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Abstract: The interval-valued Pythagorean fuzzy set possesses a strong capability to characterize
uncertainty and fuzziness, and has been widely applied to multi-criteria group decision-making.
However, extant studies seldom consider the fuzzy truth degrees in pairwise comparisons of
alternatives and often overlook incomplete information regarding criteria weights. Therefore, this
paper investigated interval-valued Pythagorean fuzzy multi-criteria group decision-making,
incorporating both interval-valued Pythagorean fuzzy truth degrees for pairwise comparisons and
incomplete information on criterion weights. First, recognizing that decision-makers may have
different weights under different criteria, their weights with respect to each criterion were determined
based on the relative closeness of each alternative to the positive ideal solution and the negative ideal
solution under that criterion. To derive the criteria weights, this paper defined the interval-valued
Pythagorean fuzzy positive ideal solution and the interval-valued Pythagorean fuzzy negative ideal
solution, and established the interval-valued Pythagorean fuzzy group consistency index and
inconsistency index. By minimizing the group inconsistency index, a bi-objective interval-valued
Pythagorean fuzzy programming model was constructed and skillfully transformed into a linear
programming model to compute the criteria weights. Subsequently, the relative closeness degree of
each alternative for each decision-maker was calculated and used to generate individual rankings of
the alternatives. To obtain a collective ranking, a multi-objective allocation model was established
and then converted into a single-objective programming model for the solution. Finally, a wireless
network selection example was provided to demonstrate the effectiveness of the proposed method.
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1. Introduction

Decision-making is a complex cognitive process through which individuals make choices in
various situations. This process entails collecting relevant information, assessing potential
alternatives, forming judgments, and reaching conclusions. Since real-world decision-making often
involves multiple criteria, an integrated approach known as multi-criteria decision-making (MCDM)
has been developed to tackle such challenges. In modern contexts, decision-making problems typically
encompass a range of considerations—economic, social, human, ecological, and more—making it
essential to involve multiple participants in the process. As a result, scenarios involving a group of
decision-makers are referred to as multi-criteria group decision-making (MCGDM). However, given
the inherent complexity of these problems and the often imprecise knowledge of the decision-makers,
the information used in decisions is frequently characterized by uncertainty. Traditional MCGDM
methods, which rely on precise data, often prove inadequate or impractical in addressing such
uncertain decision-making environments. Therefore, scholars proposed various fuzzy information,
such as the fuzzy set (FS) [1], intuitionistic fuzzy set (IFS) [2], interval-valued IFS (IVIFS) [3],
Pythagorean fuzzy set (PFS) [4, 5], interval-valued Pythagorean fuzzy set (IVPFS) [6], and so on.
These different types of fuzzy information can capture the uncertainty and fuzziness of
decision-makers (DMs).

Pythagorean fuzzy sets and their extensions have become a research hotspot due to their
enhanced ability to flexibly express the uncertain relationship between membership and
non-membership degrees. Asif et al. [7] integrated the Hamacher aggregation operator with a PFS to
propose interactive aggregation operators, such as Pythagorean fuzzy Hamacher interactive weighted
averaging and ordered weighted averaging operators. Palanikumar et al. [8] further introduced the
redefined square root interval-valued normal Pythagorean fuzzy set, constructing operators like
redefined square root interval-valued normal Pythagorean fuzzy weighted averaging and weighted
geometric operators. This work refines the algebraic operational rules in an interval-valued fuzzy
environment. Tahir et al. [9] integrated PFS, soft set, and hypersoft set theories to propose
frameworks for Pythagorean soft sets and Pythagorean hypersoft sets, overcoming the limitations of
traditional soft sets in uncertainty expression. Their application in areas like technology selection and
cloud configuration demonstrates the framework's advantage in handling multi-criteria fuzzy
information.

Furthermore, Razak et al. [10] combined the interval-valued Pythagorean neutrosophic set with
the comprehensive distance-based ranking method, innovatively incorporating 5-point and 7-point
linguistic scales. This addresses the previous lack of linguistic variables in the interval-valued
Pythagorean neutrosophic set, providing a decision-making tool better aligned with human subjective
judgment for e-commerce strategy selection and IT supplier evaluation. Kamari et al. [11] proposed a
Pythagorean neutrosophic TOPSIS-VIKOR integrated framework, which optimizes distance
measurement through a flexible indeterminacy quantifier. This enhances score differentiation and
ranking stability in digital supplier selection for manufacturing SMEs. Collectively, these studies
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enrich the theoretical system of decision-making methods under uncertainty.

In group decision-making and large-scale group decision-making, determining weights,
conducting cluster analysis, and the consensus-reaching process are key research areas. Jiang et al. [12]
determined weights based on the Shapley value function. This method quantified the
interconnections and uncertainty among decision-makers through a trust propagation model, and
generated objective weights by calculating each decision-maker's marginal contribution within
different coalitions, thereby comprehensively reflecting their influence in large-scale group
decision-making. Liu et al. [13] did not directly calculate explicit weights. Instead, they integrated
expert knowledge and experience organically into the retrieval and adaptation process of case-based
reasoning. Experts' judgments directly influenced the similarity calculation between cases, achieving
an indirect and dynamic form of "weighting" that avoided the subjective parameter setting. The
best-worst method (BWM), valued for its fewer pairwise comparisons and high reliability, has been
widely extended. Wan et al. [14] proposed an intuitionistic fuzzy BWM based on additive
consistency for intuitionistic fuzzy preference relations. They used a goal programming model to
derive optimal weights and a 0-1 integer programming model to aggregate group rankings,
significantly improving group decision-making consistency. Their subsequent research extended the
BWM to a hesitant multiplicative environment, proposing a hesitant multiplicative BWM that
derives weights via a mixed goal programming model [15]. Chen et al. [16] innovated an
interval-valued intuitionistic fuzzy group BWM, which determines global criteria weights by solving
a group weight assignment model once, substantially reducing the computational load in evaluating
emergency medical waste disposal modes. Luo et al. [17] combined trapezoidal intuitionistic fuzzy
numbers with BWM constraints to propose the TrIF-BWMC-HDEA framework. This ensures the
prioritization of key criteria while supporting heterogeneous data like crisp values and intervals,
providing an effective tool for rescue route assessment.

Addressing the complexity of large-scale group decision-making, Wan et al. [18], focusing on
the role of trust relationships in social network large-scale group decision-making, designed an
improved grey clustering algorithm that fuses preference similarity and trust relationships. They
proposed a two-stage consensus-reaching process incorporating self-adjustment and subgroup
binding force. By defining weights for decision-makers and subgroups, the consensus process better
aligns with real-world scenarios. Another study by Wan et al. [19] focused on ranking consensus,
proposing a dual-strategy consensus-reaching process based on probabilistic linguistic term sets. It
designs differentiated adjustment strategies for decision-makers with different similarity
characteristics, achieving efficient ranking consensus by optimizing decision matrices. These studies
provide new approaches to tackling the scale and consensus challenges in large-scale group
decision-making.

These decision-making methods have been widely applied across fields such as healthcare,
manufacturing, e-commerce, and insurance. Chen et al. [16] integrated the group BWM, regret
theory, and the multi-attributive border approximation area comparison method to build a
heterogeneous decision-making framework. This effectively handles criteria weight determination,
regret-rejoice matrix construction, and optimal alternative selection in evaluating emergency medical
waste disposal modes. Wan et al. [20] applied a dual-similarity-based consensus mechanism to
quality function deployment to handle heterogeneous linguistic preference relations, improving
group decision-making quality in product design. Another study by Wan et al. [21] proposed a
probabilistic linguistic group bi-matrix game model, opening a new path for the intersection of game
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theory and group decision-making. These application studies not only validate the effectiveness of
theoretical methods but also demonstrate the core value of decision theory in solving practical
problems.

While existing methods can effectively address certain MCDM or MCGDM problems involving
interval-valued Pythagorean fuzzy (IVPF) information, they face significant and interconnected
limitations when confronted with realistic scenarios characterized by incomplete decision
information, which encompasses not only incomplete weight information but also, more
fundamentally, incomplete or missing pairwise comparison preferences provided by experts.

(1) Current research predominantly focuses on single decision-maker settings or assumes that
DMs can provide complete evaluation matrices. However, in practice, it is often more feasible and
less cognitively demanding for experts to express partial pairwise preferences between alternatives
rather than fully rating all against all criteria. As decision complexity increases, synthesizing such
incomplete yet rich preference information within an MCGDM framework becomes crucial for
credible outcomes. Thus, constructing a dedicated IVPF MCGDM method that can operate directly
on incomplete preference judgments presents a critical yet underexplored task.

(2) The reliable derivation of both DM and criteria weights is critical for MCGDM. A prevalent
limitation is that most methods require these weights as pre-defined inputs, even when dealing with
incomplete preferences. In scenarios where experts only provide partial pairwise comparisons, the
very data needed to objectively infer these weights are inherently sparse. Therefore, a method that
can simultaneously and objectively derive both weight sets directly from the incomplete preference
judgments themselves is essential to ensure fairness and reduce arbitrariness.

(3) The linear programming technique for multidimensional analysis of preference (LINMAP) [22]
is a well-established method precisely for MCDM with incomplete preference information, as it
constructs an optimal solution consistent with given pairwise judgments. Although extended to
various fuzzy environments [23, 24], its application within the IVPF setting, particularly for
MCGDM with incomplete preferences, remains unexplored. Furthermore, most existing
LINMAP-based models rely solely on the distance from the positive ideal solution (PIS), neglecting
the negative ideal solution (NIS). This omission can be particularly detrimental when preferences are
scarce, as the contrastive information from the NIS is vital for stabilizing the solution and enhancing
discriminative power in data-sparse conditions.

Hence, the study introduces an innovative IVPF programming model designed to address
MCGDM problems. First, the weights of decision-makers are determined objectively using a
technique for order preference by similarity to ideal solution (TOPSIS)-based approach that
considers the relative proximity of alternatives to the PIS and NIS. Within the LINMAP framework,
specific indices are then defined to measure the levels of agreement and disagreement within the
group. These indices are then used to establish an IVPF model for determining weights of criteria by
minimizing group inconsistency. The model is solved by converting it into an eight-objective
program, which is subsequently converted into a linear program for computational tractability. Next,
individual alternatives are ranked based on their calculated closeness coefficients. An aggregation
model is then constructed to synthesize these individual rankings into a final group decision. Finally,
the effectiveness of the proposed method is demonstrated through a case study on network selection.

The main contributions of this paper can be summarized as follows:

(1) This research advances preference modeling by employing IVPFSs to characterize DMs'
fuzzy truth degrees in pairwise alternative comparisons. As an extension of Pythagorean fuzzy sets,
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IVPFSs provide a more powerful and flexible framework that allows DMs to fully express their
opinions while better capturing the inherent uncertainty and fuzziness in their judgments, leading to a
more nuanced and realistic representation of preferences.

(2) A core methodological contribution is the development of a novel, objective framework for
determining both DMs' and criteria weights. First, DMs' weights are calculated by defining relative
closeness degrees inspired by the TOPSIS method, incorporating distances to both PIS and NIS to
ensure reliability and avoid subjective randomness. Second, a bi-objective IVPF programming model
is constructed to determine criteria weights. This model uniquely minimizes group inconsistency by
considering both PIS and NIS, offering a more reliable and effective approach compared to methods
that overlook criteria weights or rely on aggregation operators. The model is then transformed into a
solvable linear program, enhancing the logical rigor and credibility of the derived weights.

(3) To obtain a final collective ranking, this paper constructs a multi-objective assignment
model designed to aggregate individual alternative rankings. This approach moves beyond simply
aggregating original evaluation matrices, thereby effectively avoiding the information loss and
potential biases inherent in the direct aggregation of fuzzy evaluations.

The subsequent sections of this paper are organized as follows. In Section 2, an overview of the
IFS, IVIFS, PFS, IVPFS, and certain operational laws of the IVPFN are presented. In Section 3, the
discussion pertains to [IVPF MCGDM problems incorporating I[VPF truth degrees. Moving to Section 4,
a novel IVPF mathematical programming model is introduced, specifically developed to tackle
MCGDM problems within an IVPF framework. Section 5 includes an illustrative example and
conducts an in-depth comparative analysis against the IVPF-ELECTRE, IVPF-TOPSIS, and
IVPF-TODIM methods. Section 6 demonstrates the validity and practicality of the proposed method
within a decision support system. Finally, Section 7 summarizes the primary content encapsulated in
this paper.

2. Preliminaries

This section serves as the theoretical foundation, presenting the essential concepts of [VPFSs
and IVPFNs. Specifically, it covers their mathematical definitions, fundamental operational rules,
methods for comparison and ranking, and the calculation of distance measures between them. The
entire analytical framework and methodological development of this study are built upon these core
constructs.

2.1. Interval-valued Pythagorean fuzzy sets

Definition 2.1. [6] Let X be a universe of discourse. APFS P of X is given by
P ={<xup(x),vp(x) > |x € X}, (1

where up: X — [0,1] and vp: X — [0,1] refer to the membership function and the non-membership
function, respectively, of the element x € X to P. They must satisfy the condition that 0 <

ud(x) + v3(x) <1 . Additionally, mp(x) =+/1—ub(x)—v3(x) is referred to as the

indeterminacy function for x to P.
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For simplicity, we can refer to P = (up,vp) as a PFN [5].
Definition 2.2. [6] Let X be a universe of discourse. An IVPFS a of X is given by

a = {< x, [ug(x), ug ()], [vg (), v ()] > |x € X}. )

Element a has two corresponding intervals, namely the membership [ul(x),ud(x)] € [0,1] and
non-membership [vL(x), vy (x)] € [0,1], which fulfill the condition (uZ(x))?+ (v¥(x))? < 1.
Moreover, element x € X is associated with the indeterminacy [rk(x), 7Y (x)], where m5(x) =

V1= @i ()2 = (v (0))? and wf (x) = {1 = (wk(x))? — Wk ()2

An IVPFN is represented by a pair a = ([ul(x), ud(x)], [vE(x), v¥ (x)]), which is denoted as
a = ([uk,u¥), [vE,vY]) [25], where [uk,ul] € [0,1], [vL,vY] €[0,1],and (ud)? + (WY)? < 1.
Definition 2.3. [6] Let a = ([ul,ul], vt vl , a1 = (ut, ui ) Ve, vd]), and a, =
([ug, ug,) [vg, vd,]) be three IVPFNs, A > 0. Then,
(1) af = ([vg, vd], [ué uql),

@) s @ ay = (1 ()2 + (k) — ()20 2 (0l + (a2 = Cul 2l ) [0, o v
(3) @ ® ay = ([ub,ub,, ul ul], [J (WE)? + (vh)? — ()2 (W )2, J WU )2 + (W22 — ()2 (WL )2)),

@) 2a = (W1 - (1 - @)HHV1 - (1= @DHHY, (D! @)D,

() a* = (W) @wH, W1 -1 - @HHLV1 -1 - @HDHA):

Theorem 2.1. [6] Let a = ([ul, uY], [vt,vl]) and a; = ([ug,ug] [V, veD(i = 1,2) be three
IVPENs, A,44,4, > 0. Then,

(1) a; @ a;, =a, D ay,

Q) Q@a; =a,Qay,

(3) Aay @ az) = Aa; @ Aay,

4 (a; ® 052))l = a’f b3y a%,

5) La® A = (A4 + 1y)a,

(6) a’ll ® a)LZ — a11+12_

Definition 2.4. [6] Let a; = ([uf, ug], [V, vg])(i = 1,2) be two IVPFNSs, a nature quasi-ordering
on IVPFNs is defined as @, > @, ifandonly if uf, >uf,, uy = uf,, vy, < vy, and vy, <vl,
where " > " means “bigger than or indifferent to”.

