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Abstract: In this paper, we first introduce a preconditioned primal—dual gradient algorithm based on
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objective function consists of two summands: a continuously differentiable nonconvex function and
the composition of a nonsmooth nonconvex function with a linear operator. Under mild conditions,
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of variance-reduced stochastic gradient estimators. Almost sure global convergence and expected
convergence rates are derived by relying on the Kurdyka—t.ojasiewicz inequality. Finally, preliminary
numerical results are presented to demonstrate the effectiveness of the proposed algorithms.
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1. Introduction

In this paper, we first consider the following composite optimization problem:
{ng&r} f(x) + h(Ax), (1.1)

where f : R" — R is a continuously differentiable and possibly nonconvex function, A : R" — R™ is
a linear operator, and 4 : R" — (—o0, +00] is a simple and possibly nonsmooth, nonconvex function.
Problem (1.1) arises in a variety of practical applications including machine learning, statistics, image
processing, and so on. In many applications, the function 4 is usually referred to the regularizer, which
is used to guarantee certain regularity properties of the solution. Recently, nonconvex regularizers,


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2026089

2189

such as &y, £, (0 < p < 1), smoothly clipped absolute deviation (SCAD), and the minimax concave
penalty (MCP), have drawn a lot of attention and can achieve significant improvement over convex
regularizers (see [1] and references therein).

For Problem (1.1) in the fully nonconvex setting (both f and 4 are nonconvex), there has been an
intensive renewed interest in the convergence analysis of various algorithms based on the Kurdyka—
Fojasiewicz (KL) property in recent years. Attouch et al. [2] established the global convergence of a
forward—backward splitting algorithm for (1.1), with A being the identity operator and (f + &) being
a KL function. Li and Pong [3] demonstrated the convergence of an alternating direction method of
multipliers (ADMM) under the assumptions that both f and & are semialgebraic and A is surjective.
A nonmonotone linesearch algorithm based on the forward—backward envelope was proposed by [4]
and shown to have superlinear convergence rates. In [5], the authors employed a Lyapunov method to
establish the global convergence of a bounded sequence to a critical point for several Lagrangian-based
methods, including the proximal multipliers method and proximal ADMM, within the semialgebraic
setting. By assuming that the associated augmented Lagrangian possesses the KL property, it was
proved in [6] that the iterates of proximal ADMM converge to a Karush—-Kuhn-Tucker point. They
also derived convergence rates for both the augmented Lagrangian and the iterates. Algorithms for
Problem (1.1) with /4 being £, norm were reviewed in a survey paper [7]. For Problem (1.1) with convex
h, there exists a vast literature on various nonconvex composite optimization algorithms [8—10].

Motivated by a class of well-studied primal—dual hybrid gradient (PDHG) algorithms for convex
optimization [11-13], and drawing upon the conjugate duality theory for nonconvex optimization, we
propose a preconditioned first-order primal-dual algorithm for solving the nonconvex composite
optimization Problem (1.1). In most of the aforementioned related algorithms, it is necessary to
compute the elements of the generalized proximal (set-valued) mapping for the nonconvex function &
and/or nonconvex function f at each iteration. In contrast, at each iteration of our proposed algorithm,
we only need to calculate the proximal mapping of the conjugate function #*, which is always convex
and lower semicontinuous. Although certain popular nonconvex regularizers admit closed-form
proximal mappings, this property is not guaranteed for general nonconvex functions /.

In the second part of this paper, we extend the proposed algorithm to the following finite-sum
optimization problem:

N
|
min Z‘ F(x) + h(Ax), (12)
where each f; : R" — R, i = 1,..., N, is continuously differentiable and possibly nonconvex, and

h(Ax) is the same as in (1.1). Problem (1.2) arises frequently in the fields of statistics [14], image
processing [15], and machine learning [16]. Problem (1.2) is also called regularized empirical risk
minimization, and the component functions f;,i = 1,...,N correspond to certain loss models.
Moreover, in various interesting problems such as deep learning, dictionary learning, and
classification with nonconvex activation functions, the loss functions f; exhibit nonconvexity. Since
the number of components N (which usually represents the size of a dataset) can be extremely large,
the exact computation of the full gradient ﬁ >, Vfi(x) becomes prohibitively expensive in practice.
Consequently, stochastic approximation techniques have gained increasing importance in designing
efficient numerical algorithms for finite-sum optimization problems (see, for example, [17-21]). In
particular, the success of many popular variance-reduced stochastic algorithms for convex finite-sum
optimization has been witnessed in recent years, such as SAG [22], SAGA [23], SVRG [24], and
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SARAH [25].

For Problem (1.2) with nonconvex components f;, i = 1,..., N and a convex A, a large number of
algorithms have been developed over the past few years. We only name a few here. The authors of [26]
introduced a stochastic proximal gradient algorithm based on variance reduction and established a
global linear convergence rate for the nonconvex f; satisfying the Polyak—t.ojasiewicz condition. Nhan
et al. [27] presented a stochastic first-order algorithm by combining a proximal gradient step with
the SARAH estimator and analyzed the complexity bounds in terms of stochastic first-order oracle
calls. Fort and Moulines [28] introduced a stochastic variable metric proximal gradient algorithm by
using a mini-batch strategy with variance reduction called SPIDER [29]. Milzarek et al. [30] proposed
a stochastic semismooth Newton method for nonsmooth and nonconvex finite-sum optimization and
established the almost sure global convergence and local convergence rates with high probability. Wang
and Chen [31] studied proximal inexact gradient methods for nonconvex and nonsmooth finite-sum
optimization with non-Lipschitz regularization.

We now review the stochastic approximation algorithms for Problem (1.2) in the fully nonconvex
setting, where f;,i = 1,..., N and h are nonconvex. Xu et al. [32] showed that the stochastic proximal
gradient methods for Problem (1.2) with a nonconvex / have the same complexities as their
counterparts for convex regularized problems to find an approximate stationary point. A stochastic
algorithm that combines ADMM with a class of variance-reduced stochastic gradient estimators,
including SAGA, SVRG, and SARAH, was proposed by [15]. The global convergence in expectation
was established under the condition that f;,i = 1,..., N and h are semialgebraic, and the convergence
rates in the expectation sense were derived by depending on the Lojasiewicz exponent. Using the
forward—backward envelope as a Lyapunov function, Latafat et al. [33] proved that the cluster points
of the iterates generated by the popular proximal Finito/MISO algorithm are the stationary points
almost surely in the fully nonconvex case. They also established the global and linear convergence
under the assumption that f;,i = 1,...,N and & are Kb functions. In [34], the authors designed a
normal map-based proximal random reshuffling method for (1.2) with a weak convex & and proved its
convergence under the KL property. Bai et al. [35] proposed a single-loop stochastic ADMM with a
hybrid gradient estimator for both expectation and finite-sum optimization problems with linear
constraints, achieving sublinear convergence. By combining the proposed algorithm for Problem (1.1)
with the variance-reduced stochastic gradient estimators (uniformly defined in [15, 36]), we study a
stochastic preconditioned first-order primal—dual algorithm for solving the fully nonconvex finite-sum
optimization Problem (1.2).

The main contributions of this paper can be summarized as follows.

e We propose a preconditioned primal-dual gradient (PPDG) method for the composite
optimization Problem (1.1). This problem presents significant challenges because of its fully
nonconvex structure including the smooth nonconvex function f and the nonsmooth nonconvex
regularizer h coupled through the linear operator A. Under the mild assumptions that the
gradient of f is Lipschitz continuous, the linear operator A is surjective, and the convex hull of &
is proper, we prove that any convergent subsequence of the iterates converges to a critical point
of the Lagrange function associated with Problem (1.1). This is realized by establishing the
nonincreasing property of a properly selected Lyapunov function. With the additional KL
property of the Lyapunov function, we demonstrate the global convergence of the generated
sequence of iterates. We further derive convergence rates for the sequence, provided that the
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Lyapunov function has the f.ojasiewicz property.

e To address the challenge of solving Problem (1.2) in the fully nonconvex setting, we introduce
a stochastic preconditioned primal-dual gradient (SPPDG) method, which can be viewed as a
stochastic variant of PPDG. To analyze the convergence of SPPDG, we first establish a crucial
descent property related to the expectation of a Lyapunov function based on the Lagrange function
of Problem (1.2). Moreover, the upper bound for the conditional expectation of the subgradient
of the Lyapunov function is derived. Leveraging these important auxiliary results and assuming
that the generated iterates of SPPDG are bounded almost surely, we establish the subsequence
convergence in the almost sure sense. Moreover, if the Lyapunov function is a KL function, we
prove that the whole iteration sequence possesses the finite length property and converges almost
surely to a critical point. To the best of our knowledge, such almost sure global convergence result
for stochastic algorithms applied to (1.2) in the fully nonconvex setting is new.

e We report the numerical performance of the proposed SPPDG applied to image classification
using deep neural network, and to a nonconvex graph-guided fused lasso problem. Compared
with the existing popular algorithms, the numerical results verify the advantages of the proposed
methods.

The rest of this paper is organized as follows. In Section 2, we explore the convergence of a
preconditioned primal-dual gradient method for the composite optimization Problem (1.1). In
Section 3, we propose a stochastic preconditioned primal-dual gradient method for the finite-sum
Problem (1.2) and provide a convergence analysis. Numerical experiments are presented in Section 4
to show the effectiveness of the proposed algorithms.

Notations and basic definitions. Let R” and R” be two Euclidean spaces equipped with the
standard inner products (-,-) and norms || - || = +X-,-). The operator norm of a linear operator
A:R" > R"is

[|A]] := max{||Ax|| : x € R" with ||x|]| < 1}.

Given a closed set C € R" and a vector x € R”, the distance of x to C is given by dist(x,C) :=
minyec |[x — yl|. Let f : R" — (—o0,+00] be a proper lower semicontinuous convex function. The
extended proximal mapping of f associated with a positive definite linear operator M is defined as

xeR?

