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Abstract: This work investigates the strong and weak approximation for a stochastic quasi-
geostrophic flow equation with two time scales, where the slow component is coupled with a fast
oscillation governed by a stochastic reaction-diffusion equation, and both are driven by Lévy noises.
Employing Khasminskii’s time discretization, we first prove that the slow component of the slow-fast
system converges to the solution of the averaged equation in a strong sense with the help of an auxiliary
process in small subintervals. Based on an asymptotic expansion of solutions for the Kolmogorov
equation associated with the slow-fast system through a discontinuous path, we then decompose the
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recursively, we further establish the weak convergence from the original to the averaged dynamics.

Keywords: stochastic quasi-geostrophic flow equation; fast oscillation; averaging principle; weak

and strong convergence; asymptotic expansion
Mathematics Subject Classification: 34C29, 35R60, 37A25, 60H15

1. Introduction

The geophysical flows play a crucial role in both scientific research and engineering applications [8,
12,22,26]. The quasi-geostrophic flow equation, as a simplified model of geophysical flows, captures
the essential features of large scale phenomena in the geophysical flows and has consequently attracted
significant attention (see [2,4,7,9] and their references).

More specifically speaking, the quasi-geostrophic (Q-G) equations model large-scale, rotating
geophysical flows in the atmosphere and ocean, where the Coriolis force nearly balances the pressure
gradient force. They describe the evolution of potential vorticity and capture phenomena such as
oceanic eddies, Rossby waves, and weather systems at mid-latitudes. The key assumptions in the Q-G
approximation are small Rossby number (slow evolution compared to planetary rotation), hydrostatic
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balance, and incompressibility.

In real geophysical systems, unresolved sub-grid processes (e.g., small-scale turbulence, convective
bursts, and wind stress fluctuations) act as random forcings. Adding stochastic terms accounts for
model uncertainty and unresolved dynamics, and represents intermittent or extreme events (especially
with Lévy noise). The inclusion of jumps in both scales extends existing models and better captures
real-world geophysical intermittency and impulsive forcing.

Thus, in this paper, we investigate a stochastic quasi-geostrophic flow equation driven by Lévy
noise

du® = [vAu® — ru® — J(Wu®), u®) — By (u®)

+f(u€,v€)]dt+ U]dWQl + fhl(uf_,z)lv](dl, dz), in D, (1 )
Z .

u® =0, on 0D,
u®(0) = u,

with a fast oscillation v* governed by a stochastic reaction-diffusion equation

1 N
dvF = ~[AV° + g, vO)ldt + —=dW + f I Vo N5t dz),  in D,
E \/E 7

ve =0, on AD, (1.2)

v¥(0) = v,

where v > 0 is the viscous dissipation constant, r > 0 is the Ekman dissipation constant, and 8 > 0 is
the meridional gradient of the Coriolis parameter. The streamfunction ¥ (x, y, ) satisfies Ay (x,y,t) =
u®(x,y,1), and the Jacobian operator J(u,v) meets J(u,v) = u,vy, — u,v,. We denote & as the small
singular perturbing parameter satisfying 0 < & < 1. The bounded planar domain D is supplemented
by a homogenous Dirichlet boundary condition in R2. The functions f, g, h;, h», and the mutually
independent Wiener processes W' and W< will be specified in the next section. Moreover, N is a
scalar Poisson process with the intensity v; and N§ is a scalar Poisson process with the intensity = on
a complete probability space (2, ¥, P) with filtration {F},».

Physically, the small parameter ¢ indicates that the fast dynamics reach a statistical equilibrium
much quicker than the slow dynamics change. The slow variable #® in (1.1) represents the Laplacian
of the streamfunction, the vorticity in the quasi-geostrophic framework. The fast variable v* in (1.2)
models rapidly evolving, small-scale processes coupled to the slow variable u?, such as fast temperature
or salinity fluctuations (in oceanography). The reaction-diffusion form arises from diffusive transport
and local source/sink terms ( heating) acting on much faster time scales than the slow variable.

Function f represents coupling from fast processes to the slow vorticity dynamics. It can model
the wind stress curl effects modulated by small-scale turbulent momentum fluxes. The function g
describes the intrinsic dynamics and slow-fast interactions within the fast variable v*, which may
represent nonlinear damping or saturation in small-scale turbulence.

There are numerous works related the quasi-geostrophic flow equation with oscillating external
forcing (see the references and those therein [1, 3,5, 10, 18,21]). The quasi-geostrophic flow equation
with a fast oscillation (1.1) and (1.2) is also called a slow-fast system, since the stochastic process u®
and v* evolve with different rates as the parameter € tends to zero. Under some dissipative assumptions,
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the fast process v* will be averaged at large time scales. The averaged equation is established as

dit = [vAii — rit — J(Y(it), i) — Byr(in) + f(in)]dt

+ o dW2 + fhl(ﬁ,_,z)]vl(dt, dz), in D,
z (1.3)
u=0, on 0D,

u(0) = u,

where f(u) = sz D f(u,v)u“(dv), and " is the unique invariant measure associated with (3.1).

The averaging principle is an effective tool to analyze qualitative behaviors of the multisclale
systems (1.1) and (1.2). There are a few works about the asymptotic behavior of the multiscale
systems by the strong averaging principle, which provides a strong approximation in pathwise sense
between the original solution of the slow equation and the effective solution of the corresponding
averaged equation [15, 16, 25]. The issue of the weak averaging principle, Bréhier [6] showed a
averaging result for stochastic evolution equations of parabolic type with slow and fast time scales in
a weak sense. Fu et al. [14] studied the weak error in the averaging principle for a stochastic wave
equation with a fast oscillation. Sun [23, 24] obtained the weak averaging principle of multiscale
stochastic partial differential equations driven by a-stable process with « in the interval (1, 2).

In this paper, we are especially interested in the strong and weak order in averaging principle of (1.1)
and (1.2). Here, the strong averaging principle refers to the pathwise (or mean-square) convergence
of the slow component u® to the averaged solution # in (1.4), while the weak averaging principle
concerns the convergence of expectations of ¢(x®) in (1.5). More precisely, we prove that for any
T > 0, t € [0,T], real-valued function ¢ with bounded and continuous Fréchet derivatives up to the
third order, and a positive parameter « € (0, i), that

Elluf(r) — a(t)|| < Ce =, (1.4)

and
IE¢(u?(t, u, v)) — Bo(a(t, u))| < Ce'™, (1.5)

where C is a positive constant independent of &.

