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Abstract: According to the World Health Organization (WHO), toxoplasmaosis affects more than 60%
of the global population. The prevalence of this infection is particularly high in hot, humid, and
low-altitude regions, as such environments favor the survival of oocysts in the ecosystem. In this study,
we investigated the transmission dynamics of toxoplasmosis using a stochastic model with an implicit
delay effect approach. The host populations were divided into compartments representing susceptible
cats S(t), infected cats 1.(t), recovered cats Vg(t), susceptible mice S,,(t), infected mice I,,(t),
and the number of oocysts in the environment O(t). In the delayed deterministic model, fundamental
mathematical properties such as positivity, boundedness, existence, and uniqueness of solutions were
established. Furthermore, the local and global stability of the steady states were analyzed using
second-order stability conditions. In the stochastic delayed formulation, we investigated the positivity,
boundedness, extinction, and persistence of the infection under random environmental fluctuations. To
address the nonlinear complexity of the proposed system, several computational methods were
employed, including the Euler—Maruyama, stochastic Euler, stochastic Runge—Kutta, and the
stochastic non-standard finite difference (SNSFD) schemes. A comparative numerical analysis
demonstrated that the SNSFD scheme preserves the qualitative features of the continuous model and
remains stable under large time steps, confirming its suitability for modeling biologically realistic
epidemic dynamics.
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1. Introduction

Toxoplasmosis is a biting infection caused by Toxoplasma gondii, named after the rounded
figure of its infectious phase. People often get infected from eating undercooked meat, ingesting
unfiltered water and raw seafood, and coming into contact with cat feces; additionally, these parasites
can pass to a baby during pregnancy. Often, individuals with toxoplasmosis do not have any sort of
symptom of the disease; others have flu-like symptoms, including fever, muscle aches, headaches,
body aches, fatigue, and tender lymph nodes. People with a weakened immune system are much
more prone to disease.

T. gondii infection occurs all over the world, but the infection rate is country-specific. In 1908,
Nicolle and Manceaux in Tunisia and Splendore in Brazil described Toxoplasma gondii for the first
time. In 1923, the first case of toxoplasmosis was recorded. In 1937, Sabin and Olitsky examined T.
gondii in research laboratory mice and monkeys and established it as a pathogen transmissible
between animals [1]. Toxoplasmosis is more common in women than in men. At the international
level, around six billion individuals are infected with T. gondii. Its seropositivity rate is much lower
in developed than in developing countries. The seroprevalence of toxoplasmosis varies with age
groups within an area and also in diverse topographical sections within a country. Limited studies
from Pakistan have stated that toxoplasmosis prevalence was 11.33%-29.45% [2]. As cats are the
transmission vector of toxoplasmosis, in areas where they are not present, the prevalence of
toxoplasmosis is zero [3]. More than 200,000 humans are infected with toxoplasmosis. Infection
during pregnancy mostly results in miscarriage, stillbirth, or abnormal birth.

In 2008, Aranda proposed a mathematical model to study the dynamics of toxoplasmosis
infection in Colombia. By using a linear system of ODEs, the initial system was formulated and
converted to obtain comparative values and to characterize the qualitative behavior of the system.
The modified system is a nonlinear system of ordinary differential equations [3]. In 2012, Sullivan
introduced a mathematical model to examine the intra-host dynamics of T. gondii, including
incursion, reproduction, and stage conversion [4]. In 2018, Peng et al. studied a dynamics of a model
of toxoplasmosis disease in cats and humans with varying population sizes [5]. In 2017, Ferreira et al.
studied a stability and bifurcation in epidemic models describing the transmission of toxoplasmosis
in human and cat populations [6]. In 2024, Raza et al. studied well-established techniques to
investigate disease modeling with delay strategies and demonstrated how such delay mechanisms can
effectively control disease dynamics within a population [7]. In 2021, Zafar et al. proposed an
epidemiological model to examine the dynamics of random-order toxoplasmosis infection in the
hominid and catlike populations with the support of non-integer Multistep Generalized Differential
Transform method (MSGDTM) [8]. In 2021, a non-integer and nonlinear mathematical model was
described by Zafar for toxoplasmosis infection in human and cat populations. The special effects of
toxoplasmosis infection were evaluated on humans by taking cats as a diffusion trajectory [9]. In
2019, Raza et al. proposed a mathematical framework to examine vector-borne disease transmission
in a population and implemented several numerical methods to solve the resulting complex
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stochastic system, evaluating the efficiency and reliability of the proposed approaches [10]. In 2018,
Kelting et al. proposed a mathematical model for the effects of T. gondii on the cat population in
order to understand its dynamics and develop preventative measures against this parasite [11].
Effects of leucocytes, antibiotics, and immunologic adjuvants against T. gondii were studied by Liu
et al. in 2012, by proposing three models. In leucocytes, toxoplasmosis depends on the immune
strength of the host. Antibiotics seem to have a significant impact on toxoplasmosis infection, and
the immune strength of the host is improved by ingestion of an immunological adjuvant that ends up
killing T. gondii [12].

Toxoplasmosis spread in the Netherlands and in the rest of Europe directly by infected cats and
raw meat. In 2020, Marinovi¢ et al. suggested a system of cat immunization for dipping oocytes that
originated from T. gondii human contagions; it is still unclear whether this system is effective [13].
In 2022, Parra et al. projected an epidemiological system to study toxoplasmosis infection with
numerous congregations. They included mouse populations as an intermediary host and showed that
the basic reproduction number R, governs the outcome of the infection [14]. In 2016, Li et al.
developed a mathematical system to stimulate toxoplasmosis spread between cats and oocyte
populations. They studied asymptotic behaviors around the equilibrium by using stochastic
Lyapunov functions [15].

Here, a stochastic model with an implicit delay effect model is established for the study of
toxoplasmaosis transmission between cats, mice, and environmental oocyst populations. Mathematical
results on positivity, boundedness, threshold behavior, and stability of steady states are obtained for
the deterministic and stochastic models. In addition, a stochastic non-standard finite difference
method is designed and computationally tested, outperforming the classical stochastic schemes in
terms of stability and qualitative behavior. Furthermore, stochastic modeling employs efficient
computational methods to identify essential epidemiological risk factors and guide public health
innovations. Stochastic techniques offer a unique perspective on the complex dynamics of
toxoplasmosis, resulting in enhanced recovery strategies and informed decision-making. The
stochastic terms capture environmental randomness and uncertainties in transmission events
associated with the variability in survival times of oocysts and host—environment interactions. This
could not be represented by the OSE model.

