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Abstract: The interval-valued Pythagorean fuzzy set possesses a strong capability to characterize 

uncertainty and fuzziness, and has been widely applied to multi-criteria group decision-making. 

However, extant studies seldom consider the fuzzy truth degrees in pairwise comparisons of 

alternatives and often overlook incomplete information regarding criteria weights. Therefore, this 

paper investigated interval-valued Pythagorean fuzzy multi-criteria group decision-making, 

incorporating both interval-valued Pythagorean fuzzy truth degrees for pairwise comparisons and 

incomplete information on criterion weights. First, recognizing that decision-makers may have 

different weights under different criteria, their weights with respect to each criterion were determined 

based on the relative closeness of each alternative to the positive ideal solution and the negative ideal 

solution under that criterion. To derive the criteria weights, this paper defined the interval-valued 

Pythagorean fuzzy positive ideal solution and the interval-valued Pythagorean fuzzy negative ideal 

solution, and established the interval-valued Pythagorean fuzzy group consistency index and 

inconsistency index. By minimizing the group inconsistency index, a bi-objective interval-valued 

Pythagorean fuzzy programming model was constructed and skillfully transformed into a linear 

programming model to compute the criteria weights. Subsequently, the relative closeness degree of 

each alternative for each decision-maker was calculated and used to generate individual rankings of 

the alternatives. To obtain a collective ranking, a multi-objective allocation model was established 

and then converted into a single-objective programming model for the solution. Finally, a wireless 

network selection example was provided to demonstrate the effectiveness of the proposed method. 
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1. Introduction 

Decision-making is a complex cognitive process through which individuals make choices in 

various situations. This process entails collecting relevant information, assessing potential 

alternatives, forming judgments, and reaching conclusions. Since real-world decision-making often 

involves multiple criteria, an integrated approach known as multi-criteria decision-making (MCDM) 

has been developed to tackle such challenges. In modern contexts, decision-making problems typically 

encompass a range of considerations—economic, social, human, ecological, and more—making it 

essential to involve multiple participants in the process. As a result, scenarios involving a group of 

decision-makers are referred to as multi-criteria group decision-making (MCGDM). However, given 

the inherent complexity of these problems and the often imprecise knowledge of the decision-makers, 

the information used in decisions is frequently characterized by uncertainty. Traditional MCGDM 

methods, which rely on precise data, often prove inadequate or impractical in addressing such 

uncertain decision-making environments. Therefore, scholars proposed various fuzzy information, 

such as the fuzzy set (FS) [1], intuitionistic fuzzy set (IFS) [2], interval-valued IFS (IVIFS) [3], 

Pythagorean fuzzy set (PFS) [4, 5], interval-valued Pythagorean fuzzy set (IVPFS) [6], and so on. 

These different types of fuzzy information can capture the uncertainty and fuzziness of 

decision-makers (DMs). 

Pythagorean fuzzy sets and their extensions have become a research hotspot due to their 

enhanced ability to flexibly express the uncertain relationship between membership and 

non-membership degrees. Asif et al. [7] integrated the Hamacher aggregation operator with a PFS to 

propose interactive aggregation operators, such as Pythagorean fuzzy Hamacher interactive weighted 

averaging and ordered weighted averaging operators. Palanikumar et al. [8] further introduced the 

redefined square root interval-valued normal Pythagorean fuzzy set, constructing operators like 

redefined square root interval-valued normal Pythagorean fuzzy weighted averaging and weighted 

geometric operators. This work refines the algebraic operational rules in an interval-valued fuzzy 

environment. Tahir et al. [9] integrated PFS, soft set, and hypersoft set theories to propose 

frameworks for Pythagorean soft sets and Pythagorean hypersoft sets, overcoming the limitations of 

traditional soft sets in uncertainty expression. Their application in areas like technology selection and 

cloud configuration demonstrates the framework's advantage in handling multi-criteria fuzzy 

information. 

Furthermore, Razak et al. [10] combined the interval-valued Pythagorean neutrosophic set with 

the comprehensive distance-based ranking method, innovatively incorporating 5-point and 7-point 

linguistic scales. This addresses the previous lack of linguistic variables in the interval-valued 

Pythagorean neutrosophic set, providing a decision-making tool better aligned with human subjective 

judgment for e-commerce strategy selection and IT supplier evaluation. Kamari et al. [11] proposed a 

Pythagorean neutrosophic TOPSIS-VIKOR integrated framework, which optimizes distance 

measurement through a flexible indeterminacy quantifier. This enhances score differentiation and 

ranking stability in digital supplier selection for manufacturing SMEs. Collectively, these studies 
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enrich the theoretical system of decision-making methods under uncertainty. 

In group decision-making and large-scale group decision-making, determining weights, 

conducting cluster analysis, and the consensus-reaching process are key research areas. Jiang et al. [12] 

determined weights based on the Shapley value function. This method quantified the 

interconnections and uncertainty among decision-makers through a trust propagation model, and 

generated objective weights by calculating each decision-maker's marginal contribution within 

different coalitions, thereby comprehensively reflecting their influence in large-scale group 

decision-making. Liu et al. [13] did not directly calculate explicit weights. Instead, they integrated 

expert knowledge and experience organically into the retrieval and adaptation process of case-based 

reasoning. Experts' judgments directly influenced the similarity calculation between cases, achieving 

an indirect and dynamic form of "weighting" that avoided the subjective parameter setting. The 

best-worst method (BWM), valued for its fewer pairwise comparisons and high reliability, has been 

widely extended. Wan et al. [14] proposed an intuitionistic fuzzy BWM based on additive 

consistency for intuitionistic fuzzy preference relations. They used a goal programming model to 

derive optimal weights and a 0-1 integer programming model to aggregate group rankings, 

significantly improving group decision-making consistency. Their subsequent research extended the 

BWM to a hesitant multiplicative environment, proposing a hesitant multiplicative BWM that 

derives weights via a mixed goal programming model [15]. Chen et al. [16] innovated an 

interval-valued intuitionistic fuzzy group BWM, which determines global criteria weights by solving 

a group weight assignment model once, substantially reducing the computational load in evaluating 

emergency medical waste disposal modes. Luo et al. [17] combined trapezoidal intuitionistic fuzzy 

numbers with BWM constraints to propose the TrIF-BWMC-HDEA framework. This ensures the 

prioritization of key criteria while supporting heterogeneous data like crisp values and intervals, 

providing an effective tool for rescue route assessment. 

Addressing the complexity of large-scale group decision-making, Wan et al. [18], focusing on 

the role of trust relationships in social network large-scale group decision-making, designed an 

improved grey clustering algorithm that fuses preference similarity and trust relationships. They 

proposed a two-stage consensus-reaching process incorporating self-adjustment and subgroup 

binding force. By defining weights for decision-makers and subgroups, the consensus process better 

aligns with real-world scenarios. Another study by Wan et al. [19] focused on ranking consensus, 

proposing a dual-strategy consensus-reaching process based on probabilistic linguistic term sets. It 

designs differentiated adjustment strategies for decision-makers with different similarity 

characteristics, achieving efficient ranking consensus by optimizing decision matrices. These studies 

provide new approaches to tackling the scale and consensus challenges in large-scale group 

decision-making. 

These decision-making methods have been widely applied across fields such as healthcare, 

manufacturing, e-commerce, and insurance. Chen et al. [16] integrated the group BWM, regret 

theory, and the multi-attributive border approximation area comparison method to build a 

heterogeneous decision-making framework. This effectively handles criteria weight determination, 

regret-rejoice matrix construction, and optimal alternative selection in evaluating emergency medical 

waste disposal modes. Wan et al. [20] applied a dual-similarity-based consensus mechanism to 

quality function deployment to handle heterogeneous linguistic preference relations, improving 

group decision-making quality in product design. Another study by Wan et al. [21] proposed a 

probabilistic linguistic group bi-matrix game model, opening a new path for the intersection of game 
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theory and group decision-making. These application studies not only validate the effectiveness of 

theoretical methods but also demonstrate the core value of decision theory in solving practical 

problems. 

While existing methods can effectively address certain MCDM or MCGDM problems involving 

interval-valued Pythagorean fuzzy (IVPF) information, they face significant and interconnected 

limitations when confronted with realistic scenarios characterized by incomplete decision 

information, which encompasses not only incomplete weight information but also, more 

fundamentally, incomplete or missing pairwise comparison preferences provided by experts. 

(1) Current research predominantly focuses on single decision-maker settings or assumes that 

DMs can provide complete evaluation matrices. However, in practice, it is often more feasible and 

less cognitively demanding for experts to express partial pairwise preferences between alternatives 

rather than fully rating all against all criteria. As decision complexity increases, synthesizing such 

incomplete yet rich preference information within an MCGDM framework becomes crucial for 

credible outcomes. Thus, constructing a dedicated IVPF MCGDM method that can operate directly 

on incomplete preference judgments presents a critical yet underexplored task. 

(2) The reliable derivation of both DM and criteria weights is critical for MCGDM. A prevalent 

limitation is that most methods require these weights as pre-defined inputs, even when dealing with 

incomplete preferences. In scenarios where experts only provide partial pairwise comparisons, the 

very data needed to objectively infer these weights are inherently sparse. Therefore, a method that 

can simultaneously and objectively derive both weight sets directly from the incomplete preference 

judgments themselves is essential to ensure fairness and reduce arbitrariness. 

(3) The linear programming technique for multidimensional analysis of preference (LINMAP) [22] 

is a well-established method precisely for MCDM with incomplete preference information, as it 

constructs an optimal solution consistent with given pairwise judgments. Although extended to 

various fuzzy environments [23, 24], its application within the IVPF setting, particularly for 

MCGDM with incomplete preferences, remains unexplored. Furthermore, most existing 

LINMAP-based models rely solely on the distance from the positive ideal solution (PIS), neglecting 

the negative ideal solution (NIS). This omission can be particularly detrimental when preferences are 

scarce, as the contrastive information from the NIS is vital for stabilizing the solution and enhancing 

discriminative power in data-sparse conditions. 

Hence, the study introduces an innovative IVPF programming model designed to address 

MCGDM problems. First, the weights of decision-makers are determined objectively using a 

technique for order preference by similarity to ideal solution (TOPSIS)-based approach that 

considers the relative proximity of alternatives to the PIS and NIS. Within the LINMAP framework, 

specific indices are then defined to measure the levels of agreement and disagreement within the 

group. These indices are then used to establish an IVPF model for determining weights of criteria by 

minimizing group inconsistency. The model is solved by converting it into an eight-objective 

program, which is subsequently converted into a linear program for computational tractability. Next, 

individual alternatives are ranked based on their calculated closeness coefficients. An aggregation 

model is then constructed to synthesize these individual rankings into a final group decision. Finally, 

the effectiveness of the proposed method is demonstrated through a case study on network selection. 

The main contributions of this paper can be summarized as follows: 

(1) This research advances preference modeling by employing IVPFSs to characterize DMs' 

fuzzy truth degrees in pairwise alternative comparisons. As an extension of Pythagorean fuzzy sets, 
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IVPFSs provide a more powerful and flexible framework that allows DMs to fully express their 

opinions while better capturing the inherent uncertainty and fuzziness in their judgments, leading to a 

more nuanced and realistic representation of preferences. 

(2) A core methodological contribution is the development of a novel, objective framework for 

determining both DMs' and criteria weights. First, DMs' weights are calculated by defining relative 

closeness degrees inspired by the TOPSIS method, incorporating distances to both PIS and NIS to 

ensure reliability and avoid subjective randomness. Second, a bi-objective IVPF programming model 

is constructed to determine criteria weights. This model uniquely minimizes group inconsistency by 

considering both PIS and NIS, offering a more reliable and effective approach compared to methods 

that overlook criteria weights or rely on aggregation operators. The model is then transformed into a 

solvable linear program, enhancing the logical rigor and credibility of the derived weights. 

(3) To obtain a final collective ranking, this paper constructs a multi-objective assignment 

model designed to aggregate individual alternative rankings. This approach moves beyond simply 

aggregating original evaluation matrices, thereby effectively avoiding the information loss and 

potential biases inherent in the direct aggregation of fuzzy evaluations. 

The subsequent sections of this paper are organized as follows. In Section 2, an overview of the 

IFS, IVIFS, PFS, IVPFS, and certain operational laws of the IVPFN are presented. In Section 3, the 

discussion pertains to IVPF MCGDM problems incorporating IVPF truth degrees. Moving to Section 4, 

a novel IVPF mathematical programming model is introduced, specifically developed to tackle 

MCGDM problems within an IVPF framework. Section 5 includes an illustrative example and 

conducts an in-depth comparative analysis against the IVPF-ELECTRE, IVPF-TOPSIS, and 

IVPF-TODIM methods. Section 6 demonstrates the validity and practicality of the proposed method 

within a decision support system. Finally, Section 7 summarizes the primary content encapsulated in 

this paper. 

2. Preliminaries 

This section serves as the theoretical foundation, presenting the essential concepts of IVPFSs 

and IVPFNs. Specifically, it covers their mathematical definitions, fundamental operational rules, 

methods for comparison and ranking, and the calculation of distance measures between them. The 

entire analytical framework and methodological development of this study are built upon these core 

constructs. 

2.1. Interval-valued Pythagorean fuzzy sets 

Definition 2.1. [6] Let 𝑋 be a universe of discourse. A PFS 𝑃 of 𝑋 is given by  

𝑃 = {< 𝑥, 𝑢𝑃(𝑥), 𝑣𝑃(𝑥) >   |𝑥 ∈ 𝑋}, (1) 

where 𝑢𝑃: 𝑋 → [0,1] and 𝑣𝑃: 𝑋 → [0,1] refer to the membership function and the non-membership 

function, respectively, of the element 𝑥 ∈ 𝑋  to 𝑃 . They must satisfy the condition that 0 ≤

𝑢𝑃
2(𝑥) + 𝑣𝑃

2(𝑥) ≤ 1 . Additionally, 𝜋𝑃(𝑥) = √1 − 𝑢𝑃
2(𝑥) − 𝑣𝑃

2(𝑥)  is referred to as the 

indeterminacy function for 𝑥 to 𝑃. 
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For simplicity, we can refer to 𝑃 = (𝑢𝑃, 𝑣𝑃) as a PFN [5]. 

Definition 2.2. [6] Let 𝑋 be a universe of discourse. An IVPFS 𝛼 of 𝑋 is given by 

𝛼 = {< 𝑥, [𝑢𝛼
𝐿(𝑥), 𝑢𝛼

𝑈(𝑥)], [𝑣𝛼
𝐿(𝑥), 𝑣𝛼

𝑈(𝑥)] > |𝑥 ∈ 𝑋}. (2) 

Element 𝛼 has two corresponding intervals, namely the membership [𝑢𝛼
𝐿(𝑥), 𝑢𝛼

𝑈(𝑥)] ⊆ [0,1] and 

non-membership [𝑣𝛼
𝐿(𝑥), 𝑣𝛼

𝑈(𝑥)] ⊆ [0,1], which fulfill the condition (𝑢𝛼
𝑈(𝑥))2 + (𝑣𝛼

𝑈(𝑥))2 ≤ 1. 

Moreover, element 𝑥 ∈ 𝑋 is associated with the indeterminacy [𝜋𝛼
𝐿(𝑥), 𝜋𝛼

𝑈(𝑥)], where 𝜋𝛼
𝐿(𝑥) =

√1 − (𝑢𝛼
𝑈(𝑥))2 − (𝑣𝛼

𝑈(𝑥))2 and 𝜋𝛼
𝑈(𝑥) = √1 − (𝑢𝛼𝐿(𝑥))2 − (𝑣𝛼𝐿(𝑥))2. 

An IVPFN is represented by a pair 𝛼 = ([𝑢𝛼
𝐿(𝑥), 𝑢𝛼

𝑈(𝑥)], [𝑣𝛼
𝐿(𝑥), 𝑣𝛼

𝑈(𝑥)]), which is denoted as 

𝛼 = ([𝑢𝛼
𝐿 , 𝑢𝛼

𝑈], [𝑣𝛼
𝐿 , 𝑣𝛼

𝑈]) [25], where [𝑢𝛼
𝐿 , 𝑢𝛼

𝑈] ⊆ [0,1], [𝑣𝛼
𝐿 , 𝑣𝛼

𝑈] ⊆ [0,1], and (𝑢𝛼
𝑈)2 + (𝑣𝛼

𝑈)2 ≤ 1. 

Definition 2.3. [6] Let 𝛼 = ([𝑢𝛼
𝐿 , 𝑢𝛼

𝑈], [𝑣𝛼
𝐿 , 𝑣𝛼

𝑈]) , 𝛼1 = ([𝑢𝛼1
𝐿 , 𝑢𝛼1

𝑈 ], [𝑣𝛼1
𝐿 , 𝑣𝛼1

𝑈 ]) , and 𝛼2 =

([𝑢𝛼2
𝐿 , 𝑢𝛼2

𝑈 ], [𝑣𝛼2
𝐿 , 𝑣𝛼2

𝑈 ]) be three IVPFNs, 𝜆 > 0. Then, 

(1) 𝛼𝑐 = ([𝑣𝛼
𝐿 , 𝑣𝛼

𝑈], [𝑢𝛼
𝐿 , 𝑢𝛼

𝑈]), 

(2) 𝛼1⊕𝛼2 = ([√(𝑢𝛼1
𝐿 )2 + (𝑢𝛼2

𝐿 )2 − (𝑢𝛼1
𝐿 )2(𝑢𝛼2

𝐿 )2, √(𝑢𝛼1
𝑈 )2 + (𝑢𝛼2

𝑈 )2 − (𝑢𝛼1
𝑈 )2(𝑢𝛼2

𝑈 )2], [𝑣𝛼1
𝐿 𝑣𝛼2

𝐿 , 𝑣𝛼1
𝑈 𝑣𝛼2

𝑈 ]), 

(3) 𝛼1⊗𝛼2 = ([𝑢𝛼1
𝐿 𝑢𝛼2

𝐿 , 𝑢𝛼1
𝑈 𝑢𝛼2

𝑈 ], [√(𝑣𝛼1
𝐿 )2 + (𝑣𝛼2

𝐿 )2 − (𝑣𝛼1
𝐿 )2(𝑣𝛼2

𝐿 )2, √(𝑣𝛼1
𝑈 )2 + (𝑣𝛼2

𝑈 )2 − (𝑣𝛼1
𝑈 )2(𝑣𝛼2

𝑈 )2]), 

(4) 𝜆𝛼 = ([√1 − (1 − (𝑢𝛼𝐿)2)𝜆, √1 − (1 − (𝑢𝛼
𝑈)2)𝜆], [(𝑣𝛼

𝐿)𝜆, (𝑣𝛼
𝑈)𝜆]), 

(5) 𝛼𝜆 = ([(𝑢𝛼
𝐿)𝜆, (𝑢𝛼

𝑈)𝜆], [√1 − (1 − (𝑣𝛼𝐿)2)𝜆, √1 − (1 − (𝑣𝛼
𝑈)2)𝜆]). 

Theorem 2.1. [6] Let 𝛼 = ([𝑢𝛼
𝐿 , 𝑢𝛼

𝑈], [𝑣𝛼
𝐿 , 𝑣𝛼

𝑈]) and 𝛼𝑖 = ([𝑢𝛼𝑖
𝐿 , 𝑢𝛼𝑖

𝑈 ], [𝑣𝛼𝑖
𝐿 , 𝑣𝛼𝑖

𝑈 ])(𝑖 = 1,2) be three 

IVPFNs, 𝜆, 𝜆1, 𝜆2 > 0. Then, 

(1) 𝛼1⊕𝛼2 = 𝛼2⊕𝛼1, 

(2) 𝛼1⊗𝛼2 = 𝛼2⊗𝛼1, 

(3) 𝜆(𝛼1⊕𝛼2) = 𝜆𝛼1⊕𝜆𝛼2, 

(4) (𝛼1⊗𝛼2)
𝜆 = 𝛼1

𝜆⊗𝛼2
𝜆, 

(5) 𝜆1𝛼 ⊕ 𝜆2𝛼 = (𝜆1 + 𝜆2)𝛼, 

(6) 𝛼𝜆1 ⊗𝛼𝜆2 = 𝛼𝜆1+𝜆2. 