In order to derive the strong convergence (1.4), we reduce the systems (1.1) and (1.2) into an
effective equation with the help of the averaging principle. Based on the Khasminskii’s time
discretization [17], we employ the skill of partitioning the time interval into small subintervals to
establish an auxiliary process for which the slow component of the fast variable is frozen on small
intervals of a subdivision. Furthermore, we can provide an intermediate errors between the processes
and arrive at the strong averaging principle with the help of the auxiliary process.

As to the weak convergence (1.5), we adopt an asymptotic expansion with respect to € of the
solution for the Kolmogorov equation. We introduce the Kolmogorov operators associated with the
multiscale systems (5.1) and the averaged system (5.2). Since the Kolmogorov equation involves the
unbounded operator and there is no general analytic approach to regularity properties in the
infinite-dimensional space, we apply the Galerkin approximation and reduce the infinite dimension
space into a finite dimension space to estimate the Kolmogorov equation. In addition, due to the Lévy
noise not only in the fast motion but also in the slow motion, we use the Itd6 formula to derive the
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explicit expression for the derivative of function ¢(iz), and borrow the argument of Bréhier [6] to
improve the regularities of the effective equation driven by Lévy noise.

This paper is organized as follows. In the next section, we state some basic sets. Section 3 derives
the stationary measure of the fast oscillation with the frozen slow component. Section 4 obtains
the strong averaging principle (Theorem 4.2). In section 5, we prove the weak averaging
result (Theorem 5.1) of this paper. And in the appendix, we will state some a priori estimates applied
in proving the strong and weak result.

2. Preliminaries

For the domain D = [0, K] x [0, K], let L*(D) := {u(x) | u(x)measurable and fDlu(x)lzdx < oo} be
the usual Hilbert space on D, whose scalar product and norm are denoted by (-, -) and || - ||, respectively.
Also, let H°(D) be the usual Sobolev space on D with s > 0. Especially, the scalar product and norm of
H'(D) are (-, -y, and || -||;, respectively. For any positive integer k, we denote by C’;(LZ(D), R) the space
of all k-times differentiable functions on L?(D) with bounded and uniformly continuous derivatives up
to k-th order.

Let A be the Laplacian operator —A with Dirichlet boundary condition which generates a strongly
continuous semigroup {S};>0. For a complete orthonormal system of eigenfunctions {e; };ciy, Aex = Arey
withO < A; € Ay <---A; < ---. It holds that

lul? > Allul?>, forany ue H'(D),

where A = 2—22 is the first eigenvalue of the operator A on D.
For 6 € (0, 1), the fractional power operator A? is defined as A% = Ale, with domain

DA’ = {u: ullpaey = ) Au, exde < +oo).

keN
The semigroup {S,} ;¢ satisfies the following properties for any 0 < 7 < ¢t < T and u € D(A?) (see [6]):

g -4
IS ittll peary < Ct™"e™2"Jull,

It — 7/’
T9

_4
e 2" |ull,

ISu—-Su|<C
9 —4
IS u — S ull < Clt — 77e™ 27 ||ull p(ae)-

Hypothesis (H1) The nonlinear terms f, g, hy, and h; satisfy the following Lipschitz conditions: there
exist positive constants Ly, L, Cy, and Cy, such that Cy, + L¢,Cy, + Ly € (0,4), and for any
Uy, uz, vy, v, € L*(D),

IfQur,vi) = fQua, v)IP < Le(lluy — ual* + vy = vall),

g, vi) = gz, v)IIP < Ly(lluy = wal* + vy = wall?),

f||h1(M1,Z) — hi(up, DI*vi(dz) < Cp, lluy — uslf?,

Z

f”hz(ul,vl,z) — hy(ttz, v2, 2 va(dz) < Cpy(lluy — wa|* + (v = vall?).

Z
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Hypothesis (H2) The nonlinearities f(u,v), g(u,v), hi(u), and hy(u,v) are of class C* and have the
bounded first and second derivatives.

Let W, and W, be two mutually independent L?(D)-value Wiener processes with covariance
operators O, and Q,, respectively. These operators are nonnegative, symmetric, and of trace class,

e, TrQ; = ) a;x <oofori=1,2, where Q;e, = ), @;ex.
keN keN .
Throughout the paper, we denote by C a generic positive constant whose value may change from

line to line.
3. Ergodicity of a frozen equation
This section is devoted to the study of the stationary measure and the asymptotic behavior of the

fast process with a frozen slow component u. With the slow process u fixed, we introduce the “fast”
variable V*", which satisfies the following equation

dv*® = [AV*" + g(u, V*")]dt + o dW9 + fhz(ut_, Ve DNy (dt, dz), in D,

z
ver =0, on 0D, (3.1
Ve (0) = .

Here, the superscript u of V*” means the frozen u in (1.2), and the superscript v of V*V denotes the
initial data of (1.2) withe =1 atz = 0.

Lemma 3.1. Under the Hypotheses (HI) and (H2), (3.1) admits a unique solution V*" such that

E[V*|I* < C(e ™™ |v|* + ||ul[*),
E|[V* — V12 < Ce™™|lv — %),

wheren, = A1—-Lg - Cp, > 0.
Proof. Applying Itd’s formula to ||[V*"||?, it has

t t
VIR IR +2 f AV, VE)ds +2 f (g, V'), V*yds
0 0

!
+ 0T, Qs + 2 f (0 dW2, VY
0

t
+ f f LIV + By, VI, IP = IV = 2o (u, V', 2), V) Iva(dz)dss
0 JZ

t
+ f f IV + o, VI, 2P = IV IPIN2(ds, d2).
0 Jz
Taking expectations and using (H1), we obtain
iEIIV”’VIIZ < = 2AB(|[V*IP + 2[Cllulll V|| + LgllV*IF]
dt = 8

+E[ f l1h2(ut, V', 2)IPva(d2)]
Z
< = mEIV*IP + Clul?,
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which implies from the Gronwall inequality that
EIVI? < eI + Cllull.