This paper is organized as follows: Section Il presents the formulation of the stochastic model
and the basic deterministic model attributes. Sections Il and IV present the model’s stability analysis at
both local and global levels. Section V describes the sensitivity of the model equilibria. Sections VI
and VII describe the stochastic methods developed for the stochastic model. Section VIII presents
asymptotic behavior of the model. Section IX presents an investigation of the stochastic NSFD
scheme. Finally, a conclusion is provided.

1.1. Basic notations

Definition 1. A deterministic system is one in which the evolution of the state variables is completely
determined by a set of differential equations without random perturbations.
Formally, a deterministic system is expressed as

dX(t)
dt

where X(t) € R" is the state vector and F:R™ xR — R™is a continuously differentiable
vector function.

= F(X(t),1t),
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Given an initial condition X(0) = X,, the system’s trajectory is uniquely defined for all ¢ > 0.
Definition 2. A stochastic differential equation (SDE) introduces randomness into the system
dynamics through a stochastic term, usually modeled by Brownian motion.

It is generally represented as

dX(t) = f(X(),t) dt + g(X(t),t) dB(D),

where:

e f(X(t),t) isthe drift term, representing the deterministic trend of the process.

e g(X(t),t) isthe diffusion term, representing the stochastic fluctuations.

e B(t) denotes standard Brownian motion, satisfying E[dB(t)] = 0 and E[dB(t)?] = dt.
Definition 3. A stochastic model with an implicit delay effect is a stochastic differential equation in
which memory or latency effects are incorporated through survival or weighting functions, rather
than explicit delayed state variables.

In particular, the delay effect is modeled via a survival factor of the form

e HT
which represents the probability that individuals or pathogens survive a latent or maturation period of
length = under a constant mortality or decay rate p. Such formulations capture biologically realistic
incubation or environmental survival processes without introducing explicit delay terms.

Definition 4. An equilibrium point (or steady state) of a dynamical system is a constant solution X*
such that

_ dX
F(X*,t) = 0 or equivalently, T 0.
For epidemic models, the equilibria often correspond to:
o Disease-free equilibrium (DFE): No infection persists, I* = 0.
« Endemic equilibrium (EE): Infection persists at a constant positive level, I* > 0.
Definition 5. A solution X(t) of a biological model is said to be positive if

X;()=0,Vi=12,..,nVt=>0.

Positivity ensures that population variables (e.g., susceptible or infected classes) remain
biologically meaningful.
Definition 6. A solution X(t) is said to be bounded if there exists a constant M > 0 such that

I X(t) I<M,vt = 0.

Boundedness implies that the populations cannot grow without limit, preserving biological realism.
Definition 7. The basic reproduction number, R,, is defined as the expected number of
secondary infections produced by a single infectious individual in a fully susceptible population.
For a model linearized around the disease-free equilibrium, it can be expressed using the
next-generation matrix approach,

Ry = p(FG™),

where F is the transmission matrix, G is the transition matrix, and p(-) denotes the spectral
radius (dominant eigenvalue).

e If R, < 1: The disease dies out.

e If Ry > 1: The disease persists.
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Definition 8. An equilibrium point X* of the system Z—sz(X) is said to be locally
asymptotically stable (L.A.S.) if for all initial conditions X (0) sufficiently close to X*, we have

tlim X(t) = X"

This property indicates that small perturbations around X* decay over time.

Definition 9. An equilibrium X* is said to be globally asymptotically stable (G.A.S.) if it is both:

1. Stable in the Lyapunov sense: Solutions remain near X* when initial perturbations are small, and
2. Attractive: lim,_, X(t) = X* for all initial conditions X(0) € R%.

Definition 10. A Lyapunov function V(X) is a continuously differentiable, positive-definite
function that satisfies

av
V(X) >0 forX # X*, and ES 0.

If such a function exists, the equilibrium X™ is stable. In stochastic systems, It&s lemma is used to
extend this concept via stochastic Lyapunov functions.

Definition 11. For a stochastic process X(t) satisfying dX(t) = f(X,t) dt + g(X,t) dB(t), and a
twice-differentiable function V (X, t), It&s lemma gives

1
dv(X,t) =V, dt + Vy dX + EVXX (dX)?.

This formula is fundamental in deriving the stochastic differential of Lyapunov functions and in
stability analysis of stochastic systems.
Definition 12. The stochastic system dX(t) = f(X,t) dt + g(X,t) dB(t) is mean-square stable if

lim E[Il X(t) - X* %] = o.
This ensures that, on average, the system tends to equilibrium despite random perturbations.

2. Model formulation

This section provides a survival-delay model to study toxoplasmosis transmission in cat and
mouse populations. This concept is built around a consistent cat vaccination strategy. Although the
system does not explicitly include delayed state variables (e.g., S(t — t) or O(t — 7)), a delay effect
is incorporated implicitly through the survival factor e %, which represents the probability of
surviving the latent/incubation interval of length = under an exponential mortality rate. The model
contains oocytes, which are the cause of T. gondii in the environment. The cat population, N(t), is split
into three distinct subpopulations: Susceptible S(t), infected I(t), and vaccine-recovered Vg(t). The
mouse population, N,,(t), is also split into two different subpopulations: susceptible S,,(t) and
infected I,,(t). O(t) is the number of oocytes in the environment. Affective contact with oocytes at
rate B and [, causes a susceptible cat or mouse, respectively, to join the infected subpopulation. The
parameter y represents the rate of transmission from a susceptible cat into the vaccinated
subpopulation Vg(t). Similarly, the parameter a represents the transmission of an infected cat into the
vaccinated/recovered subpopulation V(t). Oocytes and infected cats are directly proportional to each
other. The increase of oocytes at any time t is proportional to the number of infected cats I,. u, isthe
death rate of oocytes. pLis the death/birth rate of cats (See Table 1).
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Table 1. Description of model parameters and variables used in the toxoplasmosis model
with a saturated incidence rate.

