝑋∗ 

such that 

𝐹(𝑋∗, 𝑡) = 0 or equivalently,
𝑑𝑋

𝑑𝑡
= 0. 

For epidemic models, the equilibria often correspond to: 

 Disease-free equilibrium (DFE): No infection persists, 𝐼∗ = 0. 

 Endemic equilibrium (EE): Infection persists at a constant positive level, 𝐼∗ > 0. 

Definition 5. A solution 𝑋(𝑡) of a biological model is said to be positive if 

𝑋𝑖(𝑡) ≥ 0, ∀𝑖 = 1,2, … , 𝑛, ∀𝑡 ≥ 0. 

Positivity ensures that population variables (e.g., susceptible or infected classes) remain 

biologically meaningful. 

Definition 6. A solution 𝑋(𝑡) is said to be bounded if there exists a constant 𝑀 > 0 such that 

∥ 𝑋(𝑡) ∥≤ 𝑀, ∀𝑡 ≥ 0. 

Boundedness implies that the populations cannot grow without limit, preserving biological realism. 

Definition 7. The basic reproduction number, 𝑅0 , is defined as the expected number of 

secondary infections produced by a single infectious individual in a fully susceptible population. 

For a model linearized around the disease-free equilibrium, it can be expressed using the 

next-generation matrix approach, 

𝑅0 = 𝜌(𝐹𝐺−1), 

where 𝐹 is the transmission matrix, 𝐺 is the transition matrix, and 𝜌(⋅) denotes the spectral 

radius (dominant eigenvalue). 

 If 𝑅0 < 1: The disease dies out. 

 If 𝑅0 > 1: The disease persists. 
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Definition 8. An equilibrium point 𝑋∗  of the system 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋)  is said to be locally 

asymptotically stable (L.A.S.) if for all initial conditions 𝑋(0) sufficiently close to 𝑋∗, we have 

lim 
𝑡→∞

𝑋(𝑡) = 𝑋∗. 

This property indicates that small perturbations around 𝑋∗ decay over time. 

Definition 9. An equilibrium 𝑋∗ is said to be globally asymptotically stable (G.A.S.) if it is both: 

1. Stable in the Lyapunov sense: Solutions remain near 𝑋∗ when initial perturbations are small, and 

2. Attractive: lim 𝑡→∞ 𝑋(𝑡) = 𝑋∗ for all initial conditions 𝑋(0) ∈ ℝ+
𝑛 . 

Definition 10. A Lyapunov function 𝑉(𝑋)  is a continuously differentiable, positive-definite 

function that satisfies 

𝑉(𝑋) > 0 for 𝑋 ≠ 𝑋∗, and 
𝑑𝑉

𝑑𝑡
≤ 0. 

If such a function exists, the equilibrium 𝑋∗ is stable. In stochastic systems, Itô’s lemma is used to 

extend this concept via stochastic Lyapunov functions. 

Definition 11. For a stochastic process 𝑋(𝑡) satisfying 𝑑𝑋(𝑡) = 𝑓(𝑋, 𝑡) 𝑑𝑡 + 𝑔(𝑋, 𝑡) 𝑑𝐵(𝑡), and a 

twice-differentiable function 𝑉(𝑋, 𝑡), Itô’s lemma gives 

𝑑𝑉(𝑋, 𝑡) = 𝑉𝑡 𝑑𝑡 + 𝑉𝑋  𝑑𝑋 +
1

2
𝑉𝑋𝑋 (𝑑𝑋)2. 

This formula is fundamental in deriving the stochastic differential of Lyapunov functions and in 

stability analysis of stochastic systems. 

Definition 12. The stochastic system 𝑑𝑋(𝑡) = 𝑓(𝑋, 𝑡) 𝑑𝑡 + 𝑔(𝑋, 𝑡) 𝑑𝐵(𝑡) is mean-square stable if 

lim 
𝑡→∞

𝐸[∥ 𝑋(𝑡) − 𝑋∗ ∥2] = 0. 

This ensures that, on average, the system tends to equilibrium despite random perturbations. 

2. Model formulation 

This section provides a survival-delay model to study toxoplasmosis transmission in cat and 

mouse populations. This concept is built around a consistent cat vaccination strategy. Although the 

system does not explicitly include delayed state variables (e.g., 𝑆(𝑡 − 𝜏) or 𝑂(𝑡 − 𝜏)), a delay effect 

is incorporated implicitly through the survival factor 𝑒−𝜇𝜏 , which represents the probability of 

surviving the latent/incubation interval of length 𝜏 under an exponential mortality rate. The model 

contains oocytes, which are the cause of T. gondii in the environment. The cat population, N(t), is split 

into three distinct subpopulations: Susceptible S(t), infected I(t), and vaccine-recovered 𝑉𝑅(t). The 

mouse population, 𝑁𝑚 (t), is also split into two different subpopulations: susceptible 𝑆𝑚 (t) and 

infected 𝐼𝑚(𝑡). O(t) is the number of oocytes in the environment. Affective contact with oocytes at 

rate β and 𝛽𝑚 causes a susceptible cat or mouse, respectively, to join the infected subpopulation. The 

parameter 𝛾  represents the rate of transmission from a susceptible cat into the vaccinated 

subpopulation 𝑉𝑅(t). Similarly, the parameter 𝛼 represents the transmission of an infected cat into the 

vaccinated/recovered subpopulation 𝑉𝑅(t). Oocytes and infected cats are directly proportional to each 

other. The increase of oocytes at any time t is proportional to the number of infected cats 𝐼𝑡. 𝜇𝑜 is the 

death rate of oocytes. µ is the death/birth rate of cats (See Table 1). 
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Table 1. Description of model parameters and variables used in the toxoplasmosis model 

with a saturated incidence rate. 

Symbol Description 

𝝁 Natural birth/death rate of cats (day⁻¹) 

𝜶 Removal/recovery rate of infected cats (day⁻¹) (so 1/α is the mean infectious period) 

𝝁𝒐 Decay/removal rate of oocysts in the environment (day⁻¹) 

𝒌 Oocyst production rate per infected cat (oocysts·cat⁻¹·day⁻¹) 

𝜷 Transmission coefficient from environmental oocysts to cats (units consistent with 

incidence term) 

𝜷𝒎 Transmission coefficient from environmental oocysts to mice (units consistent with 

incidence term) 

𝜸 Vaccination/acquired-immunity rate removing susceptible cats from S-class (day⁻¹) 

𝒃 Birth rate of mice (day⁻¹) 

𝝁𝒎 Natural death rate of mice (day⁻¹) 

 

Here, 𝜏 (days) denotes the oocyst maturation period before oocysts become infective. The 

factor 𝑒−𝜇0𝜏 represents the probability that oocysts survive this period under the environmental 

decay rate 𝜇0. Empirically, oocysts typically sporulate and become infective within 0.1–0.5 days, 

hence we consider 𝜏 ∈ [0.1,0.5] days in the numerical investigations. 

The delayed differential equations of the toxoplasmosis epidemic model, as nonlinear, delayed 

first-order, and coupled, are as follows: 

𝑆′(𝑡) = 𝜇(1 − 𝐼(𝑡)) − 𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 − (𝜇 + 𝛾)𝑆(𝑡),   𝑡 ≥ 0 𝜏 ≤ 𝑡,   (1) 

𝐼′(𝑡) = 𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 − 𝛼𝐼(𝑡),      𝑡 ≥ 0 𝜏 ≤ 𝑡,     (2) 

𝑂′(𝑡) = 𝑘𝐼(𝑡) − 𝜇𝑜𝑂(𝑡),      𝑡 ≥ 0,        (3) 

𝑆′𝑚(𝑡) = 𝑏𝑆𝑚(𝑡) − 𝛽𝑚𝑆𝑚(𝑡)𝑂(𝑡) − 𝜇𝑚𝑆𝑚(𝑡),   𝑡 ≥ 0,      (4) 

Here, 𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑂(0) ≥ 0,  𝑆𝑚(𝑡) ≥ 0.  The exponential factor 𝑒−𝜇𝑜𝜏  represents the 

probability that oocysts survive the maturation period 𝜏 required to become infective. Thus, the 

incidence term 𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 does not imply instantaneous infection but rather accounts for the 

effective transmission arising from oocysts that remain viable after environmental decay during the 

latent period. 

2.1. Dynamical properties 

To investigate the dynamics of toxoplasmosis transmission in cat and mouse populations, all 

system parameters in Eqs (1)–(4) are assumed to be nonnegative, i.e., greater than or equal to zero. 

For the epidemiological model to be meaningful, the state variables must also remain nonnegative 

for all 𝑡 ≥ 0 and 𝜏 ≤ 𝑡. Consequently, the model’s feasible region is defined as positive and 

bounded within a biologically relevant domain. 

Ω = {(𝑆, 𝐼, 𝑂, 𝑆𝑚) ∈ ℝ+
4 : 𝑁𝑐(𝑡) ≤

𝜇

𝜇+𝛾
,  𝑁𝑚(𝑡) ≤

𝑏

𝜇𝑚
,  𝑆 ≥ 0, 𝐼 ≥ 0, 𝑂 ≥ 0, 𝑆𝑚 ≥ 0}. 