Definition 2.4. [6] Let 𝛼𝑖 = ([𝑢𝛼𝑖
𝐿 , 𝑢𝛼𝑖

𝑈 ], [𝑣𝛼𝑖
𝐿 , 𝑣𝛼𝑖

𝑈 ])(𝑖 = 1,2) be two IVPFNs, a nature quasi-ordering 

on IVPFNs is defined as 𝛼1 ≻ 𝛼2 if and only if 𝑢𝛼1
𝐿 ≥ 𝑢𝛼2

𝐿 , 𝑢𝛼1
𝑈 ≥ 𝑢𝛼2

𝑈 , 𝑣𝛼1
𝐿 ≤ 𝑣𝛼2

𝐿 , and 𝑣𝛼1
𝑈 ≤ 𝑣𝛼2

𝑈 , 

where " ≻ " means “bigger than or indifferent to”. 

2.2. Distance of IVPFNs 

This paper introduces a novel method for evaluating the relative positioning between a pair of 

IVPFNs, based on the distance metric used for interval-valued intuitionistic fuzzy values [3]. 

Definition 2.5. Let 𝛼𝑖 = ([𝑢𝛼𝑖
𝐿 , 𝑢𝛼𝑖

𝑈 ], [𝑣𝛼𝑖
𝐿 , 𝑣𝛼𝑖

𝑈 ])(𝑖 = 1,2) be two IVPFNs, 𝑞1 ≥ 1. The Minkowski 

distance between 𝛼1 and 𝛼2 is defined as follows: 

𝑑𝑞1(𝛼1, 𝛼2) =
1

4
(|(𝑢𝛼1

𝐿 )2 − (𝑢𝛼2
𝐿 )2|𝑞1 + |(𝑢𝛼1

𝑈 )2 − (𝑢𝛼2
𝑈 )2|𝑞1 + |(𝑣𝛼1

𝐿 )2 − (𝑣𝛼2
𝐿 )2|𝑞1 

+ |(𝑣𝛼1
𝑈 )2 − (𝑣𝛼2

𝑈 )2|𝑞1 + |(𝜋𝛼1
𝐿 )2 − (𝜋𝛼2

𝐿 )2|𝑞1 + |(𝜋𝛼1
𝑈 )2 − (𝜋𝛼2

𝑈 )2|𝑞1)
1
𝑞1 .    

(3) 
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The indeterminacy of element 𝛼𝑖(𝑖 = 1,2)  is denoted by 𝜋̄𝛼𝑖 = [𝜋𝛼𝑖
𝐿 , 𝜋𝛼𝑖

𝑈 ] =

[√1 − (𝑢𝛼𝑖
𝑈 )2 − (𝑣𝛼𝑖

𝑈 )2, √1 − (𝑢𝛼𝑖
𝐿 )2 − (𝑣𝛼𝑖

𝐿 )2](𝑖 = 1,2). 

It can be easily verified that 𝑑𝑞1(𝛼1, 𝛼2) satisfies the axioms of distance: 

(1) Non-negativity: 𝑑𝑞1(𝛼1, 𝛼2) ≥ 0, 

(2) Symmetry: 𝑑𝑞1(𝛼1, 𝛼2) = 𝑑𝑞1(𝛼2, 𝛼1), 

(3) Triangle inequality: If 𝛼1 ≻ 𝛼2 ≻ 𝛼3, then 𝑑𝑞1(𝛼1, 𝛼3) ≥ 𝑚𝑎𝑥{ 𝑑𝑞1(𝛼1, 𝛼2), 𝑑𝑞1(𝛼2, 𝛼3)}. 

When 𝑞1 = 1 is present, Eq (3) becomes degenerated to the Hamming distance within the 

range of [26] as shown below: 

𝑑1(𝛼1, 𝛼2) =
1

4
(|(𝑢𝛼1

𝐿 )2 − (𝑢𝛼2
𝐿 )2| + |(𝑢𝛼1

𝑈 )2 − (𝑢𝛼2
𝑈 )2| + |(𝑣𝛼1

𝐿 )2 − (𝑣𝛼2
𝐿 )2| 

+ |(𝑣𝛼1
𝑈 )2 − (𝑣𝛼2

𝑈 )2| +  |(𝜋𝛼1
𝐿 )2 − (𝜋𝛼2

𝐿 )2| + |(𝜋𝛼1
𝑈 )2 − (𝜋𝛼2

𝑈 )2|).   

When 𝑞1 = 2 is present, Eq (3) can be converted into the Euclidean distance as follows: 

𝑑2(𝛼1, 𝛼2) =
1

4
(|(𝑢𝛼1

𝐿 )2 − (𝑢𝛼2
𝐿 )2|2 + |(𝑢𝛼1

𝑈 )2 − (𝑢𝛼2
𝑈 )2|2 + |(𝑣𝛼1

𝐿 )2 − (𝑣𝛼2
𝐿 )2|2 

+ |(𝑣𝛼1
𝑈 )2 − (𝑣𝛼2

𝑈 )2|2 + |(𝜋𝛼1
𝐿 )2 − (𝜋𝛼2

𝐿 )2|2 + |(𝜋𝛼1
𝑈 )2 − (𝜋𝛼2

𝑈 )2|2)
1
2.    

When 𝑞1 → +∞ is present, Eq (3) can be converted into the Chebyshev distance as shown below: 

𝑑+∞(𝛼1, 𝛼2) = 𝑚𝑎𝑥{
1

4
(|(𝑢𝛼1

𝐿 )2 − (𝑢𝛼2
𝐿 )2|, |(𝑢𝛼1

𝑈 )2 − (𝑢𝛼2
𝑈 )2|, |(𝑣𝛼1

𝐿 )2 − (𝑣𝛼2
𝐿 )2|, 

|(𝑣𝛼1
𝑈 )2 − (𝑣𝛼2

𝑈 )2|, |(𝜋𝛼1
𝐿 )2 − (𝜋𝛼2

𝐿 )2|, |(𝜋𝛼1
𝑈 )2 − (𝜋𝛼2

𝑈 )2|)}.    

2.3. Distance of IVPFSs 

The distance between two IVPFSs is a fundamental concept for measuring their similarity or 

dissimilarity. Since an IVPFS is composed of IVPFNs, the overall distance between two IVPFSs is 

typically defined based on the distances between their corresponding IVPFNs. The distance between 

two IVPFSs can be defined with respect to the distance between two IVPFNs as follows. 

Definition 2.6. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of discourse. Let 𝐴 and 𝐵 be two IVPFSs 

in 𝑋, 𝑞2 ≥ 1, and then the Minkowski distance between 𝐴 and 𝐵 is defined as 

𝑑𝑞2(𝐴, 𝐵) = [∑
1

4𝑛
(|(𝑢𝐴

𝐿(𝑥𝑗))
2 − (𝑢𝐵

𝐿(𝑥𝑗))
2|𝑞2 + |(𝑢𝐴

𝑈(𝑥𝑗))
2 − (𝑢𝐵

𝑈(𝑥𝑗))
2|𝑞2

𝑛

𝑗=1

 

+ |(𝑣𝐴
𝐿(𝑥𝑗))

2 − (𝑣𝐵
𝐿(𝑥𝑗))

2|𝑞2 + |(𝑣𝐴
𝑈(𝑥𝑗))

2 − (𝑣𝐵
𝑈(𝑥𝑗))

2|𝑞2 

+ |(𝜋𝐴
𝐿(𝑥𝑗))

2 − (𝜋𝐵
𝐿(𝑥𝑗))

2|𝑞2 + |(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐵
𝑈(𝑥𝑗))

2|𝑞2]
1

𝑞2. 

(4) 
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Definition 2.7. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of discourse. Let 𝐴 and 𝐵 be two IVPFSs 

in 𝑋. 𝐴 is included in 𝐵 (denoted by 𝐴 ⊆ 𝐵) if and only if for every 𝑥𝑗 ∈ 𝑋, the following 

inequalities hold simultaneously: 

𝑢𝐴
𝐿(𝑥𝑗) ≤ 𝑢𝐵

𝐿(𝑥𝑗), 𝑢𝐴
𝑈(𝑥𝑗) ≤ 𝑢𝐵

𝑈(𝑥𝑗), 𝑣𝐴
𝐿(𝑥𝑗) ≥ 𝑣𝐵

𝐿(𝑥𝑗), 𝑣𝐴
𝑈(𝑥𝑗) ≥ 𝑣𝐵

𝑈(𝑥𝑗). 

Theorem 2.2. Let 𝐴, 𝐵, and 𝐶 be three IVPFSs in 𝑋, 𝑞2 ≥ 1, then the following axiom holds: 

(1) Non-negativity: 𝑑𝑞2(𝐴, 𝐵) ≥ 0, 

(2) Symmetry: 𝑑𝑞2(𝐴, 𝐵) = 𝑑𝑞2(𝐵, 𝐴), 

(3) Triangle inequality: If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑑𝑞2(𝐴, 𝐶) ≥ 𝑚𝑎𝑥{ 𝑑𝑞2(𝐴, 𝐵), 𝑑𝑞2(𝐵, 𝐶)}. 

Proof. It follows directly from Definition 2.6 that (1) and (2) are satisfied. 

(3) Assume 𝐴 ⊆ 𝐵 ⊆ 𝐶, by Definition 2.7, we have for all 𝑥𝑗 ∈ 𝑋: 

( ) ( ) ( ), ( ) ( ) ( ),L L L U U U

A j B j C j A j B j C ju x u x u x u x u x u x   

𝑣𝐴
𝐿(𝑥𝑗) ≥ 𝑣𝐵

𝐿(𝑥𝑗) ≥ 𝑣𝐶
𝐿(𝑥𝑗), 𝑣𝐴

𝑈(𝑥𝑗) ≥ 𝑣𝐵
𝑈(𝑥𝑗) ≥ 𝑣𝐶

𝑈(𝑥𝑗), 

and consequently for the hesitancy degrees: 

𝜋𝐴
𝐿(𝑥𝑗) ≥ 𝜋𝐵

𝐿(𝑥𝑗) ≥ 𝜋𝐶
𝐿(𝑥𝑗), 𝜋𝐴

𝑈(𝑥𝑗) ≥ 𝜋𝐵
𝑈(𝑥𝑗) ≥ 𝜋𝐶

𝑈(𝑥𝑗).  

Since all squared differences are non-negative, and using the monotonicity of the function 𝑓(𝑡) =
𝑡𝑞2 for 𝑡 ≥ 0 and 𝑞2 ≥ 1, we have 

|(𝑢𝐴
𝐿(𝑥𝑗))

2 − (𝑢𝐶
𝐿(𝑥𝑗))

2|𝑞2 ≥ |(𝑢𝐴
𝐿(𝑥𝑗))

2 − (𝑢𝐵
𝐿(𝑥𝑗))

2|𝑞2, 

|(𝑢𝐴
𝐿(𝑥𝑗))

2 − (𝑢𝐶
𝐿(𝑥𝑗))

2|𝑞2 ≥ |(𝑢𝐵
𝐿(𝑥𝑗))

2 − (𝑢𝐶
𝐿(𝑥𝑗))

2|𝑞2, 

|(𝑢𝐴
𝑈(𝑥𝑗))

2 − (𝑢𝐶
𝑈(𝑥𝑗))

2|𝑞2 ≥ |(𝑢𝐴
𝑈(𝑥𝑗))

2 − (𝑢𝐵
𝑈(𝑥𝑗))

2|𝑞2, 

|(𝑢𝐴
𝑈(𝑥𝑗))

2 − (𝑢𝐶
𝑈(𝑥𝑗))

2|𝑞2 ≥ |(𝑢𝐵
𝑈(𝑥𝑗))

2 − (𝑢𝐶
𝑈(𝑥𝑗))

2|𝑞2, 

|(𝑣𝐴
𝐿(𝑥𝑗))

2 − (𝑣𝐶
𝐿(𝑥𝑗))

2|𝑞2 ≥ |(𝑣𝐴
𝐿(𝑥𝑗))

2 − (𝑣𝐵
𝐿(𝑥𝑗))

2|𝑞2, 

|(𝑣𝐴
𝐿(𝑥𝑗))

2 − (𝑣𝐶
𝐿(𝑥𝑗))

2|𝑞2 ≥ |(𝑣𝐵
𝐿(𝑥𝑗))

2 − (𝑣𝐶
𝐿(𝑥𝑗))

2|𝑞2, 

|(𝑣𝐴
𝑈(𝑥𝑗))

2 − (𝑣𝐶
𝑈(𝑥𝑗))

2|𝑞2 ≥ |(𝑣𝐴
𝑈(𝑥𝑗))

2 − (𝑣𝐵
𝑈(𝑥𝑗))

2|𝑞2, 

|(𝑣𝐴
𝑈(𝑥𝑗))

2 − (𝑣𝐶
𝑈(𝑥𝑗))

2|𝑞2 ≥ |(𝑣𝐵
𝑈(𝑥𝑗))

2 − (𝑣𝐶
𝑈(𝑥𝑗))

2|𝑞2, 
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|(𝜋𝐴
𝐿(𝑥𝑗))

2 − (𝜋𝐶
𝐿(𝑥𝑗))

2|𝑞2 ≥ |(𝜋𝐴
𝐿(𝑥𝑗))

2 − (𝜋𝐵
𝐿(𝑥𝑗))

2|𝑞2, 

|(𝜋𝐴
𝐿(𝑥𝑗))

2 − (𝜋𝐶
𝐿(𝑥𝑗))

2|𝑞2 ≥ |(𝜋𝐵
𝐿(𝑥𝑗))

2 − (𝜋𝐶
𝐿(𝑥𝑗))

2|𝑞2, 

|(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐶
𝑈(𝑥𝑗))

2|𝑞2 ≥ |(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐵
𝑈(𝑥𝑗))

2|𝑞2, 

|(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐶
𝑈(𝑥𝑗))

2|𝑞2 ≥ |(𝜋𝐵
𝑈(𝑥𝑗))

2 − (𝜋𝐶
𝑈(𝑥𝑗))

2|𝑞2. 

Summing over all 𝑗 = 1,2, . . . , 𝑛 and multiplying by 
1

4𝑛
, we obtain: 

∑
1

4𝑛
(|(𝑢𝐴

𝐿(𝑥𝑗))
2 − (𝑢𝐶

𝐿(𝑥𝑗))
2|𝑞2+. . .

𝑛

𝑗=1

+ |(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐶
𝑈(𝑥𝑗))

2|𝑞2) 

≥∑
1

4𝑛
(|(𝑢𝐴

𝐿(𝑥𝑗))
2 − (𝑢𝐵

𝐿(𝑥𝑗))
2|𝑞2+. . .

𝑛

𝑗=1

+ |(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐵
𝑈(𝑥𝑗))

2|𝑞2) 

and likewise for the pair 𝐵, 𝐶. Taking the 
1

𝑞2
-th power preserves the inequalities, hence: 

𝑑𝑞2(𝐴, 𝐶) ≥ 𝑑𝑞2(𝐴, 𝐵) and 𝑑𝑞2(𝐴, 𝐶) ≥ 𝑑𝑞2(𝐵, 𝐶). 

Therefore, 𝑑𝑞2(𝐴, 𝐶) ≥ 𝑚𝑎𝑥{ 𝑑𝑞2(𝐴, 𝐵), 𝑑𝑞2(𝐵, 𝐶)}. 

Definition 2.8. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of discourse. Let 𝐴 and 𝐵 be two IVPFSs 

in 𝑋, 𝑞2 ≥ 1. A weighted Minkowski distance between 𝐴 and 𝐵 is defined as 

𝑑̄𝑞2(𝐴, 𝐵) = [∑
𝜔𝑗

4
(|(𝑢𝐴

𝐿(𝑥𝑗))
2 − (𝑢𝐵

𝐿(𝑥𝑗))
2|𝑞2 + |(𝑢𝐴

𝑈(𝑥𝑗))
2 − (𝑢𝐵

𝑈(𝑥𝑗))
2|𝑞2

𝑛

𝑗=1

 

+ |(𝑣𝐴
𝐿(𝑥𝑗))

2 − (𝑣𝐵
𝐿(𝑥𝑗))

2|𝑞2 + |(𝑣𝐴
𝑈(𝑥𝑗))

2 − (𝑣𝐵
𝑈(𝑥𝑗))

2|𝑞2 

+ |(𝜋𝐴
𝐿(𝑥𝑗))

2 − (𝜋𝐵
𝐿(𝑥𝑗))

2|𝑞2 + |(𝜋𝐴
𝑈(𝑥𝑗))

2 − (𝜋𝐵
𝑈(𝑥𝑗))

2|𝑞2]
1

𝑞2. 

(5) 

Here, weight 𝜔𝑗 of 𝑥𝑗 satisfies conditions ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 and 𝜔𝑗 ≥ 0 (𝑗 = 1,2,⋯ , 𝑛). 

The exponent 𝑞2  in the (weighted) Minkowski distance is a norm-order parameter that 

determines "how differences are aggregated". When considering 𝑞2 = 1, 𝑞2 = 2, and 𝑞2 → +∞, 

the respective (weighted) distances are referred to as the (weighted) Hamming distance, (weighted) 

Euclidean distance, and (weighted) Chebyshev distance. The smaller the value of 𝑞2, the more the 

distance focuses on the accumulation of multiple small differences; the larger the value of 𝑞2, the 

more sensitive the distance becomes to a single prominent difference. In the decision-making process, 

the exponent 𝑞2 in the (weighted) Minkowski distance reflects the DM's value-risk orientation: 

𝑞2 = 1 represents full compensation between dimensions; 𝑞2 = 2 offers balanced compensation; 

while 𝑞2 → +∞ indicates strict non-compensatory logic where any critical deficiency dominates. 
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When addressing practical decision-making problems, the determination of 𝑞2 must integrate the 

characteristics of the problem, the data structure, and the decision logic. Typically, the following 

approach can be adopted: First, analyze the decision attributes, if the attributes are mutually 

substitutable, a smaller 𝑞2 should be selected; if there are critical constraint indicators, a larger 𝑞2 

or even +∞ should be chosen. Second, conduct sensitivity analysis to test the stability of alternative 

rankings under typical values of 𝑞2: if the rankings remain consistent, the choice of 𝑞2 offers 

greater flexibility; if the rankings fluctuate significantly, decision preferences must be further 

clarified to determine the value of 𝑞2 that best aligns with the decision-maker's intent. 

3. IVPF MCGDM with IVPF truth degrees 

This section delineates the interval-valued Pythagorean fuzzy multi-criteria group 

decision-making problem under investigation. First, an overview of the MCGDM within the IVPF 

context is presented, along with the associated data normalization procedures. Subsequently, the 

framework of incomplete criteria weight information and the preference relations expressed via IVPF 

truth degrees are formally introduced. 

3.1. Description of problems and normalization methods 

For the sake of convenience, let 𝐿 = {1,2, . . . , 𝑙}, 𝑀 = {1,2, . . . , 𝑚}, and 𝑁 = {1,2, . . . , 𝑛}. 

Suppose a group of DMs, denoted as 𝐸𝑘 (𝑘 ∈ 𝐿), are responsible for evaluating and ranking a set of 

alternatives 𝐴𝑖 (𝑖 ∈ 𝑀) based on criteria 𝐶𝑗 (𝑗 ∈ 𝑁). 

Suppose we have a set of alternatives, denoted by 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑚}, and a set of criteria, 

denoted by 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛}. Let 𝝎 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇 be a vector of criteria weights that 

satisfies conditions ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 and 𝜔𝑗 ≥ 0 (𝑗 ∈ 𝑁). Let IVPFN 𝑧𝑖𝑗

𝑘 = ([𝑢𝑖𝑗
𝑘𝐿 , 𝑢𝑖𝑗

𝑘𝑈], [𝑣𝑖𝑗
𝑘𝐿 , 𝑣𝑖𝑗

𝑘𝑈]) 

(𝑖 ∈ 𝑀,  𝑗 ∈ 𝑁,  𝑘 ∈ 𝐿) denote the rating given by DM 𝐸𝑘 to alternative 𝐴𝑖 on criterion 𝐶𝑗. Thus, 

we can formulate the MCGDM problem using IVPF decision matrices 𝒁𝑘 = (𝑧𝑖𝑗
𝑘 )𝑚×𝑛(𝑘 ∈ 𝐿). 