Symbol  Description

u Natural birth/death rate of cats (day™)

a Removal/recovery rate of infected cats (day ') (so 1/a is the mean infectious period)

U, Decay/removal rate of oocysts in the environment (day )

k Oocyst production rate per infected cat (oocysts-cat™!-day )

B Transmission coefficient from environmental oocysts to cats (units consistent with
incidence term)

Bm Transmission coefficient from environmental oocysts to mice (units consistent with
incidence term)

% Vaccination/acquired-immunity rate removing susceptible cats from S-class (day )

b Birth rate of mice (day ™)

Um Natural death rate of mice (day ')

Here, 7 (days) denotes the oocyst maturation period before oocysts become infective. The
factor e #o® represents the probability that oocysts survive this period under the environmental
decay rate u,. Empirically, oocysts typically sporulate and become infective within 0.1-0.5 days,
hence we consider t € [0.1,0.5] days in the numerical investigations.

The delayed differential equations of the toxoplasmosis epidemic model, as nonlinear, delayed
first-order, and coupled, are as follows:

S' () = pu(1-1(1)) — BS®)O(B)e ™ o — (1 + y)S(D), t>0 t<t, (1)
I'(t) = BS(t)0(t)e Mo — al(t), t=>01t<t, 2
0'(t) = kI(t) — u,0(t), t >0, 3)
S'm(@®) = bSy(t) = BuSm()O(E) — pmSm (D), t=>0, )

Here, S(0) >0, 1(0) >0, 0(0) >0, S,,(t) =0. The exponential factor e~#°® represents the
probability that oocysts survive the maturation period t required to become infective. Thus, the
incidence term BS(t)0(t)e *oT does not imply instantaneous infection but rather accounts for the
effective transmission arising from oocysts that remain viable after environmental decay during the
latent period.

2.1. Dynamical properties

To investigate the dynamics of toxoplasmosis transmission in cat and mouse populations, all
system parameters in Eqs (1)—(4) are assumed to be nonnegative, i.e., greater than or equal to zero.
For the epidemiological model to be meaningful, the state variables must also remain nonnegative
for all t >0 and t <t. Consequently, the model’s feasible region is defined as positive and
bounded within a biologically relevant domain.

Q={(51,0,5) € RE:Ne(D) < =, Nop(0) < Hi $>0,1>0,02>0,S5, > 0).

Theorem 1. Positivity of solutions: For any initial conditions (5(0),1(0),0(0),S,,(0)) € R%, the
corresponding solutions
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(S0, 1(£), 0(t), Sm()) € RY
of the system (1)—(4) remain positive for all t > 0.
Proof. Let us define the norm

Ao = sup | A(t) I.

teD)

For the susceptible population S(t), we have

ds

75 = H(A = 1) = pSOxe™" — (u+y)S.

Thus,

ds
It > —BS0,e Hot — (u+7y)S.

Dividing both sides by S and integrating over time gives

% > —[f0,e Mot + (u+y)]dt,

which yields
S(t) = 5(0) e [BOne™ o +uNIt > 0,

Hence, S(t) =0 forall t > 0.
Similarly, for the other compartments,

I(t) = 1(0)e™% > 0,0(t) = 0(0)eHot > 0,S,,(t) = S, (0)e " [BmOctumlt > g,

Therefore, all state variables remain nonnegative for all ¢t > 0.

Theorem 2. Boundedness of solutions: The solutions (S,1,0,S,,) € R% of the system (1)—(4) are
bounded for all t > 0.

Proof. Consider the total population function

N(t) =S(t) +I(t) + 0(b).
Differentiating with respect to t,
dN dS dI do
dar dr ardr
Using the system equations, we obtain the inequality

Z—IZS—M(5+I+0)+M,

or equivalently,

dN< N +
a = #-

This can be rewritten as

dt
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Applying Gronwall’s inequality, we find
N(t) < N(0)e Mt + 1.
Therefore,

tlim supN(t) < 1.
Hence, the total population remains bounded as t — co.

2.2. Model equilibria

In this section, we determine two distinct equilibrium points of the system:

e The toxoplasmosis-free equilibrium (TFE, T,), and

« the toxoplasmosis-endemic equilibrium (TEE, T7).
These states are gained by having the right-hand sides of system (1)—(4) set to zero and solving for
the steady-state values.
Toxoplasmosis-free equilibrium (TFE). At the disease-free state (I = 0,0 = 0), the system
reduces to the steady solution:

U b
To = (So, 1o, 09, Smo) = (m' 0,0, E)
This represents a healthy population with no infection among cats or mice.
Toxoplasmosis-endemic equilibrium (TEE). At the endemic steady state (I*,0* > 0), the system
admits the equilibrium

au, pPke ot — (y + wap, uPke ot — (y + way,
Bke kT’ Bke HoT(ut+a) ' poke HoT(u+a)

T* = (§*,1",0%,55) = ( ,0).

The endemic equilibrium exists only when R, > 1, ensuring that infection persists in the population.
Basic reproduction number (R,). The basic reproduction number R, quantifies the expected
number of secondary infections generated by a single infectious cat introduced into a completely
susceptible population. It is derived using the next-generation matrix (NGM) method.

Let F denote the new infection matrix and G the transition (removal) matrix. Considering the
infectious classes I and O (and excluding S’ and S,, from the Jacobian), we have

F= [O ﬁse_#or]'(":[flk ;?o]'

0 0
Then,
1
~toT| o 0
FG‘1=[8 ﬁseo 1% 1}
ap, Ko

The dominant eigenvalue (spectral radius) of FG™! gives the basic reproduction number

B kufeHo®

Cap(y +p)

If Ry <1, the infection will eventually disappear, while if R, > 1, the infection will persist in the

0
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host populations.
3. Local stability analysis

We shall prove the following well-known conclusions for local stability in both balances of the
model. Consider the function as follows: The elements of the Jacobian matrix are