Theorem 1. Positivity of solutions: For any initial conditions (𝑆(0), 𝐼(0), 𝑂(0), 𝑆𝑚(0)) ∈ ℝ+
4 , the 

corresponding solutions 
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(𝑆(𝑡), 𝐼(𝑡), 𝑂(𝑡), 𝑆𝑚(𝑡)) ∈ ℝ+
4  

of the system (1)–(4) remain positive for all 𝑡 ≥ 0. 

Proof. Let us define the norm 

𝜆∞ = sup 
𝑡∈𝐷𝜆

∣ 𝜆(𝑡) ∣. 

For the susceptible population 𝑆(𝑡), we have 

𝑑𝑆

𝑑𝑡
= 𝜇(1 − 𝐼∞) − 𝛽𝑆𝑂∞𝑒−𝜇𝑜𝜏 − (𝜇 + 𝛾)𝑆. 

Thus, 

𝑑𝑆

𝑑𝑡
≥ −𝛽𝑆𝑂∞𝑒−𝜇𝑜𝜏 − (𝜇 + 𝛾)𝑆. 

Dividing both sides by 𝑆 and integrating over time gives 

𝑑𝑆

𝑆
≥ −[𝛽𝑂∞𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)]𝑑𝑡, 

which yields 

𝑆(𝑡) ≥ 𝑆(0) 𝑒−[𝛽𝑂∞𝑒−𝜇𝑜𝜏+(𝜇+𝛾)]𝑡 ≥ 0. 

Hence, 𝑆(𝑡) ≥ 0 for all 𝑡 ≥ 0. 

Similarly, for the other compartments, 

𝐼(𝑡) ≥ 𝐼(0)𝑒−𝛼𝑡 ≥ 0,𝑂(𝑡) ≥ 𝑂(0)𝑒−𝜇𝑜𝑡 ≥ 0, 𝑆𝑚(𝑡) ≥ 𝑆𝑚(0)𝑒−[𝛽𝑚𝑂∞+𝜇𝑚]𝑡 ≥ 0. 

Therefore, all state variables remain nonnegative for all 𝑡 ≥ 0. 

Theorem 2. Boundedness of solutions: The solutions (𝑆, 𝐼, 𝑂, 𝑆𝑚) ∈ ℝ+
4  of the system (1)–(4) are 

bounded for all 𝑡 ≥ 0. 

Proof. Consider the total population function 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑂(𝑡). 

Differentiating with respect to 𝑡, 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑂

𝑑𝑡
. 

Using the system equations, we obtain the inequality 

𝑑𝑁

𝑑𝑡
≤ −𝜇(𝑆 + 𝐼 + 𝑂) + 𝜇, 

or equivalently, 

𝑑𝑁

𝑑𝑡
≤ −𝜇𝑁 + 𝜇. 

This can be rewritten as 

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 ≤ 𝜇. 
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Applying Gronwall’s inequality, we find 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + 1. 

Therefore, 

lim 
𝑡→∞

sup 𝑁(𝑡) ≤ 1. 

Hence, the total population remains bounded as 𝑡 → ∞. 

2.2. Model equilibria 

In this section, we determine two distinct equilibrium points of the system: 

 The toxoplasmosis-free equilibrium (TFE, 𝑇0), and 

 the toxoplasmosis-endemic equilibrium (TEE, 𝑇∗). 

These states are gained by having the right-hand sides of system (1)–(4) set to zero and solving for 

the steady-state values. 

Toxoplasmosis-free equilibrium (TFE). At the disease-free state (𝐼 = 0, 𝑂 = 0), the system 

reduces to the steady solution: 

𝑇0 = (𝑆0, 𝐼0, 𝑂0, 𝑆𝑚0) = (
𝜇

𝜇 + 𝛾
, 0, 0, 

𝑏

𝜇𝑚
). 

This represents a healthy population with no infection among cats or mice. 

Toxoplasmosis-endemic equilibrium (TEE). At the endemic steady state (𝐼∗, 𝑂∗ > 0), the system 

admits the equilibrium 

𝑇∗ = (𝑆∗, 𝐼∗, 𝑂∗, 𝑆𝑚
∗ ) = (

𝛼𝜇𝑜

𝛽𝑘𝑒−𝜇𝜏
,
𝜇𝛽𝑘𝑒−𝜇𝑜𝜏 − (𝛾 + 𝜇)𝛼𝜇𝑜

𝛽𝑘𝑒−𝜇𝑜𝜏(𝜇 + 𝛼)
,
𝜇𝛽𝑘𝑒−𝜇𝑜𝜏 − (𝛾 + 𝜇)𝛼𝜇𝑜

𝜇𝑜𝑘𝑒−𝜇𝑜𝜏(𝜇 + 𝛼)
, 0). 

The endemic equilibrium exists only when 𝑅0 > 1, ensuring that infection persists in the population. 

Basic reproduction number (𝑹𝟎). The basic reproduction number 𝑅0 quantifies the expected 

number of secondary infections generated by a single infectious cat introduced into a completely 

susceptible population. It is derived using the next-generation matrix (NGM) method. 

Let F denote the new infection matrix and G the transition (removal) matrix. Considering the 

infectious classes 𝐼 and 𝑂 (and excluding 𝑆′ and 𝑆𝑚
′  from the Jacobian), we have 

𝐹 = [
0 𝛽𝑆𝑒−𝜇𝑜𝜏

0 0
] , 𝐺 = [

𝛼 0
−𝑘 𝜇𝑜

]. 

Then, 

𝐹𝐺−1 = [
0 𝛽𝑆𝑒−𝜇𝑜𝜏

0 0
]

[
 
 
 

1

𝛼
0

𝑘

𝛼𝜇𝑜

1

𝜇𝑜]
 
 
 
. 

The dominant eigenvalue (spectral radius) of 𝐹𝐺−1 gives the basic reproduction number 

𝑅0 =
𝑘𝜇𝛽𝑒−𝜇𝑜𝜏

𝛼𝜇𝑜(𝛾 + 𝜇)
. 

If 𝑅0 < 1, the infection will eventually disappear, while if 𝑅0 > 1, the infection will persist in the 
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host populations.  

3. Local stability analysis  

We shall prove the following well-known conclusions for local stability in both balances of the 

model. Consider the function as follows: The elements of the Jacobian matrix are 

 𝐽 = [

−𝛽𝑂𝑒−𝜇𝑜𝜏 − (𝛾 + 𝜇) −𝜇 −𝛽𝑆𝑒−𝜇𝑜𝜏 0
𝛽𝑂𝑒−𝜇𝑜𝜏 −𝛼 𝛽𝑆𝑒−𝜇𝑜𝜏 0

0 𝑘 −𝜇° 0
0 0 −𝛽𝑚𝑆𝑚 𝑏 − 𝛽𝑚𝑂 − 𝜇𝑚

].   (5) 

Theorem 3. The toxoplasmosis-free equilibrium (TFE-𝑇0), 𝑇0 = (𝑆0, 𝐼0, 𝑂0, 𝑆𝑚0
) = (

𝜇

𝜇+𝛾
, 0,0,

𝑏

𝜇𝑚
) is 

locally asymptotical stable (LAS) if 𝑅0 < 1. However, if 𝑅0 > 1, the system will be unstable at 𝑇0. 

Proof. For stability at 𝑇0 = (𝑆0, 𝐼0, 𝑂0, 𝑆𝑚0
) = (

𝜇

𝜇+𝛾
, 0,0,

𝑏

𝜇𝑚
), the Jacobian matrix (5) becomes: 

𝐽(𝑇0) =

[
 
 
 
−(𝛾 + 𝜇) −𝜇 −𝛽𝑆0𝑒

−𝜇𝑜𝜏 0
0 −𝛼 𝛽𝑆0 𝑒

−𝜇𝑜𝜏 0
0 𝑘 −𝜇° 0
0 0 −𝛽𝑚𝑆𝑚0

𝑏 − 𝑆𝑚0
𝑂 − 𝜇𝑚]

 
 
 

. 

|𝐽(𝑇0) − 𝜆| =
|

|

−(𝛾 + 𝜇) − 𝜆 −𝜇 −𝛽 (
𝜇

𝜇+𝛾
) 𝑒−𝜇𝑜𝜏 0

0 −𝛼 − 𝜆 𝛽 (
𝜇

𝜇+𝛾
) 𝑒−𝜇𝑜𝜏 0

0 𝑘 −𝜇° − 𝜆 0

0 0 −𝛽𝑚 (
𝑏

𝜇𝑚
) 𝑏 − 𝜇𝑚 − 𝜆

|

|
. 

Here, the eigenvalues of 𝐽(𝑇0) are as follows: 𝜆1 = −(𝛾 + 𝜇) < 0, 𝜆2 = 𝑏 − 𝜇𝑚. Then, 𝜆2 < 0 if 

𝑏 < 𝜇𝑚. 