2.2. Distance of IVPFNs

This paper introduces a novel method for evaluating the relative positioning between a pair of
IVPFNSs, based on the distance metric used for interval-valued intuitionistic fuzzy values [3].
Definition 2.5. Let a; = ([ug, ug ], [vs, ve ) (i = 1,2) be two IVPFNs, g, > 1. The Minkowski
distance between a; and a, is defined as follows:

dg, (@1, az) = %(I(uél)2 — (ug,)? | + [(ug,)? — (ug,)?|™ + 1(vg,)* — (va,)? |
)

1
+1(e,)? — W) | + (mg,)? — (mg,)?| % + | (mg,)? — (mg,)?| 7).
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The indeterminacy of element «q;(i=12) is denoted by g, = [ng, 78] =

[J1— @l? = )2, [1- (k) = (k)1 = 12).
It can be easily verified that dg (a4, a;) satisfies the axioms of distance:
(1) Non-negativity: dg, (a1, a;) =0,
(2) Symmetry: dg, (@, @) = dg, (2, @),
(3) Triangle inequality: If a; > @, > as, then dg (ay, az) = max{dg, (a,az),dq, (az az)}.
When q; = 1 is present, Eq (3) becomes degenerated to the Hamming distance within the
range of [26] as shown below:

di(ay, az) = %(I(uél)2 = (ug,)? + [(ua)? — (ug,)? + 1(va,)? — (vi,)?|
+|(va,)? — W)l + [(mg,)? = (m6,)?| + |(mg,)? — (ma,)?))
When g, = 2 is present, Eq (3) can be converted into the Euclidean distance as follows:
da(ay, az) = %(I(uél)2 = (ug,)?1” + |(ug,)? — (ua,)?1? + |(va,)? — (vg,)?1?
+1(va)? — Wa,)?1? + |(mg,)* — (m6,)*|” + |(q,)? — (ﬂé’z)zlz)%-
When q; = 400 is present, Eq (3) can be converted into the Chebyshev distance as shown below:
dioo (1, @) = max{%(l(uél)z = (ua,)?] (ug,)? = (ug,)?l |(va,)? — (g,)?l,

|(We,)? — (Wa,)?| 1(mg,)? — (7q,)%], |(7g,)? — (7a,) 2D}

2.3. Distance of IVPFSs

The distance between two IVPFSs is a fundamental concept for measuring their similarity or
dissimilarity. Since an IVPFS is composed of [VPFNs, the overall distance between two IVPFSs is
typically defined based on the distances between their corresponding IVPFNs. The distance between
two IVPFSs can be defined with respect to the distance between two IVPFNs as follows.

Definition 2.6. Let X = {xy,x,,...,x,} be a universe of discourse. Let A and B be two IVPFSs
in X, g, = 1, and then the Minkowski distance between A and B is defined as

=1
dq,(A,B) = 24— (i (x))? = (up(x))?1%2 + [(uf (x))? — (ug (x))?|?%

+ (WE )2 — WEG))2% + (v ()% — W8 (x)))?]% )

+ (s ()% = (5 ()19 + | () (x7))? — (g (x))? I‘“]
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Definition 2.7. Let X = {x;,x,,...,x,} be a universe of discourse. Let A and B be two IVPFSs
in X. A is included in B (denoted by A € B) if and only if for every x; € X, the following
inequalities hold simultaneously:

up() Sup(yg), wi(y) <ui(y)  vilo) zvi(y),  vi(y) 2 ve(y).
Theorem 2.2. Let A, B,and C be three IVPFSsin X, g, = 1, then the following axiom holds:
(1) Non-negativity: dg,(A,B) =0,
(2) Symmetry: dg,(A,B) = dg,(B,A),
(3) Triangle inequality: If A € B € C, then dg,(A,C) = max{d,,(4,B),d,, (B, C)}.

Proof. It follows directly from Definition 2.6 that (1) and (2) are satisfied.
(3) Assume A € B < C, by Definition 2.7, we have for all x; € X:

W) Sub(e) Sub(e),ul ) <uf () <ul(x,),
vi () 2 v (%)) 2 ve(xg), vA () = vg (%) = ve (%),
and consequently for the hesitancy degrees:
mh () 2 mp(xg) 2 mey), w4 (x) = g () = meé (x).

Since all squared differences are non-negative, and using the monotonicity of the function f(t) =
t% for t > 0 and g, > 1, we have

| (i ()% — (ue())?1%2 = (i (x))? — (up (x)))?]%,
| (s ())? — (ue())?1%2 = [(up (6))? — (ue(x))?|%,
| (ud ()% = (ug ()29 = | (ud (x))* — (ug (x;))?]%,
| (ud ()% — (uc (x))?19 = |(up (x))* — (uc (x))*]%,
|(Wx ())? — (Ve ()29 = | (Vs (x))? — (w5 (%)),
|z ())? — (ve ()29 = |(v5 (%)) — (e (x))?|%,
| (WA ()% = (v ()29 = |(vd (%))? — (w5 (x7))? %,

|(Wa ()% = (v ())?192 = |(vg (x;))* — (ve (x;))? %,
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| (i (x))? = (e (x))? 1% = | (g () — (w5 (%)% %,
(s (x))? = (e ()21 %2 = | (s () — (e (x,))?]%2,
| (el (x))% = (1ed ())?1% = |(mrfl (37))* — (705 (%))?] %,
| (s (x))? = (¢ (x))?192 = | (75 (x7))* — (¢ (x))*]%2.

Summing over all j = 1,2,...,n and multiplying by i, we obtain:

=1
za(l(uﬁ(xj))z — (e(x))?|%2+... 4 (] (x))? — (1wl (x))?]92)
=1

S

1
2 ) o (a0))* = (g () 1%+ + (4 ())* = (i (x7))°12)
=

and likewise for the pair B, C. Taking the qi—th power preserves the inequalities, hence:
2

dg,(A,C) = dg, (A B) and dg (A,C) = dg,(B,C).

Therefore, dg, (A, C) = max{dg, (A, B),dg,(B,C)}.
Definition 2.8. Let X = {x{,x,,...,x,} be auniverse of discourse. Let A and B be two [VPFSs
in X, q, = 1. A weighted Minkowski distance between A and B is defined as

2% (1 Ce)? = (b Gy)?1% + 1l ()2 = (uf ()21
+ 10k (50)? = @hC)21% + 10 ()% = (08 ()?| ®)
+ 1 (9))? — (b G)?1% + 1 (ef (x))? — (e ()21

Here, weight w; of x; satisfies conditions Z?zl w;=1and w; =20 (j=12,--,n).

The exponent g, in the (weighted) Minkowski distance is a norm-order parameter that
determines "how differences are aggregated". When considering q, = 1, g, = 2, and g, — +0o,
the respective (weighted) distances are referred to as the (weighted) Hamming distance, (weighted)
Euclidean distance, and (weighted) Chebyshev distance. The smaller the value of g,, the more the
distance focuses on the accumulation of multiple small differences; the larger the value of g,, the
more sensitive the distance becomes to a single prominent difference. In the decision-making process,
the exponent g, in the (weighted) Minkowski distance reflects the DM's value-risk orientation:
q, = 1 represents full compensation between dimensions; g, = 2 offers balanced compensation;
while g, — +oo indicates strict non-compensatory logic where any critical deficiency dominates.
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When addressing practical decision-making problems, the determination of g, must integrate the
characteristics of the problem, the data structure, and the decision logic. Typically, the following
approach can be adopted: First, analyze the decision attributes, if the attributes are mutually
substitutable, a smaller g, should be selected; if there are critical constraint indicators, a larger g,
or even +oo should be chosen. Second, conduct sensitivity analysis to test the stability of alternative
rankings under typical values of g,: if the rankings remain consistent, the choice of q, offers
greater flexibility; if the rankings fluctuate significantly, decision preferences must be further
clarified to determine the value of g, that best aligns with the decision-maker's intent.

3. IVPF MCGDM with IVPF truth degrees

This section delineates the interval-valued Pythagorean fuzzy multi-criteria group
decision-making problem under investigation. First, an overview of the MCGDM within the IVPF
context is presented, along with the associated data normalization procedures. Subsequently, the
framework of incomplete criteria weight information and the preference relations expressed via [VPF
truth degrees are formally introduced.

3.1. Description of problems and normalization methods

For the sake of convenience, let L ={1,2,...,l}, M ={1,2,...,m}, and N ={1,2,...,n}.
Suppose a group of DMs, denoted as Ej (k € L), are responsible for evaluating and ranking a set of
alternatives A; (i € M) based on criteria C; (j € N).

Suppose we have a set of alternatives, denoted by A = {44,4,,..., 4}, and a set of criteria,
denoted by C = {C;,C;,...,C,}. Let @ = (wq, w5, ...,w,)T be a vector of criteria weights that

satisfies conditions Y7, w; =1 and w; =0 (j € N). Let IVPFN ZU = ([uk U, "]U],[vf‘jL,v{‘jU])

(l€M, jEN, k € L) denote the rating given by DM Ej to alternative A; on criterion C;. Thus,
we can formulate the MCGDM problem using IVPF decision matrices Z* = (z{‘j)an(k €L).

To eliminate the effect of different dimensions on decision-making results, the criteria values

(L €M, j€N, k € L) should be normalized into SU = ([@k¥ U U Z‘JU], [ﬁ{‘jL,ﬁZ‘jU]) as follows:

i i i i

!
([vu ) I;U]' [uﬁL,uk,U]). if ¢jece

Sk _([ KL kU]’[ kL —kU

ij ij l] U ’

KL , kU7 1,kL . kU e b
D_{([u wy by vg DoEGECT e ke (6)
v

In this context, C” denotes a collection of advantageous criteria, while C¢ stands for a collection
of disadvantageous criteria.

Hence, the IVPF decision matrices Z* = (Z{‘j)mxn (k € L) are transformed into the

normalized IVPF decision matrices Z'¥ = (s{)mxn (k € L).
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3.2. Incomplete criteria weight information structure

Criteria weights constitute a critical and non-negligible element in decision-making. While DMs
can express preferences over these weights based on their knowledge and experience, individual
differences often result in incomplete information regarding the weight assignments. Let w =

(wy, W,,...,w,)T denote a vector of criteria weights, where the weight of criterion G is

represented by w; and satisfies conditions 2?:1 w; =1 andw; =0 (j € N). The vector w is

incompletely known in this paper and needs to be determined. Consider Ay = {w =
(a)l,wz,...,wn)”Z?:l wj =1 w;=¢ for j= 1,2,...,n}, where € > 0 is a positive number that

is sufficiently small. The limitations w; = ¢ (j = 1,2,---,n) can guarantee that every magnitude of
A, 1s not lesser than a sufficiently minuscule positive quantity &, as it might materialize in the
LINMAP technique [27]. Li [28] officially and scrupulously determined weight information
framework employing the ensuing quintessential relations amidst attribute weights.

3.3. Preference relations with IVPF truth degrees

In multi-criteria decision-making and fuzzy set theory, in order to handle the uncertainty and
fuzziness of DMs' interval-valued Pythagorean fuzzy preference information, a tool is often needed
to extract “sufficiently certain” or “sufficiently significant” preference relations. This tool is the cut
set, which filters out those preference pairs with sufficiently high membership degrees and
sufficiently low non-membership degrees by setting thresholds, thereby simplifying the decision
analysis process while retaining key information. The cut set not only helps focus on the judgments
that DMs are relatively certain about, but can also be used to evaluate the adequacy and reliability of
decision information, providing a basis for subsequent weight determination and alternative ranking.

To formalize the preference structure, we first define the concept of truth degrees in the context

of preference relations.
Definition 3.1. Let A = {44, 4,,..., 4} be a set of alternatives. For any decision-maker Ej, a
truth degree of a preference relation A, >; Ap is a numerical value a(g,h) € [0,1] that
quantifies the degree to which Ej prefers alternative A, over A,. A value closer to 1 indicates
stronger preference, while a value closer to 0 indicates weaker or negligible preference.