—f0e™Hot —(y +pu) —u —pSe Hot 0
_ BOe™Ho® —a BSeHo? 0
/= 0 k — e 0 ©)
0 0 _ﬁmsm b — ﬁmO — HUm
Theorem 3. The toxoplasmosis-free equilibrium (TFE-Ty), Ty = (So, Io, 00, Sm,) = (ﬁ,o,o, #i) is

locally asymptotical stable (LAS) if R, < 1. However, if R, > 1, the system will be unstable at T,.
Proof. For stability at T, = (SO,IO, OO,SmO) = (“L 0,0, ui) the Jacobian matrix (5) becomes:

+y’

[~ +u) —u —BSpe™Het 0 1
Ty = [ O —a S, e Hot 0 |
]( 0) - | 0 k — o 0 |
l 0 0 —BmSmy b —Smy0 — .umJ

K ~Ho
-v+w -1 —u —ﬁ(m)eﬂr 0

—y — _H O\ et
yy-a=| O =2 B(E)e °
k —lo — A 0

b
0 Bul(sz)  bkm—2

Here, the eigenvalues of J(T,) are as follows: A, = —(y +u) <0, A, =b — u,,. Then, 4, <0 if
b < .

/12+a1/1+a0=0.

Then, ay = a +u, ay = (au,)(1 — Ry). So, a4,ay, > 0.

Thus, by the Routh—Hurwitz criterion polynomial, the values of a; and a, are positive if R, < 1.
Therefore, the toxoplasmosis-free equilibria (TFE-T,,) of the system (1)—(4) is locally stable. On the
other hand, if R, > 1, Routh—Hurwitz’s condition of stability is violated. Thus, T, is unstable locally.
Theorem 4. The toxoplasmosis endemic equilibrium (TEE-T*), T* = (S%,1*,0%,5%,,) is locally
asymptotical stable (LAS) if Ry > 1.

Proof. Let us consider a Jacobian matrix at T*, we have

—pO*e ot —(y+pu) —p —BSTeHor 0

L BO*e kot —a  PSre kot 0

J(a) = 0 k — o 0
0 0 _ﬁmS*m b— ﬁmO* — HUm

For the eigenvalue, consider [J(T*) — AI| = 0,
A =b— B0 — uy, <O0.
AB+a22+a;A+a,=0.
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a, =a+ p-+ L0*e T+ (y +u) >0.

a; = ap- + (@ +p) (B0 e " + (v + w)) — ((kBS"e™Ho7) + (up0*e~HoT)),

ape+(a+pe) (B0 e HoT+(y+pu))
((kBS*e~HoT)+(uBO*eHoT))

ao = (ap)(BO*e T + (y + 1)) — [(BO*e™HoT + (y + 1))| (kBS*e~HoT)
+(B0*e o) (o + (KBS*e™HoT)),

where ap>0 if (a,uo)(,BO*e‘“OT + (y + ,u)) > [(BO*e‘”OT + (y + ,u))](k,BS*e‘”OT) +
(BO e #oT) (o + (kBS*e™HoT)).

According to the Routh—Hurwitz criterion for a third-degree characteristic polynomial, the local
stability of the equilibrium depends on the signs of the polynomial coefficients. For the characteristic
equation obtained from system (1)—(4), all coefficients are positive under the condition R, > 1.
Therefore, when R, > 1, the toxoplasmosis endemic equilibrium of the model is locally
asymptotically stable.

Conversely, when R, < 1, one or more of the Routh—Hurwitz stability conditions are violated.
Consequently, the endemic equilibrium becomes locally unstable, indicating that infection cannot
persist in the population.

where a; > 0 if > 1.

4. Global stability analysis

Well-known results are presented for the stability of the toxoplasmosis delayed epidemic model
in the global sense as follows:
Theorem 5. The system at toxoplasmosis-free equilibrium (TFE-T,) is GAS if Ry, < 1.
Proof. Define the Volterra Lyapunov function U:Q — R as

U=S—S—Solog=|+1+0+Sp
0

av [y So]ds i
E_[l slacta™

du [S—SO

do das.
= 4+ —_m
dt dt

a s
+[BS0e™HoT — al] + [kl — u-0] + [bS;, — BmSmO — UmSm]-

auv (5-5¢)? BSe”Ho®
E<_ T:_lbo[l_ - | —al = BinSmO0 — timSm-

| e =1 = psoerer = @+ 3]

This implies that <2 < 0 if Ry <1 and &1 =0 if =55,/ =0=S, =0.
Therefore, T, is globally asymptotically stable.

Theorem 6. The systemat T* = (S*,1*,0%,S*,,) is globally asymptotically stable if R, > 1.
Proof. Letting the Lyapunov function W:Q — R be defined as

s I 0
W=kl(S—s*—s*ln(E))+k2<1—1*—1*1n<1—*>)+k3<0—0*—0*1n(5))

+hy (Sm = S"m = S"mIn (32)).

S*m
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Given positive constants k;(i = 1,2,3,4), we can express the following equation:

5—5*1ds I-1*] dI 0-0*1do Sm—=S*m1dSm

e e e el i Y . 5”‘4[ |
aw (5-5*)2 (1 I )2 S (0 0 ) (Sm—S*m)?
W = Sk, (a0) [1 BSe_ ] ks (D) — ky(bSp) 2B

If we choose k; where (i =1,2,3,4),

aw (-5 (- 1*)2 BSe ko (0- 0) (Sm—=S5*m)?
=t (@0) [1 = EE=] = (e 52 — (bS) i

£ <0 for Ry > 1 and ‘;—"tvzo ifandonly if S=S* I=1* 0=0% S, =S,
Hence, by Lasalle’s invariance principle, T* is globally asymptotical stable.
Theorem 7. (Second-order global stability) The toxoplasmosis-free equilibrium (TFE-Ty), T, =

(S0, 10,00, Smyy) = ( ,0,0, ) is globally asymptotically stable if R, < 1.
Proof. Define the functlon B: Q - R as

B'(I) =~

=355

B = 2 (S gy’ - L (@ (1 - Y

a o

B () = (@(Ro — 1 — (@ (1 - 222

B"(I) <0 if Ry< 1.

Thus, the system (1)—(4) is globally asymptotically stable at toxoplasmosis-free equilibrium
To = (S0, 10, 00s Smyy)-

Theorem 8. (Second-order global stability) The toxoplasmosis endemic equilibrium (TEE-T*),
T =(5*1"0%S",) isglobally asymptotical stable (GAS) if R, > 1.