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0. 

Then, 𝑎1 = 𝛼 + 𝜇, 𝑎0 = (𝛼𝜇𝑜)(1 −  𝑅0). So, 𝑎1, 𝑎0 > 0. 

Thus, by the Routh–Hurwitz criterion polynomial, the values of 𝑎1 and 𝑎0 are positive if 𝑅0 < 1. 
Therefore, the toxoplasmosis-free equilibria (TFE-𝑇0) of the system (1)–(4) is locally stable. On the 

other hand, if 𝑅0 > 1, Routh–Hurwitz’s condition of stability is violated. Thus, 𝑇0 is unstable locally. 

Theorem 4. The toxoplasmosis endemic equilibrium (TEE-𝑇∗), 𝑇∗ = (𝑆∗, 𝐼∗, 𝑂∗, 𝑆∗
𝑚) is locally 

asymptotical stable (LAS) if 𝑅0 > 1. 

Proof. Let us consider a Jacobian matrix at 𝑇∗, we have 

𝐽(𝑇∗) = [

−𝛽𝑂∗𝑒−𝜇𝑜𝜏 − (𝛾 + 𝜇) −𝜇 −𝛽𝑆∗𝑒−𝜇𝑜𝜏 0
𝛽𝑂∗𝑒−𝜇𝑜𝜏 −𝛼 𝛽𝑆∗𝑒−𝜇𝑜𝜏 0

0 𝑘 −𝜇° 0
0 0 −𝛽𝑚𝑆∗

𝑚 𝑏 − 𝛽𝑚𝑂∗ − 𝜇𝑚

]. 

For the eigenvalue, consider |𝐽(𝑇∗) − 𝜆𝐼| = 0, 

𝜆1 = 𝑏 − 𝛽𝑚𝑂∗ − 𝜇𝑚 < 0. 

𝜆3 + 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎𝜊 = 0. 
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𝑎2 = 𝛼 + 𝜇° + 𝛽𝑂∗𝑒−𝜇𝑜𝜏 + (𝛾 + 𝜇) > 0. 

𝑎1 = 𝛼𝜇° + (𝛼 + 𝜇°)(𝛽𝑂∗𝑒−𝜇𝑜𝜏 + (𝛾 + 𝜇)) − ((𝑘𝛽𝑆∗𝑒−𝜇𝑜𝜏) + (𝜇𝛽𝑂∗𝑒−𝜇𝑜𝜏)), 

where 𝑎1 > 0 if 
𝛼𝜇°+(𝛼+𝜇°)(𝛽𝑂∗𝑒−𝜇𝑜𝜏+(𝛾+𝜇))

((𝑘𝛽𝑆∗𝑒−𝜇𝑜𝜏)+(𝜇𝛽𝑂∗𝑒−𝜇𝑜𝜏))
> 1. 

𝑎𝜊 = (𝛼𝜇°)(𝛽𝑂∗𝑒−𝜇𝑜𝜏 + (𝛾 + 𝜇)) − [(𝛽𝑂∗𝑒−𝜇𝑜𝜏 + (𝛾 + 𝜇))](𝑘𝛽𝑆∗𝑒−𝜇𝑜𝜏) 

+(𝛽𝑂∗𝑒−𝜇𝑜𝜏)(𝜇° + (𝑘𝛽𝑆∗𝑒−𝜇𝑜𝜏)), 

where 𝑎0 > 0  if (𝛼𝜇°)(𝛽𝑂∗𝑒−𝜇𝑜𝜏 + (𝛾 + 𝜇)) > [(𝛽𝑂∗𝑒−𝜇𝑜𝜏 + (𝛾 + 𝜇))](𝑘𝛽𝑆∗𝑒−𝜇𝑜𝜏) +

(𝛽𝑂∗𝑒−𝜇𝑜𝜏)(𝜇° + (𝑘𝛽𝑆∗𝑒−𝜇𝑜𝜏)). 

According to the Routh–Hurwitz criterion for a third-degree characteristic polynomial, the local 

stability of the equilibrium depends on the signs of the polynomial coefficients. For the characteristic 

equation obtained from system (1)–(4), all coefficients are positive under the condition 𝑅0 > 1. 

Therefore, when 𝑅0 > 1 , the toxoplasmosis endemic equilibrium of the model is locally 

asymptotically stable. 

Conversely, when 𝑅0 < 1, one or more of the Routh–Hurwitz stability conditions are violated. 

Consequently, the endemic equilibrium becomes locally unstable, indicating that infection cannot 

persist in the population. 

4. Global stability analysis 

Well-known results are presented for the stability of the toxoplasmosis delayed epidemic model 

in the global sense as follows: 

Theorem 5. The system at toxoplasmosis-free equilibrium (TFE-𝑇0) is 𝐺𝐴𝑆 if 𝑅0 < 1. 
Proof. Define the Volterra Lyapunov function 𝑈:Ω → ℝ as 

𝑈 = [𝑆 − 𝑆0 − 𝑆0𝑙𝑜𝑔
𝑆

𝑆0
] + 𝐼 + 𝑂 + 𝑆𝑚. 

𝑑𝑈

𝑑𝑡
= [1 −

𝑆0

𝑆
]

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑂

𝑑𝑡
+

𝑑𝑆𝑚

𝑑𝑡
. 

𝑑𝑈

𝑑𝑡
= [

𝑆 − 𝑆0

𝑆
] [𝜇(1 − 𝐼) − 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 − (𝜇 + 𝛾)𝑆] 

+[𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 − 𝛼𝐼] + [𝑘𝐼 − 𝜇°𝑂] + [𝑏𝑆𝑚 − 𝛽𝑚𝑆𝑚𝑂 − 𝜇𝑚𝑆𝑚]. 

𝑑𝑈

𝑑𝑡
≤ −𝜇

(𝑆−𝑆0)2

𝑆𝑆0
− 𝜇°𝑂[1 −

𝛽𝑆𝑒−𝜇𝑜𝜏

𝜇°
] − 𝛼𝐼 − 𝛽𝑚𝑆𝑚𝑂 − 𝜇𝑚𝑆𝑚. 

This implies that 
𝑑𝑈

𝑑𝑡
≤ 0 if 𝑅0 < 1 and 

𝑑𝑈

𝑑𝑡
= 0 if 𝑆 = 𝑆0, 𝐼 = 𝑂 = 𝑆𝑚 = 0.  

Therefore, 𝑇0 is globally asymptotically stable. 

Theorem 6. The system at 𝑇∗ = (𝑆∗, 𝐼∗, 𝑂∗, 𝑆∗
𝑚) is globally asymptotically stable if 𝑅0 > 1. 

Proof. Letting the Lyapunov function 𝑊:Ω → ℝ be defined as 

𝑊 = 𝑘1 (𝑆 − 𝑆∗ − 𝑆∗ ln (
𝑆

𝑆∗
)) + 𝑘2 (𝐼 − 𝐼∗ − 𝐼∗ ln (

𝐼

𝐼∗
)) + 𝑘3 (𝑂 − 𝑂∗ − 𝑂∗ ln (

𝑂

𝑂∗
)) 

+𝑘4 (𝑆𝑚 − 𝑆∗
𝑚 − 𝑆∗

𝑚 ln (
𝑆𝑚

𝑆∗
𝑚
)). 
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Given positive constants 𝑘𝑖(𝑖 = 1,2,3,4), we can express the following equation: 

𝑑𝑊

𝑑𝑡
= 𝑘1 [

𝑆−𝑆∗

𝑆
]

𝑑𝑆

𝑑𝑡
+ 𝑘2 [

𝐼−𝐼∗

𝐼
]

𝑑𝐼

𝑑𝑡
+ 𝑘3 [

𝑂−𝑂∗

𝑂
]

𝑑𝑂

𝑑𝑡
+ 𝑘4 [

𝑆𝑚−𝑆∗
𝑚

𝑆𝑚
]

𝑑𝑆𝑚

𝑑𝑡
. 

𝑑𝑊

𝑑𝑡
= −𝑘1𝜇

(𝑆−𝑆∗)2

𝑆𝑆∗ −𝑘2
(𝐼−𝐼∗)2

𝐼𝐼∗
(𝛼𝑂) [1 −

𝛽𝑆𝑒−𝜇𝑜𝜏

𝛼
] − 𝑘3(𝑘𝐼)

(𝑂−𝑂∗)2

𝑂𝑂
− 𝑘4(𝑏𝑆𝑚)

(𝑆𝑚−𝑆∗
𝑚)2

𝑆𝑚𝑆∗
𝑚

. 

If we choose 𝑘𝑖 where (𝑖 = 1,2,3,4), 

𝑑𝑊

𝑑𝑡
= −𝜇

(𝑆−𝑆∗)2

𝑆𝑆∗
−

(𝐼−𝐼∗)2

𝐼𝐼∗
(𝛼𝑂) [1 −

𝛽𝑆𝑒−𝜇𝑜𝜏

𝛼
] − (𝑘𝐼)

(𝑂−𝑂∗)2

𝑂𝑂
− (𝑏𝑆𝑚)

(𝑆𝑚−𝑆∗
𝑚)2

𝑆𝑚𝑆∗
𝑚

. 