1
prox¥(y) := arg min {f(x) + 5l - y||i,} -

Here, ||x||ﬁ4 := (Mx, x). For an extended real-valued function f : R" — (—oo, +00], let domf := {x €
R™ : f(x) < 400} be its domain and

o= suléo{@, xy— f(}, yeR”
xeR”
be its conjugate function. The conjugate function f* is always convex and lower semicontinuous [37,
Theorem 4.3]. When f is convex, let df denote its subdifferential. A set-valued mapping F : R" =3 R™
is said to be outer semicontinuous at x if, for any sequence x* c R" with x* — ¥ and any sequence
u* ¢ R™ with uf € F(xX*) and u* — wu, it holds that u € F(X). If f is proper, lower semicontinuous, and

convex, the set-valued mapping df is outer semicontinuous or, equivalently, its graph is closed [38,
Theorem 24.4].

AIMS Mathematics Volume 11, Issue 1, 2188-2226.



2192

2. PPDG for nonconvex composite optimization

In this section, we propose PPDG, a preconditioned primal—dual first-order method based on
conjugate duality, for solving the nonconvex composite optimization Problem (1.1) and establish its
convergence. We begin by reviewing the preliminary conjugate duality results in Subsection 2.1. The
algorithmic framework of PPDG and the main assumptions are described in Subsection 2.2.
Subsection 2.3 is devoted to derive the descent property of a Lyapunov function. The subsequence
convergence is investigated in Subsection 2.4. Finally, under the KE property, the main theoretical
results regarding the global convergence and convergence rates are established in Subsection 2.5.

2.1. Conjugate duality and necessary optimality

Going back to Problem (1.1) and drawing upon the conjugate duality theory [39, Section 2.5.3], we
find that the dual problem of (1.1) is

mﬁx{ian L(x, y)} , where L(x,y) := f(x) + (y,Ax) — h*(y). 2.1
yeR™ | xeR"

If infcgn L(x,y) > —oo for any y € R”, then X and y are the optimal solutions of (1.1) and (2.1),
respectively, if and only if the following relations hold true:

X € argmin . L(x, ),
(2.2)
0=hAX) + h*() — (3, AX).

From the definition of the conjugate function, it follows that if (2.2) is satisfied, we have 0 € 0.L(X, y),
i.e.
0=Vfx) +A"y,
(2.3)
0 € -0h*(y) + Ax,

where AT is the adjoint operator of A. These relations (2.3) provide a set of first-order necessary
optimality conditions for the nonconvex Problem (1.1). Let us denote the set of critical points of £ as

critl :={(x,y) e R" xR" : 0 € 0L(X,y)}.
Therefore, the primary aim of this paper is to find a pair (¥, ¥) that satisfies (2.3), that is, (X, ) € critL.
Similarly, for the nonconvex finite-sum Problem (1.2), our goal is to obtain a critical point of

1 N
Li(ny)i= 5 ) )+ (0 Ax) = ().
i=1

2.2. The PPDG algorithm

The details of PPDG are described in Algorithm 1. This algorithm can be viewed as a first-order
primal—dual algorithm by observing the necessary optimality conditions (2.3). In particular, (2.5a)
is a standard gradient step associated with the first relation in (2.3), and (2.5b) can be regarded as a
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proximal gradient step coupled with the preconditioning technique introduced by [12] for the second
relation 0 € —0h*(¥) + Ax. More precisely, (2.5b) corresponds to the extended proximal mapping of /*
given by

Y = prox)?(yF + MTTAQRXM! — XN).

In view of (2.5b), a vector g**! € Oh*(y**!) exists such that
gk+l — _M(yk+l _yk) + A(2Xk+l _ xk). (24)

If the sequence {(x*,y*)} converges to (%, y), then (2.4) immediately implies the second relation AX €
Oh*(y) due to the outer semicontinuity of dh*.

Algorithm 1: PPDG

1 Initialization: Choose an initial point (x°, yO) € R" X R™, a constant @ > 0, and a positive
definite matrix M.

2fork=0,1,2,...do

3 | Update x*, y* as follows:

X = X - a(VFGE) + ATYY, (2.52)
Y1 = arg min {h*(y) — (y, AQX* = X))y + %IIy - yk||§4}. (2.5b)
yeRm

4 | Setk «— k+1.

Compared with the existing first-order algorithms for nonsmooth and nonconvex optimization
problems, one of the main features of Algorithm 1 is that we compute the proximal mapping of the
conjugate function A" rather than dealing with & directly. This is partially motivated by the popular
PDHG algorithm [11] for convex optimization problems. Upon observing (2.3), in both the definition
of critL and the later subsequence convergence analysis of Algorithm 1, we do not need to introduce
complex generalized subdifferentials of nonconvex functions, as is often required in many
well-studied first-order algorithms for nonsmooth and nonconvex optimization problems (see,
e.g., [40-43)).

In order to establish the convergence of Algorithm 1, we impose some standard assumptions
throughout this section.

Assumption 1. Suppose the following:

(i) The function f is L-smooth over R", i.e., f is continuously differentiable and a constant L > 0
exists such that for any x,z € R",

IVf(x) = V@Il < Lllx = 2|

(ii) inf g L(x,y) > —00 for any y € R™.
(iii) The linear operator A is surjective.
(iv) The convex hull of h is proper.

Remark 1. Some comments on Assumption I are in order.
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(i) Assumption 1(i) holds for many loss functions, including the cross-entropy loss function and the
sigmoid loss function in our experiments. A well-known gradient descent lemma under
Assumption 1(i) is

f(xk+l) < f(xk) + (Vf(xk),ka _ Xk> + %llxk+l _ MCHZ (26)

Moreover, by applying (2.5a) and Assumption 1(i), we have
1 1
IATGM =yl < (— + L) I =l =2 - L 2.7)
a a

(ii) Assumption 1(ii) ensures that the sequence generated by Algorithm 1 is well-defined. It is also
indispensable in the subsequence convergence analysis (see Proposition 3).

(iii) The linear operator A is surjective if and only if the matrix associated with AAT is positive definite.
Thus, under Assumption 1(iii), a natural choice of M in Algorithm 1 is the associated matrix of
aAAT. As a special case, if A is the identity operator, then we can choose M = al. Moreover,
under Assumption 1(iii), for any y € R", we have

Ayl < 1IAT yll, (2.8)

where A := VAmin(AAT) and Amin(AAT) denotes the smallest eigenvalue of AAT. Assumption 1(iii)
is a standard condition in convergence analysis (see [6, 15,43]). Even if the linear operator A is
not surjective, the proposed algorithm can often be applied effectively in practice.

(iv) The outer semicontinuity of Oh*, which is essential in convergence analysis (see Proposition 3),
is guaranteed when h* is proper, lower semicontinuous, and convex. It is known that, without any
assumption on h, the conjugate function h* is lower semicontinuous and
convex [37, Theorem 4.3]. However, in order to guarantee that h* is proper, an additional
assumption is required. It is shown in [44, Theorem 11.1] that h* is proper if Assumption 1(iv)
holds. Common nonconvex regularizers, including €, {,, SCAD, and MCP, satisfy Assumption
1(iv).

2.3. A Lyapunov function

As discussed previously, the primary aim of this section is to establish the convergence result that
the sequence (x*, y*) generated by Algorithm 1 converges to a critical point of the Lagrange function
L(x,y). However, this is difficult to fulfill for the nonconvex composite optimization Problem (1.1)
through the usual approach owing to the lack of the descent property of L. Instead, we work with an
auxiliary function to alleviate this difficulty.

Let us define the following Lyapunov function:

L,y u,v) = L(x,y) —allx — ull® + bllx = v|[*, Vx,u,v eR", y e R™.

Here, with the step size @ and the Lipschitz constant L of V£, let
0
a = —, b =— - — - — Y - 5L+ — (29)
a
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and let ¢ be a properly selected constant such that a > 0 and b > 0. Let ¢ be a constant given by
=b-—. 2.10
‘ 26 (10

By an elementary calculation, if we choose 6 = 1/5, then the choice of step size @ € (0,1/3L) is
sufficient to guarantee ¢ > 0 and, consequently, a > 0 and b > 0. Therefore, we can safely assume that
a, b, and c are positive in the rest of this section.

The convergence analysis of Algorithm 1 will significantly rely on the properties of ., which will
be investigated in this subsection. For a start, we show in the following lemma that the critical point
set crit.Z is closely related to critL.

Lemma 1. Let x,u,v € R, and y € R™. Then, (x,y,u,v) € crit.Z is equivalent to (x,y) € critL and
U=v==x

Proof. In view of the definition of .Z, the condition (x, y, u, v) € crit.Z reads as

0=V.Zxy,u,v)=V,L(x,y) —2a(x —u) + 2b(x — v),
0€0,Z(x,y,u,v) = 0,L(x,y),

0=V, Z(x,y,u,v)=2a(x—u),

0=V, Z(x,y,u,v)=2b{y - x).

The latter two relations imply that u = v = x. This, together with the first two relations, leads to
(0,0) € 0L(x,y), which implies (x, y) € critL. The converse is obvious. O

Throughout the remainder of this section, we let M be the matrix associated with «AAT, that is, for
all y, 9 € R™, (9, My) = (§,aAATy). Let

Zk = (xk’ yk’ xk+l’xk71)
and
d* = (V. 2, Ax - g5, V, 2, V,2(2),

where g = —M(*—y*"1)+AQ2xF - x*"1). From (2.4), we know that g* € 9h*(y*) and hence d* € 0.2 (")
by the definition of .Z". We now establish the following descent property of ., which will play a pivotal
role in the discussion of global convergence.

Lemma 2. Let Assumption 1 hold. Then, for all k > 1, we have
LEY) + e = P+ I = P < 2, (2.11)

where c is defined in (2.10). Moreover, it holds that

k+1

N < yalla® = X1+ pallad = X (2.12)

where y, := 2L + 4b + % + 2 + al)||A|| and y, := 4a + é + ||All, with a, b given in (2.9).
Proof. See Appendix A.1. O
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2.4. Subsequence convergence

Let C denote the set of cluster points of the sequence {(x*,y*)} generated by Algorithm 1. We
now establish the subsequence convergence based on the previous lemmas concerning .. These
convergence results will be proved under the assumption that the sequence {(x*, y*)} is bounded, which
is a standard assumption in the global convergence analysis of nonconvex optimization algorithms
(see [5,41,43], for instance).