Proof. Define the Lyapunov function W: QO - R as

S I 0
S* I* 0*
* * Sm
+hy (Sp = ST — " In (22 m))
d*w s <dS>2 N (1 S*> d*S N I* (d])2 N (1 I*) d?I N 0* (dO)2
dt2 ~ S2\dt S/)dt? 12 \dt dt2 02 \dt
0"\ d20 . S*m (dSm\> S*m\ d2Sm
+(1_3)F+s (%) +(1—§) az
dtz = ((W?* + (ul + BSOe™HoT + (u + V)S))— — (2u(ul + BSOe™ o™ + (u + )/)S))
(u(ﬁOe Kot + (i +1))) = — ((BOe™ + (u+y)) (ul + BSOe™oT + (u + )/)S));

((BOe™ 07 + (u+ 1))l + BSOe™7 + (u+7)S)) = ((BOe ™0 + (u +1))) +
((BSOe™ ™) + (al)?) & — (2(BSOe~#o")(aD)) 5 + ((@BSOe ™ o)) - — (@D + (a21) -
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((@BSOe 7)) + ((u-0)* + (kl)z) (Z(uoO)(kI)) + (uokl)— — ((pe )20)— + ((1)?0) -
(kD) + (bS)? + (BinSmO +um5m) )S — (2(bS1) (BinSmO + pim m)) -+ (((B)2S, +
BnSmO + HoSp)) i‘im — (2b(BSm0 + 1o m))g + (2b(BrSmO + 1o S +)) — ()2, +
BmSmO + toSm))-

For simplification, we choose

a‘w
dt2 - Xl _X27

o= (G0% + Gl + S0 + (u+ I9)) 5+ (u(BOe™™ + (1)) 5 ((ﬁOeW
(7))l + pSOe™ o + (u +y)5)) + ((BS0e™M)? + (aD)?) ; + ((@BSOe” ﬂof)) +
(@21 + ((ue0)? + (kD)) g5 + (kD) G+ ((1)20) + ((bS)? + B
((B)2Si + bSO + HoS)) e+ (2D (BrnSmO + boSi))

X2 = (2uul + BSOe o™ + (u + V)S))z—: + ((,308_’” + (u+7)) @ + BSOe™Ho™ + (u+
1))+ (1(B0e " + (1 +7))) + (2(8S0e o) (al)) 1 + (@D T + ((aBS0e 7)) +
(2(0) (kD) Z + (()*0) % + (kT + (2(BS) BnSn0 + tnSn)) 325 + (2D (S0 +
HoSm)) L=+ (D)2 + BnSmO + HoSi)).

We can see that

2 2 dZW

X1 > X2, >0, x1<xz <0, x1=x2 P 0.

dt? dt?

5. Sensitivity analysis

A derivative-based local sensitivity approach was applied to assess how variations in model
parameters influence the basic reproduction number R,. This method evaluates the partial derivatives
of R, with respect to each parameter, thereby quantifying the relative impact of each parameter on
disease transmission dynamics.

The sensitivity indices are obtained as follows:

k R, B AR, a 9R,

Ty=——=1>0, Tg=———>=1>0 T,=———=-1<0,
"R, 0k B~ R, 38 * "R, 0a
.anRo Y ORy 1
T, =-1<0, T,=——=—-——-<0
Ho ™ Ry O, ¥ Ry Oy n+y

The results show that the parameters k and S have positive and larger sensitivity indices, indicating
that an increase in either parameter enhances the potential for disease transmission. In contrast, the
parameters u,, a, and y exhibit negative sensitivity indices, implying that higher values of these
parameters reduce the infection potential. Therefore, k and S are the most influential factors in
driving the system from a disease-free to an endemic state.
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6. Stochastic formulation phase 1

Let
Ut) = (S0, 1(£), 0(t), Sm(EN) T

denote the state vector of the toxoplasmosis epidemic model corresponding to system (1)—(4). To
incorporate random environmental fluctuations and demographic uncertainty, we derive a stochastic
formulation based on a diffusion approximation of the underlying Markov jump process.

6.1. Transition structure

The possible transition events, their state-change vectors T; € R*, and corresponding transition
probabilities P;(U,t) are summarized in Table 2. Over a small time interval At, the conditional
expectation and covariance of the increment AU(t) = U(t + At) — U(t) satisfy

E*[AU] = X7, P, (U,t) T},
E*[AU (AU)T] = %7, P (U, t) TiT;,

where E*(-) denotes the conditional expectation given the current state U(t).

Table 2. Possible transition events and their probabilities.

Transition Change vector (T;)  Transition probability (P;) Biological interpretation

T, [1,0,0,0]7 P, =u(l—-DAt Birth of susceptible hosts

T, [—1,1,0,0]7 P, = fS0e™HotAt Infection of susceptible hosts

T, [-1,0,0,0]7 P; = (a + u)SAt Death or removal of susceptible
hosts

T, [0,—1,0,0]7 P, = (a+ p)IAt Death or recovery of infected
hosts

Ty [0,0,1,0]" P = kIAt Shedding of oocysts by infected
hosts

Te [0,0,—1,0]7 P, = u,0At Decay or removal of oocysts

T, [0,0,0,1]7 P, = bS,,At Birth of susceptible intermediate
hosts

Tg [0,0,0,—1]7 Pg = B SO0AL Infection of intermediate hosts

Tq [0,0,0,—1]" Py = U, S, At Death of intermediate hosts

Dividing by At and letting At — 0, the drift term is obtained as
w1 —=1) = pSOe™#t — (u+vy)S
E*[AU] BSOe™Ho — (a + w)l

GO =00 = Kl ~ o0 | ©

bSm = BmSmO — UmSm
6.2. Diffusion approximation

To represent the stochastic variability induced by the transition events, we introduce a
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vector-valued Brownian motion,
W(t) = (Wl(t)' WZ(t)' LN W9(t))T'

where each W;(t) is an independent standard Brownian motion.
The diffusion matrix H(U,t) € R**° is constructed directly from the transition structure as

H(U,t) = [T1/PL(U, 1), Tor/Py(U, 1), ..., Toy/Ps(U, D)].