To eliminate the effect of different dimensions on decision-making results, the criteria values 

𝑧𝑖𝑗
𝑘  (𝑖 ∈ 𝑀,  𝑗 ∈ 𝑁,  𝑘 ∈ 𝐿) should be normalized into 𝑠𝑖𝑗

𝑘 = ([𝑢̄𝑖𝑗
𝑘𝐿 , 𝑢̄𝑖𝑗

𝑘𝑈], [𝑣̄𝑖𝑗
𝑘𝐿 , 𝑣̄𝑖𝑗

𝑘𝑈]) as follows: 

𝑠𝑖𝑗
𝑘 = ([𝑢̄𝑖𝑗

𝑘𝐿, 𝑢̄𝑖𝑗
𝑘𝑈], [𝑣̄𝑖𝑗

𝑘𝐿, 𝑣̄𝑖𝑗
𝑘𝑈]) = {

([𝑢𝑖𝑗
𝑘𝐿, 𝑢𝑖𝑗

𝑘𝑈], [𝑣𝑖𝑗
𝑘𝐿, 𝑣𝑖𝑗

𝑘𝑈]),   if  𝐶𝑗 ∈ 𝐶
𝑏

([𝑣𝑖𝑗
𝑘𝐿, 𝑣𝑖𝑗

𝑘𝑈], [𝑢𝑖𝑗
𝑘𝐿, 𝑢𝑖𝑗

𝑘𝑈]),   if  𝐶𝑗 ∈ 𝐶
𝑐 (𝑖 ∈ 𝑀,  𝑗 ∈ 𝑁,  𝑘 ∈ 𝐿). (6) 

In this context, 𝐶𝑏  denotes a collection of advantageous criteria, while 𝐶𝑐  stands for a collection 

of disadvantageous criteria. 

Hence, the IVPF decision matrices 𝒁𝑘 = (𝑧𝑖𝑗
𝑘 )𝑚×𝑛  (𝑘 ∈ 𝐿)  are transformed into the 

normalized IVPF decision matrices 𝒁′𝑘 = (𝑠𝑖𝑗
𝑘 )𝑚×𝑛 (𝑘 ∈ 𝐿). 



2141 

AIMS Mathematics  Volume 11, Issue 1, 2131–2187. 

3.2. Incomplete criteria weight information structure 

Criteria weights constitute a critical and non-negligible element in decision-making. While DMs 

can express preferences over these weights based on their knowledge and experience, individual 

differences often result in incomplete information regarding the weight assignments. Let 𝝎 =

(𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇  denote a vector of criteria weights, where the weight of criterion 𝐶𝑗  is 

represented by 𝜔𝑗  and satisfies conditions ∑ 𝜔𝑗
𝑛
𝑗=1 = 1 and𝜔𝑗 ≥ 0 (𝑗 ∈ 𝑁). The vector 𝝎 is 

incompletely known in this paper and needs to be determined. Consider 𝛬0 = {𝝎 =

(𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇| ∑ 𝜔𝑗

𝑛
𝑗=1 = 1, 𝜔𝑗 ≥ 𝜀  for  𝑗 = 1,2, . . . , 𝑛}, where 𝜀 > 0 is a positive number that 

is sufficiently small. The limitations 𝜔𝑗 ≥ 𝜀 (𝑗 = 1,2,⋯ , 𝑛) can guarantee that every magnitude of 

𝛬0  is not lesser than a sufficiently minuscule positive quantity 𝜀, as it might materialize in the 

LINMAP technique [27]. Li [28] officially and scrupulously determined weight information 

framework employing the ensuing quintessential relations amidst attribute weights. 

3.3. Preference relations with IVPF truth degrees 

In multi-criteria decision-making and fuzzy set theory, in order to handle the uncertainty and 

fuzziness of DMs' interval-valued Pythagorean fuzzy preference information, a tool is often needed 

to extract “sufficiently certain” or “sufficiently significant” preference relations. This tool is the cut 

set, which filters out those preference pairs with sufficiently high membership degrees and 

sufficiently low non-membership degrees by setting thresholds, thereby simplifying the decision 

analysis process while retaining key information. The cut set not only helps focus on the judgments 

that DMs are relatively certain about, but can also be used to evaluate the adequacy and reliability of 

decision information, providing a basis for subsequent weight determination and alternative ranking. 

To formalize the preference structure, we first define the concept of truth degrees in the context 

of preference relations. 

Definition 3.1. Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑚} be a set of alternatives. For any decision-maker 𝐸𝑘, a 

truth degree of a preference relation 𝐴𝑔 ≻𝑘 𝐴ℎ  is a numerical value 𝛼𝑘(𝑔, ℎ) ∈ [0,1]  that 

quantifies the degree to which 𝐸𝑘 prefers alternative 𝐴𝑔 over 𝐴ℎ. A value closer to 1 indicates 

stronger preference, while a value closer to 0 indicates weaker or negligible preference. 

In many practical situations, however, a single numerical value may not capture the inherent 

uncertainty in human judgments. To model such uncertainty in both membership and 

non-membership assessments, we extend the notion of truth degrees to IVPF truth degrees. 

Definition 3.2. Let 𝐴𝑔 and 𝐴ℎ be two alternatives, and let 𝐸𝑘be a decision-maker. An IVPF truth 

degree for the preference 𝐴𝑔 ≻𝑘 𝐴ℎ is expressed as: 

𝛼𝑘(𝑔, ℎ) = ([𝑢(𝑔,ℎ)
𝑘𝐿 , 𝑢(𝑔,ℎ)

𝑘𝑈 ], [𝑣(𝑔,ℎ)
𝑘𝐿 , 𝑣(𝑔,ℎ)

𝑘𝑈 ]), 

where [𝑢(𝑔,ℎ)
𝑘𝐿 , 𝑢(𝑔,ℎ)

𝑘𝑈 ] ⊆ [0,1] is the interval membership degree, indicating the extent to which 𝐴𝑔 



2142 

AIMS Mathematics  Volume 11, Issue 1, 2131–2187. 

is preferred to 𝐴ℎ; [𝑣(𝑔,ℎ)
𝑘𝐿 , 𝑣(𝑔,ℎ)

𝑘𝑈 ] ⊆ [0,1] is the interval non-membership degree, indicating the 

extent to which 𝐴𝑔 is not preferred to 𝐴ℎ; and the following condition holds: 

(𝑢(𝑔,ℎ)
𝑘𝑈 )2 + (𝑣(𝑔,ℎ)

𝑘𝑈 )2 ≤ 1. 

The hesitation degree corresponding to an IVPF truth degree is given by 𝜋(𝑔,ℎ) = [𝜋(𝑔,ℎ)
𝑘𝐿 , 𝜋(𝑔,ℎ)

𝑘𝑈 ]， 

where 

𝜋(𝑔,ℎ)
𝑘𝐿 = √1 − (𝑢(𝑔,ℎ)

𝑘𝑈 )2 − (𝑣(𝑔,ℎ)
𝑘𝑈 )2, 𝜋(𝑔,ℎ)

𝑘𝑈 = √1 − (𝑢(𝑔,ℎ)
𝑘𝐿 )2 − (𝑣(𝑔,ℎ)

𝑘𝐿 )2. 

Based on the IVPF truth degree structure, we now introduce the IVPFS representation of a 

decision-maker's preference relations. Assuming DM 𝐸𝑘  utilizes an IVPFS of 𝛺𝑘 = {<
(𝑔, ℎ), 𝛼𝑘(𝑔, ℎ) > |𝐴𝑔 ≻𝑘 𝐴ℎ}   with an associated IVPF truth degree 𝛼𝑘(𝑔, ℎ) (𝑔, ℎ ∈ 𝑀)  to 

denote preference relations between alternatives, we can observe that (𝑔, ℎ)  represents the 

preference of DM 𝐸𝑘 for alternative 𝐴𝑔 over 𝐴ℎ (represented as 𝐴𝑔 ≻𝑘 𝐴ℎ) with an IVPF truth 

degree 𝛼𝑘(𝑔, ℎ) = ([𝑢(𝑔,ℎ)
𝑘𝐿 , 𝑢(𝑔,ℎ)

𝑘𝑈 ], [𝑣(𝑔,ℎ)
𝑘𝐿 , 𝑣(𝑔,ℎ)

𝑘𝑈 ]). To formally characterize a cut set within the 

IVPFS framework, we introduce the following definition. 

Definition 3.3. Let [𝑎0, 𝑏0] ⊆ [0,1]  and [𝑐0, 𝑑0] ⊆ [0,1]  satisfy 𝑏0
2 + 𝑑0

2 ≤ 1 . The 

([𝑎0, 𝑏0], [𝑐0, 𝑑0])-cut set of 𝛺𝑘 is defined as: 

𝛺𝑘
([𝑎0,𝑏0],[𝑐0,𝑑0]) = {(𝑔, ℎ)|𝑢(𝑔,ℎ)

𝑘𝐿 ≥ 𝑎0, 𝑢(𝑔,ℎ)
𝑘𝑈 ≥ 𝑏0,  𝑣(𝑔,ℎ)

𝑘𝐿 ≤ 𝑐0, 𝑣(𝑔,ℎ)
𝑘𝑈 ≤ 𝑑0 (𝑔, ℎ ∈ 𝑀)}. 

In particular, when 𝑎0 = 0, 𝑏0 = 0, 𝑐0 = 1, and 𝑑0 = 1, the cut set reduces to the support set, 

denoted by 𝛺𝑘
(0,1)

, which includes all possible preference pairs. Its cardinality |𝛺𝑘
(0,1)

| reflects the 

amount of valid preference information provided by that DM. In group decision-making, a larger 

total cardinality ∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1  indicates richer available preference information, often leading to a 

more precise and reliable criterion weight vector 𝝎. 

4. A novel IVPF mathematical programming method for IVPF MCGDM problems 

This section proposes a novel LINMAP methods to solve IVPF MCGDM problems with IVPF 

truth degree. First, the DMs' weights on each criterion are determined based on the relative closeness 

degree. Then, the process of LINMAP is adhered to for establishing group consistency and group 

inconsistency utilizing IVPF PIS and IVPF NIS, correspondingly. Based on the group consistency 

and group inconsistency, an innovative bi-objective IVPF mathematical programming model is 

constructed to ascertain criteria weights. Subsequently, the individual relative proximity degrees of 

alternatives are computed and the individual hierarchy matrix for each DM is generated. Furthermore, 

according to the aim to minimize the variance between each DM's individual alternative order and 

the collective order, this paper formulated a multi-objective assignment model to derive a collective 
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ranking matrix for determining the ranking of alternatives. 

4.1. Determining DM's weight under each criterion based on the relative closeness degree 

It is significant and should not be ignored to determine DMs' weights during the process of 

MCGDM. In fact, because each DM involved in decision-making may have different preferences for 

the alternatives under different criteria, it is reasonable to think each DM's weight under different 

criteria is not the same in real life. 

For a criterion 𝐶𝑗, suppose that the PIS and NIS of alternatives given by DMs are 𝒓𝑗
+ =

(𝑟𝑗
1+, 𝑟𝑗

2+, . . . , 𝑟𝑗
𝑙+)𝑇 and 𝒓𝑗

− = (𝑟𝑗
1−, 𝑟𝑗

2−, . . . , 𝑟𝑗
𝑙−)𝑇, respectively, where 𝑟𝑗

𝑘+ and 𝑟𝑗
𝑘− are the best 

rating and the worst rating by 𝐸𝑘(𝑘 ∈ 𝐿). Namely, one has 

𝑟𝑗
𝑘+ = ([𝑢𝑗

𝑘𝐿+, 𝑢𝑗
𝑘𝑈+], [𝑣𝑗

𝑘𝐿+, 𝑣𝑗
𝑘𝑈+]), 𝑟𝑗

𝑘− = ([𝑢𝑗
𝑘𝐿−, 𝑢𝑗

𝑘𝑈−], [𝑣𝑗
𝑘𝐿−, 𝑣𝑗

𝑘𝑈−]), (7) 

where 𝑢𝑗
𝑘𝐿+ = 𝑚𝑎𝑥

𝑖∈𝑀
{𝑢𝑖𝑗

𝑘𝐿} , 𝑢𝑗
𝑘𝑈+ = 𝑚𝑎𝑥

𝑖∈𝑀
{𝑢𝑖𝑗

𝑘𝑈} , 𝑣𝑗
𝑘𝐿+ = 𝑚𝑖𝑛

𝑖∈𝑀
{𝑣𝑖𝑗

𝑘𝐿} , 𝑣𝑗
𝑘𝑈+ = 𝑚𝑖𝑛

𝑖∈𝑀
{𝑣𝑖𝑗

𝑘𝑈}  and 

𝑢𝑗
𝑘𝐿− = 𝑚𝑖𝑛

𝑖∈𝑀
{𝑢𝑖𝑗

𝑘𝐿}, 𝑢𝑗
𝑘𝑈− = 𝑚𝑖𝑛

𝑖∈𝑀
{𝑢𝑖𝑗

𝑘𝑈}, 𝑣𝑗
𝑘𝐿− = 𝑚𝑎𝑥

𝑖∈𝑀
{𝑣𝑖𝑗

𝑘𝐿}, 𝑣𝑗
𝑘𝑈− = 𝑚𝑎𝑥

𝑖∈𝑀
{𝑣𝑖𝑗

𝑘𝑈}. 

For 𝐸𝑘(𝑘 ∈ 𝐿), the smaller 𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘+), the better 𝐴𝑖. Meanwhile, the bigger 𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘−), 

the better 𝐴𝑖. Thus, the relative closeness degree of alternative 𝐴𝑖 on criterion 𝐶𝑗 given by DM 𝐸𝑘 

can be defined as follows: 

𝑅𝑖𝑗
𝑘 =

𝑑𝑞1(𝑠𝑖𝑗
𝑘 ,𝑟𝑗

𝑘−)

𝑑𝑞1(𝑠𝑖𝑗
𝑘 ,𝑟𝑗

𝑘+)+𝑑𝑞1(𝑠𝑖𝑗
𝑘 ,𝑟𝑗

𝑘−)
, (8) 

where 𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘−)  and 𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘+)  are the Minkowski distance between normalized IVPF 

evaluation 𝑠𝑖𝑗
𝑘  and the worst rating 𝑟𝑗

𝑘− and the Minkowski distance between normalized IVPF 

evaluation 𝑠𝑖𝑗
𝑘  and the best rating 𝑟𝑗

𝑘+, respectively. Concretely, 

𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘−) =
1

4
(|(𝑢𝑖𝑗

𝑘𝐿)2 − (𝑢𝑗
𝑘𝐿−)2|𝑞1 + |(𝑢𝑖𝑗

𝑘𝑈)2 − (𝑢𝑗
𝑘𝑈−)2|𝑞1 + |(𝑣𝑖𝑗

𝑘𝐿)2 − (𝑣𝑗
𝑘𝐿−)2|𝑞1 

+ |(𝑣𝑖𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑘𝑈−)2|𝑞1 + |(𝜋𝑖𝑗
𝑘𝐿)2 − (𝜋𝑗

𝑘𝐿−)2|𝑞1 + |(𝜋𝑖𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑘𝑈−)2|𝑞1)
1

𝑞1, 

𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘+) =
1

4
(|(𝑢𝑖𝑗

𝑘𝐿)2 − (𝑢𝑗
𝑘𝐿+)2|𝑞1 + |(𝑢𝑖𝑗

𝑘𝑈)2 − (𝑢𝑗
𝑘𝑈+)2|𝑞1 + |(𝑣𝑖𝑗

𝑘𝐿)2 − (𝑣𝑗
𝑘𝐿+)2|𝑞1 

+ |(𝑣𝑖𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑘𝑈+)2|𝑞1 + |(𝜋𝑖𝑗
𝑘𝐿)2 − (𝜋𝑗

𝑘𝐿+)2|𝑞1 + |(𝜋𝑖𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑘𝑈+)2|𝑞1)
1

𝑞1. 
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It is apparent that 0 ≤ 𝑅𝑖𝑗
𝑘 ≤ 1. Especially, if 𝑑𝑞1(𝑠𝑖𝑗

𝑘 , 𝑟𝑗
𝑘−) = 0, then 𝑅𝑖𝑗

𝑘 = 0; if 𝑑𝑞1(𝑠𝑖𝑗
𝑘 , 𝑟𝑗

𝑘+) = 0, 

then 𝑅𝑖𝑗
𝑘 = 1. Moreover, the bigger the value of 𝑅𝑖𝑗

𝑘 , the better alternative 𝐴𝑖 on criterion 𝐶𝑗 for 

DM 𝐸𝑘. 

If we consider an alternative, the weight of a DM 𝐸𝑘  under criterion 𝐶𝑗  is directly 

proportional to the sum of the relative closeness degrees of the alternative on criterion 𝐶𝑗 given by 

DM 𝐸𝑘. In other words, as the sum of the relative closeness degree increases, the weight of DM 𝐸𝑘 

under criterion 𝐶𝑗 also increases. Hence, we can define the weight of DM 𝐸𝑘 under criterion 𝐶𝑗 as 

𝑤𝑗
𝑘, given by: 

𝑤𝑗
𝑘 = 𝑐𝑗

𝑘/∑ 𝑐𝑗
𝑘𝑙

𝑘=1 , 𝑐𝑗
𝑘 = ∑ 𝑅𝑖𝑗

𝑘𝑚
𝑖=1 = ∑

𝑑𝑞1(𝑠𝑖𝑗
𝑘 ,𝑟𝑗

𝑘−)

𝑑𝑞1(𝑠𝑖𝑗
𝑘 ,𝑟𝑗

𝑘+)+𝑑𝑞1(𝑠𝑖𝑗
𝑘 ,𝑟𝑗

𝑘−)

𝑚
𝑖=1 . (9) 

Apparently, the DMs' weights satisfy the conditions that 0 ≤ 𝑤𝑗
𝑘 ≤ 1 (𝑗 = 1,2,⋯ , 𝑛;  𝑘 = 1,2,⋯ , 𝑙) 

and ∑ 𝑤𝑗
𝑘𝑙

𝑘=1 = 1 (𝑗 ∈ 𝑁). The steps of determination of DMs' weights can be summarized as 

follows: 

Step 1. Normalize the original IVPF evaluations 𝑧𝑖𝑗
𝑘  into 𝑠𝑖𝑗

𝑘  by Eq (6); 

Step 2. Derive the PIS and NIS of alternatives by Eq (7); 

Step 3. Calculate the relative closeness degree of alternative 𝐴𝑖 on criterion 𝐶𝑗 given by DM 

𝐸𝑘 by Eq (8); 

Step 4. Calculate the weight of DM 𝐸𝑘 under criterion 𝐶𝑗 by Eq (9). 

Accordingly, the DM's weight vector under criterion 𝐶𝑗  can be derived as 𝒘𝑗 =

(𝑤𝑗
1, 𝑤𝑗

2, . . . , 𝑤𝑗
𝑙)𝑇(𝑗 ∈ 𝑁). 