Proposition 3. Let the sequence {(x*,y*)} be bounded, and suppose that Assumption I holds. We then
have

(i) S I = 2P < 0o and T2, [P = 4P < oo

(ii) C is a nonempty compact set and lim;_,, dist((x*, ), C) = 0;
(iii) C C critL;
(iv) L is finite and constant on C.

Proof. Assumption 1 (ii) implies inf; £(x*,y*) > —oo, which, together with the boundedness of {x'},
leads to inf; .Z(z¥) > —oo. Since the sequence {.Z (")} is nonincreasing (cf. Lemma 2) and bounded
from below, .Z(z*) converges to a finite value denoted by .. Summing (2.11) over k = 1,...,n yields

CZ(lek” = P+ I = NP < 2D - 2@,
k=1

Let n — oo, by the convergence of {.Z(z")}, we have

DI = AP < oo,
k=1
This, together with (2.7) and (2.8), also gives
DI =3P < oo,
k=1
Item (i) is derived. Moreover, it implies
lim X! — x*| = 0 and lim I =M = 0. (2.13)

The compactness of C follows from the proof of [41, Lemma 5 (iii)]. Since the sequence {(x*, y*)}
is bounded, C is nonempty, and for any (%, ¥) € C, a subsequence {(x*, y*)} of {(x*, y*)} exists such that

lim ||x* — || = 0, lim |y* - || = 0. (2.14)
g—00 g—00
By the definition of the distance function, we have
dist((x*, y), Q) < |Ix* = x| + IIly* = 5l < [Ix* = || + [lx* — =] + [Iy* = y*ll + [ly* = .

Combining this inequality with (2.13) and (2.14), we obtain the result that dist((x*, y*), C) converges
to 0 and hence Item (ii) holds.
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For Item (iii), it is sufficient to prove that (X,y) € critL for any (%,y) € C. Let Z := (X, 9, X, X).
Noting that 7% — Z, d* € 0.£(z") and d* — 0 by (2.12), we derived from the outer semicontinuity of
0% that 0 € 0.Z(2), i.e., (X, y, X, X) € crit.Z. Therefore, from Lemma 1, it follows that (X, ) € critL.

Recall from Remark 1 (iv) that the conjugate function A* is proper, lower semicontinuous, and
convex. Thus, 4" is continuous over its domain dom/* [37, Theorem 2.22]. Therefore, £ is continuous
over R” X domh* and

lim L(x",y%) = L(x, ),
g—
which also implies

lim Z(Z") = lim (L(x*, y*) — al|lxb — X512 + pl|xke — XY ?) = L(F,5) = 2@Q). (2.15)
g—00 q—

In the proof of (i), we have shown that lim_,., £ (z*) = £, which, together with (2.15), implies that
L(%,7) = . Since (&, y) is arbitrarily chosen in C, Item (iv) is obtained. O

2.5. Global convergence and rates under the Kt. assumption

In this subsection, we will establish the global convergence and convergence rates of Algorithm 1
under the KL property, which has been extensively studied in recent years for the convergence of
algorithms for nonconvex optimization (see, e.g., [5,40,45]).

Given a proper lower semicontinuous function f and the real numbers a, b, let us denote [a < f <
bl :={xeR":a< f(x) < b}.

Definition 1. A proper lower semicontinuous function f : R" — (—oo,+o00] is said to have the
Kurdyka—t.ojasiewicz (KL) property at X € domdf := {x € R" : df(x) # 0} if there exist n € (0, +o0],
a neighborhood U of X, and a continuous concave function ¢ : [0,17) — [0, +00) such that

(i) ¢(0) =0;
(ii) ¢ is continuously differentiable and ¢’ > 0 on (0,7);
(iii) Forall x e UN[0 < f — f(X) < nl, the following KL inequality holds:

¢'(f(x) — f(X)) - dist(0,0f(x)) > 1. (2.16)

A proper lower semicontinuous function f, which has the KL property at every point of domaf, is
called a KE function. When ¢(s) = os'~?, o is a positive constant and 6 € [0, 1), f is said to satisfy the
Lojasiewicz property with the exponent 6.

Remark 2. It is known that the KL property is automatically satisfied at any noncritical point x € R"
with a concave function ¢(s) = os [40, Section 3.2]. A very wide class of functions, such as nonsmooth
semialgebraic functions, real subanalytic functions, and functions definable in an o-minimal structure,
satisfy the KL property. In particular, for Problem (1.1), £ is considered to be a KL function if f and h
are semialgebraic (or f is semialgebraic and h* satisfies a growth condition [41, Section 5]). We refer
the readers to [40—42,46] for more properties and examples of KL functions.

We now establish the global convergence of Algorithm 1.

AIMS Mathematics Volume 11, Issue 1, 2188-2226.



2198

Theorem 4. Suppose that £ is a KE function. Let Assumption I hold and let the sequence {(x*,y*)}
generated by Algorithm 1 be bounded. Then (x*,y") converges to a critical point of L and

[se] (o]

k+1 k k+1 k
D = <o, DIV =yl < oo,
k=1 k=1

Proof. In the proof of Proposition 3, it has been shown that
lim L) =2, (2.17)

where .Z is the constant value of £ over C.

If there exists a number [, > 0 such that £ (z%) = £, which, together with Lemma 2, implies
that £ (") = % and x* = x**! for any k > [,. By (2.7), we have y* = y**! for any k > l,. Thus,
(2%, %) = (%1, yK*1) for any k > I, which proves the claim.

Otherwise, since the sequence {.Z(zX)} is nonincreasing by Lemma 2, it follows that .Z(") > .&
for any k£ > 0. Relation (2.17) ensures that for any n > 0, there exists an integer /; > 0 such that
L < L+ n for any k > I;. Let Q be the set of cluster points of {z*}. Along the same lines
as the proof of Proposition 3 (ii) and (iv), we find that the function .Z is constant on the nonempty
compact set Q and dist(z*,2) — 0 as k — oco. Thus, for any & > 0, there exists [, > 0 such that
for k > I, dist(z*, Q) < e. Let Ky := max{l,, ,}. From the discussion above, one has that z* € {z :
dist(z, Q) < e} N [L < £ < L +n] forall k > K,. Since .Z is a KL function, from the uniformized
KL property [41, Lemma 6], there exists a continuous concave function ¢ such that for all k¥ > K,

¢ (L) - L) - dist(0,0.L2(F)) > 1. (2.18)
Using the concavity of ¢ yields
WL - D)< p( L) - D)+ (L) - L) (L) - 2. (2.19)
The bound (2.12) implies that
dist(0,0.£(2)) < y(llr* — X+ I = ), (2.20)

where y := max{y,y,}. Combining (2.18)—(2.20) with Lemma 2, we obtain that M, := ¢(Z (") —
L) — o(L(T") — ZL) satisfies

g(zk) _ g(zlﬁl)
dist(0, 0-Z(z"))

Mg 2 (L) = Z) - (L) - L) =

el = P+ [1x* = X117

YR = x|+ ok — X))

where c is the constant defined in (2.10). The inequality above is rewritten as
T = P+ o = P < %Mk,kﬂ(”xk — X+ = XD (2.21)
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This also indicates that

Y
[l — )| < \/ZMk,kH(”xk — x| 4 ok — XK
Y 1 k k-1 +1
< ;Mk,k+l + Z(llx —-x |+ ||Xk - xk”),
which is equivalent to
+1 k 2y 1 -1 e+l k
[l = ) < 7Mk,k+l + E(lek — X = I = D,

Summing up from k = K to n with n > K, it follows that

- 2 1
DI = T Mg + 5l = ) (222)

k=Ko

Similarly, from (2.21), we also have

- _ 2 | S u
DI =< My + S = (223)

k=Ko

Summing (2.22) and (2.23), we obtain

n ) 4 1 ) 1
DT = o = 7D < Mg + Sl = S
o (2.24)

4 7 1 - 1 n n
< %so(-i”(zK“) = D)+ Sl — K S =

where the second inequality follows from the fact that ¢ > 0 over (0, 7). Let n — oo in (2.24), then by
the first term of (2.13), we have

DU = ) < oo,
k=K
which, together with (2.7) and (2.8), implies

DIV =l < oo,

k=Ko

These two inequalities imply that (x*, y*) is a Cauchy sequence along the same line of analysis as [41,
Theorem 1 (ii)]. Thus, the sequence (x*, y*) converges to a limit (%, ¥) that is a critical point of £ by
Proposition 3 (iii). i

The convergence rates of the sequence {(x*, y*)} under the Lojasiewicz exponent are provided in the
following theorem which is proved in an analogous way to [42].

Theorem 5. Assume that the sequence {(x*,y*)} is bounded and ¥ is a KE function with the
Lojasiewicz exponent 0. Let (X,3) be the limit of (x*,y"). Then, under Assumption 1, the following
estimations hold:
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(i) If 6 = 0, the sequence {(x*,y*)} converges in finite steps;
(ii) If 6 € (0, %], then there exist constants v > 0, 0 < 7 < 1 and a positive integer K such that for
k> K,

k - k—K k - k—K
lx* = x| < v %, Y =3l < VTR,

where v' := v(1/a + L)/ and A is given in (2.8);
(iii) If 0 € (%, 1), then there exist a constant i > 0 and a positive integer K such that for k > K,

ot — < k< ke
where (' := u(1/a + L)/ .
Proof. See Appendix A.2. D

3. SPPDG for nonconvex finite-sum optimization

In this section, we consider to solve the nonconvex finite-sum optimization Problem (1.2). By
combining Algorithm 1 with certain stochastic gradient estimators, we present a stochastic variant of
PPDG, named SPPDG, and establish its almost sure convergence as well as its convergence rates.

3.1. The SPPDG algorithm

In Algorithm 2, we summarize the details of SPPDG for the nonconvex finite-sum optimization
problem:

. I+
min f(x) + h(Ax),  where f(x) = & ; F(x).