In many practical situations, however, a single numerical value may not capture the inherent
uncertainty in human judgments. To model such uncertainty in both membership and
non-membership assessments, we extend the notion of truth degrees to IVPF truth degrees.
Definition 3.2. Let A; and A, be two alternatives, and let Exbe a decision-maker. An IVPF truth
degree for the preference A, >j Aj 1s expressed as:

ax(g,h) = ([uéch,h)' uéch{h)]' [Vé{gL,h)' vécgl{h)]),

where [ué‘;h), ué‘; ny] € [0,1] is the interval membership degree, indicating the extent to which A,
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is preferred to Ay; [vfgfh),vz‘gl{h)] C [0,1] is the interval non-membership degree, indicating the
extent to which A, is not preferred to Ay; and the following condition holds:

(uign)® + Wgm)? < 1.
The hesitation degree corresponding to an IVPF truth degree is given by 7y ) = [né‘gL, Ry né‘gl{h)] )

where

kL _ k k kU _ k k
Tign) = \/ 1= (uign)? — Wgn)® Tign = \/ 1= (uign)? — (g

Based on the IVPF truth degree structure, we now introduce the IVPFS representation of a
decision-maker's preference relations. Assuming DM E;, utilizes an IVPFS of 2, ={<
(g, h),ax(g,h) > |A; >, Ap} with an associated IVPF truth degree ay(g,h) (9,h € M) to
denote preference relations between alternatives, we can observe that (g, h) represents the
preference of DM Ej for alternative A, over Aj (represented as Ay > Ap) with an IVPF truth

degree ay(g,h) = ([ué‘gL' h),ué‘gl{ ml [vé‘;h),vé‘gl{h)]). To formally characterize a cut set within the

IVPES framework, we introduce the following definition.
Definition 3.3. Let [ag bo] €[0,1] and [co do] S [0,1] satisfy bZ+di <1 . The
([ag, bo], [co, dp])-cut set of (2;, is defined as:

,bol,[co.d
_Q’({[ao ol.[co.do]) = {(g, h)luéé’,h) > ao,ué{gl{h) = bo, v&;'h) < Co, vé(gl,]h) < dO (grh € M)}

In particular, when ay, =0, by =0, ¢, =1, and dy = 1, the cut set reduces to the support set,
denoted by .0,50'1), which includes all possible preference pairs. Its cardinality |!2,({0’1)| reflects the
amount of valid preference information provided by that DM. In group decision-making, a larger
total cardinality ch=1|!2,({0'1)| indicates richer available preference information, often leading to a

more precise and reliable criterion weight vector w.
4. A novel IVPF mathematical programming method for IVPF MCGDM problems

This section proposes a novel LINMAP methods to solve IVPF MCGDM problems with IVPF
truth degree. First, the DMs' weights on each criterion are determined based on the relative closeness
degree. Then, the process of LINMAP is adhered to for establishing group consistency and group
inconsistency utilizing IVPF PIS and IVPF NIS, correspondingly. Based on the group consistency
and group inconsistency, an innovative bi-objective IVPF mathematical programming model is
constructed to ascertain criteria weights. Subsequently, the individual relative proximity degrees of
alternatives are computed and the individual hierarchy matrix for each DM is generated. Furthermore,
according to the aim to minimize the variance between each DM's individual alternative order and
the collective order, this paper formulated a multi-objective assignment model to derive a collective
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ranking matrix for determining the ranking of alternatives.
4.1. Determining DM's weight under each criterion based on the relative closeness degree

It is significant and should not be ignored to determine DMs' weights during the process of
MCGDM. In fact, because each DM involved in decision-making may have different preferences for
the alternatives under different criteria, it is reasonable to think each DM's weight under different
criteria is not the same in real life.

For a criterion Cj, suppose that the PIS and NIS of alternatives given by DMs are rj+ =

1+ .2+ l+\T - _ 1- .2— l—\T . k+
(rj T )" and r; = (1; T )", respectively, where r

i and rjk_ are the best

rating and the worst rating by Ej(k € L). Namely, one has

k+ _ 1y kLt o KU KL+ kU k= _ 1y kL= o KU=7 1, kL— . kU-
= (™, w ] o oD, = (L [ L v D, (7
where u/"* = rlneclzwx{u{‘f . uflt = %slwx{ufju , vt = %i&l{v{‘f , vl = mm{v Y1 and
ukl= = mm{u 11wl = mm{u U}, vt = max{v M, v = max{v[Y
J iem o U

For Ej(k € L), the smaller d (s k+) the better A;. Meanwhile, the bigger dql(su, M,

l]’

the better A;. Thus, the relative closeness degree of alternative A; on criterion C; given by DM Ej
can be defined as follows:

Rk — dql(su i)
U dg skr¥+a, (skrky
q1\°ij» ] q1\’ij’ ]

(®)

where d, 1(SU, ") and d, 1(s k+) are the Minkowski distance between normalized IVPF

ijr

k

evaluation s;;

and the worst rating rjk_ and the Minkowski distance between normalized IVPF

k

evaluation s;;

and the best rating rjk *, respectively. Concretely,

dg, (si5,177) =—(I(u 2= @AM+ 1w)? = @AM + )2 - ()

1
W) = Y2 + () — ()| + | (wdf)? — (V)2 ),

dq, (s, ") = (I(u 2= @2+ 1w)? = @D+ )P - A

1
+ |(ka 2 ( kU+) |q1_|_ I(T[kL 2 ( kL+) |q1+ |(T[kU 2 ( }(U+)2|q1)lh'
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It is apparent that 0 < RX < 1. Especially, if dg, (SU, ) =0, then R = 0;if dg, (sf‘j,?}-“) =0,

l]—

f‘], the better alternative A; on criterion C; for

then lej = 1. Moreover, the bigger the value of R
DM E,.

If we consider an alternative, the weight of a DM Ej under criterion C; is directly
proportional to the sum of the relative closeness degrees of the alternative on criterion C; given by

DM E. In other words, as the sum of the relative closeness degree increases, the weight of DM Ej
under criterion C; also increases. Hence, we can define the weight of DM Ej under criterion C; as

W]k, given by:

dg, (sk.rk)
k _ .k l k k _ k _ q
Wj - Cj /Zk:lc' 5 Cj = ?il Rl] =ym 1 i ] (9)

t= 1d¢11(su j )+d¢Z1(SU j )
Apparently, the DMs' weights satisfy the conditions that 0 < W]k <1(G=12,-,n k=120

and Y._, ij =1(j € N). The steps of determination of DMs' weights can be summarized as

follows:

Step 1. Normalize the original IVPF evaluations Z{"‘j

into s{‘j by Eq (6);

Step 2. Derive the PIS and NIS of alternatives by Eq (7);

Step 3. Calculate the relative closeness degree of alternative A; on criterion C; given by DM
E} by Eq (8);

Step 4. Calculate the weight of DM Ej, under criterion C; by Eq (9).

Accordingly, the DM's weight vector under criterion C; can be derived as w; =

wihwh,...,w)T(j € N).

4.2. IVPF group consistency and inconsistency

IVPF-based group consistency and inconsistency are key concepts for quantifying the
convergence and divergence of collective preferences under uncertainty. Group consistency
measures the extent to which individual IVPF judgments converge toward a coherent group
preference structure, typically evaluated using aggregated similarity indices or distance-based
metrics. In contrast, group inconsistency reflects the degree of disagreement, ambiguity, or
conflict among decision-makers, often manifested in the dispersion of IVPF evaluations or
deviations from a common reference. By explicitly modeling both consistency and inconsistency
within the IVPF framework, this approach enables a more nuanced and flexible representation of
group decision dynamics. Suppose that the IVPF PIS and IVPF NIS of alternatives under criteria

are st =(sf,s5,...,s)7 and s~ = (s{,s3,...,5,)7, respectively, where s

] and sj_ are the

best rating and the worst rating on the criterion C; (j € N). Namely, one has
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— ([ L+ U L+ U - _ - U= - U~
Sj+ - ([u] +)uj +]' [vj +ij +])o Sj - ([u]L 'uj ]' [UJL 'vj ])a (10)
where uj” = max {u 1, u = max {u N, v = min {v I, v = min {v Y1 and
IEM,KEL LEM,kEL IEM,KEL 1EM,kEL
L_
ut” = min {uk u = min {uk v = max {v;; v = max {v;
J iEM, keL{ i i€M, keL{ " i€M, keL{ i €M, keL{

Considering the weight vector of DM under criterion C; (jE€N) as w;=
(le, sz, o) W})T(]' € N), Eq (5) can be used to compute the weighted Minkowski distance between

sk = (sk,sk,...,sk)T and s*, s~ in the following way:

Tt =) h wFlI)? — 10 () - @RI + R - (R
= (11)
I = % 4 (kP = (a2 + ) — ()P

T = > L W — @ + () - @ + |l - R

~.
1l

1 (12)
n |(ka 2 (v ) qu + |(T[kL 2 (71' ) ICIz + I(nkU 2 (HJU_)ZICIZ]E

where (TF1)? = 1— /)2 = ()%, ()P = 1= @}")? — (W), (b )P =1— (/™) -

(/)% ()2 =1—(uf")*— (¥/7)2( € N). It is necessary to determine the criteria weight
vector w = (wq, Wy, ..., wy)T.

Assuming that the criteria weights are fully specified, the weighted Minkowski distances Tgk+,
Tgk_, TX* and T¥~ for DM E, can be derived with respect to an ordered pair (g, h). In the case

where Tgk+ < TF* holds for every (g,h) € .(2,((0’1), then A, is superior to Aj , which is consistent

with the subjective preference of DM Ej. Conversely, In the case where Tk+ =Ty, then Ay is
superior to Ap, which contradicts the subjective preference provided by DM Ej. Similarly, In the

case where Tgk" > Ty~ holds for every (g,h) € .(2,({0’1), then A, is superior to Ay, which is

consistent with the subjective preference of DM Ej. In the case where Tgk_ < T¥, then Ay is

inferior to Aj, which contradicts the subjective preference provided by DM Ej,.
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Please note that the MCGDM problems under consideration involve incomplete criteria weights
which must be determined. To integrate this incomplete information on criteria weights into the
decision-making process, a bi-objective IVPF programming model is created to obtain them.
According to the IVPF PIS approach for evaluating alternatives against criteria, when considering

each (g,h) € .(2,({0‘1), if condition Tgk+ < TF* is satisfied, then Ay is superior to Ap. Therefore, the
ranking of alternatives A, and Aj, based on Tgk+ and TX* aligns with the subjective preference

expressed by DM Ej. On the other hand, if condition Tg"+ > TX* holds true, then the ranking of

k+

alternatives Ay, and A based on Tgk+ and T, ™ will not match the subjective preference of DM Ej,.

According to IVPF NIS s~ = (s{,S5,...,57)7, given any (g,h) € (2,({0’1), if TS~ >TxK is
satisfied, then A, is preferred over Ap. Thus, the ranking of alternatives A; and A, based on

criteria Tgk" and TX~ corresponds to the subjective preference expressed by DM Ej. On the other

hand, if T~ < T¥~ holds true, then the ranking of alternatives A, and A, based on TJ~ and

T¥~ does not align with the subjective preference of DM Ej.
The statement indicates that the criteria weight vector w results in the ranking order of Ay

and Aj.

Definition 4.1. An index (T — Tf*)* is defined for each (g, h) € (2,({0’1) as follows:

a(g, (T —TFY) i TF < T),
0 if TS+ = Ty,

Ty =Tyt = { (13)

Evidently, index (Tf+ — Tg’”)+ quantifies the extent of agreement between the objective ranking
sequence and the subjective preferences conveyed by DM Ej using the IVPF PIS. Provided that

condition Tgk+ < T¥* is met, the ranking of alternatives Ay and A, based on Tgk+ and TK*
corresponds to the preferences of DM E,. Thus, (TF* —Tg’“’)+ is defined as ay(g,h)(TK* —
Tgk+). Conversely, if Tg"+ > TX* holds true, the ranking of alternatives Ay and Aj based on Tg"+
and T does not align with the preferences expressed by DM Ej. In this case, (TxX" — Tg’“’)+ is
defined as 0. Hence, the degree of consistency can be expressed as (TF" — Tg’“’)+ =

ai(g, k) max{0,T* — T)+}.
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To make readers understand this definition better, we provide the following example.
Example 1. Let (2,4) be a preference relation that is given by DM Ej for alternative A, over A,
(represented as A, > A,) with truth degree a,(g,h) = ([0.5,0.6],[0.2,0.3]). Let TX* = 0.4 and
TX* = 0.6 be the distance between the weighted Minkowski distance between the alternative A,
and the PIS and the distance between the weighted Minkowski distance between the alternative A,
and the PIS, respectively. Since the preference relation is (2,4) and TX* < TK*, then the
consistency index (TXt — Tf*)* is calculated as follows:

(Tk+ — TFH)* = ([0.5,0.6], [0.2,0.3]) X (0.6 — 0.4) = ([0.23,0.29], [0.72,0.79]).

Example 2. Let (2,4) be a preference relation with truth degree a; (g, h) = ([0.5,0.6],[0.2,0.3]).

Let TX¥* = 0.6 and T}* = 0.4. Since the preference relation is (2,4) and TX* > Tf*, then the

consistency index (T¥+ — TF*)* = 0.

Thus, the definition of group consistency using the IVPF PIS is as follows:

K*=%,_, Z(g,h)en,(("'l)(T’IlH —Tf)Y = Yoy Z(g’h)eﬂl((o,l) (g, ) max{0, T{* =TS} (14

Definition 4.2. An index (T/* — Tgk+)‘ is defined for each (g,h) € (2,({0’1) as follows:

a(g, h)(TFY —Tf*) ifTF > T),

15
0 if TF < T (13)

(Tf’LH - Tgk+)_ = {

Clearly, index (g,h) € f),go’l) quantifies the level of inconsistency. In a similar way, the degree of

inconsistency can be expressed as (TX* — Tg’”)‘ = ay(g, h) max{0, Tg"+ — TF*).

Example 3. Let (2,4) be a preference relation with truth degree a; (g, h) = ([0.5,0.6],[0.2,0.3]).
Let T#* = 0.6 and T}* = 0.4. Since the preference relation is (2,4) and T¥* > TJf*, then the
inconsistency index (TF+ — Tf*)~ is calculated as follows:

(Tk* — TF+)= = ([0.5,0.6], [0.2,0.3]) x (0.6 — 0.4) = ([0.23,0.29], [0.72,0.79]).

Example 4. Let (2,4) be a preference relation with truth degree a;(g,h) = ([0.5,0.6],[0.2,0.3]).
Let T¥* = 0.4 and T}* = 0.6. Since the preference relation is (2,4) and TX* < Tf*, then the
inconsistency index (TX* — Tk*)~ = 0.

Thus, the definition of group inconsistency using the IVPF PIS is as follows:

-y K k+y— — i k K
Jt= 2:"zlZ(g,h)eﬂ,({o’l)(Th+ —Tg) = 2:"zlZ(g,h)eﬂ,((o'l) (g, h)y max{ 0,Tg"™ = Ty}, (16)

Definition 4.3. An index (TX~ — T}")* is defined for each (g,h) € 2"V as follows:

a(g, R)(TF~ —TF) if T > T),

17
0 if T < Ty, (1n

(Tgk_ - Tilzc_)-'- = {
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(Tgk‘ — TF)* = a,(g, h) max{0, Tgk" — T/} can be expressed as the measurement of how well
the subjective preference aligns with the objective ranking based on the IVPF NIS, with (TK* —
TSt being the metric used to quantify this consistency.

Example 5. Let (2,4) be a preference relation with truth degree a; (g, h) = ([0.5,0.6],[0.2,0.3]).
Let TX~ = 0.6 and TF~ = 0.4. Since the preference relation is (2,4) and Tx~ > TF~, then the
consistency index (TX~ — Tf7)" is calculated as follows:

(Tk= — TF=)* = ([0.5,0.6], [0.2,0.3]) x (0.6 — 0.4) = ([0.23,0.29], [0.72,0.79]).