4.2. IVPF group consistency and inconsistency 

IVPF-based group consistency and inconsistency are key concepts for quantifying the 

convergence and divergence of collective preferences under uncertainty. Group consistency 

measures the extent to which individual IVPF judgments converge toward a coherent group 

preference structure, typically evaluated using aggregated similarity indices or distance-based 

metrics. In contrast, group inconsistency reflects the degree of disagreement, ambiguity, or 

conflict among decision-makers, often manifested in the dispersion of IVPF evaluations or 

deviations from a common reference. By explicitly modeling both consistency and inconsistency 

within the IVPF framework, this approach enables a more nuanced and flexible representation of 

group decision dynamics. Suppose that the IVPF PIS and IVPF NIS of alternatives under criteria 

are 𝒔+ = (𝑠1
+, 𝑠2

+, . . . , 𝑠𝑛
+)𝑇  and 𝒔− = (𝑠1

−, 𝑠2
−, . . . , 𝑠𝑛

−)𝑇 , respectively, where 𝑠𝑗
+  and 𝑠𝑗

−  are the 

best rating and the worst rating on the criterion 𝐶𝑗  (𝑗 ∈ 𝑁). Namely, one has 
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𝑠𝑗
+ = ([𝑢𝑗

𝐿+, 𝑢𝑗
𝑈+], [𝑣𝑗

𝐿+, 𝑣𝑗
𝑈+]), 𝑠𝑗

− = ([𝑢𝑗
𝐿−, 𝑢𝑗

𝑈−], [𝑣𝑗
𝐿−, 𝑣𝑗

𝑈−]), (10) 

where 𝑢𝑗
𝐿+ = 𝑚𝑎𝑥

𝑖∈𝑀,𝑘∈𝐿
{𝑢𝑖𝑗

𝑘𝐿} , 𝑢𝑗
𝑈+ = 𝑚𝑎𝑥

𝑖∈𝑀,𝑘∈𝐿
{𝑢𝑖𝑗

𝑘𝑈} , 𝑣𝑗
𝐿+ = 𝑚𝑖𝑛

𝑖∈𝑀,𝑘∈𝐿
{𝑣𝑖𝑗

𝑘𝐿} , 𝑣𝑗
𝑈+ = 𝑚𝑖𝑛

𝑖∈𝑀,𝑘∈𝐿
{𝑣𝑖𝑗

𝑘𝑈}  and 

𝑢𝑗
𝐿− = 𝑚𝑖𝑛

𝑖∈𝑀,𝑘∈𝐿
{𝑢𝑖𝑗

𝑘𝐿}, 𝑢𝑗
𝑈− = 𝑚𝑖𝑛

𝑖∈𝑀,𝑘∈𝐿
{𝑢𝑖𝑗

𝑘𝑈}, 𝑣𝑗
𝐿+ = 𝑚𝑎𝑥

𝑖∈𝑀,𝑘∈𝐿
{𝑣𝑖𝑗

𝑘𝐿}, 𝑣𝑗
𝑈+ = 𝑚𝑎𝑥

𝑖∈𝑀,𝑘∈𝐿
{𝑣𝑖𝑗

𝑘𝑈}. 

Considering the weight vector of DM under criterion 𝐶𝑗  (𝑗 ∈ 𝑁)  as 𝒘𝑗 =

(𝑤𝑗
1, 𝑤𝑗

2, . . . , 𝑤𝑗
𝑙)𝑇(𝑗 ∈ 𝑁), Eq (5) can be used to compute the weighted Minkowski distance between 

𝒔𝑖
𝑘 = (𝑠𝑖1

𝑘 , 𝑠𝑖2
𝑘 , . . . , 𝑠𝑖𝑛

𝑘 )𝑇 and 𝒔+, 𝒔− in the following way: 

𝑇𝑖
𝑘+ =∑

𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑖𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢𝑖𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣𝑖𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿+)2|𝑞2

𝑛

𝑗=1

 

+ |(𝑣𝑖𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈+)2|𝑞2 + |(𝜋𝑖𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿+)2|𝑞2 + |(𝜋𝑖𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈+)2|𝑞2]
1
𝑞2 

(11) 

𝑇𝑖
𝑘− =∑

𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑖𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢𝑖𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣𝑖𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿−)2|𝑞2

𝑛

𝑗=1

 

+ |(𝑣𝑖𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈−)2|𝑞2 + |(𝜋𝑖𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿−)2|𝑞2 + |(𝜋𝑖𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈−)2|𝑞2]
1

𝑞2, 

(12) 

where (𝜋𝑗
𝐿+)2 = 1 − (𝑢𝑗

𝑈+)2 − (𝑣𝑗
𝑈+)2 , (𝜋𝑗

𝑈+)2 = 1 − (𝑢𝑗
𝐿+)2 − (𝑣𝑗

𝐿+)2 , (𝜋𝑗
𝐿−)2 = 1 − (𝑢𝑗

𝑈−)2 −

(𝑣𝑗
𝑈−)2, (𝜋𝑗

𝑈−)2 = 1 − (𝑢𝑗
𝐿−)2 − (𝑣𝑗

𝐿−)2(𝑗 ∈ 𝑁). It is necessary to determine the criteria weight 

vector 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇. 

Assuming that the criteria weights are fully specified, the weighted Minkowski distances 𝑇𝑔
𝑘+, 

𝑇𝑔
𝑘−, 𝑇ℎ

𝑘+, and 𝑇ℎ
𝑘− for DM 𝐸𝑘 can be derived with respect to an ordered pair (𝑔, ℎ). In the case 

where 𝑇𝑔
𝑘+ < 𝑇ℎ

𝑘+ holds for every (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, then 𝐴𝑔 is superior to 𝐴ℎ , which is consistent 

with the subjective preference of DM 𝐸𝑘. Conversely, In the case where 𝑇𝑔
𝑘+ ≥ 𝑇ℎ

𝑘+, then 𝐴𝑔 is 

superior to 𝐴ℎ, which contradicts the subjective preference provided by DM 𝐸𝑘. Similarly, In the 

case where 𝑇𝑔
𝑘− > 𝑇ℎ

𝑘−  holds for every (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, then 𝐴𝑔  is superior to 𝐴ℎ , which is 

consistent with the subjective preference of DM 𝐸𝑘. In the case where 𝑇𝑔
𝑘− ≤ 𝑇ℎ

𝑘−, then 𝐴𝑔 is 

inferior to 𝐴ℎ, which contradicts the subjective preference provided by DM 𝐸𝑘. 
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Please note that the MCGDM problems under consideration involve incomplete criteria weights 

which must be determined. To integrate this incomplete information on criteria weights into the 

decision-making process, a bi-objective IVPF programming model is created to obtain them. 

According to the IVPF PIS approach for evaluating alternatives against criteria, when considering 

each (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, if condition 𝑇𝑔
𝑘+ < 𝑇ℎ

𝑘+ is satisfied, then 𝐴𝑔 is superior to 𝐴ℎ. Therefore, the 

ranking of alternatives 𝐴𝑔 and 𝐴ℎ based on 𝑇𝑔
𝑘+ and 𝑇ℎ

𝑘+ aligns with the subjective preference 

expressed by DM 𝐸𝑘. On the other hand, if condition 𝑇𝑔
𝑘+ ≥ 𝑇ℎ

𝑘+ holds true, then the ranking of 

alternatives 𝐴𝑔 and 𝐴ℎ based on 𝑇𝑔
𝑘+ and 𝑇ℎ

𝑘+ will not match the subjective preference of DM 𝐸𝑘. 

According to IVPF NIS 𝒔− = (𝑠1
−, 𝑠2

−, . . . , 𝑠𝑛
−)𝑇, given any (𝑔, ℎ) ∈ 𝛺𝑘

(0,1)
, if 𝑇𝑔

𝑘− > 𝑇ℎ
𝑘− is 

satisfied, then 𝐴𝑔 is preferred over 𝐴ℎ. Thus, the ranking of alternatives 𝐴𝑔 and 𝐴ℎ based on 

criteria 𝑇𝑔
𝑘− and 𝑇ℎ

𝑘− corresponds to the subjective preference expressed by DM 𝐸𝑘. On the other 

hand, if 𝑇𝑔
𝑘− ≤ 𝑇ℎ

𝑘− holds true, then the ranking of alternatives 𝐴𝑔 and 𝐴ℎ based on 𝑇𝑔
𝑘− and 

𝑇ℎ
𝑘− does not align with the subjective preference of DM 𝐸𝑘. 

The statement indicates that the criteria weight vector 𝜔 results in the ranking order of 𝐴𝑔 

and 𝐴ℎ. 

Definition 4.1. An index (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)+ is defined for each (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

 as follows: 

(𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)+ = {
𝛼𝑘(𝑔, ℎ)(𝑇ℎ

𝑘+ − 𝑇𝑔
𝑘+)   if 𝑇𝑔

𝑘+ < 𝑇ℎ
𝑘+,

0                           if 𝑇𝑔
𝑘+ ≥ 𝑇ℎ

𝑘+.
 (13) 

Evidently, index (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)+ quantifies the extent of agreement between the objective ranking 

sequence and the subjective preferences conveyed by DM 𝐸𝑘 using the IVPF PIS. Provided that 

condition 𝑇𝑔
𝑘+ < 𝑇ℎ

𝑘+  is met, the ranking of alternatives 𝐴𝑔  and 𝐴ℎ  based on 𝑇𝑔
𝑘+  and 𝑇ℎ

𝑘+ 

corresponds to the preferences of DM 𝐸𝑘 . Thus, (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)+ is defined as 𝛼𝑘(𝑔, ℎ)(𝑇ℎ
𝑘+ −

𝑇𝑔
𝑘+). Conversely, if 𝑇𝑔

𝑘+ ≥ 𝑇ℎ
𝑘+ holds true, the ranking of alternatives 𝐴𝑔 and 𝐴ℎ based on 𝑇𝑔

𝑘+ 

and 𝑇ℎ
𝑘+ does not align with the preferences expressed by DM 𝐸𝑘. In this case, (𝑇ℎ

𝑘+ − 𝑇𝑔
𝑘+)+ is 

defined as 0. Hence, the degree of consistency can be expressed as (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)+ =

𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+}. 
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To make readers understand this definition better, we provide the following example. 

Example 1. Let (2,4) be a preference relation that is given by DM 𝐸𝑘 for alternative 𝐴2 over 𝐴4 

(represented as 𝐴2 ≻𝑘 𝐴4) with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). Let 𝑇2
𝑘+ = 0.4 and 

𝑇4
𝑘+ = 0.6 be the distance between the weighted Minkowski distance between the alternative 𝐴2 

and the PIS and the distance between the weighted Minkowski distance between the alternative 𝐴4 

and the PIS, respectively. Since the preference relation is (2,4)  and 𝑇2
𝑘+ < 𝑇4

𝑘+ , then the 

consistency index (𝑇2
𝑘+ − 𝑇4

𝑘+)+ is calculated as follows: 

(𝑇2
𝑘+ − 𝑇4

𝑘+)+ = ([0.5,0.6], [0.2,0.3]) × (0.6 − 0.4) = ([0.23,0.29], [0.72,0.79]). 

Example 2. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 

Let 𝑇2
𝑘+ = 0.6 and 𝑇4

𝑘+ = 0.4. Since the preference relation is (2,4) and 𝑇2
𝑘+ ≥ 𝑇4

𝑘+, then the 

consistency index (𝑇2
𝑘+ − 𝑇4

𝑘+)+ = 0. 

Thus, the definition of group consistency using the IVPF PIS is as follows: 

𝐾+ = ∑ ∑ (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)+
(𝑔,ℎ)∈𝛺

𝑘
(0,1)

𝑙
𝑘=1 = ∑ ∑ 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇ℎ

𝑘+ − 𝑇𝑔
𝑘+}

(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙
𝑘=1 . (14) 

Definition 4.2. An index (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)− is defined for each (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

 as follows: 

(𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)− = {
𝛼𝑘(𝑔, ℎ)(𝑇𝑔

𝑘+ − 𝑇ℎ
𝑘+)   if 𝑇𝑔

𝑘+ ≥ 𝑇ℎ
𝑘+,

0                           if 𝑇𝑔
𝑘+ < 𝑇ℎ

𝑘+.
 (15) 

Clearly, index (𝑔, ℎ) ∈ 𝛺̃𝑘
(0,1)

 quantifies the level of inconsistency. In a similar way, the degree of 

inconsistency can be expressed as (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)− = 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇𝑔
𝑘+ − 𝑇ℎ

𝑘+}. 

Example 3. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 
Let 𝑇2

𝑘+ = 0.6 and 𝑇4
𝑘+ = 0.4. Since the preference relation is (2,4) and 𝑇2

𝑘+ ≥ 𝑇4
𝑘+, then the 

inconsistency index (𝑇2
𝑘+ − 𝑇4

𝑘+)− is calculated as follows: 

(𝑇2
𝑘+ − 𝑇4

𝑘+)− = ([0.5,0.6], [0.2,0.3]) × (0.6 − 0.4) = ([0.23,0.29], [0.72,0.79]). 

Example 4. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 

Let 𝑇2
𝑘+ = 0.4 and 𝑇4

𝑘+ = 0.6. Since the preference relation is (2,4) and 𝑇2
𝑘+ < 𝑇4

𝑘+, then the 

inconsistency index (𝑇2
𝑘+ − 𝑇4

𝑘+)− = 0. 

Thus, the definition of group inconsistency using the IVPF PIS is as follows: 

𝐽+ = ∑ ∑ (𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)−
(𝑔,ℎ)∈𝛺

𝑘
(0,1)

𝑙
𝑘=1 = ∑ ∑ 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇𝑔

𝑘+ − 𝑇ℎ
𝑘+}

(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙
𝑘=1 . (16) 

Definition 4.3. An index (𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)+ is defined for each (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

 as follows: 

(𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)+ = {
𝛼𝑘(𝑔, ℎ)(𝑇𝑔

𝑘− − 𝑇ℎ
𝑘−)  if 𝑇𝑔

𝑘− > 𝑇ℎ
𝑘−,

0                          if 𝑇𝑔
𝑘− ≤ 𝑇ℎ

𝑘−.
 (17) 
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(𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)+ = 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−} can be expressed as the measurement of how well 

the subjective preference aligns with the objective ranking based on the IVPF NIS, with (𝑇ℎ
𝑘+ −

𝑇𝑔
𝑘+)+ being the metric used to quantify this consistency. 

Example 5. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 

Let 𝑇2
𝑘− = 0.6 and 𝑇4

𝑘− = 0.4. Since the preference relation is (2,4) and 𝑇2
𝑘− ≥ 𝑇4

𝑘−, then the 

consistency index (𝑇2
𝑘− − 𝑇4

𝑘−)+ is calculated as follows: 

(𝑇2
𝑘− − 𝑇4

𝑘−)+ = ([0.5,0.6], [0.2,0.3]) × (0.6 − 0.4) = ([0.23,0.29], [0.72,0.79]). 

Example 6. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 

Let 𝑇2
𝑘− = 0.4 and 𝑇4

𝑘− = 0.6. Since the preference relation is (2,4) and 𝑇2
𝑘− < 𝑇4

𝑘−, then the 

consistency index (𝑇2
𝑘− − 𝑇4

𝑘−)+ = 0. 

Therefore, the definition of group consistency, which relies on the IVPF NIS, can be expressed 

as: 

𝐾− = ∑ ∑ (𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)+
(𝑔,ℎ)∈𝛺𝑘

(0,1)
𝑙
𝑘=1 = ∑ ∑ 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇𝑔

𝑘− − 𝑇ℎ
𝑘−}

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙
𝑘=1 . (18) 

Definition 4.4. An index (𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)− is defined for each (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

 as follows: 

(𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)− = {
𝛼𝑘(𝑔, ℎ)(𝑇ℎ

𝑘− − 𝑇𝑔
𝑘−)   if 𝑇𝑔

𝑘− < 𝑇ℎ
𝑘−,

0                           if 𝑇𝑔
𝑘− ≥ 𝑇ℎ

𝑘−. 
 (19) 

Example 7. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 

Let 𝑇2
𝑘− = 0.4 and 𝑇4

𝑘− = 0.6. Since the preference relation is (2,4) and 𝑇2
𝑘− < 𝑇4

𝑘−, then the 

inconsistency index (𝑇2
𝑘− − 𝑇4

𝑘−)+ is calculated as follows: 

(𝑇2
𝑘− − 𝑇4

𝑘−)− = ([0.5,0.6], [0.2,0.3]) × (0.6 − 0.4) = ([0.23,0.29], [0.72,0.79]). 

Example 8. Let (2,4) be a preference relation with truth degree 𝛼𝑘(𝑔, ℎ) = ([0.5,0.6], [0.2,0.3]). 

Let 𝑇2
𝑘− = 0.6 and 𝑇4

𝑘− = 0.4. Since the preference relation is (2,4) and 𝑇2
𝑘− ≥ 𝑇4

𝑘−, then the 

inconsistency index (𝑇2
𝑘− − 𝑇4

𝑘−)− = 0. 

Thus, the definition of group inconsistency, which is based on the IVPF NIS, can be stated as 

follows: 

𝐽− = ∑ ∑ (𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)−
(𝑔,ℎ)∈𝛺𝑘

(0,1)
𝑙
𝑘=1 = ∑ ∑ 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇ℎ

𝑘− − 𝑇𝑔
𝑘−}

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙
𝑘=1 . (20) 

It can be observed that the truth degree significantly influences the consistency index. In actual 

decision-making environments, it is often difficult for DMs to provide precise preferences between 

two alternatives. Many existing studies do not account for the truth degree. In contrast to these 

approaches, this paper employs IVPFNs to represent DMs' truth degrees, which not only captures the 

uncertainty and fuzziness in DMs' judgments but also better reflects their actual cognitive processes 

when comparing alternatives. 
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4.3. IVPF programming model 

In group decision-making scenarios, reducing inter-group disparities generally contributes to 

more consistent and logically sound outcomes. To determine the weight vector 𝝎 for the evaluation 

criteria, a dual-objective mathematical programming model based on an IVPFS is constructed. This 

model aims to minimize group inconsistency by incorporating the IVPF PIS and the IVPF NIS, 

which serve as benchmarks for optimal and anti-ideal performance, respectively. The formulation of 

this model is presented mathematically as follows: 

min{𝐽+} 

min{𝐽−} 

s.t. {
𝐾+ − 𝐽+ ≥ 𝜌,
𝐾− − 𝐽− ≥ 𝜎,
𝝎 ∈  𝛬.

 

(21) 

Here, 𝜌  and 𝜎  represent two IVPF thresholds predetermined by DMs, defined as 𝜌 =

([𝑢𝜌
𝐿 , 𝑢𝜌

𝑈], [𝑣𝜌
𝐿 , 𝑣𝜌

𝑈])  and 𝜎 = ([𝑢𝜎
𝐿 , 𝑢𝜎

𝑈], [𝑣𝜎
𝐿 , 𝑣𝜎

𝑈]) . These thresholds denote the tolerance lower 

bounds for “best consistency” and “worst consistency” of the decision group, respectively. Typically, 

they can be set as small positive IVPF numbers. If decision-makers require stricter consistency, the 

lower bound of membership degrees in 𝜌 and 𝜎 can be appropriately increased, or the upper bound 

of non-membership degrees can be decreased, ensuring 𝐾+ − 𝐽+ ≥ 𝜌 and 𝐾− − 𝐽− ≥ 𝜎, which 

enforces that the degree of consistency must be significantly higher than that of inconsistency. 

The programming model in Eq (21) is an IVPF programming model because its objective 

functions and constraint conditions are expressed using IVPFNs. To solve it, the model needs to be 

transformed. 

First, the objective functions need to be transformed. Since 𝐽+ =

∑ ∑ 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇𝑔
𝑘+ − 𝑇ℎ

𝑘+}
(𝑔,ℎ)∈𝛺𝑘

(0,1)
𝑙
𝑘=1  and 𝐽− = ∑ ∑ 𝛼𝑘(𝑔, ℎ)𝑚𝑎𝑥{ 0, 𝑇ℎ

𝑘− −
(𝑔,ℎ)∈𝛺𝑘

(0,1)
𝑙
𝑘=1

𝑇𝑔
𝑘−}  are the sum of piecewise functions, let 𝜂𝑔ℎ

𝑘+ = 𝑚𝑎𝑥{ 0, 𝑇𝑔
𝑘+ − 𝑇ℎ

𝑘+}  and 𝜂ℎ𝑔
𝑘− =

𝑚𝑎𝑥{ 0, 𝑇ℎ
𝑘− − 𝑇𝑔

𝑘−} for each (𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, where 𝜂𝑔ℎ
𝑘+ ≥ 0, 𝜂ℎ𝑔

𝑘− ≥ 0, 𝜂𝑔ℎ
𝑘+ ≥ 𝑇𝑔

𝑘+ − 𝑇ℎ
𝑘+, and 

𝜂ℎ𝑔
𝑘− ≥ 𝑇ℎ

𝑘− − 𝑇𝑔
𝑘−  hold true, respectively. Let 𝜗ℎ𝑔

𝑘+ = 𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+  and 𝜗𝑔ℎ
𝑘− = 𝑇𝑔

𝑘− − 𝑇ℎ
𝑘− . Then, 

the objective functions can be transformed into ∑ ∑ [𝛼𝑘(𝑔, ℎ)𝜂𝑔ℎ
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1) ]𝑙

𝑘=1  and 

∑ ∑ [𝛼𝑘(𝑔, ℎ)𝜂ℎ𝑔
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1) ]𝑙

𝑘=1  with the constraint conditions 𝜗ℎ𝑔
𝑘+ + 𝜂𝑔ℎ

𝑘+ ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈

𝐿), 𝜗𝑔ℎ
𝑘− + 𝜂ℎ𝑔

𝑘− ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿), and 𝜂𝑔ℎ
𝑘+ ≥ 0, 𝜂ℎ𝑔

𝑘− ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿). 