𝑑𝑊

𝑑𝑡
≤ 0 for 𝑅0 > 1 and 

𝑑𝑊

𝑑𝑡
= 0 if and only if 𝑆 = 𝑆∗, 𝐼 = 𝐼∗, 𝑂 = 𝑂∗,  𝑆𝑚 = 𝑆∗

𝑚. 

Hence, by Lasalle’s invariance principle, 𝑇∗ is globally asymptotical stable. 

Theorem 7. (Second-order global stability) The toxoplasmosis-free equilibrium (TFE-𝑇0), 𝑇0 =

(𝑆0, 𝐼0, 𝑂0, 𝑆𝑚0
) = (

𝜇

𝜇+𝛾
, 0,0,

𝑏

𝜇𝑚
) is globally asymptotically stable if ℛ0 < 1. 

Proof. Define the function Β: Ω → ℝ as 

B′(𝐼) =
1

𝐼

𝑑𝐼

𝑑𝑡
, 

I′′(𝐼) =
1

𝐼

𝑑2𝐼

𝑑𝑡2 −
1

𝐼2
(

𝑑𝐼

𝑑𝑡
)

2

, 

B′′(𝐼) =
1

𝐼
(
𝑘𝛽𝑆𝐼𝑒−𝜇𝑜𝜏

𝜇°
− 𝛼𝐼)

2

−
1

𝐼2
(𝛼)2 (1 −

𝑘𝛽𝑆𝐼𝑒−𝜇𝑜𝜏

𝛼𝜇°
)
2

, 

B′′(𝐼) = (𝛼)2(ℛ0 − 1)2 − (𝛼)2 (1 −
𝑘𝛽𝑆𝑒−𝜇𝑜𝜏

𝛼𝜇°
)
2

, 

B′′(𝐼) ≤ 0 𝑖𝑓 ℛ0 < 1. 

Thus, the system (1)–(4) is globally asymptotically stable at toxoplasmosis-free equilibrium 

𝑇0 = (𝑆0, 𝐼0, 𝑂0, 𝑆𝑚0
). 

Theorem 8. (Second-order global stability) The toxoplasmosis endemic equilibrium (TEE-𝑇∗), 

𝑇∗ = (𝑆∗, 𝐼∗, 𝑂∗, 𝑆∗
𝑚) is globally asymptotical stable (GAS) if 𝑅0 > 1. 

Proof. Define the Lyapunov function W: Ω → ℝ as  

𝑊 = 𝑘1 (𝑆 − 𝑆∗ − 𝑆∗ ln (
𝑆

𝑆∗
)) + 𝑘2 (𝐼 − 𝐼∗ − 𝐼∗ ln (

𝐼

𝐼∗
)) + 𝑘3 (𝑂 − 𝑂∗ − 𝑂∗ ln (

𝑂

𝑂∗
)) 

+𝑘4 (𝑆𝑚 − 𝑆∗
𝑚 − 𝑆∗

𝑚 ln (
𝑆𝑚

𝑆∗
𝑚
)). 

𝑑2𝑊

𝑑𝑡2
=

𝑆∗

𝑆2
(
𝑑𝑆

𝑑𝑡
)

2

+ (1 −
𝑆∗

𝑆
)
𝑑2𝑆

𝑑𝑡2
+

𝐼∗

𝐼2
(
𝑑𝐼

𝑑𝑡
)
2

+ (1 −
𝐼∗

𝐼
)
𝑑2𝐼

𝑑𝑡2
+

𝑂∗

𝑂2
(
𝑑𝑂

𝑑𝑡
)
2

 

+(1 −
𝑂∗

𝑂
)

𝑑2𝑂

𝑑𝑡2 +
𝑆∗

𝑚

𝑆𝑚
2 (

𝑑𝑆𝑚

𝑑𝑡
)
2

+ (1 −
𝑆∗

𝑚

𝑆𝑚
)

𝑑2𝑆𝑚

𝑑𝑡2 .  

𝑑2𝑊

𝑑𝑡2 = ((𝜇)2 + (𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆))
𝑆∗

𝑆2 − (2𝜇(𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆))
𝑆∗

𝑆2 +

(𝜇(𝛽𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)))
𝑆∗

𝑆
− ((𝛽𝑂𝑒−𝜇𝜏 + (𝜇 + 𝛾))(𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆))

𝑆∗

𝑆
+

((𝛽𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾))(𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆)) − (𝜇(𝛽𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾))) +

((𝛽𝑆𝑂𝑒−𝜇𝑜𝜏)2 + (𝛼𝐼)2)
𝐼∗

𝐼2
− (2(𝛽𝑆𝑂𝑒−𝜇𝑜𝜏)(𝛼𝐼))

𝐼∗

𝐼2
+ ((𝛼𝛽𝑆𝑂𝑒−𝜇𝑜𝜏))

𝐼∗

𝐼
− (𝛼2𝐼)

𝐼∗

𝐼
+ (𝛼2𝐼) −
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((𝛼𝛽𝑆𝑂𝑒−𝜇𝑜𝜏)) + ((𝜇°𝑂)2 + (𝑘𝐼)2)
𝑂∗

𝑂2
− (2(𝜇°𝑂)(𝑘𝐼))

𝑂∗

𝑂2
+ (𝜇°𝑘𝐼)

𝑂∗

𝑂
− ((𝜇°)

2𝑂)
𝑂∗

𝑂
+ ((𝜇°)

2𝑂) −

(𝜇°𝑘𝐼) + ((𝑏𝑆𝑚)2 + (𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑚𝑆𝑚)2)
𝑆𝑚

∗

𝑆𝑚
2 − (2(𝑏𝑆𝑚)(𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑚𝑆𝑚))

𝑆𝑚
∗

𝑆𝑚
2 + (((𝑏)2𝑆𝑚 +

𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚))
𝑆𝑚

∗

𝑆𝑚
− (2𝑏(𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚))

𝑆𝑚
∗

𝑆𝑚
+ (2𝑏(𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚 +)) − (((𝑏)2𝑆𝑚 +

𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚)).  

For simplification, we choose  

𝑑2𝑊

𝑑𝑡2 = 𝜒1 − 𝜒2,  

𝜒1 = ((𝜇)2 + (𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆))
𝑆∗

𝑆2
+ (𝜇(𝛽𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)))

𝑆∗

𝑆
+ ((𝛽𝑂𝑒−𝜇𝑜𝜏 +

(𝜇 + 𝛾))(𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆)) + ((𝛽𝑆𝑂𝑒−𝜇𝑜𝜏)2 + (𝛼𝐼)2)
𝐼∗

𝐼2
+ ((𝛼𝛽𝑆𝑂𝑒−𝜇𝑜𝜏))

𝐼∗

𝐼
+

(𝛼2𝐼) + ((𝜇°𝑂)2 + (𝑘𝐼)2)
𝑂∗

𝑂2 + (𝜇°𝑘𝐼)
𝑂∗

𝑂
+ ((𝜇°)

2𝑂) + ((𝑏𝑆𝑚)2 + (𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑚𝑆𝑚)2)
𝑆𝑚

∗

𝑆𝑚
2 +

(((𝑏)2𝑆𝑚 + 𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚))
𝑆𝑚

∗

𝑆𝑚
+ (2𝑏(𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚)),  

𝜒2 = (2𝜇(𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾)𝑆))
𝑆∗

𝑆2 + ((𝛽𝑂𝑒−𝜇𝜏 + (𝜇 + 𝛾))(𝜇𝐼 + 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏 + (𝜇 +

𝛾)𝑆))
𝑆∗

𝑆
+ (𝜇(𝛽𝑂𝑒−𝜇𝑜𝜏 + (𝜇 + 𝛾))) + (2(𝛽𝑆𝑂𝑒−𝜇𝑜𝜏)(𝛼𝐼))

𝐼∗

𝐼2
+ (𝛼2𝐼)

𝐼∗

𝐼
+ ((𝛼𝛽𝑆𝑂𝑒−𝜇𝑜𝜏)) +

(2(𝜇°𝑂)(𝑘𝐼))
𝑂∗

𝑂2 + ((𝜇°)
2𝑂)

𝑂∗

𝑂
+ (𝜇°𝑘𝐼) + (2(𝑏𝑆𝑚)(𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑚𝑆𝑚))

𝑆𝑚
∗

𝑆𝑚
2 + (2𝑏(𝛽𝑚𝑆𝑚𝑂 +

𝜇𝑜𝑆𝑚))
𝑆𝑚

∗

𝑆𝑚
+ (((𝑏)2𝑆𝑚 + 𝛽𝑚𝑆𝑚𝑂 + 𝜇𝑜𝑆𝑚)).  