Example 6. Let (2,4) be a preference relation with truth degree a; (g, h) = ([0.5,0.6],[0.2,0.3]).
Let TX~ = 0.4 and TF = 0.6. Since the preference relation is (2,4) and T¥~ < TF~, then the
consistency index (TX~ —Tf)* =o0.

Therefore, the definition of group consistency, which relies on the IVPF NIS, can be expressed
as:

K- =Yy Z(g,h)en,(("'l)(Tgk_ —TfH)r=3%t_, Z(g’h)eﬂl((o,l) (g, ) max{0,Tf~ =Ty} (18)

Definition 4.4. An index (Tgk‘ — TJ™)~ is defined for each (g, h) € (2,({0’1) as follows:

ap(g, (T —TF) ifTF- <T),

19
0 if T~ = Ty (15

(Tgk_ - Tilz(_)_ = {

Example 7. Let (2,4) be a preference relation with truth degree a;(g,h) = ([0.5,0.6],[0.2,0.3]).
Let Ty~ = 0.4 and T, = 0.6. Since the preference relation is (2,4) and T~ < T,", then the
inconsistency index (T¥~ — TX™)* is calculated as follows:

(Tk= — T}~)~ = ([0.5,0.6],[0.2,0.3]) x (0.6 — 0.4) = ([0.23,0.29], [0.72,0.79]).

Example 8. Let (2,4) be a preference relation with truth degree a;(g,h) = ([0.5,0.6],[0.2,0.3]).
Let Ty~ = 0.6 and T, = 0.4. Since the preference relation is (2,4) and T,~ = T,", then the
inconsistency index (T¥~ —TFf™)~ = 0.

Thus, the definition of group inconsistency, which is based on the IVPF NIS, can be stated as
follows:

- _ ¥ - _mk—— — 3! - k-
] - Zk:l Z(g,h)eﬂl(co'l)(’rgk - Th ) - Zk=1 Z(g‘h)e'ol(co‘l) ak (g’ h) ma’x{ 0' Th - Tg }' (20)

It can be observed that the truth degree significantly influences the consistency index. In actual
decision-making environments, it is often difficult for DMs to provide precise preferences between
two alternatives. Many existing studies do not account for the truth degree. In contrast to these
approaches, this paper employs IVPFNs to represent DMs' truth degrees, which not only captures the
uncertainty and fuzziness in DMs' judgments but also better reflects their actual cognitive processes
when comparing alternatives.

AIMS Mathematics Volume 11, Issue 1,2131-2187.



2149

4.3. IVPF programming model

In group decision-making scenarios, reducing inter-group disparities generally contributes to
more consistent and logically sound outcomes. To determine the weight vector w for the evaluation
criteria, a dual-objective mathematical programming model based on an IVPFS is constructed. This
model aims to minimize group inconsistency by incorporating the IVPF PIS and the IVPF NIS,
which serve as benchmarks for optimal and anti-ideal performance, respectively. The formulation of
this model is presented mathematically as follows:

min{/*}

min{/"}

K*—J* = p, (21)
K -] =2o,

wE A

Here, p and o represent two IVPF thresholds predetermined by DMs, defined as p =

(lup,ui1 [vy,v)]) and o = ([ug, udl, [vs,vi]). These thresholds denote the tolerance lower

bounds for “best consistency” and “worst consistency” of the decision group, respectively. Typically,
they can be set as small positive IVPF numbers. If decision-makers require stricter consistency, the
lower bound of membership degrees in p and ¢ can be appropriately increased, or the upper bound
of non-membership degrees can be decreased, ensuring K* —J* > p and K~ — ]~ = ¢, which
enforces that the degree of consistency must be significantly higher than that of inconsistency.

The programming model in Eq (21) is an IVPF programming model because its objective
functions and constraint conditions are expressed using [IVPFNs. To solve it, the model needs to be
transformed.

First, the  objective  functions need to be  transformed. Since J* =

Yh-1 Z(g'h)enl((o,l) a, (g, ) max{0,Tf* —TF*} and J~ = Zkﬂz(g,h)eﬂ,(f'” ax (g, h) max{0, T}~

TS~} are the sum of piecewise functions, let 757 =max{0,Tf" —Ti*} and nj, =

max{0, Ty~ — TS} for each (g,h) € .(2,((0'1), where nkt >0, nf; >0, 9kt = TF — T, and
- _ mk- ke =l Tkt k— _ mk— _ pk—

nhg =T, —Ty~ hold true, respectively. Let Jp h Ty™ and Jg, =Ty T, ~. Then,

the objective functions can be transformed into Yi_,Y (Gh)E Q,(co,l)[ak(g, h)n';,“:] and

Yh- 1Z(g e lak(g, h)nhg] with the constraint conditions 19 ngh >0 ((g,h) e .(2(0 D ke

L), 95 +nf; 20 ((g.h) €2V keL),and 1 = 0,785 =0 ((g,h) € 2"V, k € L).
Then, the constraint conditions need to be transformed. From Eqs (14) and (16), we can deduce

that K* —j* =%t _ > (g,h)eﬂl((o,l)[ak (9, B)(TF* — T)H)], and similarly, from Egs (18) and (20), we
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obtain K~ —J~ =Y!_, Z(g,h)E.Q,({O'l)[ak(g, h)(Tgk_ — TF)].

Therefore, Eq (21) can be reformulated into the following programming model:

l
min{ > > [alg, W]}

k=1 (g yea™

l

min{ > " [a(g, i)
k=1 (gmeal™

l
DD lwd@oi =, )

k=1 (g,nend?
l

p

[ar(g9, W)Y4] 2 0,
s.t. { ¥=1 (g nea®

ok +uliz0 (g eakel),

9 +nig 20 ((g.m)enl ke L),

N 20k 20 ((gh) e kel),
\w € A.

4.4. Solving the PF programming model

Although Section 4.3 transforms the original programming model with piecewise objective
functions, the model in Eq (22) remains a bi-objective IVPF model that requires further
transformation. Since each objective function is represented by an IVPF containing four elements,
we convert the bi-objective IVPF model into an eight-objective crisp programming model using
Definitions 2.1 and 2.2, and Eq (22). The transformation focuses on minimizing the membership
degrees and maximizing the non-membership degrees. The resulting eight-objective crisp
programming model is presented below.

l
min 1—1_[ 1_[ (1 — (Ul ,,)2)"5h

k=1 (0,1)
(g.h)en
‘ (23)

!
k
min{ |1— 1_[ (1= 2)’7gZ

k=1 (gnyen?
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l
9kt
1_[ = (uign)™ Z

kU 9K U
(Vign) ™) < v,

=1 (gmendV

l
k—
1— | | | | u 2)%gn > L
s.t. 4 I ( (gh)) ) (4

k= (g.h)en,i"'”

k—
=[] ] a-aigps®=w

k=1 (g mea™?

~

L
(v(g h)) gh < Vg
=1 (gmend?
!

S ~—r

()" < ¥

k=1 (g, ,{)‘6;2‘(0.1)

S +nkr 20 ((gn) e kel)
0,1

9k +nk; 20 ((g.h) € kel)

0,1
ns 20,1k 20 ((gh) e kel)
\w € A.

The core of the proposed method lies in transforming the group consensus problem under incomplete
IVPF preferences into a solvable mathematical programming model without losing the essential
information. This transformation is not a simple discretization but rather an equivalent mathematical
reformulation based on the axiomatic definition of IVPF distance. The distance measure between two
IVPFNs is essentially a function of the boundary parameters of their membership and
non-membership intervals. Therefore, the programming model aimed at minimizing group
inconsistency within the LINMAP framework can be equivalently reformulated as a coordinated
optimization of these underlying interval-bound parameters, adhering to the dimension-preserving
principle. This equivalence ensures that the model remains firmly grounded in the IVPF context
throughout, as its inputs, constraints, and interpretations are all derived from and belong to that
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framework. This reformulation is a necessary step to render the model solvable via linear
programming while fully preserving the uncertainty structure captured by IVPFNs. By the
logarithmic function, Eq (23) is converted into

max(z; = Eie1 Xy eqon Mk L0g(1 = (ufg )3,
max{z; = i1 Z(g'h)eﬂl((m) Mg Log(1 = (uign) 3,
max{z; = iy Z(g’h)eﬂl(co.l) 775;{ log( Uéch,h))},
max{zy = Lieer 5 pyeqon 67 109 ()3,
(24)
max{zs = St B pycoon My L0g(1 = (gD},
max{zs = Tkt By o Mg L0g(1 = Wgh) D}

max{ Z7 = Zk:l Z(g,h)E.Q,((O'l) r]ﬁ; log( véch,h))}?

max{zg = Y, Z(Q’h)m;(co'l) U}’f; log(vé‘gl{h))}_
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l
DD Ok log(1- (i) < log(1 - @h)?)
k=1 (g mea”

l

9k log(1— (uflp)?) < log(1— (uY)?)
k=1 (g h)E.Q(O'l)

Z Z ra log(vsn) < log v}
(g, h)e.(z(0 D
!
O log(vyhy) < logvy
k=1 (g,nyen?
!

95 log (1 — (ufsp)?) < log(1— (ub)?)
S- t. < k=1 (g,h)E.Q,((O‘l)
l
Ogi Log(1 = (ufgn)?) < log(1 = (ud)?)
k=1 (g,nen"
l
I5n log(v{sn) < log vk
k=1 (g,nea"
l

957 log(vishy) < log v
k=1 (g h)E.Q(o 1)

9K+l =0 ((g.h) el kel)
9%+l =0 ((g.h) €0V kel)

— 0,
ns 20k 20 ((g.h) e kel)
\w € A.

By utilizing the linear weighted summation method and substituting Eqs (11) and (12) into Eq (24), a
linear programming model can be formulated as shown below:

max{z =2z, + 2z, + Z3+ z4 + 5 + zg + z; + Zg}
subject to:

l wj k k kU U kL
Zk:lZ(g,h)eQ’goJ){Z?:q’ Wi (up)? = (Wf*)?%2 + |(ug)? — (uf )22 + |(vi)? —

N (25)
WFH21% + )2 — WP 21% + (k)2 = (g H?|% + (@) — () H)? |9 ] —

L Wil n? = @ )21% + [ (ug))? = /2% + ()2 — (v )21 +

(g2 = (W )21 % + |(mg)? — (mf*)?|%2 + | (mg) )? (ﬂ}”)zlqz]é}log(l—

AIMS Mathematics Volume 11, Issue 1,2131-2187.



2155

AIMS Mathematics

(u(g m)?) < log(1 - (up)?),
Q7 WD = @ )21% + 1 l))? = 2% + |k

— (W22 + |(w])? = W19 + ()% — ()2 % + |7y} )?
1

- ()2 |1

= > L W — 1% + ) - P + o

=1

~.

= W29 + (vg) ) — (0 )% + [(mg))? — (mf*)?|%2 + | (g} )?

( U2 |‘?2]Clz} log(1— (u(g )?) < log(1—(u))?),
{Z -y willurN? = (/)% + |(ug)? = (uf)?]% + | (vi))?

(UL+) qu + I(ka 2 (vU+) qu + I(T[kL 2 (T[L+) |q2 + |(7TkU 2

n
(1)
_ZZ [l( kL 2 (uL+) qu_l_l( kU 2 (uJ{J+)2|q2+|(v§;, 2
L+) |q2+|( kU 2 (UU+) |q2+|( kL 2

1
L+) |92 + |( kUy2 (njU+)2|QZ]QZ} log(vé{;h)) < log(vé’)’

/\,—\

Volume 11, Issue 1,2131-2187.



2156

l n
z {z% ) w]-"[l(u,’i]L-)z _ (ujL+)2|q2 + |(u’1§§'])2 (uU+) |92 + |(th)2

— (1% (W = 1% + 1 — ()1 + |y Y
— (e
Z‘% WETIQED? = @219 + )2 = @219 + | (ol
— (1% | = P + ()’
(w21 +| (2 — (mf 219275 tog (o) < tog (),
Bho Zgpyenon Zies 2 WITIQEN? = ()21 +10ub?)? = (f )21% + |0l
(U219 + [ OR)E = (o DR1% | ()2 — ()21 + (k) — (/)2 2]

o Wil EN? = @ )21% + [(ui))? = ) )21% + (k)2 — (v )21 +

|(vh])? = ()19 + | (1) = ()29 + |(mh])? = (] 7)?|%2] 42} log (1 —
(uign)®) < log(1 - (u$)?),
Y= 12, h)eﬂ(on{zj — 2wl ug)? = W )2% + | (ug; ) = (uf )% + |(vg))* =
()29 + |(vs])? = () 7)?%2 + | (m51)* — (7 )22 + | ()] )? (7T]'U_)2|q2]é—
j= — 2 Wil @R)? = @)% + [ (uiy)? = ) 1% + |(va)® — (v 7)?% +
()2 = ()19 + | () = (mf7)?|%2 + |(my] )2 = (7Tju_)2|q2]é} log(1—
(uom)® < log(1— (ud)?),
Zi=12(g,h)eﬂl(co,1){2?=1a;j' FIISN? = @f 2% + |(ug))* = (wf7)?% + |(vy))* -
(W29 + |(v5])? = (W 7)?1%2 + |(my))? — (mf )29 + |(mh])? (7T]'U_)2|qz]é -

oL Wil EN? = @ )21% + [(ui))? = ) )21% + (k)2 — ()21 +
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1
|2 = W 2% + 1()? — ()19 + | () )2 — ()22 ]e2} log (vgny) <

log(vs),

Skt g e Er 2 WEIGN? = QufD21% + 1 uf))? = (uf 2% + | (vf)? -

W 2% + [(vg] )2 — () 2% + [(mg)? — (7 7)?1% + | (g )? (ﬂ-”")zlqz]é -
J

Shoa L wil@EN? = @f)21% + [(ui)? = ) 7)21% + (k)2 — ()21 +

|2 = W 2% + (m5)? = ()21 + | () )2 — ()% %92} log (vighy) <

log(vy),
Wj k k
j=1 FU@ED? = Wi M)2% + [(uE)? = (uf)?]% + |(vE)? — (vf)?|%2 +
1
k — i
|2 = (W] )2|%2 + |(mhD? = ()29 + [(f))? — (] F)?[92]e — BT, -

[l(ukL 2 (uL+) |q2 + |( kU 2 (uU+) |q2 + I( kL 2 (vL+) |Q2 + |( kU 2 _

W/ )?1% + |(mg)? — (mf*)?|%2 + | (g} )? (ﬂj’”)zl‘”]ﬁﬂfﬁ =0 ((g.h)€

0,1
00V k e L),

Z% WETIGEEN? — @b )21 + )2 — @ )21% + (062 — ()21 + (vl

= (W19 + | (mg)? — ()2 % + |(1rg7 ) (ﬂju_)zlqz]%
Z% Uk - @)% + 1) = @)% + iy
= (W29 + ()% = (0 219 + | ()% — ()2 % + |(7y] )
~ (1Y) 27 + ks = 0 (tgmealkeL),

nt = 0m 20 ((gn eV kel)we A

It is evident that in Eq (25), the objective function is linear in the decision variables, and all
constraints are linear equalities or inequalities in these variables. Therefore, Eq (25) constitutes a
linear programming (LP) problem. The process for determining the criterion weight vector w =
(a)l,a)z,...,a)n)T is embedded within the structure and solution mechanism of the linear
programming model (Eq (25)), rather than being conducted separately outside the model. The
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objective function and constraints of this linear programming formulation fully define the
mathematical relationships and optimization criteria that the weight vector must satisfy. Therefore,
by directly solving this linear programming model using the simplex method, its optimal solution
yields the desired criterion weight vector w = (wq, wy,...,w,)T. This indicates that weight
determination and the model solution are achieved simultaneously, eliminating the need for
additional independent weight calculation steps after solving the model. Subsequently, T}* and
T}~ can be derived using Eqs (11) and (12), respectively.