Note that
d(V* = V') <AV = V') + g, V') = g, V')]d

+ f[hl(ua VM,V, Z) - hZ(u’ Vu"?’ Z)]Nl(dt’ dZ)
Z

By the It6 formula, it infers

dllvu,v _ Vu,\7||2 :<A(Vu,v _ Vu,f))’ Vu,v _ Vu,\7>dt + <g(u, Vu,V) _ g(l/l, Vu,f/), Vu,v _ Vu,17>dl_

+ f llha(u, V', 2) = ha(ua, V7, 2)|Pva(dz)dt
Z

-2 f (hau, V', 2) = ho(u, V', 2), VI = VAT Ny(dt, d),
Z

which implies that

dE||V" = V*V|? < — AB||V*Y — V*7|2dt + LgE||V* — V*7|]?dt
+ Cp,|IV* = V*7|Pdt
< —mllV* = V*'|Pde.

Therefore,

E[lV* = VA2 < |y — 7P

The proof is completed.

Let P} be the transition semigroup associated with (3.1). Lemma 3.1 implies the existence of a

unique invariant measure u* for P¢. Define the averaging term as follows:

faw) = S, vy (dv).

L2(D)

Then

IEf(u, V) = @)l = |l E(f(u, V™) = fu, V*" ) (@)l

L2(D)

< f B[V — V7| (dP)
L2(D)

< Ce™! f v = $l*u"(dv)
L2(D)

- 2 2
< Ce™™(llull” + V).

(3.2)
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4. Strong averaging principle

In this section, we will state the result of the strong averaging principle for a two-time-scale
stochastic quasi-geostrophic flow equation driven by Lévy noises. In other words, we will show that
the slow component of the solutions (1.1) and (1.2) converges towards the solution of (1.3) in a strong
sense.

Let X; and X, be two Banach spaces. C ompact operator R maps bounded subsets of X to relatively
compact subsets of X,.

Lemma 4.1. [20] Suppose S a bounded subset of L'(0, T; X)) for any T > 0 such that A :== RS is a
subset of C(0,T; X;) bounded in L1(0,T; X,) with g > 1. If

lin(l) lu(- + o) = u()llco.7:x,) = O uniformly for u € A,

then A is relatively compact in C(0,T; X3) .
Denote {£L(u®)}. as the law of the slow component u°.

Lemma 4.2. (Prohorov theorem) [11] Assume that X is a separable Banach space. The set of
probability measures { L(u®)}, on (X, B(X)) is relatively compact if and only if {u®}. is tight.

Theorem 4.1. Assume that Hypothesis (H1) and (H2) hold. For any T > 0, {u®}, is tight in
C(0,T;L*(D)).

Proof. With the help of Lemmas A.2 and A.3,

T
Ef lulhds < Cr,
0

and
Ellu®(2) — u®(s)||

0<s<t<T |t — s|'=«

<Cr,

with some constant Cr > 0.
Then by the Markov inequality for any o > 0, there exist constants K, K, > 0 such that

T
Cr %
P NMds <Ky} >1——>1-= 4.1
{fo llids < Kip= 1= 2= =13, 4.1)
and () — (o)l c
u®(t) — u®(s T 0
Pl sup ——————— < Kl>1-—>1-=. 4.2
{OSs<t§T |t — 5]« 2) K, 2 “4.2)

Define the sets ,
S, :={u® € LY0,T; H\(D)) : f lu’llds < K},
0

and

l|e®(2) — u®(s)l] <

82 = {I/tg S S] . < Kz}

o<s<r<T |t = 8|17¥
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Then it follows from (4.1) and (4.2) that
P{u® € Sp} > 1 —p.

By the definition of S,, it has
lim sup |[u°(s + o) — u®(s)|| = 0,
0=V 0<s<T

where o =t — s.

Therefore, the set S, is compact in C(0,T; H'(D)), which means that the {£(u®)}, is relatively
compact in C(0, T; L*(D)) by Lemma 4.1. Furthermore, due to Lemma 4.2, it derives that {u?}, is tight
in C(0, T; L*(D)), which completes the proof. [ |

To prove the strong convergence, we partition the interval [0, T'] into subintervals of length ¢ and
introduce an auxiliary process (ii°, ¥*). For t € [kd, (k + 1)0), this process is defined by:

(1) = e"TRFE(kS) + f e J( (i (k6)), it (k6))dr
ko

!
+ f ™ f (@ ko), v°)dr + f e o dW
ki ki

0 0
!
+ f f e hy (@ (k6), 2)Ny (dr, dz),  in D, (4.3)
kd JZ
1 )
4 (1) = ~[AV (1) + g(u" (ko). 7 (0))dt + %dWQZ + f o, 7, D)NE(dt, d7),  in D,
VA

i1°(0) = u, V°(ko) = v°(ko),
=0, =0, on OD.

Lemma 4.3. For € € (0, 1), let u be in H'(D), and let v be in L*(D). Then (i, ) is the unique solution
to (4.3), and there exists a positive constant C such that

sup Ell@°ll < C, and sup E|i|| < C.
t€[0,T] t€[0,T]

Using the same method as in the Appendix, it is easy to prove Lemma 4.3. Here we omit it.

Lemma 4.4. Fort € [kO, (k + 1)0), there exists a positive constant C such that
EIV(r) - (@)l < C5' .

Proof. Using the mild formulations of v?(¢)z and 7°(¢), and Hypothesis (H1), we obtain an inequality of
the form

Loy — #0IP < =20 = FOIP + Lgs,v%) — g, 7),v¥(r) — (1))

+Lg(®, %) — g (k6), 7°), v(t) — (1))

+é f [lho(u®, V%, 2) — ho(u?(k9), V°, z)||2v2(dz)dt 4.4)
-2 é(hz('f’ Ve, 2) — ha(uF (kS), 7, 2), V(1) — 7°(1))No(dt, dz),

~D|ye(e) — ()P +

& b

IA
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which implies from the Gronwall inequality that

~ 1 Mg -
ey = @IF < € [ e w610 dr
t
2(1-x) [ ,—7
< C&1 [ eModo

< €521,

The proof is completed.
We now state and prove the main result of this section.