Then, the constraint conditions need to be transformed. From Eqs (14) and (16), we can deduce 

that 𝐾+ − 𝐽+ = ∑ ∑ [𝛼𝑘(𝑔, ℎ)(𝑇ℎ
𝑘+ − 𝑇𝑔

𝑘+)]
(𝑔,ℎ)∈𝛺𝑘

(0,1)
𝑙
𝑘=1 , and similarly, from Eqs (18) and (20), we 
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obtain 𝐾− − 𝐽− = ∑ ∑ [𝛼𝑘(𝑔, ℎ)(𝑇𝑔
𝑘− − 𝑇ℎ

𝑘−)]
(𝑔,ℎ)∈𝛺

𝑘
(0,1)

𝑙
𝑘=1 . 

Therefore, Eq (21) can be reformulated into the following programming model: 

min{∑ ∑ [𝛼𝑘(𝑔, ℎ)𝜂𝑔ℎ
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

]

𝑙

𝑘=1

} 

min{∑ ∑ [𝛼𝑘(𝑔, ℎ)𝜂ℎ𝑔
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

]

𝑙

𝑘=1

} 

s.t.

{
 
 
 
 
 
 

 
 
 
 
 
 
∑ ∑ [𝛼𝑘(𝑔, ℎ)𝜗ℎ𝑔

𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

] ≥ 𝜌

𝑙

𝑘=1

,

∑ ∑ [𝛼𝑘(𝑔, ℎ)𝜗𝑔ℎ
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

]

𝑙

𝑘=1

≥ 𝜎,

𝜗ℎ𝑔
𝑘+ + 𝜂𝑔ℎ

𝑘+ ≥ 0   ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1), 𝑘 ∈ 𝐿) ,

𝜗𝑔ℎ
𝑘− + 𝜂ℎ𝑔

𝑘− ≥ 0   ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1), 𝑘 ∈ 𝐿) ,

𝜂𝑔ℎ
𝑘+ ≥ 0, 𝜂ℎ𝑔

𝑘− ≥ 0   ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1), 𝑘 ∈ 𝐿) ,

𝝎 ∈  𝛬.

    

(22) 

4.4. Solving the PF programming model 

Although Section 4.3 transforms the original programming model with piecewise objective 

functions, the model in Eq (22) remains a bi-objective IVPF model that requires further 

transformation. Since each objective function is represented by an IVPF containing four elements, 

we convert the bi-objective IVPF model into an eight-objective crisp programming model using 

Definitions 2.1 and 2.2, and Eq (22). The transformation focuses on minimizing the membership 

degrees and maximizing the non-membership degrees. The resulting eight-objective crisp 

programming model is presented below. 

𝑚𝑖𝑛

{
 

 

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝐿 )2)𝜂𝑔ℎ

𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1
}
 

 
 

𝑚𝑖𝑛

{
 

 

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝑈 )2)𝜂𝑔ℎ

𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1
}
 

 
 

(23) 
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𝑚𝑎𝑥 {∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝐿 )𝜂𝑔ℎ

𝑘+

(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙

𝑘=1

} 

𝑚𝑎𝑥 {∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝑈 )𝜂𝑔ℎ

𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

} 

𝑚𝑖𝑛

{
 

 

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝐿 )2)𝜂ℎ𝑔

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1
}
 

 
 

𝑚𝑖𝑛

{
 

 

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝑈 )2)𝜂ℎ𝑔

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1
}
 

 
 

𝑚𝑎𝑥 {∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝐿 )𝜂ℎ𝑔

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

} 

𝑚𝑎𝑥 {∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝑈 )𝜂ℎ𝑔

𝑘−

(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙

𝑘=1

}
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s.t.

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)

𝑘𝐿 )2)𝜗ℎ𝑔
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

≥ 𝑢𝜌
𝐿

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝑈 )2)𝜗ℎ𝑔

𝑘+

(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙

𝑘=1

≥ 𝑢𝜌
𝑈

∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝐿 )𝜗ℎ𝑔

𝑘+

(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙

𝑘=1

≤ 𝑣𝜌
𝐿

∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝑈 )𝜗ℎ𝑔

𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

)

𝑙

𝑘=1

≤ 𝑣𝜌
𝑈

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝐿 )2)𝜗𝑔ℎ

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

≥ 𝑢𝜎
𝐿

√1 −∏ ∏ (1− (𝑢(𝑔,ℎ)
𝑘𝑈 )2)𝜗𝑔ℎ

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

≥ 𝑢𝜎
𝑈

∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝐿 )𝜗𝑔ℎ

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

≤ 𝑣𝜎
𝐿

∏ ∏ (𝑣(𝑔,ℎ)
𝑘𝑈 )𝜗𝑔ℎ

𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

≤ 𝑣𝜎
𝑈

𝜗ℎ𝑔
𝑘+ + 𝜂𝑔ℎ

𝑘+ ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿)

𝜗𝑔ℎ
𝑘− + 𝜂ℎ𝑔

𝑘− ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿)

𝜂𝑔ℎ
𝑘+ ≥ 0, 𝜂ℎ𝑔

𝑘− ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿)

𝝎 ∈  𝛬.

 

The core of the proposed method lies in transforming the group consensus problem under incomplete 

IVPF preferences into a solvable mathematical programming model without losing the essential 

information. This transformation is not a simple discretization but rather an equivalent mathematical 

reformulation based on the axiomatic definition of IVPF distance. The distance measure between two 

IVPFNs is essentially a function of the boundary parameters of their membership and 

non-membership intervals. Therefore, the programming model aimed at minimizing group 

inconsistency within the LINMAP framework can be equivalently reformulated as a coordinated 

optimization of these underlying interval-bound parameters, adhering to the dimension-preserving 

principle. This equivalence ensures that the model remains firmly grounded in the IVPF context 

throughout, as its inputs, constraints, and interpretations are all derived from and belong to that 
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framework. This reformulation is a necessary step to render the model solvable via linear 

programming while fully preserving the uncertainty structure captured by IVPFNs. By the 

logarithmic function, Eq (23) is converted into 

𝑚𝑎𝑥{ 𝑧1 = ∑ ∑ 𝜂𝑔ℎ
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1) 𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)

𝑘𝐿 )2)}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧2 = ∑ ∑ 𝜂𝑔ℎ
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1) 𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)

𝑘𝑈 )2)}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧3 = ∑ ∑ 𝜂𝑔ℎ
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1) 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)

𝑘𝐿 )}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧4 = ∑ ∑ 𝜂𝑔ℎ
𝑘+

(𝑔,ℎ)∈𝛺
𝑘
(0,1) 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)

𝑘𝑈 )}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧5 = ∑ ∑ 𝜂ℎ𝑔
𝑘−

(𝑔,ℎ)∈𝛺
𝑘
(0,1) 𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)

𝑘𝐿 )2)}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧6 = ∑ ∑ 𝜂ℎ𝑔
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1) 𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)

𝑘𝑈 )2)}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧7 = ∑ ∑ 𝜂ℎ𝑔
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1) 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)

𝑘𝐿 )}𝑙
𝑘=1 , 

𝑚𝑎𝑥{ 𝑧8 = ∑ ∑ 𝜂ℎ𝑔
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1) 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)

𝑘𝑈 )}𝑙
𝑘=1 .

 

(24) 
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𝑠. 𝑡.

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑ ∑ 𝜗ℎ𝑔

𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)
𝑘𝐿 )2)

𝑙

𝑘=1

≤ 𝑙𝑜𝑔( 1 − (𝑢𝜌
𝐿)2)

∑ ∑ 𝜗ℎ𝑔
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)
𝑘𝑈 )2)

𝑙

𝑘=1

≤ 𝑙𝑜𝑔( 1 − (𝑢𝜌
𝑈)2)

∑ ∑ 𝜗ℎ𝑔
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 𝑣(𝑔,ℎ)
𝑘𝐿 )

𝑙

𝑘=1

≤ 𝑙𝑜𝑔 𝑣𝜌
𝐿

∑ ∑ 𝜗ℎ𝑔
𝑘+

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 𝑣(𝑔,ℎ)
𝑘𝑈 )

𝑙

𝑘=1

≤ 𝑙𝑜𝑔 𝑣𝜌
𝑈

∑ ∑ 𝜗𝑔ℎ
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)
𝑘𝐿 )2)

𝑙

𝑘=1

≤ 𝑙𝑜𝑔( 1 − (𝑢𝜎
𝐿)2)

∑ ∑ 𝜗𝑔ℎ
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)
𝑘𝑈 )2)

𝑙

𝑘=1

≤ 𝑙𝑜𝑔( 1 − (𝑢𝜎
𝑈)2)

∑ ∑ 𝜗𝑔ℎ
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 𝑣(𝑔,ℎ)
𝑘𝐿 )

𝑙

𝑘=1

≤ 𝑙𝑜𝑔 𝑣𝜎
𝐿

∑ ∑ 𝜗𝑔ℎ
𝑘−

(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙𝑜𝑔( 𝑣(𝑔,ℎ)
𝑘𝑈 )

𝑙

𝑘=1

≤ 𝑙𝑜𝑔 𝑣𝜎
𝑈

𝜗ℎ𝑔
𝑘+ + 𝜂𝑔ℎ

𝑘+ ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿)

𝜗𝑔ℎ
𝑘− + 𝜂ℎ𝑔

𝑘− ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿)

𝜂𝑔ℎ
𝑘+ ≥ 0, 𝜂ℎ𝑔

𝑘− ≥ 0  ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿)

𝝎 ∈  𝛬.

 

By utilizing the linear weighted summation method and substituting Eqs (11) and (12) into Eq (24), a 

linear programming model can be formulated as shown below: 

𝑚𝑎𝑥{ 𝑧 = 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + 𝑧7 + 𝑧8}    

subject to: 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2 −𝑛

𝑗=1(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙
𝑘=1

(𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣ℎ𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈+)2|𝑞2]

1

𝑞2 −

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿+)2|𝑞2𝑛
𝑗=1 +

|(𝑣𝑔𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈+)2|𝑞2 + |(𝜋𝑔𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿+)2|𝑞2 + |(𝜋𝑔𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈+)2|𝑞2]
1

𝑞2} 𝑙𝑜𝑔( 1 −

(25) 
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(𝑢(𝑔,ℎ)
𝑘𝐿 )2) ≤ 𝑙𝑜𝑔( 1 − (𝑢𝜌

𝐿)2), 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2

𝑛

𝑗=1(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

− (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣ℎ𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝑈)2

− (𝜋𝑗
𝑈+)2|𝑞2]

1
𝑞2

−∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2

𝑛

𝑗=1

− (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿+)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2

− (𝜋𝑗
𝑈+)2|𝑞2]

1
𝑞2} 𝑙𝑜𝑔( 1 − (𝑢(𝑔,ℎ)

𝑘𝑈 )2) ≤ 𝑙𝑜𝑔( 1 − (𝑢𝜌
𝑈)2), 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2

𝑛

𝑗=1(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

− (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣ℎ𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝑈)2

− (𝜋𝑗
𝑈+)2|𝑞2]

1
𝑞2

−∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2

𝑛

𝑗=1

− (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2

− (𝜋𝑗
𝐿+)2|𝑞2 + | (𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈+)2|𝑞2]

1
𝑞2} 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)

𝑘𝐿 ) ≤ 𝑙𝑜𝑔( 𝑣𝜌
𝐿), 
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∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2

𝑛

𝑗=1(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙

𝑘=1

− (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣ℎ𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿+)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝑈)2

− (𝜋𝑗
𝑈+)2|𝑞2]

1
𝑞2

−∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2

𝑛

𝑗=1

− (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2

− (𝜋𝑗
𝐿+)2|𝑞2 + | (𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈+)2|𝑞2]

1
𝑞2} 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)

𝑘𝑈 ) ≤ 𝑙𝑜𝑔( 𝑣𝜌
𝑈), 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2 −𝑛

𝑗=1(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙
𝑘=1

(𝑣𝑗
𝐿−)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈−)2|𝑞2]

1

𝑞2 −

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿−)2|𝑞2𝑛
𝑗=1 +

|(𝑣ℎ𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈−)2|𝑞2]
1

𝑞2} 𝑙𝑜𝑔( 1 −

(𝑢(𝑔,ℎ)
𝑘𝐿 )2) ≤ 𝑙𝑜𝑔( 1 − (𝑢𝜎

𝐿)2), 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2 −𝑛

𝑗=1(𝑔,ℎ)∈𝛺𝑘
(0,1)

𝑙
𝑘=1

(𝑣𝑗
𝐿−)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈−)2|𝑞2]

1

𝑞2 −

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿−)2|𝑞2𝑛
𝑗=1 +

|(𝑣ℎ𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈−)2|𝑞2]
1

𝑞2} 𝑙𝑜𝑔( 1 −

(𝑢(𝑔,ℎ)
𝑘𝑈 )2) ≤ 𝑙𝑜𝑔( 1 − (𝑢𝜎

𝑈)2), 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2 −𝑛

𝑗=1(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙
𝑘=1

(𝑣𝑗
𝐿−)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈−)2|𝑞2]

1

𝑞2  −

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿−)2|𝑞2𝑛
𝑗=1 +
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|(𝑣ℎ𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈−)2|𝑞2]
1

𝑞2} 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)
𝑘𝐿 ) ≤

𝑙𝑜𝑔( 𝑣𝜎
𝐿), 

∑ ∑ {∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2 −𝑛

𝑗=1(𝑔,ℎ)∈𝛺
𝑘
(0,1)

𝑙
𝑘=1

(𝑣𝑗
𝐿−)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈−)2|𝑞2]

1

𝑞2  −

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿−)2|𝑞2𝑛
𝑗=1 +

|(𝑣ℎ𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿−)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈−)2|𝑞2]
1

𝑞2} 𝑙𝑜𝑔( 𝑣(𝑔,ℎ)
𝑘𝑈 ) ≤

𝑙𝑜𝑔( 𝑣𝜎
𝑈), 

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿+)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈+)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿+)2|𝑞2𝑛
𝑗=1 +

|(𝑣ℎ𝑗
𝑘𝑈)2 − (𝑣𝑗

𝑈+)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝐿)2 − (𝜋𝑗

𝐿+)2|𝑞2 + |(𝜋ℎ𝑗
𝑘𝑈)2 − (𝜋𝑗

𝑈+)2|𝑞2]
1

𝑞2  − ∑
𝜔𝑗

4
⋅𝑛

𝑗=1

𝑤𝑗
𝑘[|(𝑢𝑔𝑗

𝑘𝐿)2 − (𝑢𝑗
𝐿+)2|𝑞2 + |(𝑢𝑔𝑗

𝑘𝑈)2 − (𝑢𝑗
𝑈+)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝐿)2 − (𝑣𝑗
𝐿+)2|𝑞2 + |(𝑣𝑔𝑗

𝑘𝑈)2 −

(𝑣𝑗
𝑈+)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿+)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈+)2|𝑞2]

1

𝑞2 + 𝜂𝑔ℎ
𝑘+ ≥ 0   ((𝑔, ℎ) ∈

𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿), 

∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢𝑔𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢𝑔𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣𝑔𝑗
𝑘𝐿)2 − (𝑣𝑗

𝐿−)2|𝑞2

𝑛

𝑗=1

+ |(𝑣𝑔𝑗
𝑘𝑈)2

− (𝑣𝑗
𝑈−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿−)2|𝑞2 + |(𝜋𝑔𝑗

𝑘𝑈)2 − (𝜋𝑗
𝑈−)2|𝑞2]

1
𝑞2

−∑
𝜔𝑗

4
⋅ 𝑤𝑗

𝑘[|(𝑢ℎ𝑗
𝑘𝐿)2 − (𝑢𝑗

𝐿−)2|𝑞2 + |(𝑢ℎ𝑗
𝑘𝑈)2 − (𝑢𝑗

𝑈−)2|𝑞2 + |(𝑣ℎ𝑗
𝑘𝐿)2

𝑛

𝑗=1

− (𝑣𝑗
𝐿−)2|𝑞2 + |(𝑣ℎ𝑗

𝑘𝑈)2 − (𝑣𝑗
𝑈−)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝐿)2 − (𝜋𝑗
𝐿−)2|𝑞2 + |(𝜋ℎ𝑗

𝑘𝑈)2

− (𝜋𝑗
𝑈−)2|𝑞2]

1
𝑞2 + 𝜂ℎ𝑔

𝑘− ≥ 0    ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1), 𝑘 ∈ 𝐿), 

𝜂𝑔ℎ
𝑘+ ≥ 0, 𝜂ℎ𝑔

𝑘− ≥ 0 ((𝑔, ℎ) ∈ 𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿),𝝎 ∈  𝛬. 

It is evident that in Eq (25), the objective function is linear in the decision variables, and all 

constraints are linear equalities or inequalities in these variables. Therefore, Eq (25) constitutes a 

linear programming (LP) problem. The process for determining the criterion weight vector 𝜔 =

(𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇  is embedded within the structure and solution mechanism of the linear 

programming model (Eq (25)), rather than being conducted separately outside the model. The 
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objective function and constraints of this linear programming formulation fully define the 

mathematical relationships and optimization criteria that the weight vector must satisfy. Therefore, 

by directly solving this linear programming model using the simplex method, its optimal solution 

yields the desired criterion weight vector 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇 . This indicates that weight 

determination and the model solution are achieved simultaneously, eliminating the need for 

additional independent weight calculation steps after solving the model. Subsequently, 𝑇𝑖
𝑘+ and 

𝑇𝑖
𝑘− can be derived using Eqs (11) and (12), respectively. 

Remark 1. In Eq (25), there are (8∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1 + 𝑛) variables to be determined, including 𝑛 

weights 𝜔𝑗  (𝑗 ∈ 𝑁)  and 8∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1  variables 𝑢(𝑔,ℎ)

𝑘𝐿 , 𝑢(𝑔,ℎ)
𝑘𝑈 , 𝜈(𝑔,ℎ)

𝑘𝐿 , and 𝜈(𝑔,ℎ)
𝑘𝑈  ((𝑔, ℎ) ∈

𝛺𝑘
(0,1)

, 𝑘 ∈ 𝐿). There exist 8∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1 + 8 inequalities at least. Generally, a higher value of 

∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1  (i.e., the larger the number of pairwise comparisons of alternatives) means more 

pairwise comparisons, leading to a more precise and reliable weight vector derived from Eq (25). 

Due to the fact that Eq (25) is a linear programming model, it can be easily solved by Wan's 

algorithm [29]. Since the number of decision variables in the linear programming model is 

(8∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1 + 𝑛), it is easy to see that the model complexity of the model in Eq (25) is 

calculated as 𝑂 (𝑚𝑎𝑥{(∑ |𝛺𝑘
(0,1)

|𝑙
𝑘=1 )3.5, 𝑛3.5} 𝐿3.5), where L is the number of bits in the input. 

Therefore, according to the complexity, the developed method has a low complexity. Since there are 

some mature software programs, such as LINGO and MATLAB, the processing time for solving this 

type of linear program is very little. 

4.5. Derive the ranking by a collective ranking matrix 

DM 𝐸𝑘 considers alternative 𝐴𝑖 to be superior when the value of 𝑇𝑖
𝑘+ is smaller. Likewise, 

alternative 𝐴𝑖 is viewed as superior if the value of 𝑇𝑖
𝑘− is greater, from the perspective of DM 𝐸𝑘. 