In many applications, the number of components N can be very large, which makes the computation
of the full gradient Vf(x) = #Zf\il V fi(x) challenging. To circumvent this difficulty, we apply the
stochastic gradient estimator v fi to approximate V f(x*) in (3.1a). Hence, Algorithm 2 can be viewed
as a stochastic approximate variant of Algorithm 1.

Algorithm 2: SPPDG

1 Initialization: Choose an initial point (x°,y%) € R” x R™, a constant a > 0, and a positive
definite matrix M.

2fork=0,1,2,...do

3 | Update x*, y* as follows:

=X - a(Vf + ATV, (3.1a)
) . 1
Y= arg min {h ) = 5, AR — X)) + L y"||%4}, (3.1b)
yerR™

where V fi is a stochastic gradient estimator of V £(xX).
4 | Setk « k+ 1.
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Let 7 be the o-field generated by the random variables of the first k iterations of Algorithm 2 and
By be the expectatlon conditioned on . Since x* and y* are both dependent on the random information
V {Vo, v fi, ..., Vfi_1} of the first k iterations, the iterate (x, y*) is F;-measurable .
In this paper, we will mainly focus on the variance-reduced stochastic gradient estimator v Jfx which
is formally defined in [15, 36].

Definition 2. The stochastic gradient estimator Fvak is said to be variance-reduced if there exist
constants 0 ,03,0 > 0, p € (0, 1] and the Fi-measurable non-negative random variables AKX, A’g of
the form A% = Y1 (V\)?, A5 = Yi_, Vi for some nonnegative random variables v, € R such that for
any k > 1, the following hold:

(i) The estimator v fx satisfies
EllIVfi — VAOOIPT < Af + o Bl = 24IPT + 115 = 1P (3.2)

and

EcllIVfi — VAN < AS + @l = 2411 + 16 = 7)) (3.3)

(ii) The sequence {A%} decays geometrically
E[ATT < (1= p)AS + oa @il = XIPT + (14 = 1P). (3.4)

(iii) If {x*} satisfies limy_q E[||x* — x*71|] = O, then E[A’l‘] — 0 and E[A’;] — 0ask — oo.

Remark 3. A variety of popular stochastic gradient estimators satisfy the conditions in Definition 2,
such as, SAGA, SARAH, SAG, and SVRG. Combining (3.2) and (3.4), for any k > 1, we have the
following bound:

— 1 ~
EllIVfi = VAEOIPT < ;(A'f — B[ AT + kBl = XAPT + 11X = XP), (3.5)
where k := o) + 22 ; A The readers are referred to [15, 36] for a detailed description of the examples and

properties of the variance-reduced stochastic gradient estimator.

In the rest of this section, we assume that V fi in Algorithm 2 is a variance-reduced gradient
estimator satisfying the conditions of Definition 2, and let M be the matrix associated with «AA”. We
shall analyze the convergence of (x*, y*) generated by Algorithm 2 under the following assumption.

Assumption 2. The assumption is the same as that in Assumption 1 except that Assumption 1(i) is
replaced by that assumptions that the functions f;, i = 1,...,N are L-smooth, and L in Assumption
1(ii) is replaced by L, with

N
Lxy) =~ Z 00 + (3, AX) = 1 ().
i=1

Unsurprisingly, we will observe that part of the convergence analysis of Algorithm 2 will be
performed in a similar way to Algorithm 1 in Section 2. Without any confusion, some notations in
Section 2 will be used again in this section.
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3.2. Auxiliary lemmas
Let us first define the following Lyapunov function:
L%, y,u,v,w) := L(x,y) = allx = ull® + bllx = vI* + cllv = wiP, (3.6)

for any x,u,v,w € R", and y € R™. Here, with the step size @ and the Lipschitz constant L of Vf;, the
constants a, b, ¢ are given by

3al? 3ak

20, 9ak K
i=ey+ — + 20k, bi=ey+ — + 2000k + — + , €= ——,
O O A B o T T s T 28, T 26,

where
1 6+l  k  46L 46 26al?  al? 2ak  86ak
"3 6 3, 3 3 3 25, & 3
and k > 0 is defined in (3.5). In addition, d;, 6, > O are properly selected constants such that ey > 0.
In this subsection, we mainly aim to develop the descent property corresponding to the Lyapunov
function .%; in expectation. Following the same line as the proof of Lemma 1, we first derive the

relation between critL, and crit.%Z,.

(3.7

Lemma 6. For any x,u,v,w € R", y € R", and (x,y,u,v,w) € crit.%; if and only ifu = v =w = x, and
(x,y) € critL,.

The following lemma gives a connection between the two sequences {y*} and {xX}.

Lemma 7. Suppose that Assumption 2 holds. Then, for k > 1, we have

4 4
EcllIAT G = yOIP] < =Bhl AT = AM21+ = (A} = By [AF]) + dulxb — 117
p p
1 +2 k+1112 1 ? k+1 k12
+4 EH B[]l = XY + 4 a+L + 2k | B[ = XM,

where p and k are defined in Definition 2 and (3.5), respectively.
Proof. See Appendix A.3. O

For the sake of simplicity, define z& := (%, y*, x**!, x*=1, x*=2). Similar to the process of the
convergence analysis in Section 2, we establish the following critical lemma on the descent property
of the Lyapunov function .Z.

Lemma 8. Let Assumption 2 hold. Then, for any k > 1 and 6,5, > 0, we have
E[Z 1]+ Eleo(Ix? = X1 P + 117 = P + 16 = X1P)] < BLZS, (3.8)
where e is defined in (3.7),
L= L@ + el AT + e AT + e AT

and
_ 2(52&

e . , €7

20, N 1 N 3a 3a
= , €3 = .
p 260 260" 0 260p
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Proof. See Appendix A.4. O

Remark 4. As stated previously, the constant e is guaranteed to be positive through a careful selection
of 81,05, and the step size a. For example, let 61 = 1, 6, = é, and a € (0,1/2(3 + 7L + 6k)), we have
eo > 0 by a straightforward calculation. Thus, we can assume that ey is positive throughout the
remainder of this section. Under this condition, Lemma 8 indicates that the sequence {E[.i”s’\k]} is
nonincreasing. ,

Define
d* = (d\,d5,d5, d, db) (3.9)

with

df = L3V VR + ATy = 2a(xk — x4 4 26k — Xk,

d’z‘ = Ax* + MK — Y1) — AQxF — XK,

dé‘ = =2a(x**1 = x%), dfj 1= 20 — XY 4+ 2e(xFT — X2, d’s‘ = 20(xk2 — Xk,
Noting that g¢ = —M(* — Y1) + AQx* — x¥1) € dh*(y*) from (2.4), we can easily check that d* €
0.%,(Z"). In the following lemma, we derive a bound of d*.

Lemma 9. Let Assumption 2 be satisfied. It holds that
Elld"IPT < rL = 1 + = X2+ e = 7207+ I = Y P + AT, (3.10)

where r := max{ys,ys,Ys, 3} with

312
ysi= =+ 22 164 + 30, Ya := 2007 + 30y + 2||AIP + 2lIM|1%, s = 12¢2,
a a

where o is defined in Definition 2, and a, b, and c are given in (3.6).

Proof. See Appendix A.S. O

3.3. Convergence analysis

Now, with the help of the auxiliary lemmas established in the previous subsection, we demonstrate
that the iterates {(x¥, )} of Algorithm 2 exhibit the following elementary convergence property under
the assumption that {(x*, y*)} is bounded almost surely (for short, a.s.). This assumption is also used
by [45,47] for studying stochastic optimization algorithms.

Proposition 10. Suppose that {(x*,y")} is bounded almost surely. Then, under Assumption 2, we have

(o) [ee)
Z I = )P < 0 as.  and Z I = YA < o0 a.s.
k=0 k=0

Proof. Summing (3.8) over k = 1,...,n yields

€o Z Ef[lx2 = X2 4+ 11 = P+ I = NPT < BLZAT - BLLS ) (3.11)
k=1
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From Assumption 2, £ is bounded from below, which, together with the almost sure boundedness
of {x*}, ensures that E[X +] is bounded from below. Since ]ELZ ,] is nonincreasing (cf. Remark 4),

E[.Z;’,‘k] converges to a finite value. From (3.11), it follows that

DB = AP = ) Bl - KR < oo,
k=1 k=0

This also implies that
lim E[|lx*! = X1 =0

and

DU - P <o as.
k=0
Furthermore, from Item (iii) in Definition 2, it follows that

lim E[Ak] =0and hm E[Ak]

k— o0

By Lemma 7 and (2.8), we have

4
Bl = »1PT < fon (BaLAKT = AR2] + (A} - By [AF1D))

/12

Taking expectation on both sides and summing it over k = 1,...,n, we have

ZE DA = 541P]

A}il+1 _ A}il+2]

2
4 ((1 k42 _ k12 k+1 k2 ko k—1p2
+ —/12 (( +L) +2K) E E[||x [|©+ [|x7 = X7 + [|x° = X |)7].

k=1

Let n — oo. Then, by using (3.12) and (3.15), one has

DB = IPT < o0
k=0

which implies that
lim Bl - »*I°1 = 0

and

[>9)

k+1 k(12
D=y IP <o as.
k=0

The proof is completed.

4 (1 \
+ = (( + L) + 2K) (Bl = 252+ 4 — AP+ b = 1P
(0

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

O
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Remark 5. Because of the random nature of v fr, we can define a suitable sample space Q) based on
the structure of Algorithm 2. The sequence {(x*(w), y*(w))} with each sample w € Q then corresponds
to the iterates generated by a single run of Algorithm 2. The sample space Q can be equipped with
a o-algebra F and a probability measure P to form a probability space (Q,F ,P). Consequently, the
assumption that {(x*, y*)} is bounded almost surely implies that there is an event A with P(A) = 1 such
that the sequence {(x*(w), Y*(w))} is bounded for every w € A.

The following proposition establishes the subsequence convergence by showing that any cluster
point of the sequence {(x*, y*)} is a critical point of £, with probability 1.

Proposition 11. Let Assumption 2 be satisfied and let {(x*, Y*)} be bounded almost surely. Then, there
exists an event A with a measure 1 such that, for all w € A, the following statements hold:
(i) The set C, containing all cluster points of {(x*(w),y*(w))} is nonempty and compact, and
dist((x"(w), y"(w)),C,) = 0;
(ii) C, C critLy;
(iii) Ly is finite and constant on C,,,.