Remark 1. In Eq (25), there are (8Y}_, |.Q,(CO’1)| + n) variables to be determined, including n
weights w; (j € N) and 8%}, |.(2,((O'1)| variables U(S p) L Ulony » Vigny » and vy ((g,h) €
0% k € L). There exist 8%L_, [2%V] + 8 inequalities at least. Generally, a higher value of

b : k=142, qualities at least. Generally, a higher value o

- |!2,(<0'1)| (i.e., the larger the number of pairwise comparisons of alternatives) means more

pairwise comparisons, leading to a more precise and reliable weight vector derived from Eq (25).
Due to the fact that Eq (25) is a linear programming model, it can be easily solved by Wan's
algorithm [29]. Since the number of decision variables in the linear programming model is

8y, |!2,(<0'1)| +n), it is easy to see that the model complexity of the model in Eq (25) is

calculated as O (max{(chzl |(2,(€O’1)|)3'5,n3'5}L3'5), where L is the number of bits in the input.

Therefore, according to the complexity, the developed method has a low complexity. Since there are
some mature software programs, such as LINGO and MATLAB, the processing time for solving this
type of linear program is very little.

4.5. Derive the ranking by a collective ranking matrix

DM E,, considers alternative A; to be superior when the value of T/* is smaller. Likewise,
alternative A; is viewed as superior if the value of T}~ is greater, from the perspective of DM Ej.
Thus, the relative closeness degree of alternative A; for DM Ej. is calculated as follows:

RE =Tk /(TF- + T}f*) (i e Mk e L). (26)

It is evident that 0 < RF <1 holds true, and if T*~ =0, then RF = 0 follows. Similarly,
Tl-k+ = 0 implies R;‘ = 1. Moreover, DM E, considers alternative A; to be superior when the
value of RF is greater. According to R, the individual ranking of alternatives for each DM can be

gained.

The individual ranking matrix X" =(x),,.,. is generated for DM E,, where

ok = {1, if Ej, ranks A; in the o — th position,

to 0, otherwise.

Denote
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1, if the decision group ranks A; in the o —th position,
io = (27)

0, otherwise.

To derive the collective ranking matrix X =(x,) an assignment model is constructed. This

mxm %

model aims to minimize the deviation between each DM's individual ranking of alternatives and the
overall group ranking, as formulated below:

m m
min zz Xk — x| (k€L

i=10=1
m
ino=1 (o € M), (28)
i=1
st.{ &
zxio =1 (l € M)l
0=1

\x;, =0or1 (i,0 € M).

The constraints )./%; x;, = 1 (0 € M) ensure that each alternative is exclusively ranked within a
solitary position, and the constraints Y-, x;, =1 (i € M) affirm that each position solely
accommodates a single alternative.

The multi-objective assignment model in Eq (28) can be transformed into a single-objective
model as follows:

k=1i=1o0=1
r m
Y xp=1 (0Em), 09)
i=1
s.t. <
zxio =1 (leM),
o=1
\x;, =0or1 (i,0 €M).

The ranking of alternatives can be determined by solving the assignment model in Eq (29) using the
Hungarian algorithm. The optimal solution yields the final priority order.

4.6. IVPF programming model for IVPF MCGDM problems
Based on the above analysis, we have developed a mathematical programming approach

capable of addressing practical IVPF MCGDM problems with IVPF information. Inspired by [30],
the algorithmic description of the proposed method is presented in Algorithm 1 as follows:
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Algorithm 1. The proposed decision method.

Input: Alternative set A, criteria set C, and criteria weight A.

Output: The final ranking of alternatives.

Step 1: Supply the IVPF ordered pairs representing the subjective preference relations among
alternatives by 2y = {< (g, h), ax(g,h) > |Ag >k Ap} with  IVPF  truth  degrees
ai(g,h) (g9, h € M).

Step 2: Elicit Z* (k € L) and transform into Z'* (k € L) by Eq (6).

Step 3: Obtain PIS r* and NIS r~ under a criterion C; according to Eq (7).

Step 4: Derive DM's weight vector w; = (le, sz, e le)T(]' € N) under each criterion by Eq (9).

Step 5: By utilizing Eq (10), IVPF PIS s* and IVPF NIS s~ can be derived.

Step 6: Construct an IVPF programming model (i.e., Eq (23)) and transform it into a
single-objective model (i.e., Eq (25)).

Step 7: Solve Eq (25) to obtain w.

Step 8: Calculate R¥ (i € M,k € L) of alternative A; for DM E using Eq (26).

Step 9: Construct X*=(x}),., for the alternatives as per DM E, by arranging them in

descending order of RF.

Step 10: Utilize Eq (28) to compute the collective ranking matrix X =(x,,) which is then

mxm >

employed to establish the sequence of alternatives according to their rankings.

The complete application of the proposed method is visually illustrated in Figure 1.
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Identify alternativeset A, criteriaset C, and incomplete criteria weight information structure A

L

Provide IVPF ordered pairs for the subjective preference relations between alternatives by Q.

with IVPF truth degrees . (g./)

Il

Normalize IVPF decision matrices Z° (k€L) into Z"” (kel)

L

Obtain PIS r° and NIS r~ underacriterion C,

ﬂ

Derive DM’s weight vector w, under each criterion

[

Determine IVPF PIS s™ and IVPF NIS s~

il

J L Construct bi-objective IVPF mathematical
programming model (Eq (23))

A\/4

Transform into a single-objective pro-
gramming model (Eq (25))

Derive criteria weight vector o

U

Calculate individual relative closeness degrees R’

(1e M.keL) ofalternatives 4 forDM E,

Il

Generate the individual ranking matrix X* =(x;), ., ofthealtemna-

tives for DM E, according to the decreasing order of R™ (i€ M)

Il

Determine the collective ranking matrix X =(x,),., and obtain the

ranking order of alternatives

Figure 1. Decision-making process of an I[VPF mathematical programming method.
5. A wireless network example and comparative analysis

To illustrate the viability and dependability of the proposed method, a wireless network
selection example is presented within this section. Furthermore, the effectiveness of the suggested
methodology is evaluated via a comparative examination against the IVPF-ELECTRE [26],
IVPF-TOPSIS [31], and IVPF-TODIM [32].

5.1. A wireless network example

The rapid advancement of wireless communication technologies has greatly facilitated daily life,
offering users a diverse range of access services within heterogeneous network environments.
Consequently, heterogeneous wireless networks have emerged as a dominant trend for future
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communication systems, attracting considerable research interest. Among the key enabling
technologies, network selection stands out as a critical research focus. To illustrate this problem,
consider a scenario where a company needs to select the most suitable wireless network from among
the following five alternatives: UMTS A;, GSM A,, WIMAX Az, WLAN A,, and WMAN A4;. To
pick the best one from all alternatives, the evaluation expert team consisting of project manager E,
CEO E,, and technical personnel E; will evaluate the five alternatives from four criteria: signal

strength C;, network security C,, network speed C;, and coverage Cj.

Table 1 presents the individual decision matrices, which contain the linguistic ratings provided

by each decision-maker for all alternatives with respect to every criterion.

Table 1. Individual linguistic term decision matrices.

. Criterion
DM Alternative C, C Cs C,
E; A4 EG VG F G
A, P G F G
As F G EG F
A, EG F G VG
Ag VP F F G
E, A4 F EG VG EG
A, VG VP P F
As F F G G
A, G P F VP
Ag F F G EG
E; A4 EG G VG F
A, G P VP G
A, VG G VG F
A, F F G F
Ac EG G F P

To reflect the uniform expression of DMs, the mapping between linguistic terms and IVPFNs [26]

1s illustrated in Table 2.

Table 2. Relation between linguistic terms and IVPFNS.

Linguistic term

Extremely good
Very good
Good

Fair

Poor

Very poor
Extremely poor

Abbreviation IVPEFN

EG ([0.8,0.9],[0.1,0.2])
VG ([0.7,0.8],[0.2,0.3])
G ([0.6,0.71,[0.3,0.4])
F ([0.5,0.6],[0.4,0.5])
P ([0.3,0.4],[0.6,0.7])
VP ([0.2,0.31,[0.7,0.8])
EP ([0.1,0.2],[0.8,0.9])

AIMS Mathematics
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Based on their experience and expertise, the three DMs have provided their IVPF preference
relations among the alternatives, as shown below:

0, ={<(1,2),a:(1,2) >, <(32),a:(3,2) >, < (3,5),a:(3,5) > },

0, ={<(1,2),a,(1,2) >, <(1,3),a,(1,3) >, <(1,4),a,(1,4) > },

03 ={<(1,3),a3(1,3) >, <(34),a3(3,4) >, <(52),a3(52) >},
where the associated IVPF truth degrees are given by:
a1(1,2) = ([0.7,0.8],10.2,0.3]), a;(3,2) = ([0.6,0.7],[0.3,0.4]), @1(3,5) = ([0.5,0.6],[0.4,0.5]),
a,(1,2) = ([0.7,0.8],[0.2,0.3]), a,(1,3) = ([0.6,0.7],[0.3,0.4]), a,(1,4) = (]0.8,0.9],[0.1,0.2]),
a3(1,3) = ([0.5,0.6],[0.4,0.5]), a3(3,4) = ([0.7,0.8],0.2,0.3]), a3(5,2) = ([0.5,0.6],[0.4,0.5]).

After discussion and negotiation, the expert group provides the following preference information
structure A of criteria importance:

A ={w|w € Ay, w3 = Wy, W1 = 2wy, 0.1 <w, —w, <£0.2, 0.1 < w, <0.15}.

Because each of criteria C; — C, is a benefit, Table 3 displays the normalized individual IVPF
decision matrices Z'* (k =1,2,3).

Table 3. Normalized individual IVPF decision matrices.

DM  Alternative Criterion
1 G, Cs Cy

E; Aq ([0.8,0.9],[0.1,0.2])  ([0.7,0.8],[0.2,0.3]) (]0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4])
A, ([0.3,0.41,[0.6,0.7])  ([0.6,0.7],[0.3,0.4]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4])
A, ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.8,0.9],[0.1,0.2])  ([0.5,0.6],[0.4,0.5])
Ay ([0.8,0.9],[0.1,0.2])  (]0.5,0.6],[0.4,0.5]) (]0.6,0.7],[0.3,0.4]) ([0.7,0.8],[0.2,0.3])
Ac ([0.2,0.3]1,[0.7,0.8])  ([0.5,0.6],[0.4,0.5]) (]0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4])

E, Aq ([0.5,0.6],[0.4,0.5]) (]0.8,0.9],[0.1,0.2]) ([0.7,0.8],[0.2,0.3])  ([0.8,0.9],[0.1,0.2])
A, ([0.7,0.8]1,[0.2,0.3]) (]0.2,0.3],[0.7,0.8])  ([0.3,0.4],[0.6,0.7])  ([0.5,0.6],[0.4,0.5])
As ([0.5,0.6],[0.4,0.5]) ([0.5,0.6],[0.4,0.5]) (]0.6,0.7],[0.3,0.4]) ([0.6,0.7],[0.3,0.4])
Ay ([0.6,0.7]1,]0.3,0.4])  ([0.3,0.4],[0.6,0.7]) (]0.5,0.6],[0.4,0.5]) ([0.2,0.3],[0.7,0.8])
As ([0.5,0.6],[0.4,0.5]) (]0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.8,0.9],[0.1,0.2])

E; Aq ([0.8,0.91,[0.1,0.2])  (]0.6,0.7],[0.3,0.4]) ([0.7,0.8],[0.2,0.3])  ([0.5,0.6],[0.4,0.5])
A, ([0.6,0.7]1,]0.3,0.4])  ([0.3,0.4],[0.6,0.7]) (]0.2,0.3],[0.7,0.8])  ([0.6,0.7],[0.3,0.4])
As ([0.7,0.8],[0.2,0.3]) ([0.6,0.7],[0.3,0.4]) (]0.7,0.8],[0.2,0.3]) ([0.5,0.6],[0.4,0.5])
A, ([0.5,0.6],[0.4,0.5]) (]0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.5,0.6],[0.4,0.5])
Ac ([0.8,0.91,]0.1,0.2])  (]0.6,0.7],[0.3,0.4]) ([0.5,0.6],[0.4,0.5]) ([0.3,0.4],[0.6,0.7])

PIS rj+ and NIS 7;~ under the criterion C; are obtained by Eq (7) as:

it = (2t 3T = (([0.8,0.9],[0.1,0.2]), ([0.7,0.8], [0.2,0.3]), ([0.8,0.9], [0.1,0.2]))7,
= (i, 27,7 = (([0.2,0.3],[0.7,0.8]), ([0.5,0.6], [0.4,0.5]), ([0.5,0.6], [0.4,0.5]))7,
ry = (3,2t 3T = (([0.7,0.8],[0.2,0.3]), ([0.8,0.9], [0.1,0.2]), ([0.6,0.7], [0.3,0.4]))T,
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ry = (ry v ,15 )T = (([0.5,0.6],[0.4,0.5]), ([0.2,0.3],[0.7,0.8]), ([0.3,0.4], [0.6,0.7]))7,
ry = (3t Y, 3T = (([0.8,0.9],[0.1,0.2]), ([0.7,0.8], [0.2,0.3]), ([0.7,0.8], [0.2,0.3]))7,
ry = (37, 7% ,157)T = (([0.5,0.6],[0.4,0.5]), ([0.3,0.4], [0.6,0.7]), ([0.2,0.3], [0.7,0.8]))7,
Ty = (it vt 2T = (([0.7,0.8],[0.2,0.3]), ([0.8,0.9],[0.1,0.2]), ([0.6,0.7], [0.3,0.4]))7,
ry = (i, v, 77T = (([0.5,0.6],[0.4,0.5]), ([0.2,0.3],[0.7,0.8]), ([0.3,0.4], [0.6,0.7]))T.