By construction, this matrix satisfies

9
HWU,OHU,t)T = z P, (U,t) T;T;,
i=1
which coincides with the infinitesimal covariance matrix of the jump process.
6.3. Stochastic differential equation model

The stochastic toxoplasmosis model is therefore given by the system of stochastic
differential equations

dUu(t) = GU,t)dt+ H(U,t) dW (1), @)
that is,
ds u(l —=1) — BSOe™#t — (u+y)S
a | _ BSOe™Mo" — (a + w)l
i 1= kI = 11,0 dt + H(U,t) dW (t).

dSm bSm - .BmSmO — UmSm

This formulation ensures that the stochastic perturbations correctly reflect the correlations induced
by the biological transition events, while the covariance structure remains positive semidefinite.

6.4. Numerical approximation

To numerically approximate system (7), we apply the Euler—Maruyama scheme. Let t,, = nAt. Then
Upe1 = U, +G(Up, t,) At + H(U, t,) AW, (8)

where AW, = W (t,4+1) — W(t,) is a vector of independent normal random variables with mean
zero and variance At.

7. Stochastic formulation phase 2

To explicitly represent uncertainty in each compartment, the stochastic formulation of the
toxoplasmosis model can be rewritten as follows:

ds(t) = (u(1 - 1()) = BSO(D)e ™" = (u+Y)S(1) ) dt + 0, S()AB(L), t=0,1<t. (9)
dI(t) = (BS()0(D)e™#oT — al(t))dt + 0,1(t)dB(t), t>0,7<t. (10)
do(t) = (kI(t) — p,0(t))dt + a50(t)dB(t), t>0, (12)
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dSm(t) = (bSm() = BinSm(®)O(E) — S (£))dt + 645, (D)dB(0), t=0. (12)

Here, o; (for i =1,2,3,4) are the intensity parameters that quantify the level of stochastic
perturbation in each compartment, while B(t) denotes the standard Brownian motion process
representing environmental randomness.

7.1. Feasible properties

This section examines the positivity and boundedness properties of the stochastic system (9)—(12).
Let the state vector be defined as

V(t) = (S(®), I(t), 0(1), Sm (D)),

and introduce the Euclidean norm

V()| = \/Sz(t) + I2(t) + 02(t) + S, 2 (b). (13)

Let D> (R* x (0,00); R,) denote the set of all nonnegative functions U;(V,t) defined on
R* x (0,00) that are twice continuously differentiable with respect to V and once differentiable
with respect to t.

Consider the stochastic model with an implicit delay effect system

dv(t) = D;(V,t)dt + k,(V,t)dB(t) (14)

and define the associated differential operator T; by
4

P 4 0 1 T —02

ij=1

When the operator T, acts on a function V* € D' (R* x (0, ); R.), we have
1
VW, t)y =V, t) + Viy(V,t) D1(V,t) + ETr[kI(V, O Voy(V,t) ki (V, 0)].

Theorem 9. Positivity and existence of a unique global solution.

For system (9)—(12) and any initial condition X(8) = ¢(8) € R} for 8 € [—1, 0], there exists a
unique global solution X(t) on t = 0 that remains in R} almost surely.

Proof. Let X(t) = (S(t),I(t),0(¢t),S,(t))". Denote by b(x) and Z(x) the drift and diffusion
coefficients of (9)—(12), so the system can be written in vector form

dX(t) = b(X(1)) dt + Z(X()) dW ().

Step 1: Local existence and uniqueness (via truncation).
The coefficients b(x) and X(x) are locally Lipschitz on R* (polynomial-type terms) but not
necessarily globally Lipschitz. For each n € N, define truncated coefficients

bn (%) = b(1y (%)), Zn (x) = (1, (%)),

x is the radial projection onto the closed ball B(0,n). Then, b,, X, are

n
where 1, (x) = max{m lxl}

globally Lipschitz and satisfy linear growth. Hence, by the standard existence-uniqueness theorem
for SDEs, there exists a unique global strong solution X,,(t) for

AIMS Mathematics Volume 11, Issue 1, 2255-5578.



2270

dXn(t) = bp(X, (D)) dt + (X (1)) AW (t), X, (0) = X(0).
Define the stopping time
T = inf{t = 0: || X,,(¢) 1= n}.

By construction, X, (t) = X,,41(t) for t < t, almost surely, so we can define a maximal local
solution X(t) on [0, t,), where t,:=lim,_. T, is the explosion time. This yields a unique local
solution of (9)—(12) on [0, t,).

Step 2: Positivity (invariance of R%).

We now show that, starting from nonnegative initial data, the solution cannot cross the coordinate
hyperplanes. Observe that on each boundary component, the drift points inward and the diffusion
term vanishes in the corresponding component (multiplicative noise structure). For example, at S = 0,
the S-equation in (9) has the form

dS(t) = (uN(+) — (nonnegative) - S(t)) dt + 0, S(t) dB;(t),

so when S(t) = 0, both the diffusion term ,S(t) dB;(t) and the loss terms vanish, while the
remaining drift term is nonnegative; hence, S(t) cannot become negative. The same argument
applies to I(t), O(t), and S,,(t): each component has diffusion proportional to itself, and the drift
at zero is nonnegative (no “negative source” at the boundary). Therefore,

X(t) € Riforall t <7, as.
Step 3: Global existence (non-explosion) via stopping times + stochastic Lyapunov.
It remains to show 7, = oo almost surely. Define stopping times

T = inf{t = 0: | X(t) I= n},n = ny,

and note that 7, T 7, as n — oo. Consider a nonnegative C? Lyapunov function V:R%* - R, (for
instance, V(x) = Z?zl(xi — 1 —1Inx;), which is finite and nonnegative on R%). Applying It&s
formulato V(X(t At,)) yields

tATy
EV(X(tATy)) =V(X(0)) + IEJ LV (X(s)) ds,
0
where L is the generator of (9)—(12). Using the model structure and nonnegativity of state variables,
we obtain an estimate of the form