We can see that  

𝜒1 > 𝜒2,
𝑑2𝑊

𝑑𝑡2 > 0,   𝜒1 < 𝜒2,
𝑑2𝑊

𝑑𝑡2 < 0,   𝜒1 = 𝜒2,
𝑑2𝑊

𝑑𝑡2 = 0. 

5. Sensitivity analysis 

A derivative-based local sensitivity approach was applied to assess how variations in model 

parameters influence the basic reproduction number 𝑅0. This method evaluates the partial derivatives 

of 𝑅0 with respect to each parameter, thereby quantifying the relative impact of each parameter on 

disease transmission dynamics. 

The sensitivity indices are obtained as follows: 

𝑇𝑘 =
𝑘

𝑅0

∂𝑅0

∂𝑘
= 1 > 0,  𝑇𝛽 =

𝛽

𝑅0

∂𝑅0

∂𝛽
= 1 > 0,  𝑇𝛼 =

𝛼

𝑅0

∂𝑅0

∂𝛼
= −1 < 0, 

𝑇𝜇𝑜
=

𝜇𝑜

𝑅0

∂𝑅0

∂𝜇𝑜
= −1 < 0, 𝑇𝛾 =

𝛾

𝑅0

∂𝑅0

∂𝛾
= −

1

𝜇 + 𝛾
< 0. 

The results show that the parameters 𝑘 and 𝛽 have positive and larger sensitivity indices, indicating 

that an increase in either parameter enhances the potential for disease transmission. In contrast, the 

parameters 𝜇𝑜, 𝛼, and 𝛾 exhibit negative sensitivity indices, implying that higher values of these 

parameters reduce the infection potential. Therefore, 𝑘 and 𝛽 are the most influential factors in 

driving the system from a disease-free to an endemic state. 
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6. Stochastic formulation phase 1 

Let 

𝑈(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑂(𝑡), 𝑆𝑚(𝑡))⊤ 

denote the state vector of the toxoplasmosis epidemic model corresponding to system (1)–(4). To 

incorporate random environmental fluctuations and demographic uncertainty, we derive a stochastic 

formulation based on a diffusion approximation of the underlying Markov jump process. 

6.1. Transition structure 

The possible transition events, their state-change vectors 𝑇𝑖 ∈ ℝ4, and corresponding transition 

probabilities 𝑃𝑖(𝑈, 𝑡) are summarized in Table 2. Over a small time interval Δ𝑡, the conditional 

expectation and covariance of the increment Δ𝑈(𝑡) = 𝑈(𝑡 + Δ𝑡) − 𝑈(𝑡) satisfy 

𝔼∗[Δ𝑈] = ∑ 𝑃𝑖
9
𝑖=1 (𝑈, 𝑡) 𝑇𝑖, 

𝔼∗[Δ𝑈 (Δ𝑈)⊤] = ∑ 𝑃𝑖
9
𝑖=1 (𝑈, 𝑡) 𝑇𝑖𝑇𝑖

⊤, 

where 𝔼∗(⋅) denotes the conditional expectation given the current state 𝑈(𝑡). 

Table 2. Possible transition events and their probabilities. 

Transition Change vector (Tᵢ) Transition probability (Pᵢ) Biological interpretation 

𝑻𝟏 [1,0,0,0]𝑇 𝑃1 = 𝜇(1 − 𝐼)∆𝑡 Birth of susceptible hosts 

𝑻𝟐 [−1,1,0,0]𝑇 𝑃2 = 𝛽𝑆𝑂𝑒−𝜇𝑜𝜏∆𝑡 Infection of susceptible hosts 

𝑻𝟑 [−1,0,0,0]𝑇 𝑃3 = (𝛼 + 𝜇)𝑆∆𝑡 Death or removal of susceptible 

hosts 

𝑻𝟒 [0, −1,0,0]𝑇 𝑃4 = (𝛼 + 𝜇)𝐼∆𝑡 Death or recovery of infected 

hosts 

𝑻𝟓 [0,0,1,0]𝑇 𝑃5 = 𝑘𝐼∆𝑡 Shedding of oocysts by infected 

hosts 

𝑻𝟔 [0,0, −1,0]𝑇 𝑃6 = 𝜇𝑜𝑂∆𝑡 Decay or removal of oocysts 

𝑻𝟕 [0,0,0,1]𝑇 𝑃7 = 𝑏𝑆𝑚∆𝑡 Birth of susceptible intermediate 

hosts 

𝑻𝟖 [0,0,0, −1]𝑇 𝑃8 = 𝛽𝑚𝑆𝑚𝑂∆𝑡 Infection of intermediate hosts 

𝑻𝟗 [0,0,0, −1]𝑇 𝑃9 = 𝜇𝑚𝑆𝑚∆𝑡 Death of intermediate hosts 

Dividing by Δ𝑡 and letting Δ𝑡 → 0, the drift term is obtained as 

 𝐺(𝑈, 𝑡) = lim 
Δ𝑡→0

𝔼∗[Δ𝑈]

Δ𝑡
= (

𝜇(1 − 𝐼) − 𝛽𝑆𝑂𝑒−𝜇0𝜏 − (𝜇 + 𝛾)𝑆
𝛽𝑆𝑂𝑒−𝜇0𝜏 − (𝛼 + 𝜇)𝐼

𝑘𝐼 − 𝜇0𝑂
𝑏𝑆𝑚 − 𝛽𝑚𝑆𝑚𝑂 − 𝜇𝑚𝑆𝑚

) .    (6) 

6.2. Diffusion approximation 

To represent the stochastic variability induced by the transition events, we introduce a 
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vector-valued Brownian motion, 

𝑊(𝑡) = (𝑊1(𝑡), 𝑊2(𝑡),  … , 𝑊9(𝑡))
⊤, 

where each 𝑊𝑖(𝑡) is an independent standard Brownian motion. 

The diffusion matrix 𝐻(𝑈, 𝑡) ∈ ℝ4×9 is constructed directly from the transition structure as 

𝐻(𝑈, 𝑡) = [𝑇1√𝑃1(𝑈, 𝑡),  𝑇2√𝑃2(𝑈, 𝑡),   … ,  𝑇9√𝑃9(𝑈, 𝑡)]. 

By construction, this matrix satisfies 

𝐻(𝑈, 𝑡)𝐻(𝑈, 𝑡)⊤ = ∑𝑃𝑖

9

𝑖=1

(𝑈, 𝑡) 𝑇𝑖𝑇𝑖
⊤, 

which coincides with the infinitesimal covariance matrix of the jump process. 

6.3. Stochastic differential equation model 

The stochastic toxoplasmosis model is therefore given by the system of stochastic 

differential equations 

𝑑𝑈(𝑡) = 𝐺(𝑈, 𝑡) 𝑑𝑡 + 𝐻(𝑈, 𝑡) 𝑑𝑊(𝑡),      (7) 

that is, 

(

𝑑𝑆
𝑑𝐼
𝑑𝑂
𝑑𝑆𝑚

) = (

𝜇(1 − 𝐼) − 𝛽𝑆𝑂𝑒−𝜇0𝜏 − (𝜇 + 𝛾)𝑆

𝛽𝑆𝑂𝑒−𝜇0𝜏 − (𝛼 + 𝜇)𝐼
𝑘𝐼 − 𝜇0𝑂

𝑏𝑆𝑚 − 𝛽𝑚𝑆𝑚𝑂 − 𝜇𝑚𝑆𝑚

)𝑑𝑡 + 𝐻(𝑈, 𝑡) 𝑑𝑊(𝑡). 

This formulation ensures that the stochastic perturbations correctly reflect the correlations induced 

by the biological transition events, while the covariance structure remains positive semidefinite. 

6.4. Numerical approximation 

To numerically approximate system (7), we apply the Euler–Maruyama scheme. Let 𝑡𝑛 = 𝑛Δ𝑡. Then 

𝑈𝑛+1 = 𝑈𝑛 + 𝐺(𝑈𝑛, 𝑡𝑛) Δ𝑡 + 𝐻(𝑈𝑛, 𝑡𝑛) Δ𝑊𝑛,      (8) 

where Δ𝑊𝑛 = 𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛) is a vector of independent normal random variables with mean 

zero and variance Δ𝑡. 