To simplify the analysis, q; = 2 can be substituted into Eq (29). Then, the distance matrices of
decision information of these three DMs and the PIS can be displayed in Tables 4-6, respectively.
The distance matrices of decision information of these three DMs and the NIS can be displayed in
Tables 7-9, respectively.

Table 4. Distance matrix of decision information of DM E; and the PIS.

Alternative (C?rltenon C C C
1 2 3 4
A 0 0 0.1831 0.0610
A, 0.2658 0.0610 0.1831 0.0610
A 0.1831 0.0610 0 0.1131
A, 0 0.1131 0.1327 0
Ac 0.3059 0.1131 0.1831 0.0610

Table 5. Distance matrix of decision information of DM E, and the PIS.

) Criterion
Alternative C ‘ C) C
Aq 0.1131 0 0 0
A, 0 0.3059 0.2040 0.1831
A 0.1131 0.1831 0.0610 0.1327
A, 0.0610 0.2658 0.1131 0.3059
Ac 0.1131 0.1831 0.0610 0

Table 6. Distance matrix of decision information of DM E; and the PIS.

. Criterion
Alternative . ‘ C, C.
A4 0 0 0 0.0532
A, 0.1327 0.1507 0.2512 0
As 0.0723 0 0 0.0532
A, 0.1831 0.0532 0.0610 0.0532
Ac 0 0 0.1131 0.1507
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Table 7. Distance matrix of decision information of DM E; and the NIS.

) Criterion
Alternative C C C) C
A 0.3059 0.1131 0 0.0532
A, 0.0610 0.0532 0 0.0532
As 0.1595 0.0532 0.1831 0
A, 0.3059 0 0.0532 0.1131
As 0 0 0 0.0532

Table 8. Distance matrix of decision information of DM E, and the NIS.

) Criterion
Alternative C ‘ C) C
A 0 0.3059 0.2040 0.3059
A, 0.1131 0 0 0.1595
As 0 0.1595 0.1507 0.2040
A, 0.0532 0.0610 0.1020 0
Ac 0 0.1595 0.1507 0.3059

Table 9. Distance matrix of decision information of DM E3 and the NIS.

. Criterion
Alternative C ‘ 2 C
Aq 0.1831 0.1507 0.2512 0.1020
A, 0.0532 0 0 0.1507
A, 0.1131 0.1507 0.2512 0.1020
A, 0 0.1020 0.2040 0.1020
Ac 0.1831 0.1507 0.1595 0

Using Eq (9), the weight of DM E; under criterion C; can be calculated as wj =

2.6523
2.6523+1.4655+2.8962

= 0.3781.

Likewise, the weight vector w; = (le, sz, cen W]-Z)T(]' € N) for each DM under each criterion
can be derived as:
w; = (wi,wi,w)T = (0.3781,0.2090,0.4129)7,
w, = (Wi, wZ,w3)T = (0.2506,0.2748,0.4746)T,
wy = (wi,wi,wi)T = (0.1706,0.3844,0.4450)7,
w, = (wi,wi,w3)T = (0.2839,0.3639,0.3522)T.
By Eq (10), IVPF PIS s and IVPF NIS s~ are determined as
s* = (([0.8,0.9],[0.1,0.2]), ([0.8,0.9],[0.1,0.2]), ([0.8,0.9], [0.1,0.2]), ([0.8,0.9], [0.1,0.2]))T,
s~ = (([0.2,0.3],[0.7,0.8]), ([0.2,0.3], [0.7,0.8]), ([0.2,0.3], [0.7,0.8]), ([0.2,0.3], [0.7,0.8]))".
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Let p = ([0.0001,0.0002],[0.9997,0.9998]) and o = ([0.0001,0.0002],[0.9997,0.9998]). To
facilitate simplicity, let g, = 2 be substituted into Eq (29), and then the vector of criteria weights w
can be obtained as:

w; = 0.2952, w, = 0.2408, w; = 0.3412, w, = 0.1228.

Based on the model solution, the obtained optimal criterion weight vector is @ =
(0.2952,0.2408,0.3412,0.1228)T. The determination of these weights originates from minimizing
the group inconsistency index, i.e., seeking the weight configuration that best reconciles the conflicts
among the evaluations provided by the three experts.

Criterion C3 has the highest weight of 0.3412. This prominent weight indicates that, regarding
this criterion, the experts' evaluations of different alternatives exhibit relatively large divergence or
the highest degree of uncertainty. Reviewing the original linguistic decision matrix (Table 1), for
example, for alternative A,, the three experts' evaluations on C3 are "F", "P", and "VP", whose
corresponding IVPF representations already demonstrate significant variability. Assigning a higher
weight to C5; implies that, during consensus formation, greater importance must be placed on the
evaluative differences concerning this criterion. By weighting it more heavily, the model reconciles
the judgmental conflicts among different experts in this area, thereby ensuring that the final ranking
result better reflects the group's compromise and agreement on this key point of divergence.

Criterion C, has the lowest weight of 0.1228. This lower weight suggests that the experts'
evaluations on this criterion are relatively consistent or exhibit higher certainty. For example, for
alternative As, the three experts' evaluations on C, are "F", "G", and "F". Although variations exist,
their overall fluctuation is less disruptive to the overall consensus compared to other criteria.
Consequently, the model automatically reduces its weight, indicating that this criterion contributes
relatively less to distinguishing and forming the final consensus ranking.

Criteria C; and C, demonstrate their balanced role in consensus formation. For instance, on
C;, the evaluations received by alternative A; are "EG", "F", and "EG", showing a certain degree of
fuzziness and inconsistency, though not to the extent observed for (5. Therefore, their weights
reflect an intermediate role for these criteria in the group decision-making process: they cannot be
ignored, yet they are not the primary sources of disagreement.

This illustrates that the allocation of weights is not a "black-box" output but rather a quantified
feedback and semantic mapping of the inherent consensus difficulty and informational certainty
embedded within the experts' original linguistic evaluations. A higher weight signifies that the
corresponding criterion requires greater emphasis and reconciliation during the consensus process,
whereas a lower weight indicates that the experts' opinions on that criterion are relatively convergent,
naturally diminishing its influence on the final ranking.

Then, the relative closeness degree matrix of these three DMs can be obtained in Tables 10—12.

AIMS Mathematics Volume 11, Issue 1,2131-2187.



2167

Table 10. Relative closeness degree matrix of DM Ej.

. Criterion
Alternative C, c C) C
A 1 1 0 0.4655
A, 0.1868 0.4655 0 0.4655
As 0.4655 0.4655 1 0
A, 1 0 0.2861 1
Ac 0 0 0 0.4655
Sum 2.6523 1.9310 1.2861 2.3965

Table 11. Relative closeness degree matrix of DM E,.

. Criterion
Alternative G ‘) C) C
A 0 1 1 1
A, 1 0 0 0.4655
As 0 0.4655 0.7118 0.6059
A, 0.4655 0.1868 0.4741 0
Ac 0 0.4655 0.7118 1
Sum 1.4655 2.1178 2.8977 3.0714

Table 12. Relative closeness degree matrix of DM Ej.

. Criterion
Alternative C C 2 C
A 1 1 1 0.6574
A, 0.2861 0 0 1
A, 0.6101 1 1 0.6574
A, 0 0.6574 0.7697 0.6574
As 1 1 0.5850 0
Sum 2.8962 3.6573 3.3546 2.9722

Thus, after obtaining distances between r{-‘ (i=1234,5k=1,23) and st, s as Tik+, Tik_,

respectively, the relative closeness degrees can be calculated. The results are presented in Table 13.
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Table 13. Weighted Euclidean distances T/*, T}~ and relative closeness degrees R¥.

DM Alternative T+ T/~ RE
Aq 0.0196 0.0657 0.7698
A, 0.0530 0.0355 0.4014
E, A, 0.0348 0.0535 0.6056
Ay 0.0213 0.0644 0.7516
As 0.0605 0.0260 0.3008
Aq 0.0208 0.0767 0.7869
A, 0.0677 0.0306 0.3114
E, A, 0.0467 0.0563 0.5462
A, 0.0635 0.0375 0.3717
As 0.0408 0.0608 0.5984
Aq 0.0341 0.1056 0.7562
A, 0.0987 0.0407 0.2917
E; As 0.0429 0.0990 0.6978
A, 0.0713 0.0755 0.5144
As 0.0545 0.0875 0.6163

The individual ranking of alternatives is obtained by sorting them in descending order of their
relative closeness degrees, denoted as A; > A, > A3 > A, > A; for DM E;, A; > As > A3 >
Ay > A, for DM E,, and A; > A3 > As > A, > A, for DM Ej;, respectively. Therefore, the
individual ranking matrices X*(k = 1,2,3) are generated for DM Ej (k = 1,2,3) as follows:

1 00 0O 1 00 00 1 00 00
0001 0 0 0 0 01 0 00 01
X'={0 01 00| X<{001 00| X=011000
01 00O 0001 O 0001 O
0 0 0 01 01 000 001 00
By Eq (29), the assignment model can be fabricated:
3 5
min ZZZIxﬁ,—xio
k=1i=1o0=1
(5
inozl (0 =1,2,3,4,5), (30)
i=1
s.t.4 2
inozl (i =1,2,3,4,5),
o=1

x;, =0o0r1 (i,0 =1234,5).

By employing LINGO 11.0 for the resolution of Eq (30), the resultant matrix of collective ranking is
acquired:

AIMS Mathematics Volume 11, Issue 1,2131-2187.



2169

1 0 0 0O
0 0 0 01
X=/0 01 0O
0001 O
01 0 0O

Thus, the overall order may be established as A; > Ag > A3 > A, > A,, with alternative A
identified as the optimal choice. The method proposed in this paper integrates the determination of
criterion weights into a linear programming model (Eq (25)). The optimal solution of this model
directly contains the criterion weight vector, thereby avoiding potential distortions that may arise in
methods such as fuzzy information aggregation. Furthermore, after obtaining the rankings of
alternatives from each DM, an assignment model is used to aggregate the DMs' ranking results,
yielding the final ranking of alternatives. In summary, the method proposed in this paper is both
reliable and reasonable.

5.2. Sensitivity analyses

The distance measure between IVPFSs is critical not only for determining DMs' weights but
also for assessing group consistency and inconsistency. In particular, the weighted Minkowski
distance metric incorporates a parameter q,. Different values of g, lead to different distance
calculations, which consequently alter the final decision outcomes. It is therefore essential to
investigate how variations in g, affect the decision results.

First, we take the values of parameter q, by 1, 2, 10, 100, and 392. According to the MCGDM
proposed in this paper, the DM's weights, criteria weights, and the collective ranking orders obtained
by different values of parameters are listed in Table 14.

Remark 2. When g, > 393, the distances T}* and T}~ are close to zero in Eq (26).
Consequently, the relative closeness degree RF assigned by DM Ej to alternative A; holds no
significance.

Then, based on the weights of DMs and weights of criteria derived in Section 5.1, we take the
values of parameter q, as 1, 2, 10, 100, and 392, respectively, and further obtain the final decision
results in Table 15.
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Table 14. Collective ranking orders with different values of q,.

DM's weight vector w; under a Collective ranking

q, Criteria weight vector w

criterion order

w; = (0.3778,0.2082,0.4140)7
w, = (0.2503,0.2750,0.4747)T )
wy = (0.1727,0.3789,0.4484)T = (0.2488,0.1040,0.5271,0.1201)7
w, = (0.2845,0.3646,0.3509)"
w; = (0.3781,0.2090,0.4129)"
w, = (0.2506,0.2748,0.4746)" @
ws = (0.1706,0.3844,0.4450)" = (0.2952,0.2408,0.3412,0.1228)
w, = (0.2839,0.3639,0.3522)"
w, = (0.3776,0.2084,0.4140)7
w, = (0.2505,0.2750,0.4745)" @
0 wy = (0.1718,0.3820,0.4462)" = (0.3592,0.3197,0.1371,0.1840)"
w, = (0.2844,0.3645,0.3511)7
w,; = (0.3774,0.2084,0.4142)T
w, = (0.2507,0.2750,0.4743)7
00  wj; =(0.1725,0.3800,0.4475)" = (0.1171,0.4074,0.1335,0.3420)"
w, = (0.2848,0.3647,0.3505)"
w, = (0.4227,0.1593,0.4180)"
w, = (0.1405,0.2974,0.5621)7 @
92wy =(0.1392,0.3951,0.4657)" = (0.2029,0.2277,0.1880,0.3814)"
w, = (0.1240,0.3800,0.4960)"

A > As > A3 > A, > A,

Ay > Ag > A3 > Ay > A,

Ay > Ay > Ay > A, > As

Ay > Ay > Ay > A, > As

Ay > As > A > A, > A,

Table 15. Collective ranking orders with different values of g, by the equal weights of
criteria and equal weights of DMs.

q> Collective ranking order
1 Ay > A3 > A, > As > A,
2 Ay > A3 > A, > A5 > A,
10 A > Ay > A, > A > A,
100 A > Ay > A > A, > A,
392 A > Ay > A > A, > A,

According to Tables 14 and 15, we can obtain the following three conclusions.

(1) The optimal alternative is always A;, which is not changed when the parameter q, takes
different values. Thus, the proposed method is reliable.

(2) In Table 14, it can be found that the weights information and the suboptimal alternative are
greatly affected by the values of parameter q,. If g, =1 or g, =2, then the suboptimal solution is
As. However, if g, = 10 or g, = 100, then As is the worst alternative. Although the different
values of parameter q, will also cause huge changes in weight information and ranking of
alternatives, the optimal alternative is still A;. Therefore, the proposed method is reliable.

(3) As shown in Table 15, the ranking of alternatives changes only slightly across different
values of g,. This stability can be attributed to the relatively stable weight assignments derived from
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the process. Since these weights are closely dependent on the distances between IVPFSs, which
themselves vary with q,, any variation in g, will first affect the weight calculations and,
consequently, the final ranking results. The observed minimal change in ranking indicates that the
derived weights are robust to the chosen distance parameter within the tested range. However, the
decision results in Table 15 are obtained based on the weight information obtained in Section 5.1 and
the weight information will not change with the change of values of parameter g,. Thus, even if the
values of parameter g, change, the alternatives ranking is not changed greatly.