Thus, the relative closeness degree of alternative 𝐴𝑖 for DM 𝐸𝑘 is calculated as follows: 

𝑅𝑖
𝑘 = 𝑇𝑖

𝑘−/(𝑇𝑖
𝑘− + 𝑇𝑖

𝑘+)(𝑖 ∈ 𝑀, 𝑘 ∈ 𝐿). (26) 

It is evident that 0 ≤ 𝑅𝑖
𝑘 ≤ 1 holds true, and if 𝑇𝑖

𝑘− = 0, then 𝑅𝑖
𝑘 = 0 follows. Similarly, 

𝑇𝑖
𝑘+ = 0 implies 𝑅𝑖

𝑘 = 1. Moreover, DM 𝐸𝑘  considers alternative 𝐴𝑖  to be superior when the 

value of 𝑅𝑖
𝑘 is greater. According to 𝑅𝑖

𝑘, the individual ranking of alternatives for each DM can be 

gained. 

The individual ranking matrix ( )k k

io m mx =X  is generated for DM 𝐸𝑘, where 

𝑥𝑖𝑜
𝑘 = {

1,  if  𝐸𝑘  ranks 𝐴𝑖  in the 𝑜 − th position,

0,  otherwise.
  

Denote 
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𝑥𝑖𝑜 = {
1,  if the decision group ranks 𝐴𝑖 in the  𝑜 − th  position,

0,  otherwise.
  (27) 

To derive the collective ranking matrix ( )io m mx =X , an assignment model is constructed. This 

model aims to minimize the deviation between each DM's individual ranking of alternatives and the 

overall group ranking, as formulated below: 

𝑚𝑖𝑛  ∑∑|𝑥𝑖𝑜
𝑘 − 𝑥𝑖𝑜|

𝑚

𝑜=1

𝑚

𝑖=1

   (𝑘 ∈ 𝐿) 

s.t.

{
  
 

  
 ∑𝑥𝑖𝑜 = 1  (𝑜 ∈ 𝑀)

𝑚

𝑖=1

,

∑𝑥𝑖𝑜 = 1  (𝑖 ∈ 𝑀)

𝑚

𝑜=1

,

𝑥𝑖𝑜 = 0 or 1  (𝑖, 𝑜 ∈ 𝑀).

 

(28) 

The constraints ∑ 𝑥𝑖𝑜 = 1  (𝑜 ∈ 𝑀) 𝑚
𝑖=1 ensure that each alternative is exclusively ranked within a 

solitary position, and the constraints ∑ 𝑥𝑖𝑜 = 1  (𝑖 ∈ 𝑀)
𝑚
𝑜=1  affirm that each position solely 

accommodates a single alternative. 

The multi-objective assignment model in Eq (28) can be transformed into a single-objective 

model as follows: 

𝑚𝑖𝑛  ∑∑∑|𝑥𝑖𝑜
𝑘 − 𝑥𝑖𝑜|

𝑚

𝑜=1

𝑚

𝑖=1

𝑙

𝑘=1

   

s.t.

{
  
 

  
 ∑𝑥𝑖𝑜 = 1  (𝑜 ∈ 𝑀)

𝑚

𝑖=1

,

∑𝑥𝑖𝑜 = 1  (𝑖 ∈ 𝑀),

𝑚

𝑜=1

 

𝑥𝑖𝑜 = 0 or 1  (𝑖, 𝑜 ∈ 𝑀).

 

(29) 

The ranking of alternatives can be determined by solving the assignment model in Eq (29) using the 

Hungarian algorithm. The optimal solution yields the final priority order. 

4.6. IVPF programming model for IVPF MCGDM problems 

Based on the above analysis, we have developed a mathematical programming approach 

capable of addressing practical IVPF MCGDM problems with IVPF information. Inspired by [30], 

the algorithmic description of the proposed method is presented in Algorithm 1 as follows: 
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Algorithm 1. The proposed decision method. 

Input: Alternative set 𝐴, criteria set 𝐶, and criteria weight 𝛬. 

Output: The final ranking of alternatives. 

Step 1: Supply the IVPF ordered pairs representing the subjective preference relations among 

alternatives by 𝛺𝑘 = {< (𝑔, ℎ), 𝛼𝑘(𝑔, ℎ) > |𝐴𝑔 ≻𝑘 𝐴ℎ}   with IVPF truth degrees 

𝛼𝑘(𝑔, ℎ) (𝑔, ℎ ∈ 𝑀). 
Step 2: Elicit 𝒁𝑘  (𝑘 ∈ 𝐿) and transform into 𝒁′𝑘 (𝑘 ∈ 𝐿) by Eq (6). 

Step 3: Obtain PIS 𝒓+ and NIS 𝒓− under a criterion 𝐶𝑗 according to Eq (7). 

Step 4: Derive DM's weight vector 𝒘𝑗 = (𝑤𝑗
1, 𝑤𝑗

2, . . . , 𝑤𝑗
𝑙)𝑇(𝑗 ∈ 𝑁) under each criterion by Eq (9). 

Step 5: By utilizing Eq (10), IVPF PIS 𝒔+ and IVPF NIS 𝒔− can be derived. 

Step 6: Construct an IVPF programming model (i.e., Eq (23)) and transform it into a 

single-objective model (i.e., Eq (25)). 

Step 7: Solve Eq (25) to obtain 𝝎. 

Step 8: Calculate 𝑅𝑖
𝑘 (𝑖 ∈ 𝑀, 𝑘 ∈ 𝐿) of alternative 𝐴𝑖 for DM 𝐸𝑘 using Eq (26). 

Step 9: Construct ( )k k

io m mx =X  for the alternatives as per DM 𝐸𝑘  by arranging them in 

descending order of 𝑅𝑖
𝑘. 

Step 10: Utilize Eq (28) to compute the collective ranking matrix ( )io m mx =X , which is then 

employed to establish the sequence of alternatives according to their rankings. 

The complete application of the proposed method is visually illustrated in Figure 1. 
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Figure 1. Decision-making process of an IVPF mathematical programming method. 

5. A wireless network example and comparative analysis 

To illustrate the viability and dependability of the proposed method, a wireless network 

selection example is presented within this section. Furthermore, the effectiveness of the suggested 

methodology is evaluated via a comparative examination against the IVPF-ELECTRE [26], 

IVPF-TOPSIS [31], and IVPF-TODIM [32]. 

5.1. A wireless network example 

The rapid advancement of wireless communication technologies has greatly facilitated daily life, 

offering users a diverse range of access services within heterogeneous network environments. 

Consequently, heterogeneous wireless networks have emerged as a dominant trend for future 
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communication systems, attracting considerable research interest. Among the key enabling 

technologies, network selection stands out as a critical research focus. To illustrate this problem, 

consider a scenario where a company needs to select the most suitable wireless network from among 

the following five alternatives: UMTS 𝐴1, GSM 𝐴2, WIMAX 𝐴3, WLAN 𝐴4, and WMAN 𝐴5. To 

pick the best one from all alternatives, the evaluation expert team consisting of project manager 𝐸1, 

CEO 𝐸2, and technical personnel 𝐸3 will evaluate the five alternatives from four criteria: signal 

strength 𝐶1, network security 𝐶2, network speed 𝐶3, and coverage 𝐶4. 

Table 1 presents the individual decision matrices, which contain the linguistic ratings provided 

by each decision-maker for all alternatives with respect to every criterion. 

Table 1. Individual linguistic term decision matrices. 

DM Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐸1 𝐴1 EG VG F G 

 𝐴2 P G F G 

 𝐴3 F G EG F 

 𝐴4 EG F G VG 

 𝐴5 VP F F G 

𝐸2 𝐴1 F EG VG EG 

 𝐴2 VG VP P F 

 𝐴3 F F G G 

 𝐴4 G P F VP 

 𝐴5 F F G EG 

𝐸3 𝐴1 EG G VG F 

 𝐴2 G P VP G 

 𝐴3 VG G VG F 

 𝐴4 F F G F 

 𝐴5 EG G F P 

To reflect the uniform expression of DMs, the mapping between linguistic terms and IVPFNs [26] 

is illustrated in Table 2. 

Table 2. Relation between linguistic terms and IVPFNs. 

Linguistic term  Abbreviation IVPFN 

Extremely good  EG ([0.8,0.9],[0.1,0.2]) 

Very good  VG ([0.7,0.8],[0.2,0.3]) 

Good  G ([0.6,0.7],[0.3,0.4]) 

Fair  F ([0.5,0.6],[0.4,0.5]) 

Poor  P ([0.3,0.4],[0.6,0.7]) 

Very poor  VP ([0.2,0.3],[0.7,0.8]) 

Extremely poor  EP ([0.1,0.2],[0.8,0.9]) 
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Based on their experience and expertise, the three DMs have provided their IVPF preference 

relations among the alternatives, as shown below: 

𝛺1 = {< (1,2), 𝛼1(1,2) > , < (3,2), 𝛼1(3,2) >,< (3,5), 𝛼1(3,5) > }, 

𝛺2 = {< (1,2), 𝛼2(1,2) >, < (1,3), 𝛼2(1,3) >, < (1,4), 𝛼2(1,4) > }, 

𝛺3 = {< (1,3), 𝛼3(1,3) >, < (3,4), 𝛼3(3,4) >, < (5,2), 𝛼3(5,2) > }, 

where the associated IVPF truth degrees are given by: 

𝛼1(1,2) = ([0.7,0.8], [0.2,0.3]), 𝛼1(3,2) = ([0.6,0.7], [0.3,0.4]), 𝛼1(3,5) = ([0.5,0.6], [0.4,0.5]), 

𝛼2(1,2) = ([0.7,0.8], [0.2,0.3]), 𝛼2(1,3) = ([0.6,0.7], [0.3,0.4]), 𝛼2(1,4) = ([0.8,0.9], [0.1,0.2]), 

𝛼3(1,3) = ([0.5,0.6], [0.4,0.5]), 𝛼3(3,4) = ([0.7,0.8], [0.2,0.3]), 𝛼3(5,2) = ([0.5,0.6], [0.4,0.5]). 

After discussion and negotiation, the expert group provides the following preference information 

structure 𝛬 of criteria importance: 

𝛬 = {𝜔|𝜔 ∈ 𝛬0, 𝜔3 ≥ 𝜔2, 𝜔1 ≥ 2𝜔4,  0.1 ≤ 𝜔2 − 𝜔4 ≤ 0.2,  0.1 ≤ 𝜔4 ≤ 0.15}. 

Because each of criteria 𝐶1 − 𝐶4 is a benefit, Table 3 displays the normalized individual IVPF 

decision matrices 𝒁′𝑘  (𝑘 = 1,2,3). 

Table 3. Normalized individual IVPF decision matrices. 

DM Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐸1 𝐴1 ([0.8,0.9],[0.1,0.2]) ([0.7,0.8],[0.2,0.3]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) 

 𝐴2 ([0.3,0.4],[0.6,0.7]) ([0.6,0.7],[0.3,0.4]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) 

 𝐴3 ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.8,0.9],[0.1,0.2]) ([0.5,0.6],[0.4,0.5]) 

 𝐴4 ([0.8,0.9],[0.1,0.2]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.7,0.8],[0.2,0.3]) 

 𝐴5 ([0.2,0.3],[0.7,0.8]) ([0.5,0.6],[0.4,0.5]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) 

𝐸2 𝐴1 ([0.5,0.6],[0.4,0.5]) ([0.8,0.9],[0.1,0.2]) ([0.7,0.8],[0.2,0.3]) ([0.8,0.9],[0.1,0.2]) 

 𝐴2 ([0.7,0.8],[0.2,0.3]) ([0.2,0.3],[0.7,0.8]) ([0.3,0.4],[0.6,0.7]) ([0.5,0.6],[0.4,0.5]) 

 𝐴3 ([0.5,0.6],[0.4,0.5]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.6,0.7],[0.3,0.4]) 

 𝐴4 ([0.6,0.7],[0.3,0.4]) ([0.3,0.4],[0.6,0.7]) ([0.5,0.6],[0.4,0.5]) ([0.2,0.3],[0.7,0.8]) 

 𝐴5 ([0.5,0.6],[0.4,0.5]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.8,0.9],[0.1,0.2]) 

𝐸3 𝐴1 ([0.8,0.9],[0.1,0.2]) ([0.6,0.7],[0.3,0.4]) ([0.7,0.8],[0.2,0.3]) ([0.5,0.6],[0.4,0.5]) 

 𝐴2 ([0.6,0.7],[0.3,0.4]) ([0.3,0.4],[0.6,0.7]) ([0.2,0.3],[0.7,0.8]) ([0.6,0.7],[0.3,0.4]) 

 𝐴3 ([0.7,0.8],[0.2,0.3]) ([0.6,0.7],[0.3,0.4]) ([0.7,0.8],[0.2,0.3]) ([0.5,0.6],[0.4,0.5]) 

 𝐴4 ([0.5,0.6],[0.4,0.5]) ([0.5,0.6],[0.4,0.5]) ([0.6,0.7],[0.3,0.4]) ([0.5,0.6],[0.4,0.5]) 

 𝐴5 ([0.8,0.9],[0.1,0.2]) ([0.6,0.7],[0.3,0.4]) ([0.5,0.6],[0.4,0.5]) ([0.3,0.4],[0.6,0.7]) 

PIS 𝑟𝑗
+ and NIS 𝑟𝑗

− under the criterion 𝐶𝑗 are obtained by Eq (7) as: 

𝑟1
+ = (𝑟1

1+, 𝑟1
2+, 𝑟1

3+)𝑇 = (([0.8,0.9], [0.1,0.2]), ([0.7,0.8], [0.2,0.3]), ([0.8,0.9], [0.1,0.2]))𝑇, 

𝑟1
− = (𝑟1

1−, 𝑟1
2−, 𝑟1

3−)𝑇 = (([0.2,0.3], [0.7,0.8]), ([0.5,0.6], [0.4,0.5]), ([0.5,0.6], [0.4,0.5]))𝑇, 

𝑟2
+ = (𝑟2

1+, 𝑟2
2+, 𝑟2

3+)𝑇 = (([0.7,0.8], [0.2,0.3]), ([0.8,0.9], [0.1,0.2]), ([0.6,0.7], [0.3,0.4]))𝑇, 
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𝑟2
− = (𝑟2

1−, 𝑟2
2−, 𝑟2

3−)𝑇 = (([0.5,0.6], [0.4,0.5]), ([0.2,0.3], [0.7,0.8]), ([0.3,0.4], [0.6,0.7]))𝑇, 

𝑟3
+ = (𝑟3

1+, 𝑟3
2+, 𝑟3

3+)𝑇 = (([0.8,0.9], [0.1,0.2]), ([0.7,0.8], [0.2,0.3]), ([0.7,0.8], [0.2,0.3]))𝑇, 

𝑟3
− = (𝑟3

1−, 𝑟3
2−, 𝑟3

3−)𝑇 = (([0.5,0.6], [0.4,0.5]), ([0.3,0.4], [0.6,0.7]), ([0.2,0.3], [0.7,0.8]))𝑇, 

𝑟4
+ = (𝑟4

1+, 𝑟4
2+, 𝑟4

3+)𝑇 = (([0.7,0.8], [0.2,0.3]), ([0.8,0.9], [0.1,0.2]), ([0.6,0.7], [0.3,0.4]))𝑇, 

𝑟4
− = (𝑟4

1−, 𝑟4
2−, 𝑟4

3−)𝑇 = (([0.5,0.6], [0.4,0.5]), ([0.2,0.3], [0.7,0.8]), ([0.3,0.4], [0.6,0.7]))𝑇. 

To simplify the analysis, 𝑞1 = 2 can be substituted into Eq (29). Then, the distance matrices of 

decision information of these three DMs and the PIS can be displayed in Tables 4–6, respectively. 

The distance matrices of decision information of these three DMs and the NIS can be displayed in 

Tables 7–9, respectively. 

Table 4. Distance matrix of decision information of DM 𝐸1 and the PIS. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0 0 0.1831 0.0610 

𝐴2 0.2658 0.0610 0.1831 0.0610 

𝐴3 0.1831 0.0610 0 0.1131 

𝐴4 0 0.1131 0.1327 0 

𝐴5 0.3059 0.1131 0.1831 0.0610 

Table 5. Distance matrix of decision information of DM 𝐸2 and the PIS. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0.1131 0 0 0 

𝐴2 0 0.3059 0.2040 0.1831 

𝐴3 0.1131 0.1831 0.0610 0.1327 

𝐴4 0.0610 0.2658 0.1131 0.3059 

𝐴5 0.1131 0.1831 0.0610 0 

Table 6. Distance matrix of decision information of DM 𝐸3 and the PIS. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0 0 0 0.0532 

𝐴2 0.1327 0.1507 0.2512 0 

𝐴3 0.0723 0 0 0.0532 

𝐴4 0.1831 0.0532 0.0610 0.0532 

𝐴5 0 0 0.1131 0.1507 
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Table 7. Distance matrix of decision information of DM 𝐸1 and the NIS. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0.3059 0.1131 0 0.0532 

𝐴2 0.0610 0.0532 0 0.0532 

𝐴3 0.1595 0.0532 0.1831 0 

𝐴4 0.3059 0 0.0532 0.1131 

𝐴5 0 0 0 0.0532 

Table 8. Distance matrix of decision information of DM 𝐸2 and the NIS. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0 0.3059 0.2040 0.3059 

𝐴2 0.1131 0 0 0.1595 

𝐴3 0 0.1595 0.1507 0.2040 

𝐴4 0.0532 0.0610 0.1020 0 

𝐴5 0 0.1595 0.1507 0.3059 

Table 9. Distance matrix of decision information of DM 𝐸3 and the NIS. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0.1831 0.1507 0.2512 0.1020 

𝐴2 0.0532 0 0 0.1507 

𝐴3 0.1131 0.1507 0.2512 0.1020 

𝐴4 0 0.1020 0.2040 0.1020 

𝐴5 0.1831 0.1507 0.1595 0 

Using Eq (9), the weight of DM 𝐸1  under criterion 𝐶1  can be calculated as 𝑤1
1 =

2.6523

2.6523+1.4655+2.8962
= 0.3781. 

Likewise, the weight vector 𝒘𝑗 = (𝑤𝑗
1, 𝑤𝑗

2, . . . , 𝑤𝑗
𝑙)𝑇(𝑗 ∈ 𝑁) for each DM under each criterion 

can be derived as: 

𝒘1 = (𝑤1
1, 𝑤1

2, 𝑤1
3)𝑇 = (0.3781,0.2090,0.4129)𝑇, 

𝒘2 = (𝑤2
1, 𝑤2

2, 𝑤2
3)𝑇 = (0.2506,0.2748,0.4746)𝑇, 

𝒘3 = (𝑤3
1, 𝑤3

2, 𝑤3
3)𝑇 = (0.1706,0.3844,0.4450)𝑇, 

𝒘4 = (𝑤4
1, 𝑤4

2, 𝑤4
3)𝑇 = (0.2839,0.3639,0.3522)𝑇. 

By Eq (10), IVPF PIS 𝒔+  and IVPF NIS 𝒔−  are determined as 

𝑠+ = (([0.8,0.9], [0.1,0.2]), ([0.8,0.9], [0.1,0.2]), ([0.8,0.9], [0.1,0.2]), ([0.8,0.9], [0.1,0.2]))𝑇, 

𝑠− = (([0.2,0.3], [0.7,0.8]), ([0.2,0.3], [0.7,0.8]), ([0.2,0.3], [0.7,0.8]), ([0.2,0.3], [0.7,0.8]))𝑇. 
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Let 𝜌 = ([0.0001,0.0002], [0.9997,0.9998])  and 𝜎 = ([0.0001,0.0002], [0.9997,0.9998]) . To 

facilitate simplicity, let 𝑞2 = 2 be substituted into Eq (29), and then the vector of criteria weights 𝝎 

can be obtained as: 

𝜔1 = 0.2952, 𝜔2 = 0.2408, 𝜔3 = 0.3412, 𝜔4 = 0.1228. 

Based on the model solution, the obtained optimal criterion weight vector is 𝝎 =

(0.2952,0.2408,0.3412,0.1228)𝑇. The determination of these weights originates from minimizing 

the group inconsistency index, i.e., seeking the weight configuration that best reconciles the conflicts 

among the evaluations provided by the three experts. 