4.5)

Theorem 4.2. (Strong averaging principle) Assume that Hypothesis (H1) and (H2) hold. For any

T >0andte|0,T], then 1
Ellu’(t) — a(t)| < Ce 7,

where it is the solution of the following effective equation:
di = [vA@ — rit = J((@), i) — By(@) + f(@)]dt
+01dW9 + fhl(ﬁt—»Z)Nl(dt, dz), in D,
z

u=0, on 0D,
1(0) = u.

Proof. Considering the mild solution with ¢ € [kd, (k + 1)0), we have

t t
Ut (t) =eROyE (k6) + f ™D J((u), u)dr + f e (e VO)dr
k

ko 6

: 1
+feﬂ(t—r)o.lde1+f feﬂ(t_r)hl(uf_,z)ﬁl(dr,dZ).
ké JZ

ko

It is easy to obtain that

! !
[l (1) — @ @)l SCf IVo(r) = v (nlldr + Cf lu®(r) — u®(kS)lldr
ko ko
<Cs'™*,
Then, the mild solution of (4.7) is

a(r) =eMuy — f e J((@), m)dr + f e f(@)dr
0 0

’ f
+f eﬂ(r—r)a_ldWQl +f feﬂ(t—r)hl(,jtt_,Z)Nl(dr,dz).
0 0 Jz

(4.6)

4.7)

4.8)

4.9)

Denote |a] as the largest positive integer less than a. The difference #°(¢) — ii(¢) can be estimated as:

B (1) — ()] < fo MBI W (Lr/616)), u(Lr/8)8)) — JW(@), )ldr
" fo ™E| fu(Lr/5)8), ) — F@)ldr

+ f f DBy (u(Lr/8)6)) = by (@)lIvi(dz)dr.
0 JZ

(4.10)
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It follows from Lemma A.2 that

fo t "I (Lr/616)), u*(Lr/516)) — J(W(@), iw)ldr
< fo t NN (Lr/616)), u*(Lr/616)) — JW(w®(r), u*(r))lldr
+ fo t NI WO (), u(r) = J (@), w)lldr
<C§'"™*+C fot lu® — al|dr,
and
fo t fz By (Lr/610)) — hy(@)llvidzdr
<C§'"™* +C fo t lu® — il|dr.

Then,

fo A £l (Lr/816), ) — Falldr
< fo NN LW (L1816, ) — Fu(Lr/616))ldr
i fo M F W (Lr/516)) — Fut()ldr

t
+ f NN fw®) - f@lldr
0
=Ly + L, + Ls.

Considering a time shift transformation [17], there is

W (Lr/5)6). () = u(Lr/516), ¥(s + [r/616)) = (uf(Lr/615), V”““/‘”‘”’”E“’/‘”‘W£>).

It follows from Lemma 3.2 that

L= fo N e (Lr/616), () = Fu(Lr/516)lldr

t

Sfél_K f e Pds
o 0

<Cegd7*,

where p is a positive number.

(4.11)

(4.12)

(4.13)

(4.14)
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Then from the ergodicity, it infers
!
L, = f eI fwt(Lr/616)) = fus(r)lldr
0

_ tﬂ(t—r) 1 r/s1o - f(u® “(dv)||d
‘Le I ], /el - fur ).l @ldr 4.15)

!
< f e Nt (Lr/616) — u(r)lidr
0
<Co'™*.
Similarly to L,, it is easy to get

Ls; = f e INFWE(r)) - far))lidr
0 (4.16)

SCf |lu®(r) — a(r)||dr.
0

Therefore, for t € [0, T'], it follows from (4.9) and (4.10) that

T
Ellu®(t) — a(d)|| < C[e6™ + 6" + f E||lu®(r) — u(r)||dr].
0

Using the Gronwall inequality, it follows that
Ellu®(t) — a()ll < C(e6™* +6' ™).
In particular taking 6 = +/&, there is
Bllu(r) - a(1)l| < Ce 7,

which completes the proof. [

5. Weak-order convergence

This section is devoted to establishing the weak convergence order (1.5). Due to the presence
of Lévy noises and the infinite-dimensional setting, we employ the Galerkin approximation and an
asymptotic expansion of the Kolmogorov equation.

Let P,, be the projection onto the first m eigenfunctions {e;, e,, - - - , €,,} of the operator A. Define the
finite-dimensional space L2 (D) := P,,L*(D) and the approximated operator A,, = P,,A. The semigroup
generated by A,, is denoted by {S;,.};>0- The Galerkin approximation of the slow-fast systems (1.1)
and (1.2) is

dity, = [VAity, — ruy, — JW(uy), w,) = B(u,) + fru(®,v)ldt

+ o P, dW? + f hywm(ue ,2)N\(dt,dz), in D,
yA

1 -
avi, = —[AnVi, + gm(u®,v%)]dt + QPdeQ2 + fhz,m(uf_,vf_,z)Ng(dt, dz), in D, (5.1
E \/E 7

E __ E
u, =v, =0, on 0D,

1 (0) = u,v%,(0) = v,
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where f,, = Puf, 8m = Png, him = Pnhi, and hy,, = Pyhs.
Moreover, the approximation system of Eq (1.3) is also defined as

dﬁm = [VAmﬁm - rﬁm - J(l/’(ﬁm)’ ﬁm) _ﬁ’va(ﬁm) + fm(ufnv an)]dt

'i'(Tled‘/VQ1 +fh1,m(ﬁm’Z)N1(dtadZ), in Da
z 5.2)

i, =0, on 0D,
ﬁm(o) =u,

where f,, = sz D) f(u,v)u,(dv), and p;, is the unique invariant measure associated with the following
equation:

dv*® = [A, V™ + g(u, VE)dt + 0y P, dW? + f hom(u, V¥, 2)No(dt, d),
Z
VE(0) = v
Observe that