Therefore, Tables 14 and 15 reveal that the optimal alternative obtained by the proposed method
is always A;, which demonstrates that the proposed method is robust and reliable.

5.3. Comparative analyses

To validate the effectiveness and advantages of our proposed method, this section conducts a
comparative analysis with several established IVPF-MCGDM methods. Specifically, we select the
IVPF-ELECTRE [26], IVPF-TOPSIS [31], and IVPF-TODIM [32] methods for comparison, as they
are all designed to address similar decision-making problems under interval-valued Pythagorean
fuzzy information. The comparative results are then analyzed, followed by a robustness assessment
using Spearman's rank correlation test.

5.3.1.  Comparative analysis with IVPF-ELECTRE

Peng et al. [26] first defined the score and accuracy functions for IVPFNs, along with their
operational rules and distance measures. Building upon these foundations, they then introduced an
IVPF point-weighted average operator by integrating the IVPF point operator. Based on this operator,
they subsequently developed an IVPF-ELECTRE method to solve MCGDM problems.

Although method [26] can be employed to resolve the MCGDM quandaries, the relative

importance A, = ([uy, 4y |, [vr,vi | [mr. i D (k = 1,2,3) of DM Ei(k = 1,2,3) should be

given in advance, as shown in Table 16.

Table 16. The relative importance of DMs.

E E> E3
Linguistic term Medium Important Very important
IVPEN ([0.5,0.61,[0.4,0.5]) ([0.7,0.81,[0.2,0.3]) ([0.8,0.91,[0.1,0.2])

In approach [26], the weight of DM E} is computed using the following equation:

K2

— L+ — ot k
+ut +(ny 4w

Hage tHa (T, lk’u/—lkwjkw;kwjk

=7

Hy, Ty
KA

+ qu

$k =

1 - + - +
LBy (Y 4T
Lie=1 Kt (T Mg, +Hg, 47, VL

Then, DMs' weights can be obtained as

£,=0.2743, & =0.3534, & =0.3723.
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Furthermore, objective criteria weight a)}‘ of the DM is calculated based on the formula

k _ Z:rzll 2?}:1 d(Plkj,Plk,j)

W’ .
\/Z}l=1(2?;1 z:?Ii=1 d(pgcj’plk’i))z

J

Thus, it is possible to derive the objective criteria weights of DMs as
w® = (0.4904,0.1538,0.2308,0.1250),
w® = (0.1231,0.3269,0.1962,0.3538),
w® = (0.2923,0.1897,0.3487,0.1693).

The final integrated weight for each criterion is calculated by aggregating the subjective criterion
weights provided by individual DMs, weighted by their respective DM importance weights. This
integration is performed using the following equation:

wj = Yi-1 w]k&;k-
Therefore, the weights of the criteria are acquired as w; = 0.29, w, = 0.23, w3 = 0.26, w, = 0.22.
The individual IVPF decision matrices provided by the DM are aggregated into a collective

IVPF decision matrix using the interval-valued Pythagorean fuzzy weighted average operator, which
is defined as follows:

Py = IVPEWA(;, pfj, -+, i) = ([Zher Sl Biea Sty ] [Zhema Eivlf” Biea Sievi"])-
The collective IVPF decision matrix is computed and listed in Table 17.

Table 17. Collective IVPF decision matrix.

. Criterion
Alternative C ‘ C, C
A ([0.69,0.79], ([0.70,0.80], ([0.65,0.75], ([0.63,0.73],
1 [0.21,0.31]) [0.20,0.30]) [0.25,0.35]) [0.27,0.37])
A ([0.55,0.65], ([0.35,0.45], ([0.32,0.42], ([0.56,0.66],
2 [0.35,0.45]) [0.55,0.65]) [0.58,0.68]) [0.34,0.44])
A ([0.57,0.67], ([0.56,0.66], ([0.69,0.79], ([0.54,0.64],
3 [0.33,0.43]) [0.34,0.44]) [0.21,0.31]) [0.36,0.46])
A ([0.62,0.72], ([0.43,0.53], ([0.56,0.66], ([0.45,0.55],
4 [0.28,0.38]) [0.47,0.57]) [0.34,0.44]) [0.45,0.55])
A ([0.53,0.63], ([0.54,0.64], ([0.54,0.64], ([0.56,0.66],
5 [0.37,0.47]) [0.36,0.46]) [0.36,0.46]) [0.34,0.44])
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After identifying the concordance and discordance sets, the concordance and discordance
Boolean matrices are constructed. Subsequently, the outranking matrix is derived as follows:

-1 0 1 1
0O — 0 0 O
0=10 1 - 0 1
0 1.0 — O
0 0 0 0 -

Consequently, A; is considered better than A,, A,, As, and as a result, alternative A; emerges as
the optimal choice. Figure 2 illustrates the decision-making result.

Figure 2. Decision result by IVPF-ELECTRE.

Comparing the decision result obtained by Peng et al.'s method [26] with that obtained by the
proposed method, the following conclusions can be obtained.

(1) Peng et al.'s method directly provided the weighs of DMs in advance and it is difficult to
avoid the subjectivity and randomness. Different from Peng et al.'s method, this paper determines the
weights of DMs by the relative closeness degree, which is objective and credible. Compared with
Peng et al.'s method, the weights of DMs obtained by the proposed method in this paper are more
reasonable and reliable, which create the condition to obtain the correct decision result.

(2) Although Peng et al.'s method [26] can yield the optimal alternative, it only provides the
partial orders of the remaining alternatives. The decision results obtained by Peng et al.'s method
cannot distinguish the rankings of all alternatives. According to Figure 2, alternative A; is not
compared with alternative A;. The optimal alternative obtained by Peng et al.'s method is also not
reliable. Thus, compared with Peng et al.'s method, the proposed method in this paper not only can
obtain rankings of all alternatives but also can provide the reliable optimal alternatives.

Therefore, compared with the approach introduced by Peng et al.'s method, our method offers
several benefits and has a broader range of potential applications.

5.3.2. Comparative analysis with IVPF-TOPSIS

Yu et al. [31] conducted supplier performance assessments by synthesizing the distance and
similarity among various options. Following this, a protracted IVPF-TOPSIS plan was presented to
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tackle the MCGDM predicament in the sustainable evaluation of suppliers. Following the method in
Yu et al. based on the data shown in Table 3, the assemblage amalgamated decision matrix is
calculated by taking into account the degree of optimism A, and the relative weight 1, of DM E,
in [31]. The resulting matrix is derived from Table 3 and presented below.

(0.7727, 0.2340) (0.7710, 0.2324) (0.7155, 0.2860) (0.7324, 0.2756)
(0.6566, 0.3507)  (0.4219,0.6046)  (0.3801,0.6374)  (0.6126, 0.3887)
R=| (0.6417,03618)  (0.6126,0.3887)  (0.7486,0.2547)  (0.5931, 0.4084) |,
(0.6911,0.3179)  (0.4834,0.5232)  (0.6126,0.3887)  (0.5403, 0.4868)
(0.6827,0.3349)  (0.5903,0.4104)  (0.5931,0.4084)  (0.7035, 0.3176)

where A = (44,4;,13) = (0.8,0.5,0.3), n = (11,12,13) = (0.2,0.4,0.4).
Next, the divergence vector d and the normalized criteria weight vector w are acquired
through Eqgs (16) and (17) in [31].

d = (1.8037, 1.8905, 1.8423, 1.8780),
w = (0.2433, 0.2550, 0.2485, 0.2533).
Afterward, the weighted distance vectors are computed using given equations.
d* = (0.0130, 0.3538, 0.1629, 0.2650, 0.1770)7,
d~ = (0.3761, 0.0359, 0.2303, 0.1290, 0.2182)T.
Then the grey relational grade vectors are obtained as follows by Eqs (22) and (23) in [31].
yt = (0.4890, 0.3128, 0.3917, 0.3404, 0.3814)7,
¥y~ = (0.2999, 0.4720, 0.3741, 0.4163, 0.3618)T.

According to Eqgs (25) and (26) in [31], the derived values of distance and grey relational grade,
seamlessly integrated in a vector, are procured in the following manner.

I'* = (1.0000, 0.3675, 0.7068, 0.5196, 0.6800),
I~ = (0.3360, 1.0000, 0.6266, 0.8154, 0.6334)7,

where a = 0.5, = 0.5.

CC = (0,0.9170, 0.4128, 0.6787, 0.4368)T is the calculated distance vector from each
alternative to the optimized ideal reference point G = (1, 0.3360). Ultimately, the obtained ranking
resultis A; > Az > A > A, > A,.

TOPSIS and similar distance-based methods calculate the distance from each alternative to the
PIS and NIS as a fixed geometric measure. The final ranking is based on a predefined relative
closeness formula. The PIS and NIS are given or constructed from the decision matrix, a process that
does not inherently optimize or calibrate these distances against the decision-maker's implicit
preferences. In contrast, our method is fundamentally designed for scenarios where weight
information is incomplete or unavailable. The simultaneous use of both the PIS and NIS in our
optimization objective is precisely what enables the model to extract and uniquely determine criteria
weights from simple pairwise comparisons. According to the solving process and ranking result that
is presented above, we can derive the following three conclusions.
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(1) The ranking result obtained by Yu et al.'s method [31] is consistent with the result obtained
by the proposed method, which demonstrates the effectiveness and correctness of the proposed
method.

(2) Yu et al.'s method involves too many parameters and those parameters need to be determined
in advance, which may cause the decision result to be unreliable and difficult to implement in actual
situations. Thus, the proposed method can more effectively solve IVPFN MCGDM problem.

(3) Yu et al.'s method transforms IVPFNs into PFNs, which may cause the loss of decision
information. Different from Yu et al.'s method, the proposed method does not transform IVPFNs but
utilizes the distances between IVPFNs to determine the weight information and consistency index as
well as the inconsistency index. Thus, the proposed method can preserve more original decision
information than Yu et al.'s method.

In addition, the method described in this paper is more germane than the approach proposed by
Yu et al. since it is capable of solving MCGDM problems with IVPF true degrees. Involving I[IVPF
true degrees makes the proposed approach more practical and effective for decision-making in
real-world scenarios.

5.3.3.  Comparative analysis with [IVPF-TODIM

Biswas and Sarkar [32] introduced some new point operator-based similarity measures (POSMs)
for IVPFSs, aiming to decrease the uncertainty level of elements in the universe of discourse
associated with IVPFSs. These newly defined POSMs are subsequently employed to calculate the
relative dominance measure of each alternative in the IVPF-TODIM framework. Finally, the
generalized mean aggregation operator is utilized to select the best alternative.

Although the method in [32] can solve the group decision-making problem of IVPFSs, the
weights of the criteria are pre-given, precise numbers. In the process of calculating the group value
after combining the solution set using the generalized mean operator, the weights of the experts are
considered equal.

Using the method in [32] to solve the normalized data (Table 3) in this paper, assuming that the
weights of the criteria are w = (0.4,0.2,0.15,0.25)7, the relative weights of the criteria are:

Wy, =1, wy,. = 0.5, ws, = 0.375, w,, = 0.625.

Consider the POSM S;’gf(A,B) when assessing the degree of dominance of alternative A; over

each alternative A, in relation to criteria C; for the first expert E;. For 6 = 2.5, the dominance
degree matrices corresponding to the criteria C;(j = 1,2,3,4) for E; are shown in Table 18.
Similarly, we calculate the dominance degree matrices for other decision matrices.

Dominance degree matrices & @ for each alternative A;(i = 1,2,3,4,5) of the expert E; are

shown in Table 19. In the same way, overall dominance degree matrices for other experts can be
determined.
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Table 18. Dominance degree matrix of alternatives for Ej.

Dominance degree

matrix A A A3 As As

®
Ay 0 0.4556 0.5353 0 0.4051
A, -0.4556 0 -0.5627 -0.4556 0.5943
As -0.5353 0.5627 0 -0.5353 0.52
Ay 0 0.4556 0.5353 0 0.4051
As -0.4051 -0.5943 -0.52 -0.4051 0

®

2
Ay 0 0.4255 0.4255 0.4025 0.4025
A, -0.8511 0 0 0.4252 0.4252
As -0.8511 0 0 0.4252 0.4252
A, -0.805 -0.8503 -0.8503 0 0
As -0.805 -0.8503 -0.8503 0 0

R
Ay 0 0 -0.8741 -0.9818 0
A, 0 0 -0.8741 -0.9818 0
As 0.3278 0.3278 0 0.3485 0.3278
A, 0.3682 0.3682 -0.9293 0 0.3682
As 0 0 -0.8741 -0.9818 0

@
Ay 0 0 0.4753 -0.7612 0
A, 0 0 0.4753 -0.7612 0
As -0.7605 -0.7605 0 -0.7201 -0.7605
A, 0.4758 0.4758 0.45 0 0.4758
As 0 0 0.4753 -0.7612 0

Table 19. Overall dominance degree matrix of alternatives for E;.

Overall dominance degree
matrix §@ 1 Ay Az Ay As
Ay 0 0.8811 0.562 -1.3406 0.8076
A, -1.3067 0 -0.9615 -1.7735 1.0194
As -1.8191 0.13 0 -0.4817 0.5124
Ay 0.0389 0.4492 -0.7943 0 1.2491
As -1.2101 -1.4446 -1.7691 -2.1482 0

Subsequently, the overall values of each expert's assessment for each alternative are presented in
Table 20. Finally, for each alternative, the overall values from all experts can be aggregated to obtain
¢; and then the alternatives can be ranked based on it.
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Table 20. The overall alternative's values of the DMs.

Alternative's overall value Aq Aq As A, Ag
¢ 0.9957 0.4724 0.6538 1 0

{? 1 0 0.4341 0.0318 0.643
¢ 1 0.0641 0.811 0 0.3471
Final overall value {; 0.9986 0.3278 0.6681 0.6934 0.4681

According to {;, it is easy to see that the ranking result is A; > A3 > A5 > A4 > A,, which is
consistent with the result by the method in this article. In comparison with the method in [32], the
advantages of this paper are outlined as the following.

(i) Although the method in [32] can address MCGDM problems, it simply presets the weights of
all experts to be equal. In contrast, our approach determines the DMs' weights objectively based on
the original decision information.

(i) In the method in [32], the criterion weights are predetermined. In contrast, this paper
establishes a bi-objective IVPF mathematical programming model to derive these weights. This
model-based approach yields more objective and credible weight assignments.