Proof. See Appendix A.6. O
Remark 6. Under the assumptions in Proposition 11, from Item (i) and Item (iii), there exists an event
A with P(A) = 1 such that for all w € A, dist((x*(w), Y*(w)),Cy) — 0, and L equals a constant value

.Zw over C,. Hence, it follows that B[ L,(x*,y*)] — L, with L, := E[Zw]. It also follows from (3.6)
and 75 = (&, y*, X1, XK1 ¥572) that

L) = L5,y = alld = P+ bl = P+ el = P,
which, together with (3.13), implies that B[ £(z)] — L, as k — oo.

We now present the main theorem of this section about the finite length property and the almost sure
convergence of the whole sequence {(x*, y*)} generated by Algorithm 2 depending on the K¥. property
of the Lyapunov function ..

Theorem 12. Suppose that Assumption 2 holds and that %; is a KL function with the Lojasiewicz
exponent 6 € [0, 1). Let the sequence {(x*,y*)} be bounded almost surely. The following then hold:

(i) It holds that
SRl - T <o, DRI -3 < oo
k=0 k=0

(ii) The sequence {(x*,y*)} converges almost surely to a random vector (%,%), and (%, y) € critL; a.s.

Proof. Let us begin with the proof of the simple fact that } ;- E[||x**! — x¥||] < oo and Y2 E[|[y**! -
W < oo if 332, \/E[ll)c’“rl — x¥||?] < oo. In other words, if this fact is true, in order to derive Item
(i), it is sufficient to prove >, \/E[llx’“f1 — xK|?] < oo. Indeed, by Jensen’s inequality, the fact that
S EllIx**! = x*[|] < o is obvious. By (3.16) (with k = k — 1) and Va + b < va + Vb, there exists a
constant yg > 0 such that

VEIIY* =y 1P

< ¥s(VEL! = xHP] + VE[x = X 12] + VE[Il! = x4 2]+ (E[A]]).

(3.21)
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Using (3.4), Va+b < va+ Vb, and /1 —p < 1 — £, it follows that

VEIALT < (1 = p)BIA ]+ g Bl — -1 R] + B! — x-2]2])
< (1= 5) \JBIN ] + VorBI = T1PT + VorELT = X217
Rearranging this inequality, we obtain

JEIAF < %(JE[A’; - JBIAKD) + «/aAE[nxk — TP+ x/aAE[nxk TA2RL (323)

Therefore, by substituting (3.23) into (3.21), we have

(3.22)

(9]

DB =340 < Y VBN = HPT < o0
k=0

k=0

Hence, the simple fact is proved.
We next prove that );°, \/]E[llx’“rl — xM]?] < oo. If % is a KL function with the exponent 6, an
integer K, and a function ¢y(s) = oos'~? exist such that the following holds

@b (E[Z(Z)] = Lo Eldist(0, 0.Z,(Z)] = 1, Vk > Ko, (3.24)

where {.,2”Y ¢} is a nondecreasing sequence satisfying E[.%,(z")] — Zx > 0 [36, Lemma 4.5] and
converging to a finite value £ that is given in Remark 6.

When 6 = 0, we show that E[.,iﬂs’}] = [, holds after a finite number of iterations by contradiction.
Otherwise, Inequality (3.24) implies that

E[dist(0, 0.Z,(z))] = i, Yk > K. (3.25)
0o

From (3.25), (3.10), and Jensen’s inequality, we have
% < (E[dist(0, -Ly(ZND* < rELI — x4 + [l = X2 + 16! = X212 + Iy = y1I1P + AfD.
Applying this inequality to (3.8), we have
E[.Z5) <ELZLS_ 1= eoBlIx" — X7 + [t = X112 + 1" = 227
<ELZLS_1- 03 + eIl = ¥y IP] + eE[A]],
which is impossible after a large enough number of iterations by noticing that E[|y* — y**!||’] — 0

(cf. (3.19)), ]E[A"] — 0 (cf. (3.15)), and E[.Z W L, (cf. Remark 6). Therefore, there exists an
integer K > 0 such that E[.Z/}] = £, holds for k > K. In view of (3.8), we have E[|lx* — ¥*"'|’)] = 0

for k > K, and hence ;- \/E[lek+1 — xk|?] < oo.
We now consider 6 € [%, 1). By (3.10), Jensen’s inequality, and Va + b < +a + Vb, it holds that

E[dist(0, 0.2,(z)] < Vr(VELlIX — x42] + VE[llxk — x12] + VE[lly* — y<1|7]
+ VE[Ix! = X2|2] + JE[AL]).

(3.26)
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Substituting (3.21) into (3.26), we then have

BIdist(0,0.L(N)] < 76V EIA]+ ([rBIAL]

(3.27)
(V476 V) (VEINST = 2HP] + VELI — 2112+ VE[IT - x2[12]).
Applying (3.23) to the last two terms in (3.27) and letting y := \r + ys \r + 2‘/;(’7 + 2 Zﬁ, one has

E[dist(0, 0Z.(ZN] <y (VEIT = x4P] + VEIIIx* - ¥1PT+ VE[I-" - x-2|P])

+ ZYZW(\/E[A’]H] - JEIAL]) + 27\/;(\/15[/\?] - JELAR).

Let X, denote the right-hand side of the inequality above. Obviously, ; > 0. Combining the inequality
E[dist(0, 0.%Z,(z5))] < X with (3.24) and @y(s) = os'~ gives
oo(l —0)xy
(E[LZL(] - L)’

> 1, Yk > K. (3.28)

Note that for 8 € [%, 1), there are positive constants By, », k3, and a sufficiently large integer K; > 0
such that for k > K,

Elei AT + e} + esAT' < E[ATT + AT+ AT < k0 \/E[A’f“ + AL+ AR

< k(BT + BN+ VERST = 2P + VEII — 2P < BoZ

where the second inequality is deduced from E[A’l‘] — 0 for k — oo (cf. (3.15)), the third inequality
is obtained by Va + b < Va + Vb, and (3.22), and the last inequality is from (3.23) and the definition
of Z;. Take a constant 8 > 0 such that Soo(1 — 6) > oo(1 — 6) + By. From (3.28) and the fact that
(@a+b)f <a’+b’foroe [%, 1], it then holds for k > K := max{K,, K;},

Boo(1 — )X S Boo(1 — )X
(E[ZL]] - L)t EBLAGE)] - L) + Elet A + eaAF + es A1) (3.29)
Boo(l — 0)% '
ool =%+ BoZy
Let ¢,(s) := Bops'~?, and for any k > K, (3.29) is rewritten as
O ELLN] - L)z 2 L. (3.30)

Since ¢, is concave, we have

o1 EBLLS ] = Lognr)
< OELLA] - 2o + GEBLLA] = LWBLLA. = Loser = L + Lkl
< @I(EBLLY] - Zop) + ¢LELLS] - LB, - LA 3.31)
< @ELLN - L) - %E[”xk+2 — R 4 R = P I = A,
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where the second inequality is obtained by %, < .Z,s.1. the third inequality is from Lemma 8

and (3.30). Let M., := ¢1(BLZLA] = Low) — 1 BLELA] — £,,). Then, (3.31) implies

Miger > gE[nx’”Z — xR
k

Rewriting this inequality and using 4 Vab < a/y + 4yb for any y > 0 yields

MnZe I 4yM
4 B2 = 3T ] < 4 [0S0 o 2k TP
€ Y €o

which, together with the definition of %, gives

4VE[I2 = X 1[P] < VELRT = 24P]+ VE[Ix - 21P] + VE[! = 222

+ 47/::)k,k+1 " 2727\/; (\/E[A’;—l] - \/E[A’;]) + 2p—;//;(\/E[A’;] - \/E[A’[“]),

Summing up from k = K to n, we have

D VEIE2 — 12T < 3 VE[F = xFP] + 2 VB[ — 1]

k=K

L\ 4y M 2 2
+ VEIRET — k2] 4 Xk Yo V1 E[A{H]+—\/; E[AX].
& e pY pY

(3.32)

By the definition of My ., it holds that Y }_x Mix+1 = Miue1 < gol(E[.;st”\K] - jg,K). If weletn — o
in (3.32), it then follows that

> VEIRST = 2P < oo.
k=0

For 6 € (0, %), we show that it can be reduced to the case that 0 = % Indeed, from Remark 6, we
can let K, be large enough such that E[.%,(z¥)] — ,iz&k < 1. Since (3.24) holds with 8 € (0, %), we can
see that (3.24) also holds with 6 = % Thus, the claim follows immediately from the analysis for the
case that 6 € [1, 1).

Combining these results, we obtain ;7 \/E[le"+1 — xK||?] < oo for all 8 € [0, 1), and hence Item (i)
is derived by the previously mentioned simple fact.

In the proof of Proposition 11, we have shown that there exists an event ‘A with a measure 1 such
that, for any w € A, every convergent subsequence of {(x*(w), y*(w))} converges to a point (X(w), y(w))
belonging to critL;. If follows from Item (i) that

[Se] [Se)
D - <oas, Y I -yl <oas,
k=0 k=0

and consequently

DI @) =A@l <o, Y I (@) = Y @)l < oo,
k=0

k=0
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In other words, {(x*(w), y*(w))} is a Cauchy sequence. Thus, the sequence {(x*(w), y*(w))} converges
to (X¥(w), y(w)). Therefore, there is a random vector (&, ¥) such that {(¥, )} € critL, a.s. and {(x*, y*)}
converges almost surely to (X, ¥). Item (ii) is proved. O

Finally, we establish the convergence rates of the sequence {(x*, y*)} under the L.ojasiewicz exponent
in the following theorem.