IE¢(u®) — Egp()l| <IEP(u”) — Ed(up)ll + [Ep(uy,) — (it

_ _ (5.3)
+ |[Eg (i) — Eg(a)ll.
From the Galerkin approximation and the strong averaging result, we have
lim [[E¢(u®) — Ed(u,, )l = 0,
e _ (5.4
lim [[E¢(,,) — Eg¢@l = 0.
Remark 5.1. For any T > 0 and ¢ € C;(L*(D),R), it follows from (5.3) and (5.4) that
lim [[E¢(u”) — E¢@)| < lim [|E¢(u,,) — B (). (5.5)

From now on, we consider the deviation |[E¢(u,) — E¢(ii,,)|| which is independent of m and further
proves Theorem 5.1 as the dimension goes to infinity.
Consider the two Kolmogorov operators associated with Eq (5.1) as follows:

L) =(vA it = rit = T, 10) = B () + fou(tt, v), D, D))
" %a%Tr(Diucbm))(Q%,m)(Q%,,,g* ¥ f (DGt + 1, D)) — D10
yA
— (DD(W), hy (1, 211(d2),
and
1 1 1
L20 :=(Ay + g1, 1), DOW) + 53T HDLOWNQ3, )03,

+ f (D + ho (v, ) = PV) = (DyD(V), hy (v, 2))]v2(d2).
Z
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Then U? := E¢(u,) 1s the solution for the following Kolmogorov equation:

a £ _ ETTE
{8_tU =L (5.6)
U®(0) = ¢(u),

where L7 =1L, + £,.
Similarly, define the Kolmogorov operator of Eq (5.2) as

,ZCI) ::<VAmu —ru— J(W, u) _ﬁl//x(u) + fm(u)» Du(i)(u»
1 _ 1 1 _ _
+ 5U%TF(DLQ(M))(Qf,m)(Qf,m)* + fZ[CD(u + hym(u, D))
— ®(u) — (D, D(u), hy (1, 2))]v1(d2).

Then, the solution U := E¢(ii,,) satisfies the Komolgorov equation as follows:

o - .
{@U =LU, (5.7)
U(0) = ¢(u).

Now, we will introduce an asymptotic expansion of solutions for the Kolmogorov equation associated
with Eq (5.1) as follows:
U?® = Uy + el +R8,

where U, = U, the term U, and the remainder R® will be introduced in next subsections.
With the help of Komolgorov Eq (5.6), it follows that

U, ,0U, OR®

£ 5 +& 5 +86t =LiUy+eL U + LR

+ SLZU() + 62.£2U1 + 8.£2R£.

By comparing the powers of ¢, it implies that

oU,
LUy =0, anda—to = LU, + LUy, (5.8)
which implies
Uo(t, u,v) = Uo(t, u), (5.9)

where Uy(t,u,v) = sz D) Uo(t, u, v)u(dv) is independent of v, and u is the invariant measure of the

Markov process with generator £;. Thus,

LU u(dv) = 0. (5.10)

L2(D)

Lemma 5.1. Under the Hypotheses (H1) and (H2), the processes Uy and U satisfy the same evolution
equation with the initial condition (u, v).
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Proof. 1t follows from (5.9) and (5.10) that
0 0
-z - i d
8t UO(t, M) ‘fLV'Zn(D> 6t UO(I, u)lu( V)
Zf (L1Uy + LoUg)u(dv)
Ly, (D)

= LrUou(dv)

L2(D)

=AU = ru = I, u) = BYe(u) + fru(u), D, D(u))
" %a%Tr<D5u<i><u>>(Q%,m><Q%,,,)* " fz [D(ut + Iy, )
— O(u) = (D, D(u), hy (11, 2))1v1(dz)
=LU,.
Further, using the uniqueness arguments as in [19], it follows that U, coincides with U. The proof is
completed. [
5.1. The term of U,
From Lemma 5.1, the function U, is determined by the following equation:
LU (u,v) = LU - L0

= (fu(u) = fru(u,v),D,U) (5.11)
= —o(t,u,v).

From the Hypothesis (H2) and Lemma B.3, it is obvious that the first and second derivatives of o(¢, u, v)
are bounded and

f ( )Q(f, u, Vp(dv) = f (fnw) = fiuu,v), D, UYu(dv) = 0,
L2(D

Ly(D)
where r € [0, T] with T > 0.
Lemma 5.2. Under the Hypotheses (HI) and (H2), the processes U, admits that

Ui(T,u,v) = foo Eo(t, u, v(s))ds.
0

Proof. Considering the term Eo(¢, u, v(s)), it infers

|EQ(I’ u, V) - f Q(ta u, v)ﬂ(df’ﬂ
L3(D)
:| E[Q(t, u, V) - Q(t’ u, \7)]/.1(61\7)|

Ly(D)

_ f UGty v) =ty v ()

L3(D)
<C(IvIl + lIvIhe™?,

AIMS Mathematics Volume 11, Issue 1, 2227-2254.



2241

which implies that
lim Eo(t, u, v(s)) = f o(t, u, Mu(dv) = 0.
§—+00

L2(D)
Furthermore,
(oo} t'l 00
L f Eo(t, u, W(s))ds = —— | Bo(t, u, v(s))ds, (5.12)
0 tials J,
and

“ tial
f Y B, u,v)ds = lim Bo(t, u, v(s)) — o(t, u, v)
o tials §—>+00

f o(t, u, vu(dv) — o(t, u, v) (5.13)

Ly(D)

—o(t,u,v).
It follows from (5.12) and (5.13) that
L( f Eo(t, u, v(s))ds) = —o(t, u,v),
0

which immediately implies that

U(T,u,v) = f Eo(t, u, v(s))ds.
0

The proof is completed. [

Remark 5.2. Assume that the Hypotheses (H1) and (H2) hold. From (3.2) and Lemma B.3, using the
same argument as in [6], for any t € [0, T], it holds that

|U1(t,u,V)léf Ell () — fu(u, VIEID,Ullds
0

SC(IIM||+|IVII)f e"ds
0
< C(lluel| + V1D

5.2. The remainder R®
The remainder term R® satisfies that
(0t — LOR? = —(0t — LUy — (0t — LU,

= @1~ L~ L) Uy~ 6601~ £y~ - LU,

=e&(LyU, - 0,Uy).
By the variation of constant formula, we have

R(T, u,v) =E[R°(0°, u™(T — p*), V(T - p*))]
+ eE[ f T((LlUl — 8,U))(s,u*(T — 5),v*(T - 5))ds], 619
e

with 0 < p® < &.
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Lemma 5.3. Assume that the Hypotheses (H1) and (H2) hold. Then,
| L1 Ui (2, u, v)| < C(llull + [IVID,
withany t € [0, T].
Proof. For any u € L2 (D), it holds that
LUy =0Auu —ru—JW,u) = Bp(u) + fu(u,v), D,Uy)
+ %O'%Tr(DiuUl)(Q%’m)(Q%’m)* + L[Ul (u+ him(u, Uy) — U,