7. Stochastic formulation phase 2 

To explicitly represent uncertainty in each compartment, the stochastic formulation of the 

toxoplasmosis model can be rewritten as follows: 

𝑑𝑆(𝑡) = (𝜇(1 − 𝐼(𝑡)) − 𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 − (𝜇 + 𝛾)𝑆(𝑡)) 𝑑𝑡 + 𝜎1𝑆(𝑡)𝑑𝐵(𝑡),  𝑡 ≥ 0, 𝜏 ≤ 𝑡. (9) 

𝑑𝐼(𝑡) = (𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 − 𝛼𝐼(𝑡))𝑑𝑡 + 𝜎2𝐼(𝑡)𝑑𝐵(𝑡),    𝑡 ≥ 0, 𝜏 ≤ 𝑡.   (10) 

𝑑𝑂(𝑡) = (𝑘𝐼(𝑡) − 𝜇𝑜𝑂(𝑡))𝑑𝑡 + 𝜎3𝑂(𝑡)𝑑𝐵(𝑡),     𝑡 ≥ 0,    (11) 
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𝑑𝑆𝑚(𝑡) = (𝑏𝑆𝑚(𝑡) − 𝛽𝑚𝑆𝑚(𝑡)𝑂(𝑡) − 𝜇𝑚𝑆𝑚(𝑡))𝑑𝑡 + 𝜎4𝑆𝑚(𝑡)𝑑𝐵(𝑡),   𝑡 ≥ 0.  (12) 

Here, 𝜎𝑖  (for 𝑖 = 1,2,3,4 ) are the intensity parameters that quantify the level of stochastic 

perturbation in each compartment, while 𝐵(𝑡) denotes the standard Brownian motion process 

representing environmental randomness. 

7.1. Feasible properties 

This section examines the positivity and boundedness properties of the stochastic system (9)–(12). 

Let the state vector be defined as 

𝑉(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑂(𝑡), 𝑆𝑚(𝑡)), 

and introduce the Euclidean norm 

|𝑉(𝑡)| = √𝑆2(𝑡) + 𝐼2(𝑡) + 𝑂2(𝑡) + 𝑆𝑚
2(𝑡).       (13) 

Let 𝐷1
3,1(ℝ4 × (0,∞);ℝ+) denote the set of all nonnegative functions 𝑈1(𝑉, 𝑡) defined on 

ℝ4 × (0, ∞) that are twice continuously differentiable with respect to 𝑉 and once differentiable 

with respect to 𝑡. 

Consider the stochastic model with an implicit delay effect system 

𝑑𝑉(𝑡) = 𝐷1(𝑉, 𝑡)𝑑𝑡 + 𝑘1(𝑉, 𝑡)dB(t)        (14) 

and define the associated differential operator 𝑇1 by 

𝑇1 =
∂

∂𝑡
+ ∑ 𝐷1𝑖(𝑉, 𝑡) 

∂

∂𝑉𝑖

4

𝑖=1
+

1

2
∑ [𝑘1

𝑇(𝑉, 𝑡) 𝑘1(𝑉, 𝑡)]𝑖𝑗
∂2

∂𝑉𝑖 ∂𝑉𝑗
]

4

𝑖,𝑗=1

. 

When the operator 𝑇1 acts on a function 𝑉∗ ∈ 𝐷1
3,1(ℝ4 × (0,∞);ℝ+), we have 

𝑇1𝑉
∗(𝑉, 𝑡) = 𝑉𝑡

∗(𝑉, 𝑡) + 𝑉𝑉
∗(𝑉, 𝑡) 𝐷1(𝑉, 𝑡) +

1

2
Tr [𝑘1

𝑇(𝑉, 𝑡) 𝑉𝑉𝑉
∗ (𝑉, 𝑡) 𝑘1(𝑉, 𝑡)]. 

Theorem 9. Positivity and existence of a unique global solution. 

For system (9)–(12) and any initial condition 𝑋(𝜃) = 𝜙(𝜃) ∈ ℝ+
4  for 𝜃 ∈ [−𝜏, 0], there exists a 

unique global solution 𝑋(𝑡) on 𝑡 ≥ 0 that remains in ℝ+
4  almost surely. 

Proof. Let 𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑂(𝑡), 𝑆𝑚(𝑡))⊤. Denote by 𝑏(𝑥) and Σ(𝑥) the drift and diffusion 

coefficients of (9)–(12), so the system can be written in vector form 

𝑑𝑋(𝑡) = 𝑏(𝑋(𝑡)) 𝑑𝑡 + Σ(𝑋(𝑡)) 𝑑𝑊(𝑡). 

Step 1: Local existence and uniqueness (via truncation). 

The coefficients 𝑏(𝑥) and Σ(𝑥) are locally Lipschitz on ℝ4  (polynomial-type terms) but not 

necessarily globally Lipschitz. For each 𝑛 ∈ ℕ, define truncated coefficients 

𝑏𝑛(𝑥) = 𝑏(𝜋𝑛(𝑥)), Σ𝑛(𝑥) = Σ(𝜋𝑛(𝑥)), 

where 𝜋𝑛(𝑥) =
𝑛

max{𝑛,∥𝑥∥}
𝑥 is the radial projection onto the closed ball 𝐵(0, 𝑛)‾ . Then, 𝑏𝑛,  Σ𝑛 are 

globally Lipschitz and satisfy linear growth. Hence, by the standard existence-uniqueness theorem 

for SDEs, there exists a unique global strong solution 𝑋𝑛(𝑡) for 
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𝑑𝑋𝑛(𝑡) = 𝑏𝑛(𝑋𝑛(𝑡)) 𝑑𝑡 + Σ𝑛(𝑋𝑛(𝑡)) 𝑑𝑊(𝑡), 𝑋𝑛(0) = 𝑋(0). 

Define the stopping time 

𝜏𝑛: = inf {𝑡 ≥ 0: ∥ 𝑋𝑛(𝑡) ∥≥ 𝑛}. 

By construction, 𝑋𝑛(𝑡) = 𝑋𝑛+1(𝑡) for 𝑡 < 𝜏𝑛 almost surely, so we can define a maximal local 

solution 𝑋(𝑡) on [0, 𝜏𝑒), where 𝜏𝑒: = lim 𝑛→∞ 𝜏𝑛 is the explosion time. This yields a unique local 

solution of (9)–(12) on [0, 𝜏𝑒). 

Step 2: Positivity (invariance of ℝ+
4 ). 

We now show that, starting from nonnegative initial data, the solution cannot cross the coordinate 

hyperplanes. Observe that on each boundary component, the drift points inward and the diffusion 

term vanishes in the corresponding component (multiplicative noise structure). For example, at 𝑆 = 0, 

the 𝑆-equation in (9) has the form 

𝑑𝑆(𝑡) = (𝜇𝑁(⋅) − (nonnegative) ⋅ 𝑆(𝑡)) 𝑑𝑡 + 𝜎1𝑆(𝑡) 𝑑𝐵1(𝑡), 

so when 𝑆(𝑡) = 0, both the diffusion term 𝜎1𝑆(𝑡) 𝑑𝐵1(𝑡) and the loss terms vanish, while the 

remaining drift term is nonnegative; hence, 𝑆(𝑡) cannot become negative. The same argument 

applies to 𝐼(𝑡), 𝑂(𝑡), and 𝑆𝑚(𝑡): each component has diffusion proportional to itself, and the drift 

at zero is nonnegative (no “negative source” at the boundary). Therefore, 

𝑋(𝑡) ∈ ℝ+
4 for all 𝑡 < 𝜏𝑒 a.s. 

Step 3: Global existence (non-explosion) via stopping times + stochastic Lyapunov. 

It remains to show 𝜏𝑒 = ∞ almost surely. Define stopping times 

𝜏𝑛: = inf {𝑡 ≥ 0: ∥ 𝑋(𝑡) ∥≥ 𝑛}, 𝑛 ≥ 𝑛0, 

and note that 𝜏𝑛 ↑ 𝜏𝑒 as 𝑛 → ∞. Consider a nonnegative 𝐶2 Lyapunov function 𝑉:ℝ+
4 → ℝ+ (for 

instance, 𝑉(𝑥) = ∑ (
4

𝑖=1
𝑥𝑖 − 1 − ln 𝑥𝑖), which is finite and nonnegative on ℝ+

4 ). Applying Itô’s 

formula to 𝑉(𝑋(𝑡 ∧ 𝜏𝑛)) yields 

𝔼 𝑉(𝑋(𝑡 ∧ 𝜏𝑛)) = 𝑉(𝑋(0)) + 𝔼∫ ℒ𝑉(𝑋(𝑠)) 𝑑𝑠,
𝑡∧𝜏𝑛

0

 

where ℒ is the generator of (9)–(12). Using the model structure and nonnegativity of state variables, 

we obtain an estimate of the form 

ℒ𝑉(𝑥) ≤ 𝐶1 + 𝐶2𝑉(𝑥)for all 𝑥 ∈ ℝ+
4 , 

for some constants 𝐶1, 𝐶2 > 0. By Grönwall’s inequality, 

sup 
0≤𝑠≤𝑡

𝔼 𝑉(𝑋(𝑠 ∧ 𝜏𝑛)) ≤ (𝑉(𝑋(0)) + 𝐶1𝑡)𝑒
𝐶2𝑡 < ∞. 

This prevents 𝑉(𝑋(𝑡 ∧ 𝜏𝑛))  (hence ∥ 𝑋(𝑡 ∧ 𝜏𝑛) ∥ ) from blowing up in finite time, implying 

ℙ(𝜏𝑒 < ∞) = 0. Therefore, 𝜏𝑒 = ∞ almost surely and the solution is global and remains in ℝ+
4 . 

This completes the proof. 