Theorem 13. Suppose that Assumption 2 is satisfied and that £ is a KL function with the Lojasiewicz
exponent 6 € [0,1). Let the sequence {(x*,y")} be bounded almost surely and let {(x*,y*)} converge
almost surely to some random vector (X,y). The following statements then hold:

(i) If 6 = O, the sequence {(x*,y*)} converges in expectation after finite steps;
(ii) If 6 € (0, %], then there exist constants v,v > 0, 7,7 € (0, 1) and a sufficiently large integer K such
that for k > K,
E[llx - Il < ve*%,  EllY -5l < v,

(iit) If 6 € (3, 1), then there exist constants p,ft > 0 and a sufficiently large integer K such that for
k> K,
— _1-6 _ 10
E[llx* — &l < k™1, B[y - 3ll] < ik~

Proof. See Appendix A.7. O
4. Preliminary numerical experiments

In this section, we show the efficiency of our proposed algorithms, and compare them with several
state-of-the-art algorithms on a variety of test problems. All numerical experiments are carried out
using MATLAB R2023a on a desktop computer with an Intel Core i5 with 2.5GHz and 32GB memory.

4.1. Deep learning for image classification

In this subsection, we use a one-hidden layer deep neural network for image classification using
the dataset CIFAR-10*, which consists of 60, 000 color images of size 32 X 32 divided into 10 classes.
Within this dataset, 50,000 images have already been designated for training, while the remaining
10,000 are reserved for testing. The one-hidden-layer neural network consists of an input layer, a
hidden layer, and an output layer. The hidden layer size is 175. We emphasize that this experiment
serves only as a simple proof-of-concept to demonstrate the efficiency of our algorithm.

We adopt the following notation:

e N: the number of input samples, m: the number of neurons in the hidden layer, d: the dimension
of each input sample;

e x; € R% the i-th input sample, i = 1,..., N, zij € R: the j-th element of the actual output, y;; € R:
the j-th element of the desired output, j = 1,...,10;

e wy: the weights of the connections between the input nodes and the hidden layer, vj: the
weights of the connections between the hidden layer neurons and the output neuron, by, b;: the
bias parameters of the hidden layer and output layer, k = 1,...,m, j=1,...,10.

*The dataset can be found in https://www.cs.toronto.edu/~kriz/cifar.html
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Training the neural network amounts to obtaining the value of the model parameter (w, b) such
that, for each point of input data x, the output z of the model predicts the real value y with satisfying
accuracy. To achieve this, it is necessary to solve the following finite-sum optimization problem:

1Y
Q};N;fi(w, b) + A(wlly + 1bI1)), (4.1)

where

10
filw,b) = - Z vijlog(z;))
=1
is the cross-entropy loss function,

m d
Zij = &2 (Z Vik&1 (Z Wi Xis + bk] + bj] ,

k=1 I=1
and 4 > O represents a regularization parameter. Here, g, is the sigmoid activation function and g, is
the softmax activation function.

We choose a normalized vector drawn from the standard normal distribution as the initial point x°
and set 4 = le—4. Alongside the SAGA, SVRG, and SARAH estimators, we apply SPPDG (Algorithm
2), the stochastic linearized ADMM (SADMM) proposed recently by [15], and the stochastic proximal
gradient method (SPG) to train the neural network on the training set. After training, we evaluate the
classification performance of this neural network on the test set. The numerical results are presented
in Figure 1, which displays the training loss, training error, and test error as functions of the total
number of propagations for all methods. By observing this figure, all three SPPDG methods obviously
outperform the methods associated with SADMM and SPG, and the gradient estimator SVRG seems
to be more competitive than SAGA and SARAH.

2.4 T T T 1

r
w

n
Y

——SPPDG-SVRG

—— SPPDG-SARAH

——— SPPDG-SAGA
SADMM-SVRG

—— SPPDG-SVRG

——— SPPDG-SARAH

—— SPPDG-SAGA
SADMM-SVRG

—— SPPDG-SVRG

~——— SPPDG-SARAH

——SPPDG-SAGA
SADMM-SVRG

Training Loss
N

S

= = = SADMM-SARAH = = =SADMM-SARAH = = - SADMM-SARAH

— — ~SADMM-SAGA — — —~SADMM-SAGA 06H~ " - SADMM-SAGA
194 SPGSVRG | A\ | ggll]--- sPGsvRé | N |- SPG-SVRG
----- SPG-SARAH ----=SPG-SARAH 0.55 | | === SPG-SARAH
***** SPG-SAGA —-=-=8SPG-SAGA —-—-~SPG-SAGA
1.8 05 N . |
10° 102 10* 102 10* 10° 10° 10° 10° 10 10° 10°
# of Props # of Props # of Props
(a) Training loss vs Props. (b) Training error vs Props. (c) Test error vs Props.

Figure 1. Comparison of SPPDG, SADMM, and SPG for image classification using a one-
hidden-layer neural network.

4.2. Nonconvex graph-guided fused lasso

In this subsection, we consider the following problem:
1 &

min 7 2, 00 + Ay, (42)
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Here, A = [V;I] € R™", with V € R™" being the sparsity pattern of the graph obtained by sparse
inverse covariance estimation [48], the set D is defined as D = {x € R" : ||Ax|l < r}, fi(x) =
1 — tanh(b; - {a;, x)) is the sigmoid loss function which is nonconvex, and ||ul|,, p € (0, 1) is the £,-
norm. Evidently, Problem (4.2) can be categorized as an instance of the fully nonconvex finite-sum
optimization Problem (1.2) with A(u) = /l||u||§ + (), D ={u: |ull- < r}. In what follows, we choose
A=1le—4andr=1.

In this experiment, we test Problem (4.2) on the datasets CINA", MNIST#, and gisette [49]. To
apply our algorithms, PPDG (Algorithm 1) and SPPDG (Algorithm 2), we should calculate prox (y* +
M'AQx**! — x¥)) with M = @AAT at each iteration. However, since the extended proximal mapping
prox;! is difficult to obtain directly, in practice, we calculate the term proxg. (yk + BAQXM! — x")) as
an approximation, where 8 = 1/(a||A||*). The numerical result is displayed in Figure 2 with the initial
point X’ = 0, g = 0.5 and a fixed mini-batch sample size |0.01N]. Because of the fully nonconvex
structure and the existence of the linear operator A, Problem (4.2) cannot be solved by SADMM and
SPG directly as in the previous subsection. However, we can observe from Figure 2 that both PPDG
and SPPDG with the gradient estimators SAGA, SVRG, and SARAH are able to solve Problem (4.2)
efficiently. Moreover, with the same CPU time, SPPDG outperforms PPDG significantly, and among
the stochastic variants, SPPDG-SARAH exhibits better performance than SPPDG-SVRG and SPPDG-
SAGA.

—— PPDG ——PPDG

0.195 ——— SPPDG-SVRG ———SPPDG-SVRG
~——— SPPDG-SARAH ——— SPPDG-SARAH
0.19 ——— SPPDG-SAGA

—— SPPDG-SAGA

Objective value

5 10 15 20 25 30 [ 200 400 600 800 1000 0 200 400 600 800 1000 1200 1400 1600
Time Time Time

(a) Obj. vs Time (CINA) (b) Obj. vs Time (MNIST) (c) Obj. vs Time (gisette)
Figure 2. PPDG and SPPDG for the nonconvex graph-guided fused lasso problem.

S. Conclusions

In this paper, we delve into an exploration of the first-order primal-dual methods for composite
optimization and nonconvex finite-sum optimization in the fully nonconvex setting. Inspired by the
existing first-order primal—-dual methods for convex optimization, with the help of conjugate duality,

we propose a preconditioned primal—dual gradient method and its stochastic approximate variant. The
proposed methods are shown to be effective on a variety of nonconvex applications.
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A. Appendix

A.l. Proof of Lemma 2
Proof. We first present a recursive relation for £. From (2.5a) and (2.6), it follows that

SO < 6 = 6F AGE = 4) - (i - g) ! = R,

Taking k = k — 1 in (2.4) and using the convexity of 4*, we have
RO < =R + OF — YL MG — ) + AR — 1Y),
Combining these two inequalities, adding (y**!, Ax**!) on both sides and recalling that £(x,y) = f(x)+
(y,Ax) — h*(y), we obtain
LEE ) < LK ) — (é _ %) I — 4P
£ R AR — by MOk — ),

(A.1)

Applying (2.5a) again, one has
<yk+1 _yk’A(ka R xk) + M(yk _yk—l»
= M =y (@AAT - MG =y + OF =y @AV AR = VD))
= M =) aA(V (M) = V).
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Substituting this relation into (A.1), we have

LMY < L0650 - (é - %) [ = P+ O = 3 @AV = VFGE))).

We now prove (2.11). From (A.2), we have

LOA ) < LG5 - (cly ) If) I = 9+ 61 =y @AV = V)

1 L ad al?
< N N 1 kg2 o FO ATkl k
< L(xYY) (a 2)||xk X+ Ao YOI + 5 — I

e

(A.2)

(A.3)

where the second inequality is deduced from the Lipschitz continuity of Vf and the fact that (x,y) <

S12 o LIl2 :
Slxll® + 55llyll. From (2.7), it follows that

1\ 2,
”AT(yk+l _yk)”Z < 2(_ + L) ||.Xk+1 X ” + = k+2 xk+1||
a a?

Substituting this inequality into (A.3) and recalling the definitions of a, b, and ¢, we conclude that

LYY < L0659 = (@ + b+ o)l = X + (0 - o)l = XY + a5 -

Rewriting this inequality gives

k+1

LA, Y =l = 2Pl = P+ e = P+ = P

< L5,y = all® = X+ bllk =

The proof of (2.11) is completed by recalling the definition of .7
Finally, we consider the bound of d*. For the first component of d*, we have

IV L@ = IVF) + ATy = 2a( = 1) + 260 = )|

< (L+ 2B = 7+ 2all = T+ AT OF = DI+ IV R + ATV,

which, together with (2.5a) and (2.7), gives
V.2 < 2(L+ b+ )||xk A7)+ (2a+ )lek“

For the second component of d-, by (2.4), we obtain

IAX" — gl = IMGF =y 1) — AGE = XN < alANNATGF = DI+ Al — x

which, together with (2.7), yields
IAX" = gMl < 2 + aD)lAllllx* = x| + Al = ).
For V,.#Z(7") and V,.Z(z*), one has
IV, L@ = 2allx*" = XMl IV, LGOI = 2bl" = ).
Combining (A.4), (A.5), and (A.6) together, we have

k-1
I,

2 1
'l < (2L +4b+ = + (2 + a/L)llAll) [l = X1+ (4a +—+ ||A||) [k — K.
@ a

The proof is completed.