Criterion 𝐶3 has the highest weight of 0.3412. This prominent weight indicates that, regarding 

this criterion, the experts' evaluations of different alternatives exhibit relatively large divergence or 

the highest degree of uncertainty. Reviewing the original linguistic decision matrix (Table 1), for 

example, for alternative 𝐴2, the three experts' evaluations on 𝐶3 are "F", "P", and "VP", whose 

corresponding IVPF representations already demonstrate significant variability. Assigning a higher 

weight to 𝐶3 implies that, during consensus formation, greater importance must be placed on the 

evaluative differences concerning this criterion. By weighting it more heavily, the model reconciles 

the judgmental conflicts among different experts in this area, thereby ensuring that the final ranking 

result better reflects the group's compromise and agreement on this key point of divergence. 

Criterion 𝐶4 has the lowest weight of 0.1228. This lower weight suggests that the experts' 

evaluations on this criterion are relatively consistent or exhibit higher certainty. For example, for 

alternative 𝐴3, the three experts' evaluations on 𝐶4 are "F", "G", and "F". Although variations exist, 

their overall fluctuation is less disruptive to the overall consensus compared to other criteria. 

Consequently, the model automatically reduces its weight, indicating that this criterion contributes 

relatively less to distinguishing and forming the final consensus ranking. 

Criteria 𝐶1 and 𝐶2 demonstrate their balanced role in consensus formation. For instance, on 

𝐶1, the evaluations received by alternative 𝐴1 are "EG", "F", and "EG", showing a certain degree of 

fuzziness and inconsistency, though not to the extent observed for 𝐶3. Therefore, their weights 

reflect an intermediate role for these criteria in the group decision-making process: they cannot be 

ignored, yet they are not the primary sources of disagreement. 

This illustrates that the allocation of weights is not a "black-box" output but rather a quantified 

feedback and semantic mapping of the inherent consensus difficulty and informational certainty 

embedded within the experts' original linguistic evaluations. A higher weight signifies that the 

corresponding criterion requires greater emphasis and reconciliation during the consensus process, 

whereas a lower weight indicates that the experts' opinions on that criterion are relatively convergent, 

naturally diminishing its influence on the final ranking. 

Then, the relative closeness degree matrix of these three DMs can be obtained in Tables 10–12. 
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Table 10. Relative closeness degree matrix of DM 𝐸1. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 1 1 0 0.4655 

𝐴2 0.1868 0.4655 0 0.4655 

𝐴3 0.4655 0.4655 1 0 

𝐴4 1 0 0.2861 1 

𝐴5 0 0 0 0.4655 

Sum 2.6523 1.9310 1.2861 2.3965 

Table 11. Relative closeness degree matrix of DM 𝐸2. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 0 1 1 1 

𝐴2 1 0 0 0.4655 

𝐴3 0 0.4655 0.7118 0.6059 

𝐴4 0.4655 0.1868 0.4741 0 

𝐴5 0 0.4655 0.7118 1 

Sum 1.4655 2.1178 2.8977 3.0714 

Table 12. Relative closeness degree matrix of DM 𝐸3. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 1 1 1 0.6574 

𝐴2 0.2861 0 0 1 

𝐴3 0.6101 1 1 0.6574 

𝐴4 0 0.6574 0.7697 0.6574 

𝐴5 1 1 0.5850 0 

Sum 2.8962 3.6573 3.3546 2.9722 

Thus, after obtaining distances between 𝒓𝑖
𝑘 (𝑖 = 1,2,3,4,5; 𝑘 = 1,2,3) and 𝒔+ , 𝒔−  as 𝑇𝑖

𝑘+, 𝑇𝑖
𝑘−, 

respectively, the relative closeness degrees can be calculated. The results are presented in Table 13. 
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Table 13. Weighted Euclidean distances 𝑇𝑖
𝑘+, 𝑇𝑖

𝑘− and relative closeness degrees 𝑅𝑖
𝑘. 

DM Alternative 𝑇𝑖
𝑘+ 𝑇𝑖

𝑘− 𝑅𝑖
𝑘 

𝐸1 

𝐴1 0.0196 0.0657 0.7698 

𝐴2 0.0530 0.0355 0.4014 

𝐴3 0.0348 0.0535 0.6056 

𝐴4 0.0213 0.0644 0.7516 

𝐴5 0.0605 0.0260 0.3008 

𝐸2 

𝐴1 0.0208 0.0767 0.7869 

𝐴2 0.0677 0.0306 0.3114 

𝐴3 0.0467 0.0563 0.5462 

𝐴4 0.0635 0.0375 0.3717 

𝐴5 0.0408 0.0608 0.5984 

𝐸3 

𝐴1 0.0341 0.1056 0.7562 

𝐴2 0.0987 0.0407 0.2917 

𝐴3 0.0429 0.0990 0.6978 

𝐴4 0.0713 0.0755 0.5144 

𝐴5 0.0545 0.0875 0.6163 

The individual ranking of alternatives is obtained by sorting them in descending order of their 

relative closeness degrees, denoted as 𝐴1 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5  for DM 𝛦1 , 𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻

𝐴4 ≻ 𝐴2  for DM 𝛦2 , and 𝐴1 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2  for DM 𝛦3 , respectively. Therefore, the 

individual ranking matrices 𝐗𝑘(𝑘 = 1,2,3) are generated for DM 𝐸𝑘(𝑘 = 1,2,3) as follows: 

1

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

 
 
 
 =
 
 
 
 

X

, 

2

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

 
 
 
 =
 
 
 
 

X

, 

3

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

 
 
 
 =
 
 
 
 

X

. 

By Eq (29), the assignment model can be fabricated: 

𝑚𝑖𝑛  ∑∑∑|𝑥𝑖𝑜
𝑘 − 𝑥𝑖𝑜|

5

𝑜=1

5

𝑖=1

3

𝑘=1

   

s.t.

{
  
 

  
 
∑𝑥𝑖𝑜 = 1  (𝑜 = 1,2,3,4,5),

5

𝑖=1

∑𝑥𝑖𝑜 = 1  (𝑖 = 1,2,3,4,5),

5

𝑜=1

 

𝑥𝑖𝑜 = 0 or 1  (𝑖, 𝑜 = 1,2,3,4,5).

 

(30) 

By employing LINGO 11.0 for the resolution of Eq (30), the resultant matrix of collective ranking is 

acquired: 
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1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

 
 
 
 =
 
 
 
 

X

. 

Thus, the overall order may be established as 𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 , with alternative A1 

identified as the optimal choice. The method proposed in this paper integrates the determination of 

criterion weights into a linear programming model (Eq (25)). The optimal solution of this model 

directly contains the criterion weight vector, thereby avoiding potential distortions that may arise in 

methods such as fuzzy information aggregation. Furthermore, after obtaining the rankings of 

alternatives from each DM, an assignment model is used to aggregate the DMs' ranking results, 

yielding the final ranking of alternatives. In summary, the method proposed in this paper is both 

reliable and reasonable. 

5.2. Sensitivity analyses 

The distance measure between IVPFSs is critical not only for determining DMs' weights but 

also for assessing group consistency and inconsistency. In particular, the weighted Minkowski 

distance metric incorporates a parameter 𝑞2 . Different values of 𝑞2  lead to different distance 

calculations, which consequently alter the final decision outcomes. It is therefore essential to 

investigate how variations in 𝑞2 affect the decision results. 

First, we take the values of parameter 𝑞2 by 1, 2, 10, 100, and 392. According to the MCGDM 

proposed in this paper, the DM's weights, criteria weights, and the collective ranking orders obtained 

by different values of parameters are listed in Table 14. 

Remark 2. When 𝑞2 ≥ 393 , the distances 𝑇𝑖
𝑘+  and 𝑇𝑖

𝑘−  are close to zero in Eq (26). 

Consequently, the relative closeness degree 𝑅𝑖
𝑘 assigned by DM 𝐸𝑘 to alternative 𝐴𝑖 holds no 

significance. 

Then, based on the weights of DMs and weights of criteria derived in Section 5.1, we take the 

values of parameter 𝑞2 as 1, 2, 10, 100, and 392, respectively, and further obtain the final decision 

results in Table 15. 
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Table 14. Collective ranking orders with different values of 𝑞2. 

𝑞2 
DM's weight vector 𝒘𝑗 under a 

criterion 
Criteria weight vector 𝝎 

Collective ranking 

order 

1 

𝒘1 = (0.3778,0.2082,0.4140)𝑇 

𝝎

= (0.2488,0.1040,0.5271,0.1201)𝑇 
𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 

𝒘2 = (0.2503,0.2750,0.4747)𝑇 

𝒘3 = (0.1727, 0.3789,0.4484)𝑇 

𝒘4 = (0.2845,0.3646,0.3509)𝑇 

2 

𝒘1 = (0.3781,0.2090,0.4129)𝑇 

𝝎

= (0.2952,0.2408,0.3412,0.1228)𝑇 
𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 

𝒘2 = (0.2506,0.2748,0.4746)𝑇 

𝒘3 = (0.1706,0.3844,0.4450)𝑇 

𝒘4 = (0.2839,0.3639,0.3522)𝑇 

1

0 

𝒘1 = (0.3776,0.2084,0.4140)𝑇 

𝝎

= (0.3592,0.3197,0.1371,0.1840)𝑇 
𝐴1 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 

𝒘2 = (0.2505,0.2750,0.4745)𝑇 

𝒘3 = (0.1718, 0.3820,0.4462)𝑇 

𝒘4 = (0.2844,0.3645,0.3511)𝑇 

1

00 

𝒘1 = (0.3774,0.2084,0.4142)𝑇 

𝝎

= (0.1171,0.4074,0.1335,0.3420)𝑇 
𝐴1 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 

𝒘2 = (0.2507,0.2750,0.4743)𝑇 

𝒘3 = (0.1725, 0.3800,0.4475)𝑇 

𝒘4 = (0.2848,0.3647,0.3505)𝑇 

3

92 

𝒘1 = (0.4227,0.1593, 0.4180)𝑇 

𝝎

= (0.2029,0.2277,0.1880,0.3814)𝑇 
𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 

𝒘2 = (0.1405,0.2974,0.5621)𝑇 

𝒘3 = (0.1392,0.3951,0.4657)𝑇 

𝒘4 = (0.1240,0.3800,0.4960)𝑇 

Table 15. Collective ranking orders with different values of 𝑞2 by the equal weights of 

criteria and equal weights of DMs. 

𝑞2 Collective ranking order 

1 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴5 ≻ 𝐴2 

2 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴5 ≻ 𝐴2 

10 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴5 ≻ 𝐴2 

100 𝐴1 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 

392 𝐴1 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 

According to Tables 14 and 15, we can obtain the following three conclusions. 

(1) The optimal alternative is always 𝐴1, which is not changed when the parameter 𝑞2 takes 

different values. Thus, the proposed method is reliable. 

(2) In Table 14, it can be found that the weights information and the suboptimal alternative are 

greatly affected by the values of parameter 𝑞2. If 𝑞2 = 1 or 𝑞2 = 2, then the suboptimal solution is 

𝐴5. However, if 𝑞2 = 10 or 𝑞2 = 100, then 𝐴5 is the worst alternative. Although the different 

values of parameter 𝑞2  will also cause huge changes in weight information and ranking of 

alternatives, the optimal alternative is still 𝐴1. Therefore, the proposed method is reliable. 

(3) As shown in Table 15, the ranking of alternatives changes only slightly across different 

values of 𝑞2. This stability can be attributed to the relatively stable weight assignments derived from 
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the process. Since these weights are closely dependent on the distances between IVPFSs, which 

themselves vary with 𝑞2 , any variation in 𝑞2  will first affect the weight calculations and, 

consequently, the final ranking results. The observed minimal change in ranking indicates that the 

derived weights are robust to the chosen distance parameter within the tested range. However, the 

decision results in Table 15 are obtained based on the weight information obtained in Section 5.1 and 

the weight information will not change with the change of values of parameter 𝑞2. Thus, even if the 

values of parameter 𝑞2 change, the alternatives ranking is not changed greatly. 

Therefore, Tables 14 and 15 reveal that the optimal alternative obtained by the proposed method 

is always 𝐴1, which demonstrates that the proposed method is robust and reliable. 

5.3. Comparative analyses 

To validate the effectiveness and advantages of our proposed method, this section conducts a 

comparative analysis with several established IVPF-MCGDM methods. Specifically, we select the 

IVPF-ELECTRE [26], IVPF-TOPSIS [31], and IVPF-TODIM [32] methods for comparison, as they 

are all designed to address similar decision-making problems under interval-valued Pythagorean 

fuzzy information. The comparative results are then analyzed, followed by a robustness assessment 

using Spearman's rank correlation test. 

5.3.1. Comparative analysis with IVPF-ELECTRE 

Peng et al. [26] first defined the score and accuracy functions for IVPFNs, along with their 

operational rules and distance measures. Building upon these foundations, they then introduced an 

IVPF point-weighted average operator by integrating the IVPF point operator. Based on this operator, 

they subsequently developed an IVPF-ELECTRE method to solve MCGDM problems. 

Although method [26] can be employed to resolve the MCGDM quandaries, the relative 

importance 𝜆𝑘 = ([𝜇𝜆𝜅
− , 𝜇𝜆𝜅

+ ], [𝜐𝜆𝜅
− , 𝜐𝜆𝜅

+ ], [𝜋𝜆𝜅
− , 𝜋𝜆𝜅

+ ])(𝑘 = 1,2,3)  of DM Ek (𝑘 = 1,2,3)  should be 

given in advance, as shown in Table 16. 

Table 16. The relative importance of DMs. 

  E1 E2 E3 

Linguistic term Medium Important Very important 

IVPFN ([0.5,0.6],[0.4,0.5]) ([0.7,0.8],[0.2,0.3]) ([0.8,0.9],[0.1,0.2]) 

In approach [26], the weight of DM Ek is computed using the following equation: 

𝜉𝑘 = 

𝜇𝜆𝑘
− +𝜇𝜆𝑘

+ +(𝜋𝜆𝑘
− +𝜋𝜆𝑘

+ )
𝜇𝜆𝑘
− +𝜇𝜆𝑘

+

𝜇𝜆𝑘
− +𝜇𝜆𝑘

+ +𝜐𝜆𝑘
− +𝜐𝜆𝑘

+

∑ 𝜇𝜆𝑘
− +𝜇𝜆𝑘

+ +(𝜋𝜆𝑘
− +𝜋𝜆𝑘

+ )
𝜇𝜆𝑘
− +𝜇𝜆𝑘

+

𝜇𝜆𝑘
− +𝜇𝜆𝑘

+ +𝜐𝜆𝑘
− +𝜐𝜆𝑘

+
𝑙
𝑘=1

. 

Then, DMs' weights can be obtained as 

𝜉1 = 0. 2743, 𝜉2 = 0. 3534,  𝜉3 = 0. 3723. 
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Furthermore, objective criteria weight 𝜔𝑗
𝑘 of the DM is calculated based on the formula 

𝜔𝑗
𝑘 =

∑ ∑ 𝑑(𝑝𝑖𝑗
𝑘 ,𝑝𝑖′𝑗

𝑘 )𝑚
𝑖′=1

𝑚
𝑖=1

√∑ (∑ ∑ 𝑑(𝑝𝑖𝑗
𝑘 ,𝑝𝑖′𝑗

𝑘 )𝑚
𝑖′=1

𝑚
𝑖=1 )2𝑛

𝑗=1

. 

Thus, it is possible to derive the objective criteria weights of DMs as 

𝜔(1) = (0.4904,0.1538,0.2308,0.1250), 

𝜔(2) = (0.1231,0.3269,0.1962,0.3538), 

𝜔(3) = (0.2923,0.1897,0.3487,0.1693). 

The final integrated weight for each criterion is calculated by aggregating the subjective criterion 

weights provided by individual DMs, weighted by their respective DM importance weights. This 

integration is performed using the following equation: 

𝜔𝑗 = ∑ 𝜔𝑗
𝑘𝜉𝑘

3
𝑘=1 . 

Therefore, the weights of the criteria are acquired as 𝜔1 = 0.29, 𝜔2 = 0.23, 𝜔3 = 0.26, 𝜔4 = 0.22. 

The individual IVPF decision matrices provided by the DM are aggregated into a collective 

IVPF decision matrix using the interval-valued Pythagorean fuzzy weighted average operator, which 

is defined as follows: 

𝑝𝑖𝑗 = IVPFWA(𝑝𝑖𝑗
1 , 𝑝𝑖𝑗

2 , ⋯ , 𝑝𝑖𝑗
𝑙 ) = ([∑ 𝜉𝑘𝑢𝑖𝑗

𝑘−, ∑ 𝜉𝑘𝑢𝑖𝑗
𝑘+𝑙

𝑘=1
𝑙
𝑘=1 ], [∑ 𝜉𝑘𝑣𝑖𝑗

𝑘−, ∑ 𝜉𝑘𝑣𝑖𝑗
𝑘+𝑙

𝑘=1
𝑙
𝑘=1 ]). 

The collective IVPF decision matrix is computed and listed in Table 17. 

Table 17. Collective IVPF decision matrix. 

Alternative 
Criterion 

𝐶1 𝐶2 𝐶3 𝐶4 

𝐴1 
([0.69,0.79], 

[0.21,0.31]) 

([0.70,0.80], 

[0.20,0.30]) 

([0.65,0.75], 

[0.25,0.35]) 

([0.63,0.73], 

[0.27,0.37]) 

𝐴2 
([0.55,0.65], 

[0.35,0.45]) 

([0.35,0.45], 

[0.55,0.65]) 

([0.32,0.42], 

[0.58,0.68]) 

([0.56,0.66], 

[0.34,0.44]) 

𝐴3 
([0.57,0.67], 

[0.33,0.43]) 

([0.56,0.66], 

[0.34,0.44]) 

([0.69,0.79], 

[0.21,0.31]) 

([0.54,0.64], 

[0.36,0.46]) 

𝐴4 
([0.62,0.72], 

[0.28,0.38]) 

([0.43,0.53], 

[0.47,0.57]) 

([0.56,0.66], 

[0.34,0.44]) 

([0.45,0.55], 

[0.45,0.55]) 

𝐴5 
([0.53,0.63], 

[0.37,0.47]) 

([0.54,0.64], 

[0.36,0.46]) 

([0.54,0.64], 

[0.36,0.46]) 

([0.56,0.66], 

[0.34,0.44]) 
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After identifying the concordance and discordance sets, the concordance and discordance 

Boolean matrices are constructed. Subsequently, the outranking matrix is derived as follows: 

𝑂 =

(

 
 

− 1 0 1 1
0 − 0 0 0
0 1 − 0 1
0 1 0 − 0
0 0 0 0 −)

 
 

. 

Consequently, 𝐴1 is considered better than 𝐴2, 𝐴4, 𝐴5, and as a result, alternative 𝐴1 emerges as 

the optimal choice. Figure 2 illustrates the decision-making result. 

 

Figure 2. Decision result by IVPF-ELECTRE. 

Comparing the decision result obtained by Peng et al.'s method [26] with that obtained by the 

proposed method, the following conclusions can be obtained. 

(1) Peng et al.'s method directly provided the weighs of DMs in advance and it is difficult to 

avoid the subjectivity and randomness. Different from Peng et al.'s method, this paper determines the 

weights of DMs by the relative closeness degree, which is objective and credible. Compared with 

Peng et al.'s method, the weights of DMs obtained by the proposed method in this paper are more 

reasonable and reliable, which create the condition to obtain the correct decision result. 

(2) Although Peng et al.'s method [26] can yield the optimal alternative, it only provides the 

partial orders of the remaining alternatives. The decision results obtained by Peng et al.'s method 

cannot distinguish the rankings of all alternatives. According to Figure 2, alternative 𝐴1 is not 

compared with alternative 𝐴3. The optimal alternative obtained by Peng et al.'s method is also not 

reliable. Thus, compared with Peng et al.'s method, the proposed method in this paper not only can 

obtain rankings of all alternatives but also can provide the reliable optimal alternatives. 

Therefore, compared with the approach introduced by Peng et al.'s method, our method offers 

several benefits and has a broader range of potential applications. 