— (D, Uy, hym(u, 2))1v1(d2)
=L+ 5L+

For I, it follows Lemma A.1 and Lemma A.3 that
\L| <lVAuu = ru—JW, u) = B(u) + fu(u, I + 1D, Ui
<Ct [ DG~ Bfl - Wds + [ 1o~ Eful It
Then, with the help of the result of Lemma 6.8 in [13], Lemmas B.1-B.3, we have
\L] < C(lleell + IVID.

Notice that
Diu Ul ' (h’ l) = ﬁ <Duu(fm - Efm)(h’ l)a 77h>dS + ﬁ <Du(fm - Efm)(h)’ §>ds
+ f(; <Du(fm - Efm)(l)v g)ds + L <f_m - EﬁnaDuuul_])ds-

Therefore,
|| < C(l[ul| + [IVI].

Moreover, if the Hypothesis (H2) holds, it implies from Lemma 5.2 that
1] < C([[ull + V).

Consequently,
| L1U (&, u, v)| < C(llull + IVID.

The proof is completed.

Lemma 5.4. Assume that the Hypotheses (H1) and (H2) hold. Then,
0
|EU1(I, u, V)| < C(WIl + [lul]),

with any t € [0, T].
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Proof. 1t follows from Lemma 5.2 that

o,

3 Zf E{fin(1) = fin(u,v), DU(1)>dS
t 0

For any h € L2 (D), it infers

DuU ~h = E[(p’(ﬁm) - Dyity,]
= E[¢/ (@) - 1"],

where 7" is the solution of Eq (B.2).
For the solution & of Eq (5.2), applying the 1t6 formula in the finite dimensional space, it gets

(p’(ﬁ) :¢,(l/l) + L ¢”(ﬁm) ' [VAmﬁm - rﬁm - J(l/’(ﬁm)a ﬁm) _ﬁwx(am) + fm(ﬁm)]dt
+ Gl(f ¢”(ﬁm)dWQ] + lf ¢,N(ﬁm)TrQl,mds)
0 2 0
+ f f[¢l(ﬁr11 + hl,m) - ¢,(ﬁm) - 2¢N(ﬁm)hl,m]vl (dZ)dS
0 JZ
+f f[(ﬁ'(ﬁm + him) — ¢ (i) N1 (d2)ds.
0 JZ
Then, we have

—<D 0 - h) =(¢' (), hy + EZL 50" @) TrQ ")
+ B¢ (@) - [ vAmum = rityy = Tl ) = BY (i) + Frn(D], 71"
+E fz B T+ 1) = & ) — 20 @)l 71 (d2)
+ B( (i), VA" = 1" = JWO7"), i) = T (), ") = B + (i)™,

which implies from Lemmas A.3 and B.1 that
0 _
|5, (Pl - W< CAVIT D

in the finite dimensional space. Furthermore,

ou
|—‘| = | f E(f(w0) = ful,v), 5 D J(1)ds|
<C f B\ fou (1) = finltt, V)i
0
< C(V| + llul).
The proof is completed. u
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Lemma 5.5. Assume that the Hypotheses (H1) and (H2) hold. Then,
IR (0%, u, v)| < C&"*(IVI| + llull),

with any « € (0, }L).
Proof. It is easy to obtain
E[R°(0®, u,v)] =U*(0°, u,v) — Up(p°, u,v) — U, (0", u,v)
=U%(°, u,v) — U(p®,u,v) — eU (0%, u, v)
:[Us(psa u, V) - US(O, u, V)] - [U(l)sa u, V) - (_J(O’ u, V)]

—eUi(p°,u,v)
=G + G, + Gs.

For G, it follows from the It6 formula that

G =2 [ 06 DAty = i, — ). 16) = P+ e
0

+0( fo g ¢ (us)dW + % fo " " We)TrQy mds)
+ fO " fz (GG, + i) — B — 26 Gy I (d2)ds
+ fo " fz (BGE, + ) — SN (),
And for G,, we deduce that
G, =E fo g @ (i) - (VAR = Fity = JW (), ) = B olin) + fin(iim)1dl1t
4o fo " )awn - fo @) Tr01nd)
+ fo " fz (BT + I1.0) = i) — 26 @dls I (d2)ds
+ fo g fz (BT + 1) — ) 1N (@),
With the help of Lemmas A.1, A.2, and A.4, we infer that

Gl +1Gal < Ce'™(llull + M),

with « € (0, ‘—1‘).
For G3, it follows from Lemma 5.2 that

Gl = leU1(0°, u, )| < Ce(lull + [IvID.
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For any u® (T — p?,u,v) € L2(D) and v¢ (T — p®,u,v) € L2 (D), it implies that
IR*(0°, (T = p°), vy (T = p°))|
<C(e + é)(lluﬁq(T = PN+ Vi, (T = PO
<Ce'™(lull + IVI])-
The proof is completed.
Lemma 5.6. Under Hypotheses (H1) and (H2), the remainder term satisfies
IRE(T, u, v)| < C&'*(llull + V1)), k € (0, %)-
Proof. Recall that
R(T, u,v) =E[R*(0°, u,,(T = p°), v, (T = p*))]

T
+ sE[f (LU, =0,U))(s,u, (T = 5), v, (T — s))ds].
pE

Thus from Lemmas 5.3-5.5, we have

(T, u, v)| <IELR®(0°, 2. (T — pP), v (T = po)|
T
+ &B] f ((L1UL] + 8,01 )ds]
pE

<Ce"*(lull + IVID,

where p® € (0, ). The proof is completed.