Theorem 10. If Ro
S  < 1 and σ2 < 𝛼 , then the infected individuals of the system (9)–(12) 

exponentially tend to zero. 

Proof. Let us consider the initial condition 

(𝑆(0), 𝐼(0), 𝑂(0), 𝑆𝑚(0)) ∈ ℝ+
4 , 
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and assume that the stochastic system (9)–(12) admits a solution 

(𝑆(𝑡), 𝐼(𝑡), 𝑂(𝑡), 𝑆𝑚(𝑡)) 

that satisfies the corresponding stochastic model with an implicit delay effect equation, where 𝜎 

denotes the diffusion (randomness) term and c represents the drift coefficient. 

For the infected population 𝐼(𝑡), the stochastic equation can be written as 

𝑑𝐼(𝑡) = [ 𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 − 𝛼𝐼(𝑡) ] 𝑑𝑡 + 𝑐 𝜎2𝐼(𝑡) 𝑑𝐵(𝑡). 

Applying Itô’s lemma to the logarithmic transformation 𝑔(𝐼) = ln 𝐼, we obtain 

𝑑𝑔(𝐼(𝑡)) = [
1

𝐼(𝑡)
 𝑑𝐼(𝑡) −

1

2𝐼2(𝑡)
 (𝑑𝐼(𝑡))2]. 

Substituting into Itô’s formula gives 

𝑑(ln 𝐼) =
1

𝐼
 𝑑𝐼 −

1

2𝐼2
 (𝑑𝐼)2. 

Because for an Itô process, (𝑑𝐵(𝑡))2 = 𝑑𝑡, we obtain 

(𝑑𝐼)2 = 𝜎2
2𝐼2 𝑑𝑡. 

Hence, 

𝑑(ln 𝐼) =
1

𝐼
 𝑑𝐼 −

1

2
𝜎2

2 𝑑𝑡. 

Substituting 𝑑𝐼(𝑡) from the stochastic equation, 

𝑑(ln 𝐼) =
1

𝐼
[𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏 − 𝛼𝐼(𝑡)]𝑑𝑡 + 𝜎2 𝑑𝐵(𝑡) −

1

2
𝜎2

2 𝑑𝑡. 

Simplifying, 

𝑑(ln 𝐼) = [
𝛽𝑆(𝑡)𝑂(𝑡)𝑒−𝜇𝑜𝜏

𝐼(𝑡)
− 𝛼 −

1

2
𝜎2

2]𝑑𝑡 + 𝜎2 𝑑𝐵(𝑡). 

Integrating from 0 to 𝑡 gives 

ln 𝐼(𝑡) − ln 𝐼(0) = ∫ [
𝛽𝑆(𝑠)𝑂(𝑠)𝑒−𝜇𝑜𝜏

𝐼(𝑠)
− 𝛼 −

1

2
𝜎2

2]
𝑡

0

𝑑𝑠 + ∫ 𝜎2

𝑡

0

 𝑑𝐵(𝑠). 

Let 

𝑁(𝑡) = ∫ 𝜎2

𝑡

0

 𝑑𝐵(𝑠), 

which denotes a stochastic integral with mean zero. Then, 

ln 𝐼(𝑡) = ln 𝐼(0) + ∫ [
𝛽𝑆(𝑠)𝑂(𝑠)𝑒−𝜇𝑜𝜏

𝐼(𝑠)
− 𝛼 −

1

2
𝜎2

2]
𝑡

0

𝑑𝑠 + 𝑁(𝑡). 
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8. Asymptotic behavior 

Rearranging terms: 

ln 𝐼(𝑡) = ln 𝐼(0) + ∫
𝛽𝑆(𝑠)𝑂(𝑠)𝑒−𝜇𝑜𝜏

𝐼(𝑠)

𝑡

0

𝑑𝑠 − (𝛼 +
1

2
𝜎2

2)𝑡 + 𝑁(𝑡). 

1. If 𝜎2
2 > 4𝛼, then 

−(𝛼 +
1

2
𝜎2

2)𝑡 < 𝛼𝑡, 

hence 

ln 𝐼(𝑡) > ln 𝐼(0) + 𝑁(𝑡) + 𝛼𝑡. 

Dividing by 𝑡 and taking limits, 

lim 
𝑡→∞

ln 𝐼(𝑡)

𝑡
> 𝛼. 

2. If 𝜎2
2 < 4𝛼, then 

ln 𝐼(𝑡) < ln 𝐼(0) + 𝑁(𝑡) + 𝛼𝑡, 

which implies 

ln 𝐼(𝑡)

𝑡
<

ln 𝐼(0)

𝑡
+

𝑁(𝑡)

𝑡
+ 𝛼. 

Since 𝑁(𝑡)/𝑡 → 0 almost surely as 𝑡 → ∞, we obtain 

lim 
𝑡→∞

ln 𝐼(𝑡)

𝑡
< 𝛼(𝑅0 − 1)

𝛼𝜇𝑜(𝜇 + 𝛾)

𝜇𝛽𝑘 − (𝜇 + 𝛾)𝛼𝜇𝑜
. 

When 𝑅0 < 1, this implies 

lim 
𝑡→∞

sup
ln 𝐼(𝑡)

𝑡
≤ 0 𝑎. 𝑠. 

showing that the infection dies out in the stochastic environment, as required. 

9. Stochastic delayed non-standard finite difference scheme 

For the stochastic delayed system defined by Eqs (9)–(12), the corresponding non-standard 

finite difference (NSFD) discretization is expressed as 

𝑆𝑛+1 =
𝑆𝑛+ℎ𝜇(1−𝐼𝑛)+ℎ𝜎1𝑆𝑛Δ𝐵𝑛

1+ℎ𝛽𝑂𝑛𝑒−𝜇𝑜𝜏+ℎ(𝜇+𝛾)
.        (24) 

𝐼𝑛+1 =
𝐼𝑛+ℎ𝛽𝑆𝑛𝑂𝑛𝑒−𝜇𝑜𝜏+ℎ𝜎2𝐼𝑛Δ𝐵𝑛

1+ℎ𝛼
.        (25) 

𝑂𝑛+1 =
𝑂𝑛+ℎ𝑘𝐼𝑛+ℎ𝜎3𝑂𝑛Δ𝐵𝑛

1+ℎ𝜇°
.         (26) 

𝑆𝑚
𝑛+1 =

𝑆𝑚
𝑛 +ℎ𝑏𝑆𝑚

𝑛 +ℎ𝜎4𝑆𝑚
𝑛 Δ𝐵𝑛

1+ℎ𝛽𝑚𝑂𝑛+ℎ𝜇𝑚
.         (27) 
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Here, ℎ is the discretization time step and 𝑛 = 0,1,2, …. The stochastic component of the scheme is 

characterized by 

Δ𝐵𝑛 = 𝐵(𝑡𝑛+1) − 𝐵(𝑡𝑛), 

where Δ𝐵𝑛 ∼ 𝒩(0,1) represents a normally distributed random variable. 

9.1. Stability analysis  

To analyze local stability, we first assume that the stochastic intensities satisfy (σᵢ = 0, i = 

1,2,3,4). Under this condition, the system (24)–(27) can be represented by the functions 

𝐸 =
𝑆+ℎ𝜇(1−𝐼)

1+ℎ𝛽𝑂𝑒−𝜇𝑜𝜏+ℎ(𝜇+𝛾)
, 𝐹 =

ℎ𝛽𝑆𝑂𝑒−𝜇𝑜𝜏+𝐼

1+𝛼ℎ
, 𝐺 =

𝑂+ℎ𝑘𝐼

1+𝜇°ℎ
, 𝐻 =

𝑆𝑚(1+ℎ𝑏)

1+ℎ𝛽𝑚𝑂+ℎ𝜇𝑚
. 

Jacobian matrix. The Jacobian matrix J of the discrete system is composed of the partial derivatives: 

𝜕𝐸

𝜕𝑆
=

1

1 + ℎ𝛽𝑂𝑒−𝜇𝑜𝜏 + ℎ(𝜇 + 𝛾)
,
𝜕𝐸

𝜕𝐼
=

−ℎ𝜇

1 + ℎ𝛽𝑂𝑒−𝜇𝑜𝜏 + ℎ(𝜇 + 𝛾)
,

𝜕𝐸

𝜕𝑂
=

−(ℎ𝜇(1 − 𝐼) + 𝑆)(ℎ𝛽𝑒−𝜇𝜏)

[1 + ℎ𝛽𝑂𝑒−𝜇𝑜𝜏 + ℎ(𝜇 + 𝛾)]2
,
𝜕𝐸

𝜕𝑆𝑚
= 0,

𝜕𝐹

𝜕𝑆
=

ℎ𝛽𝑂𝑒−𝜇𝑜𝜏

1 + 𝛼ℎ
,
𝜕𝐹

𝜕𝐼
=

1

1 + 𝛼ℎ
,
𝜕𝐹

𝜕𝑂
=

ℎ𝛽𝑆𝑒−𝜇𝑜𝜏

1 + 𝛼ℎ
,
𝜕𝐹

𝜕𝑆𝑚
= 0,

𝜕𝐺

𝜕𝑆
= 0,

𝜕𝐺

𝜕𝐼
=

ℎ𝑘

1 + 𝜇𝑜ℎ
,
𝜕𝐺

𝜕𝑂
=

1

1 + 𝜇𝑜ℎ
,
𝜕𝐺

𝜕𝑆𝑚
= 0,

𝜕𝐻

𝜕𝑆
= 0,

𝜕𝐻

𝜕𝐼
= 0,

𝜕𝐻

𝜕𝑂
=

−(𝑆𝑚(1 + ℎ𝑏)ℎ𝛽𝑚)

[1 + ℎ𝛽𝑚𝑂 + ℎ𝜇𝑚]2
,
𝜕𝐻

𝜕𝑆𝑚
=

1 + ℎ𝑏

1 + ℎ𝛽𝑚𝑂 + ℎ𝜇𝑚
.