LV (x) < C; + C,V(x)for all x € R%,
for some constants C;, C, > 0. By Gréwall’s inequality,

sup EV(X(s Atp)) < (V(X(0)) + Cit)e?t < oo,

0ss<t
This prevents V(X(t Aty,)) (hence || X(t At,) II) from blowing up in finite time, implying
P(7, < ©) = 0. Therefore, 7, = o almost surely and the solution is global and remains in R%.
This completes the proof.
Theorem 10. If R3 < 1 and o? < a, then the infected individuals of the system (9)—(12)
exponentially tend to zero.
Proof. Let us consider the initial condition

(5(0),1(0), 0(0), S (0)) € R,
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and assume that the stochastic system (9)—(12) admits a solution

(S, I(t), 0(t), Sm (1))

that satisfies the corresponding stochastic model with an implicit delay effect equation, where o
denotes the diffusion (randomness) term and c represents the drift coefficient.
For the infected population I(t), the stochastic equation can be written as

di(t) = [BS(t)0(t)e ot —al(t) | dt + c a,1(t) dB(t).
Applying 1tGs lemma to the logarithmic transformation g(I) = In I, we obtain
1 1

dg(1(®) = i 410 = 3755 @@)?]
Substituting into It&s formula gives
1 1
d(Inl) = 7 dl — o2 (dl)?.

Because for an ItOprocess, (dB(t))? = dt, we obtain
(dD? = o212 dt.
Hence,
d(Inl) = Lar- 1022 dt.
I 2
Substituting dI(t) from the stochastic equation,
d(Inl) = %[ﬁS(t)O(t)e‘“OT — al(t)]dt + o, dB(t) — %022 dt.

Simplifying,
d(Inl) = [ﬁs(t)(l)((tt))e_HOT —a- %azz]dt + 0, dB(D).
Integrating from 0 to t gives
_ (FBS(5)0(s)eHoT 1 t
lnI(t)—lnI(O)—j;[ 16 —a—zazz]ds+j;az dB(s).

Let

t

N(t) =f g, dB(s),
0
which denotes a stochastic integral with mean zero. Then,
t BS(s)0(s)e Ho®

lnI(t)—lnI(O)+f[ —a—laz]ds+N(t)
B 0 1(s) 2 2 '
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8. Asymptotic behavior

Rearranging terms:
*BS(s)0(s)e Hot

Ini(t) =1InI(0) + . 1(s)

1
ds — (a +5022)t + N(t).

1. If 07 > 4a, then
—(a+ %azz)t < at,
hence
Ini(t) >1Inl(0) + N(t) + at.

Dividing by t and taking limits,

. InI(t)
lim
t—>oo t

>
2. If 62 < 4a, then
In1(t) < InI1(0) + N(t) + at,

which implies

i) i) N@®
t t t

Since N(t)/t = 0 almost surely as t — oo, we obtain

Inl(t a +
lim ()<a(RO_1) to(U+¥) _
too ¢ uBk — (u+vy)ap,
When R, < 1, this implies
_ InI(t)
thm sup <0 a.s.

showing that the infection dies out in the stochastic environment, as required.
9. Stochastic delayed non-standard finite difference scheme

For the stochastic delayed system defined by Eqgs (9)—(12), the corresponding non-standard
finite difference (NSFD) discretization is expressed as

S"+hu(1-1")+ho;S™AB,

sl = : 24
1+hB0Ome HoT+h(u+y) ( )
[+ — I"+hBS™0™e H0T+ha,I"ABy, (25)
- 1+ha )
O™ +hkI™+ha3;0™AB

n+l _ 3 n
0 = T . (26)
g+l — Si+hbST,+hosSThABy 27)

m 1+hBm O +hiy
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Here, h is the discretization time step and n = 0,1,2, .... The stochastic component of the scheme is
characterized by

AB, = B(tn+1) - B(tn)'

where AB, ~ N'(0,1) represents a normally distributed random variable.
9.1. Stability analysis

To analyze local stability, we first assume that the stochastic intensities satisfy (o; = 0, 1 =
1,2,3,4). Under this condition, the system (24)—(27) can be represented by the functions

S+hu(1-1) __ hBSOe HoT4] __ O+hkl _ Sp(1+hb)

" 1+hBOe—HoT+h(u+y)’ 1+ah ' 1+peh’ " 1+hBmO+hum

Jacobian matrix. The Jacobian matrix ] of the discrete system is composed of the partial derivatives:

OE 1 OE —hy

S 1+ hBOeHo% + h(u +y)’ dl 1+ hBOe=HoT + h(u +y)’
OF _ —(hu(1=D) +S)(hpe™) 0E _

90 _ [1+hBOeHoT + h(u + )2’ 39S,

OF hBOe™#® 9F 1 OF hBSe " QF

dS  1+4ah 'l 14+ah’'d00 1+ah ’asm_o'
aG aG hk aG 1 G
55 OO TT¥ A0 T+ mh'as,
oH oH 0H —(S,,(1+ hb)hB,,) OH 1+hb

5=V =50 T AT rEL0 F hu, 7' 35, 1+ hBL0 + hiy

Theorem 11. Local stability of the toxoplasmosis-free equilibrium.
For all n >0, the eigenvalues of the Jacobian matrix of system (24)—(27) evaluated at the
toxoplasmosis-free equilibrium,

U b
To = (So, 1o, 09, Smo) = (m,O,O,E)
lie inside the unit circle if and only if Ry < 1.
Proof. Evaluating the Jacobian matrix J(T,) at T,, we obtain:

oo i
hpue—HoT
=] © e e 0
0 o o 0
0 0 ™ T

The characteristic equation | J(T,) — Al |= 0 yields the eigenvalues
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1
N =E——mm< 1,
' 1+h(+y)
1
A = <1,
2 1+ ah
A = <1,
3 1+ poh
—HoT
1 — pk (hBre” ")
2 Lty
* 1+ hpy
Using the definition of the basic reproduction number R, = Kupe™ /0",
Ao (U+Y)

o« If Ry <1,then A, < 1, and all eigenvalues lie within the unit circle. Hence, the equilibrium
T, is locally asymptotically stable (L.A.S.).

o Conversely, if Ry, > 1, then A, > 1, indicating that the equilibrium T, is unstable. R, <
1 = T,isL.AS,Ry>1 = T,isunstable.