5.3. Weak approximation

(5.15)

(5.16)

Theorem 5.1. (Weak averaging principle) Under the Hypotheses (HI) and (H2), for any k € (0, }1),

T>0and ¢ eC 2(L2(D), R), there exists a constant C > 0 such that
[E¢(u®(T, u,v)) — E¢p(i(T, u))| < Ce'™*.
Proof. From the asymptotic expansion, we have
E¢(ui,) = Uy + €U, + R®,
where Uy = U = E¢(it,,). It follows from Lemma 5.1 that
[E¢(u,, (T, u, v)) = BE(it,(T, u))| < &lUi| + IR°).
Moreover, combining Remark 5.2 and Lemma 5.6, it can be deduced that
[E¢(s,(T, u,v)) — Bp(i,(T, u)| < Ce'™*.
Then, it follows from Remark 5.1 that
|E¢(u®(T, u,v)) — B¢(i(T, w))| < Ce'™, k € (0, %),

which completes the proof of the weak convergence result.
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6. Conclusions

This work investigates a stochastic quasi-geostrophic flow equation with two time scales, where

the slow component is coupled with a fast oscillation governed by a stochastic reaction-diffusion
equation, and both are driven by Lévy noises. Under the Hypothesis (H1) and (H2), we obtain the
strong averaging principle as in Theorem 4.2 and the weak averaging principle as in Theorem 5.1.
These results will further enrich the theoretical framework of the averaging principle. And they also
provide a more concise form of stochastic quasi-geostrophic equations in application.
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Appendix
This appendix collects some essential a priori estimates used in the proofs.

Appendix A. The high-order estimates
Lemma A.1. Under the Hypotheses (H1) and (H2), the solution (u®,v?®) of (1.1) and (1.2) satisfies

2 2 2 2
sup E(llu’ll” + [VII7) < Cr(llull” + VI,
1€[0,T]

where (u®,v®) is the solution of Eqs (1.1) and (1.2) with the initial date (u,v), and the positive constant
Cr only depends on T.

Proof. By the Itd formula, it can be inferred that
I =lue] + 2 f;(AuS, uyds +2 f;(—nf —JW, u°) = B (u®) + f(u®,V°), u)ds
+2 fo t(aldWQ‘ LY + o TrQt
+ fot fz(llug + P = )Ny (dt, dz)

!
¥ f f (U + > = I = 20, w1 (d2)ds,
0 VA

which implies

!
Ellu®|)* < e“||ul]* + C f eCIB|VPds. (A.1)
0

Applying the 1td formula to ||v®||, it can be deduced that
2 (" 2 ("
VoI =IvIP? + = f (A", v")ds + = f (g(u®,v%),v")ds
€ Jo € Jo
2 t 0.2
+ — f (02dW2 vy + 2T rQot
Ve Jo €
t
+f f(llva + Ioll® = IVIP)N3 (dt, dz)
0 Jz
1 t
+ —f f(llva + holl* = V1P = 2¢ha, v*))va(dz)ds,
€Jo Jz
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then

!
& M, e C &
EIVIP < vl +Ef(——llv P+ =llu’I*)ds,
0 E &

which implies from the Gronwall inequality that
n C ! n
EIMIP < eIV + = f et Nuf|Pds,
€ Jo

Moreover, it implies from (A.1) and (A.3) that

t S
E|v°|* Se—"?"||v||2+E f g F f E(V°|[*drds
€ Jo 0

!
<C f E|ve|lPds.
0

Applying the Gronwall inequality again, from (A.1)—(A.4), we obtain

2 2 2 2
sup E(llu®l]” + [VII7) < Cr(llull” + VI,
1[0,7]

which completes the proof.

(A.2)

(A.3)

(A.4)

Lemma A.2. Under the Hypotheses (HI) and (H2), for Eqs (1.1) and (1.2), there exists a positive

constant C such that for any 0 < s <t < T and any « € (0, %),
|l _ S|2(1—K)
$2(1-x)

|l— S|2K . |l— S|2/<

82K

Ellu(t) — u*(s)|* < C(

Elv (1) = v*(s)II* < C(

).

Proof. Consider the mild solutions of Eq (1.1)

e

2
51,

I f S (il — I i) — Bne®) + GV ))ds
0

! !
+ 0 f S dW? + f f S s (W, )N (ds, dz).
0 0 Z

Then,
u(t) —u(s) =(S, — Su + f t Si(=ru® = J(, u®) — B (u®) + f(u®,v*))dt
o [ = S o - S = ) + s
+ 0 f S dW9 (1) + oy f (S =S )dW2 (1)
f fst _hy(uf, )Ny (d, dz)
+ f f (Sir =S )i (U, 2)Ny (d7, dz)
=J +0J2 f + J7.
AIMS Mathematics

(A.5)

(A.6)

Volume 11, Issue 1, 2227-2254.



2250

Next, we will estimate them in turn:

_ ol2(1-x) 1
EIlLIP = BIS, = S ull® < C%Ilull,with k € (0, ),
sel=K 4
t
ElLI < r - Slf EIS i—e(—ru® = J(, u®) = Baut®) + f(®,v¥))|Pdr

< Clt - s,

E|lJs| S[f‘ ICS 1 = S se)(=ru® = T, u®) = B () + f(u®, v¥))lld]

_ 1-«

cgf (e Tl = ) = )+ f e
<C|t 2(1 K)

A Schinr—sF,

EllJs|> < Cle = s,

f
MkWSV—ﬂf fEMm%m&Mrscv—w,
s Z

and

EllJ5 I SEf (S 1= = S s |Pvi(dz)dt
1-«
<C f U9 gy

(s—‘z')1 K

<Clt — 5179,

Combining Eq (A.6) with the estimates from J; to J;, we have

|t _ S|2(]—K)

200 e o2
= + [t = s + [t = s]%).

Elluf (1) — uf (s)II* < C(

Using a similar argument, for Eq (1.1), it is easy to get

|t— S|2K . |l— S|2K

82K

Elv(r) — v ()lI* < C(

).