(A4)

(A.S)

(A.6)

O
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A.2. Proof of Theorem 5

Proof. Consider 6 = 0, let K; := max{k € N : x**! # x*}. We now show that K| is a finite number.
On the contrary, we assume that K, is sufficiently large that (2.18) holds for all k > K;. Note that
@(s) = os when 0 = 0, then (2.18) and (2.20) read

Y = N+ T = ) > dist(0,0.2(2) = =, k> K,

1
g
which, together with Lemma 2 and a® + b* > (a + b)?/2, yields

L) < LE) = e =X+ I = P < 25 -

222

Let k — oo. In the proof of Proposition 3, it has been shown that limy_,., Z(z*) = .Z = L(X,),
consequently,

L(x,y) < L(%,7) - 2 j >

which is a contradiction. Therefore, K| is a finite number and {x*} converges in finite steps. From (2.7)
and (2.8), we obtain

1/a+ L
||yk+l _yk” T k+l ka + k+2 xk+l||

Allx

1/a+ L
< T (”xk+l _ AJ(H + ||.Xk+2 _ xk+l||).

Hence, {y*} also converges in finite steps and Item (i) holds.

Let A := Y02 llx¥*" — x9|| + |[x? — x97"||. The results in Theorem 4 state that A; < +oo for any k > 1
and the sequence {(x*, ")} converges to (%,¥) which is a critical point of £. The triangle inequality
implies that ||x* — X|| < A, and

N 1a+L
I =5l ) I =yl < ===y

Therefore, it is sufficient to establish the estimations in (ii) and (iii) for A;. If Ay = 0 for some k%, it
follows that ||x7*! — x9|| = O for ¢ > k and {(x*,y*)} converges in finite steps. Thus, without loss of
generality, we assume A, > O for any k£ > 1.

For 6 € (0, 1), noting that ¢(s) = os'7%, letting n — oo in (2.24) and using (2.18), we have

dyo 1
Aust < Ay < %(f(z’w - LGN+ Sl -

1
0)dist(0, 0. L)) 7 + §||xk — X

for any k > K,. The inequality above, together with the definition of A; and (2.20), yields

4
Ak+1 <

8 w1
YT (1 = 0)(Ar - Ae)] 7 + 5Bk = A
(A.7)

1= 1
=y (A - Ak+1)Tg + E(Ak — Ags1),
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where y' = 4(yo)i(1 - 6)7 .
Consider 6 € (0, %]. Noting that 0 < A — A1 < 1 for k > K with K large enough (K > K;). From
(A7) and ¢ > 1, it follows that

1
A1 < (Y + E)(Ak = Agi1).

By rearranging the inequality above and setting 7 := (y" + %)/(y’ + %) < 1, one has Ay < TA;.
Therefore, for any k > K, it holds that Ay < vr*X, where v := Ag is a finite number. Item (ii) is
derived.

Consider 6 € (3,1). Let K > K, be large enough such that 0 < Ay — A,y < 1 for all k > K. Noting
that 0 < 1%9 < 1, we see from (A.7) that

1 9
Aot < O + ) - M)

for all k > K. Following the same line of the proof of [42, p.14], there exists a constant x; > 0 such
that for all k > K,

(A1) = (A" =,
where v; := (1 —26)/(1 — §) < 0. Summing up from k = K to n for any n > K yields

(A" = (n— Ky + (A",
which, together with v; < 0, implies that for any n > K,
An < [(n = By + (M) 17T < pnr,

where y is a positive constant. Item (iii) is obtained. O

A.3. Proof of Lemma 7

Proof. Using (3.1a) twice yields
k+1

kL k2 k _ —
||AT(yk+l —yk)II — ||(Tx _kaﬂ)_(u —ka)

(01

(A.8)

< — I = N+ = = X+ IV fr = VAL
(04 (04
Since f is L-smooth, we have

IV fiet = VAl < IV firr = VA DI + IV L) = VO + IV £ = VO]

_ _ (A.9)
<NV fewr = VAEEDI+ IV fi = VO + LI = 2.

Substituting (A.9) into (A.8), one has
Tokel e o 4 k2 +1)12 1 ’ +1 k2
A~ =)l So7llx —xXP+ 4 5+L [l — x|

+ 4V ferr = VAP + 4IVS = VORI

Finally, taking the conditional expectation on both sides and using (3.5), we derive the claim. O
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A.4. Proof of Lemma 8

Proof. Since the function f is L-smooth, we have
FOET) < O + (V0,47 = )+ 2! = 2P
= ) + (T f ) — by 4+ (V) = Vi 241 — by 4 Lt - 2

2
k _ L k+l

< () + (——— ax — ATk ! xk>+—||Vf(xk) ka||2+5‘;L kel _ K

(51+L

k+1 k2 k 2 k +1
> )le - x| +2—51||Vf(X)—ka|| = (F AT - ),

- f) - (1 -
a

where the second inequality is deduced from (3.1a) and (x,y) < Z|lx|? + ZLélIIyH2 for any 6, > 0.
Together with the convexity of 4* and g¢ € dh*(y*), it also indicates

f(Xk+1) _ h*(yk+l) + (yk+1,Axk+1>

< OO =08 + OF, Ax) = OF A + <y’<+‘,Ax"+‘> - AT = X)

1 o6 L
+<y"—yk“,g’<>—(5—i) [k — 2 s IVf(x) VI
= fO5) = 105 + OF AXF) + OF - y LA -

1 01+L

_(E_T)llxk“ HIP + o= IVf(x) VAP

Recalling the definition of £ and substituting (2.4) (let k + 1 = k) into the inequality above, one has

Ls(xk+l’yk+l) < £S(xk’yk) + <yk+1 —yk,A(.Xk+1 _ xk + xk—l _ xk) + M(yk _yk—l)>

1 01+ L

I S B NTI S B o) L T2
(a > )le | +251||Vf(X) Vil

Using (3.1a) and the fact that (x,y) < %llxllz + 2L62||y||2 for the second term of the right-hand side, and
letting M = aAAT, we have

01+ L

LMy < L6550 - (l -
a 2

oHha
) [l — 17 + ZTIIAT(y"” — YOI
bV = VAR + 1 fs - VAP,
251 252
which, together with (A.9) (take k = k — 1), yields

Ls(-xk+1,yk+l)

01+ L o 3al?
ko ky _ ! +1 _ 2_ T ktl _  ky2 k k=12
< LY ( )lek EIATOR - IR S -

L 3_CY _~ 2 _CY k—1 _~ )
+(261 + 262)||Vf(x") VAIIF + 262”Vf(x )= Vil
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Taking the conditional expectation on both sides of (A.10), and applying Lemma 7 as well as (3.5), we
have

Ek—1[~£s(-xk+l’yk+l)]
Kk 3a(l? +2)

< Ei [Ls(xk,yk)] (25zC¥K + g + T) Ex-1 [||xk — X! ||2]
1 2

I o6+L « 3ax 1 ? L
- |- = -==-20 —+ L] +2||Ei- e
(a > 3%~ 25, 20((& ) K)) k-1 [1x 1I°]
20, 1 3a
+ +
P 261p 2650

1
+ 26, (—2 + K) By [+ — X112 + ( )Ek_l[A’l‘ — A
a

+ — — X2+ By [AMT — AR 4
252 ||X ” 0 k l[ 1 1 ] 2(52

Therefore, taking the expectation on both sides implies that

© (AT S [AYD).

E[L, (M ] < BLL (K, y9)] = e B = X121 + esElIIX > — X 1PT + ecBlI — X117
+ B[l — X2P] + e BIAS — AN + e, E[AY — AM1] + e;E[AN! — AFY,

where . - 5
ey ==, e = = +m+m e = 55,
€4=é-%—ﬁ—%‘;ﬁ—%za((ﬁm%z@,
es = 26,05 + k), €6=262m<+2—’;1+%, 67:%{

Recalling the definitions of a, b, ¢, and ¢,, we have ¢, = %(64 —es—eg—e7),a =ey+es,b=ey+egt+er,
and ¢ = e7, and thus

E[Lh 1 + o™ = X2+ 14 = P+ 1f = X111 < BLZA
This proof is completed. O

A.5. Proof of Lemma 9

Proof. 1t is sufficient to bound the five components of d*. First, from (3.1a), we have

I = IV () + ATy = 2008 — 241 + 2b( = P
< (IG5 = VAl + IATY + Tl + 2alldb™! = 24+ 2bf1xt = )

_ 1 2
= (IIVf(xk) = Vil + (— + Za) [ = M)+ 26110* - XHII)
a
2
= 3IVF) - VAIP + 3( + Za) 4 = P+ 1267100 = X
Taking the conditional expectation on both sides and using (3.2) yields

k12 1 4a 2 el k2 2 k_  k=1p2 k
Eellldill"] < 3 ) + . +4a” + o |Eelllx™ = x7[I°] + 3(4b° + op)llx™ — x7||7 + 3A].
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For the other four components of d*, it follows that
EcllldsIP] < 20M11% - 1y = <17 + 201A1P - [l — X412,
EcllldAI*] = 4a® B[]l — X471,
Ex[lld4|P] < 8b2||x* — 12 + 82k~ — 2|2,
Eclllds]*] = 4c2(|x*" — X212,

Combining these results, we derive the conclusion. m]

A.6. Proof of Proposition 11

Proof. Because {(x*, y*)} is bounded almost surely, from Remark 5 there is an event A with a measure 1
such that the sequence {(x*(w), y*(w))} is bounded for any fixed w € A. Hence, the set C,, is nonempty.
For any (¥(w), ¥(w)) € C,,, there is a subsequence {(x"(w), y*(w))} of {(x*(w), y*(w))} such that

¥1(w) — F(w) and Y (w) — F(w). (A.11)
From (3.14) and (3.20), we have
lim ! (@) = ¥(w)I| = 0 and lim Iy (w) = ()l = 0. (A.12)

Thus, we obtain that C,, is compact and dist((x*(w), Y*(w)), C,,) — 0 by following the same line of the
proof of Proposition 3 (ii). Item (i) is derived.