9.2. Computational results

We take into consideration the system (24)—(27) with reported instances of toxoplasmosis in [14]
in order to get the numerical results. Time is measured in days, and the nonlinear least-square curve
approach is used to fit the parameter values shown in Table 3. This section compares the newly
developed construction for the specific model as a stochastic NSFD scheme, across different step
sizes, with the properties of the graphs representing the number of infected individuals using
methods already available in the literature, such as stochastic Euler and stochastic Runge—Kutta
schemes. Parameter values used in the stochastic toxoplasmosis model were obtained from previous
scientific studies and literature searches.

Table 3. Parameter values.

Symbol Value (per day) Range (from literature) Source [14]
u 0.50 0.1-0.7 Assumed

a 0.50 0.2-0.8 Assumed
T 0.385 0.2-0.5 [14]

k 0.02 0.01-0.05 [14]

B 1.10 0.8-1.5 [14]

Bm 0.10 0.05-0.2 [14]

% 0.0005 0.0001-0.001 [14]

b 0.50 0.3-0.7 Assumed
U 0.50 0.2-0.6 Assumed

9.3. Discussion

All the simulations are performed using the same set of parameters used in the analytical section.
The basic reproductive number R, is calculated for this set of parameters to determine the
theoretical behavior: If R,<1, the theory suggests a convergent solution to the disease-free
equilibrium and extinction of the disease; for R, > 1, the theory suggests persistence and convergent
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behavior to the endemic equilibrium. Figures 1-3 above demonstrate the theoretical results and the
numerical performance of the proposed algorithm. Indeed, it is observed that the SNSFD algorithm is
able to retain positivity, boundedness, and stability even for large-step sizes, which may not
necessarily happen using classical stochastic algorithms. Figures 1(a),(b) illustrate the comparison
between the stochastic Euler method and the SNSFD method for the infected cat’s equation. For the
smaller step size (h = 0.01), both methods exhibit stable results with similar patterns. For the larger
step size (h = 1.0), however, the results from the stochastic Euler method become unstable and exhibit
diverging patterns, whereas the SNSFD method remains stable with converging results. A similar
observation can be made from Figures 1(c),(d), where the results from the stochastic Runge—Kutta
method agree with SNSFD results for a smaller step size (h = 0.01) but become unstable and
diverge for a larger step size (h = 2.0), whereas the SNSFD method remains stable with converging
results. Figure 2 makes it clear how the parameter t affects the susceptible and infected cat
populations. It is clear how the transmission of the disease will be impaired by the survival factor
with the increase in the value of 1. Consequently, the value of the susceptible population increases,
along with a reduction in the infected population. This also matches the analysis. Figure 3 also
confirms the same results because the value of R, decreases with the increase in the value of 7.

Comparison-Endemic Scenario(ES)

Comparison-Endemic Scenario(ES)

0.3
‘ Stochastic Euler Method Stochastic Euler Method

e Stochastic NSFD Method s Stochastic NSFD Method

— D),

= Deterministic
0.25 8 1r

05 1
X: 963.9
Y: 0.06282
0 -y

0.2

Infected Cats
Infected Cats

0.15 1

Stochastic Euler shows negative results ‘
0.1 1 -0.5 1
X:988.5
Y: 0.06344
oos— L4 L] 1 7 AN N (Y S AN N S S !
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Time (days), h=0.01 Time (days), h=1
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= Stochastic NSFD Method 0351 = Stochastic NSFD Method 1
= Deterministic = Deterministic

1 03
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Figure 1. Computational methods used at the toxoplasmosis-endemic equilibrium of the
model. (a) Stochastic Euler method’s perception of the infected cat population at h = 0.01;
(b) stochastic Euler method’s perception of the infected cat population at h = 1; (c)
stochastic Runge—Kutta method’s visualization of the infected cat population at h = 0.01;
(d) stochastic Runge—Kutta method’s perception of the infected cat population at h = 2.
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Figure 2. Time plot with the time delay on susceptible and infected cat populations. (e)
Effect of delay in susceptible cat populations. (f) Effect of delay in infected cat populations.
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Figure 3. Time plot of the effect of time delay (z) with reproduction number (Ry).

In general, the results obtained are in agreement with the conclusions drawn and serve to
emphasize the major computational contribution of this work: the new SNSFD scheme preserves the
essential dynamics characteristics of the continuous model—positive solutions, boundedness, and
qualitative stability—while standard stochastic approximation algorithms like Euler-Maruyama,
stochastic Euler methods, and stochastic Runge—Kutta fail to do so for particular step sizes because
of step-size dependence. This adds stronger credibility to the new stochastic model of toxoplasmosis.

10. Conclusions

In this study, a stochastic non-standard finite difference (SNSFD) scheme was developed to
describe the communication dynamics of toxoplasmosis infection. Previous numerical techniques,
such as the stochastic Euler and stochastic Runge—Kutta (SRK) methods of order four, were found to
be inadequate due to their strong dependence on the time step size. These classical methods exhibit
only temporary convergence; as the time step increases, their numerical solutions diverge and deviate
significantly from the expected dynamical behavior. Furthermore, such conventional schemes fail to
preserve essential structural properties of the continuous model, including positivity, boundedness,
and dynamical consistency. To overcome these limitations, the stochastic non-standard finite
difference method was proposed. The SNSFD scheme maintains the intrinsic characteristics of the
continuous system, ensuring stability, positivity, and boundedness while remaining independent of the
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time step size. This approach provides a robust and reliable framework that accurately reproduces the
qualitative behavior of the stochastic toxoplasmosis model. A key feature of the proposed framework
is the incorporation of an implicit delay effect through a survival probability function, rather than
explicit delayed state variables. This approach captures the biological latency associated with oocyst
maturation and environmental survival while maintaining analytical tractability. The exponential
survival factor modifies the effective transmission rate by accounting for pathogen decay during the
latent period, providing a biologically meaningful and mathematically robust representation of delayed
infection processes. The methodology presented in this work can be extended to a variety of complex
dynamical systems. Future research will focus on applying the SNSFD framework to spatiotemporal,
fractional-order, fractal-fractional, and delay-based stochastic models, enabling a deeper understanding
of uncertainty and memory effects in real-world biological and epidemiological processes.
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