The proof is completed. u

Lemma A.3. Assume that the initial value u is in D(A)’ with 6 € (0,1). Under the Hypotheses (HI)
and (H2), for Eq (1.1), there exists a positive constant C such that for any 0 < s <t < T and € > 0, it
holds that

EllAu’| <
with any « € (0, }L).
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Proof. Put M(¢t) := —ru® — J(W, u®) — B, (u®) + f(u®,v?). From (A.5), it can be deduced that

! !
ElAS ull + E[lA f S—=M(7)dr|| + E||A f f h(u®, )N, (dr, dz))|
0 Jz

0

<Cllullpay + ElS, = DMOIl + EII(S, — D fhl(ug,z)vl(', d))ll + K1 + K,
Z

<Cllullpay + C,

where Ky := [[A [S,[M()— M(Ddrllland K> := EIIA [} [ S0 (1), 2) = hi (u(2), )N (d, d)|I.
Then, from Lemma A.2, we have

K, =JA f S [M(T) - M(Dd-]]|
0

SCf @) = w @l + IV @ = v ol
0

r—7
C
<—.
SK

By the similarly argument, we obtain

K; =EJIA f f S (W (1), 2) — by (D), )N (dr, )|
0 Z
<Cllu®(t) = u°@)l|

<C.
From [13], we have
!
EllAc, f S dW? < C.
0
In all, c
EllAw’? < =,
SK
which completes the proof. [

Lemma A.4. Under the Hypotheses (HI) and (H2), the solution i of the averaged Eq (1.3) satisfies

Ella(t) — a(s)|* < C(t — s + |t = s*17),
ElAal® < C,

for any k € (0, }‘).

Proof. Notice that

f 'S, Faydr - f S, fadr
0 0

= f S f(@dr + f S(S e = S s-o) fi)dr,
s 0

AIMS Mathematics Volume 11, Issue 1, 2227-2254.
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with ) )
IIf S f@ydrll* < |t - Slf If@lldr < Clt - sP,

E” f (S -t — Ss—-r)f_‘(ljl)dTHZ < Clt _ S|2(1_K).
0

By the same argument with Lemmas A.2 and A.3, it is easy to obtain the results of Lemma A.4. The
proof is completed. u

Appendix B. The derivative estimates

Recall the finite dimensional approximation problem of the averaged Eq (1.3) that

dﬁm = [VAmﬁm - rﬁm - J(lﬁ(ljlm), ﬁm) _ﬁ'ﬁx(am) + fm(u;» vfn)]dt

+ 0P dWO + f Ry (i, 2D)N1(dt, dz),  in D,
z (B.1)
i, =0, on EgstialD,

i, (0) = u.

Assume that " := D,ii,, with h € L2 (D) admits the derivative equation corresponding to Eq (B.1) as

follows:
dif" = VA" = " = T, ") — T, i) — B+

= h ’ - h .
) 1dt + | hy, (i, Ni(dt,dz),in D,
7 @ leu@n1< 2) ©2)
nh =0, on EgstialD,

1"(0) = h.

Lemma B.1. Forany0<s<t<Tand(0 <k < }1, the solution " of (B.2) satisfies

Ell"I? < CliAIP, (B.3)
Elir"(0) = " ()| < Cle = s, (B.4)
EllAn"|* < C, (B.5)

where the operator A is defined as in Section 2.

Proof. First, from the definition of the Jacobian operator J as in Section 1, it implies that

JQO"), wn), 0"y < @G, )"l < € + Clinl,

and
TW ), n". 17"y = By "), "y = 0.

Applying the Ito formula, it follows that E|["||> < C||a||*>. Then, using a similar argument as in [6], it
is easy to prove the estimates by considering the mild formulation for n". Put

Fou(®) = =" = JW(), 1) — T (7", i) — B + F )
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then,
! !
n'(H) = Sh+ f S Fu(t)dt + f f S -l " Ni(dr, dz).
0 0 Z

We can obtain that

n'(t) — n"(s) =(S, — S )h + f S Fu(t)dt + f S(S,_T — S F(t)dr
0

! N
+ f fSth/l,mnhNI(dT’ dZ) + f f(S -t Ss_-,-)l’l/l’mﬂhﬁl(d‘l', dZ)a
K} Z 0 Z
moreover,
Ellr" (1) = 7" ()I* < Clr — s 7. (B.6)

Finally we also have

t t
An'(t) = AS h+ A f S Fu(t)dr + A f f S ,m"Ni(dr, d2).
0 0 JZ

Combining the boundness of the function in the finite-dimensional space with inequality (B.6), it can
be inferred that

t t
EllAn" (1)l =E|IAS Al| + EIIA f Si—Fn(n)dt|| + El|A f f S 1chi " N (dr, d2)|
0 0 JZ
<Cllullpa) + ElI(S; = DFOIl + ElI(S; = D fhi,m(ﬁm,z)vl(-, d2))ll
Z

+||Af Sz—T[F(T)—F(t)dT]II+E||Af sz—T(h'l,m(ﬁm(t),Z)
0 0 JZ

= 1), (@ (7), D))" N (d, d2)|
<C,

The proof is completed. [
Now, we introduce the second derivative of the solution i, of Eq (B.1) with respect to the initial
value u in the directions 4 and /, which admits

d¢’ = [vA,¢" = re = JW(i,), ") — JW(s™), i) — By (s™)+

_ _ . B.7)
F @' + F @)™ 1dr + f (h)()S™ + 1Y (i)' )z, (dt, d2).
z
Lemma B.2. Under the Hypotheses (H1) and (H2), for Eq (B.7), it holds that
™17 < ClIRIPIIAP,
where h,1 € L2 (D).
Proof. Similarly as Lemma B.1, it is easy to obtain Lemma B.2. Here, we omit it. [ |

Lemma B.3. Under the Hypotheses (HI) and (H2), for Eq (B.1), it holds that
DO <c, D, 0P <cC, D0l <C,

uuu

where U = ¢(ii,).
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Proof. For any u, h, I, e L,%l(D), it can be inferred from Lemmas B.1 and B.2 that

and

ID,U - h| = [B(@' (@), n")] < ClIhll,

DU - (h, k)| = [EL$" (@t - (", 11") + ¢ (@) - 6™

Further, it follows that

which completes the proof.
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Do U - (h, L, D1 < ClIAIL- 112 - 1,
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