5.3.4. Rank-correlation analysis based on Spearman's rank-correlation coefficient

To deeply compare these ranking orders by the IVPF-ELECTRE method [26], IVPF-TOPSIS
method [31], IVPF-TODIM method [32], and the method proposed in this paper, Spearman's
rank-correlation test [33] is considered to estimate whether there is statistical significance of the
ranking difference among them. During the process of Spearman's test, a rank-correlation coefficient
7, and a test statistic Z are defined to determine the similarity of the rankings between two sets of
rankings {x*} and {y*}, where

_ _ K (dK)Z
r,=1 6ZK=1—K(K2—1)’

Z=1K—1, d*=x*—y*(k=12,...,K).

The closer 7y is to 1, the stronger the relationship between {x*} and {y”*}. Especially, when the
rank-correlation coefficient r; varies to +1, it denotes a perfect positive relationship between {x*}
and {y"}. If the relative measure 7y varies to —1, it implies a perfect negative relationship between
{x"*} and {y"}. In addition, the test statistic Z is utilized to compare with a pre-determined level of
significance a value. Usually set at a = 0.05, the critical Z value is 1.645, i.e., Zy o5 = 1.645.
When Z exceeds 1.645, it can be derived that {x"} and {y*} are similar. Otherwise, we know that
there is no evidence of a positive relationship between {x*} and {y*}.

When solving the above investment example, there are three sets of preference rankings obtained
by the proposed method and the methods in [31, 32], denoted by A, B, and C, respectively.To compare
these ranking orders, the rank-correlation coefficients and the test statistics are calculated in Table 21.
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Table 21. Comparison of alternative rankings of IVPF-TOPSIS [31], IVPF-TODIM [32],

and the proposed method.
Ranking Ranking difference
Alternative This paper IVPF-TOPSIS IVPF-TODIM A-B A-C
(A) (B) ©

Ay 1 1 1 0 0
A, 5 5 5 0 0
A 3 2 2 1 1
Ay 4 4 4 0 0
As 2 3 3 -1 -1

Spearman's rank-correlation coefficient 7y 0.9 0.9

Test value Z 1.8 1.8

From Table 21, it can be summarized that the ranking (A) in this paper is positively correlated
with the rankings (B) and (C) because the test value Z = 1.8 is bigger than 1.645.

As the preceding discussion indicates, the ranking of alternatives obtained by IVPF-ELECTRE [26]
is not a complete linear order but a partial order. It reveals only that Alternative A; is superior to
Alternatives A,, A4, and As, and that Alternative Az is superior to Alternatives A, and As. In
contrast, both IVPF-TOPSIS [31] and IVPF-TODIM [32] yield an identical ranking of A; > Az >
As > A4 > A,. Our proposed IVPF-LINMAP method, however, produces a different order of A; >
As > Az > A, > A,. The distinction is that the two sequences differ solely in the transposition of the
second and third positions. In our result, Alternative Az is ranked second and Alternative As third.
This discrepancy can be attributed to the following reasons:

(1) Alternative As received consistently outstanding ratings on several key criteria. For
instance, Expert E; assigned an “EG” (Extremely Good) rating on Criterion C,, while Expert E,
gave “EG” on C; and “VG” (Very Good) on C3. In contrast, evaluations for Alternative A; were
highly polarized. On Criterion Cj, ratings varied from “VG” (E;) to “F” (Fair, E;) to “EG” (E3). More
critically, on Criterion C,, Expert E, assigned a “VP” (Very Poor) rating—a potential veto that
signals a severe drawback. In group decision-making, such an extreme negative evaluation often
carries significant weight, as it may point to an unacceptable risk. The presence of this“VP” rating
inherently elevates the perceived risk associated with Alternative As.

(2) The proposed method is fundamentally different because it simultaneously incorporates both
the PIS and NIS within its optimization framework. This dual consideration enables the model to
actively penalize extreme negative evaluations (like the “VP” rating). Consequently, the robust and
consensus-driven profile of Alternative As is rewarded with a higher ranking.

When weight information is incomplete, our method derives weights implicitly through its
optimization process, which is guided by DMs' preference judgments. This process naturally favors
alternatives that exhibit high expert consensus and no critical weaknesses (such as Alternative Ajg),
while applying greater scrutiny to those carrying extreme negative feedback (such as Alternative Ajz).
This behavior aligns closely with practical decision-making principles of risk aversion and
consensus-seeking, thereby making the preferential ranking of Alternative Az over Alternative A
not only methodologically sound but also intuitively more reasonable.
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Several decision-making methods exist in the IVPF environment. We have selected three of
them for comparison with the proposed method in this paper, as each of these four approaches has its
own strengths and limitations. IVPF-ELECTRE [26] effectively models veto scenarios through
non-compensatory concordance/discordance relations, making it robust for high-risk decisions but
suffers from complex parameter calibration and often yields an incomplete partial order rather than a
definitive ranking. IVPF-TOPSIS [31] is valued for its intuitive logic and computational efficiency,
providing a complete ranking as a common benchmark. Its major limitations are insensitivity to
critical flaws and a heavy, subjective dependence on pre-defined weights. IVPF-TODIM [32]
incorporates prospect theory to better reflect human psychological biases under uncertainty. However,
its complex calculations and the subjective setting of a key behavioral parameter introduce
complexity and arbitrariness. [IVPF-LINMAP in this paper uniquely derives weights objectively from
incomplete preferences via mathematical programming, simultaneously optimizing toward the ideal
and away from the anti-ideal solution. This promotes consensus-seeking, robust alternatives but at
the cost of higher computational load, sensitivity to input preference quality, and reduced
interpretability due to its "black-box" optimization core.

It is worth mentioning that Kamari et al. [11] proposed a new distance metric called the flexible
indeterminacy quantifier, which addresses the shortcomings of traditional distance metrics in
handling uncertainty. The flexible indeterminacy quantifier features three key characteristics:
adaptive weighting, self-regulating exponents, and dynamic norm selection, enabling it to better
capture differences in uncertain environments and improve the stability and discriminative power of
rankings. Furthermore, the paper extends TOPSIS and VIKOR into PNTOPSIS and PNVIKOR,
respectively, and integrates them into the Pythagorean neutrosophic set framework, thereby
enhancing the applicability of these methods in fuzzy and uncertain contexts.

6. System verification

Furthermore, we have translated this case into a practical implementation within the
decision-making system. The procedure is detailed in the following steps.

Step 1. The interface, titled "Parameter Settings", is designed to initialize the fundamental
structure of the decision-making process. This stage allows the user to define the key participants and
framework before any evaluations begin. In this phase, the system is configured for 3 experts to
provide consolidated judgments, 5 alternatives, and 4 defined criteria: signal strength, network
security, network speed, and coverage. The interface of Step 1 is depicted in Figure 3.
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@ Decision Support System Administrator

® : ; :

Parameter Settings Expert Evaluation Intermediate Outputs Results

Step 1: Parameter Settings

Number of Experts

3

Number of Alternatives

5 S

Number of Criteria

4

Criterion Names
Criterion 1 Criterion 2 Criterion 3 Criterion 4

Signal strength Network security Network speed Coverage

Figure 3. Configure the parameters of the decision-making system.

Step 2. In this step, the experts' evaluations are input through the interface. The three predefined
experts provide their qualitative assessments for each alternative across all four criteria. The data is
presented in a consolidated table where the rows list the five alternatives and the columns are
dedicated to the criteria: signal strength, network security, network speed, and coverage. Each expert
has a dedicated sub-column under each criterion to select their judgment. The evaluations use a
linguistic scale, which includes terms such as "Extremely Good," "Very Good," "Good," "Fair,"
"Poor," and "Very Poor," allowing experts to express nuanced preferences. Figure 4 shows the
interface where experts input their decision data.

@ Dection support system e N OESETE

@ o —8 3 (] (-} i 4 o o

Step 2: Expert Evaluation Step 2: Expert Evaluation Step 2: Expert Evaluation

Sl sreogth

Figure 4. Input the evaluation data from experts for each alternative under all criteria.
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Parameter Settings Expert Evaluation Intermediate Qutputs Results

Step 3: Intermediate Outputs

Criteria Weights Information

The criteria weights are objectively derived from the expert decision data using the IVPF LINMAP method.

Criteria Weights

Signal strength 0.2952
Network security 0.2408
Network speed 0.3412
Coverage 0.1228

Experts' ranking of the alternatives

Expert 1 Expert 2 Expert 3
Alternative 1 0.7698 Alternative 1 0.7869 Alternative 1 0.7562
I e N
Alternative 4 0.7516 Alternative 5 0.5984 Alternative 3 0.6978
O I I
Alternative 3 0.6056 Alternative 3 0.5462 Alternative 5 0.6163
I I L ]
Alternative 2 0.4014 Alternative 4 0.3717 Alternative 4 0.5144
O N I
Alternative 5 0.3008 Alternative 2 0.3114 Alternative 2 0.2917
L] L] L]

Figure 5. The ranking results of the alternatives by each expert.

Step 3. This step presents the key intermediate results calculated by the system using the
method proposed in this paper. The process begins by objectively deriving the weights of the criteria
from the raw expert evaluations. This is accomplished using the IVPF LINMAP method, which
eliminates subjective bias in determining the importance of each criterion. Subsequently, based on
these objectively determined criterion weights, the system processes each expert's original
evaluations to generate an individual ranking of the alternatives for each expert. The experts' ranking
of the alternatives is displayed in a comparative table. These intermediate results output by the
system are shown in Figure 5.

Step 4. This step presents the conclusive outcome of the group decision-making process. The
core of this phase is the assignment model for group decision-making, which is specifically designed
to integrate the individual rankings from all experts into a single, collective ranking. The final
ranking of the alternatives, as determined by the system, is A; > As > A3 > A, > A,, which is
presented in Figure 6.
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Parameter Settings Expert Evaluation Intermediate Outputs Results

Step 4: Results

Assignment Model for Group Decision Making

The final group decision result is obtained using the assignment model, which integrates the individual rankings from all experts

Final Ranking Result

Based on the assignment model integrating all expert opinions, the final ranking of alternatives is as follows:

o Alternative 1
e Alternative 5
e Alternative 3
o Alternative 4
o Alternative 2

Figure 6. Final aggregated ranking via an assignment model.
7. Conclusions

This paper introduces an IVPF mathematical programming approach to tackle MCGDM issues
encompassing incomplete IVPF information. First, this paper determines the weighs of DMs based
on the relative closeness degree. Then, based on the IVPF group consistency and inconsistency, the
IVPF programming model is constructed to obtain the weights of criteria. Finally, a multi-objective
assignment model is constructed and solved by the Hungarian algorithm to generate the overall
ranking matrix for the group of decision-makers and obtain the optimal alternative. Additionally, the
case study and comparative analysis are conducted to underscore the advantages of the approach
delineated in the study.

The main contributions and advantages of this paper can be summarized as follows:

(1) A criterion-specific weighting scheme is introduced for DMs, leveraging relative closeness
degrees to quantify and integrate their individual expertise and preferences. This mechanism ensures
objective weight determination while closely mirroring real-world, differentiated expert
contributions in complex decision-making scenarios.

(2) Novel group consensus and inconsistency indices are defined, explicitly incorporating both
the positive and negative ideal IVPF solutions. This dual-reference-point framework enables a more
nuanced assessment of group alignment, effectively mitigating the risk of suboptimal alternative
selection when alternatives deviate significantly from both reference points.

(3) A dual-objective mathematical programming model is established within the IVPF
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framework, designed to jointly minimize the group inconsistency indices associated with the IVPF
positive and negative ideal solutions. The model is transformed into a linear programming problem,
facilitating the efficient and unbiased determination of optimal criteria weights.

(4) The method synthesizes the criterion-specific DM weights and the derived criteria weights
to calculate the comprehensive relative closeness of each alternative. Finally, a multi-objective
assignment model, solved efficiently via the Hungarian algorithm, aggregates individual preference
structures into a robust and reliable group ranking, thereby significantly enhancing the stability and
credibility of the decision-making process.

Despite the theoretical contributions of the proposed mathematical programming model for
interval-valued Pythagorean fuzzy MCGDM, it is essential to acknowledge its inherent limitations to
provide a balanced perspective and guide subsequent research. The primary challenges pertain to
computational scalability in complex scenarios and the need for broader methodological
enhancements.

(1) A key practical limitation of the model is its growing computational demand in large-scale
settings. The number of variables and constraints increases polynomially with the number of
decision-makers, alternatives, and criteria, particularly when comprehensive pairwise comparisons
are employed. This combinatorial explosion can render the exact optimization model
computationally intensive for real-time or very-large-scale problems. Therefore, the current
framework is most applicable to strategic, moderate-scale decision problems where analytical
precision is paramount and the problem size remains manageable.

(2) The transformation of linguistic, fuzzy evaluations into a crisp linear programming model,
while mathematically rigorous, may create a disconnect between the numerical output and the
original preference semantics used by decision-makers. A key area for improvement to ensure
practical adoption is enhancing the solution's post-hoc interpretability; this involves translating
optimization results back into intuitive, fuzzy-linguistic terms.

To address the aforementioned limitations and enhance the practical value of this framework,
the following research directions have been systematically outlined, with the aim of advancing the
field from theoretical validation to engineering implementation:

(1) Development of Scalable Solution Algorithms. Future work will prioritize creating efficient
heuristic and metaheuristic algorithms to obtain high-quality approximate solutions for large-scale
instances. Additionally, exploring model decomposition techniques to break down the problem into
smaller, solvable units will be crucial for enhancing computational feasibility.

(2) Using statistical methods such as the Wilcoxon signed-rank test, the ranking results of the
proposed model will be systematically compared with established methods like IVPF-TOPSIS and
IVPF-TODIM. This work will rigorously validate the model's consistency and clarify its practical
advantages and differences.

(3) The method proposed in this paper can be naturally extended to broader research directions,
such as heterogeneous MCGDM problems, the integration of social network analysis among
decision-makers, and the study of the consensus-reaching process in group decision-making.
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Appendix

To facilitate clear discussion and presentation in this paper, and to ensure uniformity and clarity

in the use of terminology, a systematic compilation of the common abbreviations involved in this
study is provided. Table 22 lists the abbreviations of relevant terms along with their corresponding
full forms, enabling readers to accurately understand and refer to them.
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Table 22. List of abbreviations.

Abbreviation Full term

MCDM Multi-criteria decision-making
MCGDM Multi-criteria group decision-making
FS Fuzzy set

IFS Intuitionistic fuzzy set

IVIFS Interval-valued intuitionistic fuzzy set
PFS Pythagorean fuzzy set

IVPF Interval-valued Pythagorean fuzzy
IVPES Interval-valued Pythagorean fuzzy set
IVPFN Interval-valued Pythagorean fuzzy number
PIS Positive ideal solution

NIS Negative ideal solution
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