 

Theorem 11. Local stability of the toxoplasmosis-free equilibrium. 

For all 𝑛 ≥ 0 , the eigenvalues of the Jacobian matrix of system (24)–(27) evaluated at the 

toxoplasmosis-free equilibrium, 

𝑇0 = (𝑆0, 𝐼0, 𝑂0, 𝑆𝑚0) = (
𝜇

𝜇 + 𝛾
, 0,0,

𝑏

𝜇𝑚
), 

lie inside the unit circle if and only if R0 < 1. 

Proof. Evaluating the Jacobian matrix J(T0) at T0, we obtain: 

J(T0) =

[
 
 
 
 
 
 
 1 + h(μ + γ)

−hμ

1+h(μ+γ)

−(hβ𝑒−𝜇𝑜𝜏)(
μ

μ+γ
+hμ)

[1+h(μ+γ)]2
0

0
1

1+αh

hβμ𝑒−𝜇𝑜𝜏

μ+γ

1+αh
0

0
hk

1+μ°h

1

1+𝜇𝑜h
0

0 0
−(1+hb)(hβm)

[1+hμm]2
1+hb

1+hμm]
 
 
 
 
 
 
 

. 

The characteristic equation ∣ J(T0) − λI ∣= 0 yields the eigenvalues 
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λ1 =
1

1 + h(μ + γ)
< 1,

λ2 =
1

1 + αh
< 1,

λ3 =
1

1 + μoh
< 1,

λ4 =
1 − hk

(hβμ𝑒−𝜇𝑜𝜏)
μ + γ

1 + hμm
.

 

Using the definition of the basic reproduction number R0 =
kμβ𝑒−𝜇𝑜𝜏

αμo(μ+γ)
: 

 If R0 < 1, then λ4 < 1, and all eigenvalues lie within the unit circle. Hence, the equilibrium 

T0 is locally asymptotically stable (L.A.S.). 

 Conversely, if R0 > 1, then λ4 > 1, indicating that the equilibrium T0 is unstable. R0 <
1   ⇒   T0 is L.A.S., R0 > 1   ⇒   T0 is unstable. 

9.2. Computational results 

We take into consideration the system (24)–(27) with reported instances of toxoplasmosis in [14] 

in order to get the numerical results. Time is measured in days, and the nonlinear least-square curve 

approach is used to fit the parameter values shown in Table 3. This section compares the newly 

developed construction for the specific model as a stochastic NSFD scheme, across different step 

sizes, with the properties of the graphs representing the number of infected individuals using 

methods already available in the literature, such as stochastic Euler and stochastic Runge–Kutta 

schemes. Parameter values used in the stochastic toxoplasmosis model were obtained from previous 

scientific studies and literature searches. 

Table 3. Parameter values. 

Symbol Value (per day) Range (from literature) Source [14] 

𝝁 0.50 0.1–0.7 Assumed 

𝜶 0.50 0.2–0.8 Assumed 

𝝁𝒐 0.385 0.2–0.5 [14] 

𝒌 0.02 0.01–0.05 [14] 

𝜷 1.10 0.8–1.5 [14] 

𝜷𝒎 0.10 0.05–0.2 [14] 

𝜸 0.0005 0.0001–0.001 [14] 

𝒃 0.50 0.3–0.7 Assumed 

𝝁𝒎 0.50 0.2–0.6 Assumed 

9.3. Discussion  

All the simulations are performed using the same set of parameters used in the analytical section. 

The basic reproductive number 𝑅0  is calculated for this set of parameters to determine the 

theoretical behavior: If 𝑅0 <1, the theory suggests a convergent solution to the disease-free 

equilibrium and extinction of the disease; for 𝑅0 > 1, the theory suggests persistence and convergent 
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behavior to the endemic equilibrium. Figures 1–3 above demonstrate the theoretical results and the 

numerical performance of the proposed algorithm. Indeed, it is observed that the SNSFD algorithm is 

able to retain positivity, boundedness, and stability even for large-step sizes, which may not 

necessarily happen using classical stochastic algorithms. Figures 1(a),(b) illustrate the comparison 

between the stochastic Euler method and the SNSFD method for the infected cat’s equation. For the 

smaller step size (h = 0.01), both methods exhibit stable results with similar patterns. For the larger 

step size (h = 1.0), however, the results from the stochastic Euler method become unstable and exhibit 

diverging patterns, whereas the SNSFD method remains stable with converging results. A similar 

observation can be made from Figures 1(c),(d), where the results from the stochastic Runge–Kutta 

method agree with SNSFD results for a smaller step size (h = 0.01) but become unstable and 

diverge for a larger step size (h = 2.0), whereas the SNSFD method remains stable with converging 

results. Figure 2 makes it clear how the parameter τ affects the susceptible and infected cat 

populations. It is clear how the transmission of the disease will be impaired by the survival factor 

with the increase in the value of τ. Consequently, the value of the susceptible population increases, 

along with a reduction in the infected population. This also matches the analysis. Figure 3 also 

confirms the same results because the value of 𝑅0 decreases with the increase in the value of τ. 

 
(a)          (b) 

 
(c)          (d) 

Figure 1. Computational methods used at the toxoplasmosis-endemic equilibrium of the 

model. (a) Stochastic Euler method’s perception of the infected cat population at h = 0.01; 

(b) stochastic Euler method’s perception of the infected cat population at h = 1; (c) 

stochastic Runge–Kutta method’s visualization of the infected cat population at h = 0.01; 

(d) stochastic Runge–Kutta method’s perception of the infected cat population at h = 2. 
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(e)            (f) 

Figure 2. Time plot with the time delay on susceptible and infected cat populations. (e) 

Effect of delay in susceptible cat populations. (f) Effect of delay in infected cat populations. 

 

Figure 3. Time plot of the effect of time delay (𝜏) with reproduction number (𝑅0). 

In general, the results obtained are in agreement with the conclusions drawn and serve to 

emphasize the major computational contribution of this work: the new SNSFD scheme preserves the 

essential dynamics characteristics of the continuous model—positive solutions, boundedness, and 

qualitative stability—while standard stochastic approximation algorithms like Euler-Maruyama, 

stochastic Euler methods, and stochastic Runge–Kutta fail to do so for particular step sizes because 

of step-size dependence. This adds stronger credibility to the new stochastic model of toxoplasmosis. 

10. Conclusions 

In this study, a stochastic non-standard finite difference (SNSFD) scheme was developed to 

describe the communication dynamics of toxoplasmosis infection. Previous numerical techniques, 

such as the stochastic Euler and stochastic Runge–Kutta (SRK) methods of order four, were found to 

be inadequate due to their strong dependence on the time step size. These classical methods exhibit 

only temporary convergence; as the time step increases, their numerical solutions diverge and deviate 

significantly from the expected dynamical behavior. Furthermore, such conventional schemes fail to 

preserve essential structural properties of the continuous model, including positivity, boundedness, 

and dynamical consistency. To overcome these limitations, the stochastic non-standard finite 

difference method was proposed. The SNSFD scheme maintains the intrinsic characteristics of the 

continuous system, ensuring stability, positivity, and boundedness while remaining independent of the 
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time step size. This approach provides a robust and reliable framework that accurately reproduces the 

qualitative behavior of the stochastic toxoplasmosis model. A key feature of the proposed framework 

is the incorporation of an implicit delay effect through a survival probability function, rather than 

explicit delayed state variables. This approach captures the biological latency associated with oocyst 

maturation and environmental survival while maintaining analytical tractability. The exponential 

survival factor modifies the effective transmission rate by accounting for pathogen decay during the 

latent period, providing a biologically meaningful and mathematically robust representation of delayed 

infection processes. The methodology presented in this work can be extended to a variety of complex 

dynamical systems. Future research will focus on applying the SNSFD framework to spatiotemporal, 

fractional-order, fractal-fractional, and delay-based stochastic models, enabling a deeper understanding 

of uncertainty and memory effects in real-world biological and epidemiological processes. 
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