We next prove that for any (X(w), y(w)) € C,, Z(w) = (X(w), Y (w), X(w), X(w), X(w)) € crit.Z,, i.e.,
0 € 0.Z,(z(w)), by using the outer semicontinuity of 0.%Z;. Let

Zi(w) = (W), Y1 (w), ¥ (w), X7 (W), ¥ (w)).

It immediately follows from (A.11) that 7%(w) — Z(w). Let d*(w) be defined in a similar way to (3.9)
with respect to w. We then have d*(w) € §.%,(z%(w)). Therefore, because of the outer semicontinuity
of 0.%,, in order to obtain 0 € §.%,(Z(w)), it is sufficient to show that d*(w) — 0. By rearranging (3.4),

we obtain

1
BIAYT < SBIAY =AY+ SRE - P Bl — ),

which, together with (3.10) (take k = k), yields
ky (2 roa kL _ ka2 4 ik — ka2 g (oke! — k2|2
Eflld™|I] < (r + r )EIllx x|+ ] X+l x|
_ r
+ 7By =P+ JEIAT - AL

Summing up from k, = 2 to co and using (3.12), (3.18), and (3.15), one has

[Se]

D Ellld*P] < .

ky=2
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Hence d** — 0 almost surely, which also implies that d*(w) — 0. Thus, we finish the proof of
Z(w) € crit.%;. Furthermore, we derive Item (ii) by Lemma 6.
To prove Item (iii), let us first show that },, W, < co almost surely, where

o1 +L .. S 3al? _
WZ: +—Xk2+ AT k+1_k2+ k_k12
1= ol P+ SEIATOH = YOI + S =
=+ 22 Vo = TAIR + 2L ) = T h
— + - — x )= Vil
26, 26, M s, k-l

It follows from (3.5) that
—~ 1
ElIVfi - VAGHIP] < ;(E[A’f] — BIAM) + k(B[ = 1P + Bl = 117D,

which, together with the facts that E[A*] — 0 and };2, E[llx***' — x*|]*] < co from (3.15) and (3.12),
indicates that

D EIIVA - VAEHIP] < oo,

k=1
and hence )7, Iﬁ fi = VF(MI? < oo almost surely. Therefore, using Proposition 10, we obtain that
Yire1 Wi < oo almost surely.
In a completely analogous way to (A.10), we can prove that for any fixed w € A,
L (w), ¥ (w))
01+ L o
< LM @)y (@) + == I (@) = @) + =147 6 @) - Y @)

3al?
20,

1 3a
_+_

+
201 20,

(@) = X w)IP + ( ) IV () = Vi)l

3 —_—
+ %Ilvf(xk‘l(w)) ~ V()P
2
= £,( (), (W) + Wi(w).

Because 2, Wy < oo almost surely, we have };>, Wi(w) < oo. Therefore, from [50, Proposition
A.4.4], it follows that {£L(x*(w), y*(w))} converges to a finite value. Since L is continuous over R”" X
dom#A*, from (A.11), we have

;Lr?o L,((w), y(w)) = L(F(w), §(w)).

Combining these results with the definition of C,,, we derive that L is finite and constant on C,,. The
proof is completed. O

A.7. Proof of Theorem 13

Proof. Ttem (i) has been presented in the proof of Theorem 12.
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Let us point out that for the case that 6 € (0,1/2), by the same reason as that in the proof of
Theorem 12, the analysis in the following can reduce to the case that § = 1/2. Therefore, it is sufficient
to consider the case that @ € [1/2,1). Let

Aci= ) VEIR = Pl + ) VBl — 2T+ Y VBl — x2P].
q=k q=k q=k

Noticing that (3.32) holds for all 8 € [1/2, 1). Similarly, we can also have

E 4y M
\/E ||xk xk= 1”2 \/E[”x”*'l _xn||2] + \/E[”XK 1 _ k- 2”2] + E 7 kk+1
- e (A.13)
2
+ )/6\/; E[A{{_l] \/_ E[AK]
1%4

and

n

= 4y M
VBT = 2#P] < 2 VEIE = 5 1[P] + VBT — P + ) Lk
€
pare ek 0 (A.14)
2 2
NELCh Y VY ‘f E[AK].
pY

Then, combining (3.32), (A.13), and (A.14) (let n — o0), for any k > K, it follows from the definition
of M,,, and ¢,(s) = Boos'~? that

Aot < 4(VEIRHT = 2 P] + VE[ — 1P+ VE[IT — x2JP])

+ 6’)’6 \/; Ak 1 \/_ E[Ak] + i(,OI(E[ k] _s,k)
rY (A.15)
= 4 (VElIX*T - xHP] + \/E[uxk — AP+ VE[l - 2R
’ 6y;7\ﬁ E[A' ]+ — ‘f E[A{]+B1ELZL5] - L',

where B, := 12yB0/ey. By the definition of aiﬂsl){ and (a+b)'" 0 <a' P +b'f for0 € [1/2, 1), it follows
that

EBLLA - 20" < BLLAE)] - 2™ + BoBIAS] + E[AL] + B[AK'])', (A.16)

where 8, = max{e;,es, e3}' . Let I; be the right-hand side of (3.27), then there exists a constant
B4 > 0 such that

A(VE[IX<T = xK|2] + VE[IIx* — X 12] + VE[|lx<-1 — x%-2[]2])

A17
+6y;y‘/; 6‘f E[AY] < 8,5 A7

Plugging (A.16) and (A.17) into (A.15) yields

E[AY] + ——

A1 < BuZi + BIEIZL(Z)] = L)' ™ + BiBa(BIAT ] + E[AT] + E[AT' D! (A.18)
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From (3.24), it follows that
BLLE] - L)' < (00(1 = O)E[dist(0, 0.L(END 7. (A.19)
Since 260 > 1, we have
EBIAS] + E[AY] + E[AY'])' < (BIAY'] + E[AY] + EAN']) 7
< \/E[A"”] + \/E[A" \/E[Ak %,

which further implies that a constant 83 > 0 exists such that

9

(E[AS'] + E[AY] + E[AM )0 < 33 (A.20)
It follows from (A.19) and (3.27) that

ELLEN - L)' < (001 - 07 (A21)
Substituting (A.21) and (A.20) into (A.18) gives

1-0
a

At < (o1 = 0) T + BiBaf)E,” +BiSy < 05, (A22)

where the second inequality is derived from ¢ < 1, %, — 0 and o := (oo(1 — 9)) ,81 + L1523 + Ba.
To bound %, from (3.22) and (3.23), we have

S S(VF +y6 Vi + roa) (VEIT = %P1 + VE[Il — ¥ 1P] + VE[l-! - x-2|P])

+ 2y Vr + (2 = p) Vr) \[E[A} ] (76\/_4'(1__)\/_)\/ E[A{™]

<Bs (VEII =2 1P] + VE[Ix — 2121+ VE[T — 2-2|P])

+ 2ﬁ6(\/E[A’1‘_1] - \/E[A" ) (ye Vr + (1 — _) \/‘)\/W

_ - 2B6(1-
where B5 := \r + v \r + ‘H‘;ﬂ TN, Bs = M% Vr. Let A} := Ap + 36( Ws125) \E[AY"]. Then,

(A.23)

0

E[Ak])

-6

21 o 21 (2Bs(1-%)
2 k+1 2 ﬁS
ie (4,36(1—§) Tﬂe

Lo, FET
<— i+ 5 JE[A],

where the first inequality is obtained by using 11_9 > 1 and (a + b)" < 2" 'a" + 27 'p" for any v > 1,
and the second inequality is from (A.22). Substituting (A.23) into (A.24) and rearranging the terms,
we have

(Ak+1 )iﬁ <
(A.24)

o (20)7
(Ak+1 99 ﬁ5 Q (AA AI/<\+l ’
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which also gives

Bs. 1

gy < 20(3)7 FAN- AN )T (A.25)

Note that, the result of (A.25) is very snmlar to that of (A.7). Hence, the rest of the proof can be
conducted in a similar way to that of Theorem 5. In specific, if 0 € (2, 1), there exist an integer K,

constants ¢ > 0 and v; = 122 < 0 such that for n > K, A} < ,unw if @ € (0, 1], there exists constants

v>0and 1 = lfﬁ; <1 such that for k > K, A | < vt*%. Since E[|lx* — &|] < A}

for E[||x* — X||] in (ii) and (iii) are derived.
Finally, we consider the estimations for E[|[y* — #||]. Combining (3.21) and (3.23) yields

++1» the estimations

E[lly7 - yo~1|°]
<yl + 2 ‘f_ﬂ (VELxe = x4IP] + VElx — xo~'|P] + VEIllxe - x42IP])

+ %(\/E[A?_l - ,/E[A‘{]).

Summing up from g = k to co, we have

> VBT < (1 + Y+ 20 Y (eIt - eiad )
q=k q=k

(A.26)
2 OA 2
<yl A + = (JEIAY)
Let Vi := ys(1 + 2Z8)A, + 22 JE[AL]. Then, by (A.15), it holds that
240
Vier < 4ye(l + — =) (VENRST = <P+ VE[Iet — x12] + VE[IlT - x5-2|12])
6y? 2 \/ 6 2o
ML B+ 2V 2V o
Py Py P
2 \/0‘ - 2
Fyhi(l+ S ELLY] - L)'+ 20 JBIALL
P P
By the same line used to obtain (A.22), there is a constant o’ > 0 such that V;,; < o’ iTg Similar to
the method used to obtain the estimations of Ak \» for
2 —
vhimy e B0 E[AL],
B
we can obtain that 1
Vi < ikt for 6 € (1/2,1) (A.27)
and
VA < v K forg e (0,1/2], (A.28)
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where ji and ¥ are some positive constants. The triangle inequality gives

E[lY* =3Il < Vi1 < V2,

which, together with (A.27) and (A.28), implies the estimations for E[|[y* — #||] in (ii) and (iii). The

proof is completed.
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