5.3.2. Comparative analysis with IVPF-TOPSIS 

Yu et al. [31] conducted supplier performance assessments by synthesizing the distance and 

similarity among various options. Following this, a protracted IVPF-TOPSIS plan was presented to 
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tackle the MCGDM predicament in the sustainable evaluation of suppliers. Following the method in 

Yu et al. based on the data shown in Table 3, the assemblage amalgamated decision matrix is 

calculated by taking into account the degree of optimism 𝜆𝑘 and the relative weight 𝜂𝑘 of DM Ε𝑘 

in [31]. The resulting matrix is derived from Table 3 and presented below. 

𝑅 =

(

  
 

(0.7727， 0.2340) (0.7710， 0.2324) (0.7155， 0.2860) (0.7324， 0.2756)

(0.6566, 0.3507) (0.4219, 0.6046) (0.3801, 0.6374) (0.6126, 0.3887)

(0.6417, 0.3618) (0.6126, 0.3887) (0.7486, 0.2547) (0.5931, 0.4084)

(0.6911, 0.3179) (0.4834, 0.5232) (0.6126, 0.3887) (0.5403, 0.4868)

(0.6827, 0.3349) (0.5903, 0.4104) (0.5931, 0.4084) (0.7035, 0.3176) )

  
 
, 

where 𝜆 = (𝜆1, 𝜆2, 𝜆3) = (0.8,0.5,0.3), 𝜂 = (𝜂1, 𝜂2, 𝜂3) = (0.2,0.4,0.4). 

Next, the divergence vector 𝑑 and the normalized criteria weight vector 𝑤  are acquired 

through Eqs (16) and (17) in [31]. 

𝑑 = (1.8037, 1.8905, 1.8423, 1.8780), 

𝑤 = (0.2433, 0.2550, 0.2485, 0.2533). 

Afterward, the weighted distance vectors are computed using given equations. 

𝑑+ = (0.0130, 0.3538, 0.1629, 0.2650, 0.1770)𝑇, 

𝑑− = (0.3761, 0.0359, 0.2303, 0.1290, 0.2182)𝑇. 

Then the grey relational grade vectors are obtained as follows by Eqs (22) and (23) in [31]. 

𝛾+ = (0.4890, 0.3128, 0.3917, 0.3404, 0.3814)𝑇 , 

𝛾− = (0.2999, 0.4720, 0.3741, 0.4163, 0.3618)𝑇 . 

According to Eqs (25) and (26) in [31], the derived values of distance and grey relational grade, 

seamlessly integrated in a vector, are procured in the following manner. 

𝐼+ = (1.0000, 0.3675, 0.7068, 0.5196, 0.6800)𝑇, 

𝐼− = (0.3360, 1.0000, 0.6266, 0.8154, 0.6334)𝑇, 

where 𝛼 = 0.5, 𝛽 = 0.5. 

𝐶𝐶 = (0, 0.9170, 0.4128, 0.6787, 0.4368)𝑇 is the calculated distance vector from each 

alternative to the optimized ideal reference point 𝐺 = (1, 0.3360). Ultimately, the obtained ranking 

result is 𝐴1 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2. 

TOPSIS and similar distance-based methods calculate the distance from each alternative to the 

PIS and NIS as a fixed geometric measure. The final ranking is based on a predefined relative 

closeness formula. The PIS and NIS are given or constructed from the decision matrix, a process that 

does not inherently optimize or calibrate these distances against the decision-maker's implicit 

preferences. In contrast, our method is fundamentally designed for scenarios where weight 

information is incomplete or unavailable. The simultaneous use of both the PIS and NIS in our 

optimization objective is precisely what enables the model to extract and uniquely determine criteria 

weights from simple pairwise comparisons. According to the solving process and ranking result that 

is presented above, we can derive the following three conclusions. 
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(1) The ranking result obtained by Yu et al.'s method [31] is consistent with the result obtained 

by the proposed method, which demonstrates the effectiveness and correctness of the proposed 

method. 

(2) Yu et al.'s method involves too many parameters and those parameters need to be determined 

in advance, which may cause the decision result to be unreliable and difficult to implement in actual 

situations. Thus, the proposed method can more effectively solve IVPFN MCGDM problem. 

(3) Yu et al.'s method transforms IVPFNs into PFNs, which may cause the loss of decision 

information. Different from Yu et al.'s method, the proposed method does not transform IVPFNs but 

utilizes the distances between IVPFNs to determine the weight information and consistency index as 

well as the inconsistency index. Thus, the proposed method can preserve more original decision 

information than Yu et al.'s method. 

In addition, the method described in this paper is more germane than the approach proposed by 

Yu et al. since it is capable of solving MCGDM problems with IVPF true degrees. Involving IVPF 

true degrees makes the proposed approach more practical and effective for decision-making in 

real-world scenarios. 

5.3.3. Comparative analysis with IVPF-TODIM 

Biswas and Sarkar [32] introduced some new point operator-based similarity measures (POSMs) 

for IVPFSs, aiming to decrease the uncertainty level of elements in the universe of discourse 

associated with IVPFSs. These newly defined POSMs are subsequently employed to calculate the 

relative dominance measure of each alternative in the IVPF-TODIM framework. Finally, the 

generalized mean aggregation operator is utilized to select the best alternative. 

Although the method in [32] can solve the group decision-making problem of IVPFSs, the 

weights of the criteria are pre-given, precise numbers. In the process of calculating the group value 

after combining the solution set using the generalized mean operator, the weights of the experts are 

considered equal. 

Using the method in [32] to solve the normalized data (Table 3) in this paper, assuming that the 

weights of the criteria are 𝑤 = (0.4,0.2,0.15,0.25)𝑇, the relative weights of the criteria are: 

𝑤1𝑟 = 1, 𝑤2𝑟 = 0.5, 𝑤3𝑟 = 0.375, 𝑤4𝑟 = 0.625. 

Consider the POSM 𝑆𝐹0.10.4
3 (𝐴, 𝐵) when assessing the degree of dominance of alternative 𝐴𝑖 over 

each alternative 𝐴𝑙 in relation to criteria 𝐶𝑗 for the first expert 𝐸1. For 𝜃 = 2.5, the dominance 

degree matrices corresponding to the criteria 𝐶𝑗(𝑗 = 1,2,3,4) for 𝐸1  are shown in Table 18. 

Similarly, we calculate the dominance degree matrices for other decision matrices. 

Dominance degree matrices 𝛿
(1)

 for each alternative 𝐴𝑖(𝑖 = 1,2,3,4,5) of the expert 𝐸1 are 

shown in Table 19. In the same way, overall dominance degree matrices for other experts can be 

determined. 
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Table 18. Dominance degree matrix of alternatives for 𝐸1. 

Dominance degree 

matrix 
𝐴1 𝐴1 𝐴3 𝐴4 𝐴5 

𝜙1
(1)      

𝐴1 0 0.4556 0.5353 0 0.4051 

𝐴2 -0.4556 0 -0.5627 -0.4556 0.5943 

𝐴3 -0.5353 0.5627 0 -0.5353 0.52 

𝐴4 0 0.4556 0.5353 0 0.4051 

𝐴5 -0.4051 -0.5943 -0.52 -0.4051 0 

𝜙2
(1)      

𝐴1 0 0.4255 0.4255 0.4025 0.4025 

𝐴2 -0.8511 0 0 0.4252 0.4252 

𝐴3 -0.8511 0 0 0.4252 0.4252 

𝐴4 -0.805 -0.8503 -0.8503 0 0 

𝐴5 -0.805 -0.8503 -0.8503 0 0 

𝜙3
(1)      

𝐴1 0 0 -0.8741 -0.9818 0 

𝐴2 0 0 -0.8741 -0.9818 0 

𝐴3 0.3278 0.3278 0 0.3485 0.3278 

𝐴4 0.3682 0.3682 -0.9293 0 0.3682 

𝐴5 0 0 -0.8741 -0.9818 0 

𝜙4
(1)      

𝐴1 0 0 0.4753 -0.7612 0 

𝐴2 0 0 0.4753 -0.7612 0 

𝐴3 -0.7605 -0.7605 0 -0.7201 -0.7605 

𝐴4 0.4758 0.4758 0.45 0 0.4758 

𝐴5 0 0 0.4753 -0.7612 0 

Table 19. Overall dominance degree matrix of alternatives for 𝐸1. 

Overall dominance degree 

matrix 𝛿
(1) 

𝐴1 𝐴1 𝐴3 𝐴4 𝐴5 

𝐴1 0 0.8811 0.562 -1.3406 0.8076 

𝐴2 -1.3067 0 -0.9615 -1.7735 1.0194 

𝐴3 -1.8191 0.13 0 -0.4817 0.5124 

𝐴4 0.0389 0.4492 -0.7943 0 1.2491 

𝐴5 -1.2101 -1.4446 -1.7691 -2.1482 0 

Subsequently, the overall values of each expert's assessment for each alternative are presented in 

Table 20. Finally, for each alternative, the overall values from all experts can be aggregated to obtain 

𝜁𝑖 and then the alternatives can be ranked based on it. 
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Table 20. The overall alternative's values of the DMs. 

Alternative's overall value 𝐴1 𝐴1 𝐴3 𝐴4 𝐴5 

𝜁𝑖
(1) 0.9957 0.4724 0.6538 1 0 

𝜁𝑖
(2) 1 0 0.4341 0.0318 0.643 

𝜁𝑖
(3) 1 0.0641 0.811 0 0.3471 

Final overall value 𝜁𝑖 0.9986 0.3278 0.6681 0.6934 0.4681 

According to 𝜁𝑖, it is easy to see that the ranking result is 𝐴1 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2, which is 

consistent with the result by the method in this article. In comparison with the method in [32], the 

advantages of this paper are outlined as the following. 

(i) Although the method in [32] can address MCGDM problems, it simply presets the weights of 

all experts to be equal. In contrast, our approach determines the DMs' weights objectively based on 

the original decision information. 

(ii) In the method in [32], the criterion weights are predetermined. In contrast, this paper 

establishes a bi-objective IVPF mathematical programming model to derive these weights. This 

model-based approach yields more objective and credible weight assignments. 

5.3.4. Rank-correlation analysis based on Spearman's rank-correlation coefficient 

To deeply compare these ranking orders by the IVPF-ELECTRE method [26], IVPF-TOPSIS 

method [31], IVPF-TODIM method [32], and the method proposed in this paper, Spearman's 

rank-correlation test [33] is considered to estimate whether there is statistical significance of the 

ranking difference among them. During the process of Spearman's test, a rank-correlation coefficient 

𝑟𝑠 and a test statistic 𝑍 are defined to determine the similarity of the rankings between two sets of 

rankings {𝑥𝜅} and {𝑦𝜅}, where 

𝑟𝑠 = 1 − 6∑
(𝑑𝜅)2

𝐾(𝐾2−1)
𝐾
𝜅=1 , 𝑍 = 𝑟𝑠√𝐾 − 1, 𝑑𝜅 = 𝑥𝜅 − 𝑦𝜅 (𝜅 = 1,2, . . . , 𝐾). 

The closer 𝑟𝑠 is to ±1, the stronger the relationship between {𝑥𝜅} and {𝑦𝜅}. Especially, when the 

rank-correlation coefficient 𝑟𝑠 varies to +1, it denotes a perfect positive relationship between {𝑥𝜅} 

and {𝑦𝜅}. If the relative measure 𝑟𝑠 varies to −1, it implies a perfect negative relationship between 

{𝑥𝜅} and {𝑦𝜅}. In addition, the test statistic 𝑍 is utilized to compare with a pre-determined level of 

significance 𝛼 value. Usually set at 𝛼 = 0.05, the critical 𝑍 value is 1.645, i.e., 𝑍0.05 = 1.645. 

When 𝑍 exceeds 1.645, it can be derived that {𝑥𝜅} and {𝑦𝜅} are similar. Otherwise, we know that 

there is no evidence of a positive relationship between {𝑥𝜅} and {𝑦𝜅}. 

When solving the above investment example, there are three sets of preference rankings obtained 

by the proposed method and the methods in [31, 32], denoted by A, B, and C, respectively.To compare 

these ranking orders, the rank-correlation coefficients and the test statistics are calculated in Table 21. 
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Table 21. Comparison of alternative rankings of IVPF-TOPSIS [31], IVPF-TODIM [32], 

and the proposed method. 

Alternative 

Ranking Ranking difference 

This paper 

(A) 

IVPF-TOPSIS 

(B) 

IVPF-TODIM 

(C) 

A-B A-C 

𝐴1 1 1 1 0 0 

𝐴2 5 5 5 0 0 

𝐴3 3 2 2 1 1 

𝐴4 4 4 4 0 0 

𝐴5 
2 3 3 -1 -1 

Spearman's rank-correlation coefficient 𝑟𝑠 0.9 0.9 

Test value 𝑍 1.8 1.8 

From Table 21, it can be summarized that the ranking (A) in this paper is positively correlated 

with the rankings (B) and (C) because the test value 𝑍 = 1.8 is bigger than 1.645. 

As the preceding discussion indicates, the ranking of alternatives obtained by IVPF-ELECTRE [26] 

is not a complete linear order but a partial order. It reveals only that Alternative 𝐴1 is superior to 

Alternatives 𝐴2, 𝐴4, and 𝐴5, and that Alternative 𝐴3 is superior to Alternatives 𝐴2 and 𝐴5. In 

contrast, both IVPF-TOPSIS [31] and IVPF-TODIM [32] yield an identical ranking of 𝐴1 ≻ 𝐴3 ≻

𝐴5 ≻ 𝐴4 ≻ 𝐴2. Our proposed IVPF-LINMAP method, however, produces a different order of 𝐴1 ≻

𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2. The distinction is that the two sequences differ solely in the transposition of the 

second and third positions. In our result, Alternative 𝐴5 is ranked second and Alternative 𝐴3 third. 

This discrepancy can be attributed to the following reasons: 

(1) Alternative 𝐴5  received consistently outstanding ratings on several key criteria. For 

instance, Expert 𝐸1 assigned an “EG” (Extremely Good) rating on Criterion 𝐶2, while Expert 𝐸2 

gave “EG” on 𝐶1 and “VG” (Very Good) on 𝐶3. In contrast, evaluations for Alternative 𝐴3 were 

highly polarized. On Criterion 𝐶1, ratings varied from “VG” (𝐸2) to “F” (Fair, 𝐸1) to “EG” (𝐸3). More 

critically, on Criterion 𝐶2, Expert 𝐸2 assigned a “VP” (Very Poor) rating—a potential veto that 

signals a severe drawback. In group decision-making, such an extreme negative evaluation often 

carries significant weight, as it may point to an unacceptable risk. The presence of this“VP” rating 

inherently elevates the perceived risk associated with Alternative 𝐴3. 

(2) The proposed method is fundamentally different because it simultaneously incorporates both 

the PIS and NIS within its optimization framework. This dual consideration enables the model to 

actively penalize extreme negative evaluations (like the “VP” rating). Consequently, the robust and 

consensus-driven profile of Alternative 𝐴5 is rewarded with a higher ranking. 

When weight information is incomplete, our method derives weights implicitly through its 

optimization process, which is guided by DMs' preference judgments. This process naturally favors 

alternatives that exhibit high expert consensus and no critical weaknesses (such as Alternative 𝐴5), 

while applying greater scrutiny to those carrying extreme negative feedback (such as Alternative 𝐴3). 

This behavior aligns closely with practical decision-making principles of risk aversion and 

consensus-seeking, thereby making the preferential ranking of Alternative 𝐴5 over Alternative 𝐴3 

not only methodologically sound but also intuitively more reasonable. 
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Several decision-making methods exist in the IVPF environment. We have selected three of 

them for comparison with the proposed method in this paper, as each of these four approaches has its 

own strengths and limitations. IVPF-ELECTRE [26] effectively models veto scenarios through 

non-compensatory concordance/discordance relations, making it robust for high-risk decisions but 

suffers from complex parameter calibration and often yields an incomplete partial order rather than a 

definitive ranking. IVPF-TOPSIS [31] is valued for its intuitive logic and computational efficiency, 

providing a complete ranking as a common benchmark. Its major limitations are insensitivity to 

critical flaws and a heavy, subjective dependence on pre-defined weights. IVPF-TODIM [32] 

incorporates prospect theory to better reflect human psychological biases under uncertainty. However, 

its complex calculations and the subjective setting of a key behavioral parameter introduce 

complexity and arbitrariness. IVPF-LINMAP in this paper uniquely derives weights objectively from 

incomplete preferences via mathematical programming, simultaneously optimizing toward the ideal 

and away from the anti-ideal solution. This promotes consensus-seeking, robust alternatives but at 

the cost of higher computational load, sensitivity to input preference quality, and reduced 

interpretability due to its "black-box" optimization core. 

It is worth mentioning that Kamari et al. [11] proposed a new distance metric called the flexible 

indeterminacy quantifier, which addresses the shortcomings of traditional distance metrics in 

handling uncertainty. The flexible indeterminacy quantifier features three key characteristics: 

adaptive weighting, self-regulating exponents, and dynamic norm selection, enabling it to better 

capture differences in uncertain environments and improve the stability and discriminative power of 

rankings. Furthermore, the paper extends TOPSIS and VIKOR into PNTOPSIS and PNVIKOR, 

respectively, and integrates them into the Pythagorean neutrosophic set framework, thereby 

enhancing the applicability of these methods in fuzzy and uncertain contexts. 

6. System verification 

Furthermore, we have translated this case into a practical implementation within the 

decision-making system. The procedure is detailed in the following steps. 

Step 1. The interface, titled "Parameter Settings", is designed to initialize the fundamental 

structure of the decision-making process. This stage allows the user to define the key participants and 

framework before any evaluations begin. In this phase, the system is configured for 3 experts to 

provide consolidated judgments, 5 alternatives, and 4 defined criteria: signal strength, network 

security, network speed, and coverage. The interface of Step 1 is depicted in Figure 3. 
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Figure 3. Configure the parameters of the decision-making system. 

Step 2. In this step, the experts' evaluations are input through the interface. The three predefined 

experts provide their qualitative assessments for each alternative across all four criteria. The data is 

presented in a consolidated table where the rows list the five alternatives and the columns are 

dedicated to the criteria: signal strength, network security, network speed, and coverage. Each expert 

has a dedicated sub-column under each criterion to select their judgment. The evaluations use a 

linguistic scale, which includes terms such as "Extremely Good," "Very Good," "Good," "Fair," 

"Poor," and "Very Poor," allowing experts to express nuanced preferences. Figure 4 shows the 

interface where experts input their decision data. 

 

Figure 4. Input the evaluation data from experts for each alternative under all criteria. 
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Figure 5. The ranking results of the alternatives by each expert. 

Step 3. This step presents the key intermediate results calculated by the system using the 

method proposed in this paper. The process begins by objectively deriving the weights of the criteria 

from the raw expert evaluations. This is accomplished using the IVPF LINMAP method, which 

eliminates subjective bias in determining the importance of each criterion. Subsequently, based on 

these objectively determined criterion weights, the system processes each expert's original 

evaluations to generate an individual ranking of the alternatives for each expert. The experts' ranking 

of the alternatives is displayed in a comparative table. These intermediate results output by the 

system are shown in Figure 5. 

Step 4. This step presents the conclusive outcome of the group decision-making process. The 

core of this phase is the assignment model for group decision-making, which is specifically designed 

to integrate the individual rankings from all experts into a single, collective ranking. The final 

ranking of the alternatives, as determined by the system, is 𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2, which is 

presented in Figure 6. 
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Figure 6. Final aggregated ranking via an assignment model. 

7. Conclusions 

This paper introduces an IVPF mathematical programming approach to tackle MCGDM issues 

encompassing incomplete IVPF information. First, this paper determines the weighs of DMs based 

on the relative closeness degree. Then, based on the IVPF group consistency and inconsistency, the 

IVPF programming model is constructed to obtain the weights of criteria. Finally, a multi-objective 

assignment model is constructed and solved by the Hungarian algorithm to generate the overall 

ranking matrix for the group of decision-makers and obtain the optimal alternative. Additionally, the 

case study and comparative analysis are conducted to underscore the advantages of the approach 

delineated in the study. 

The main contributions and advantages of this paper can be summarized as follows: 

(1) A criterion-specific weighting scheme is introduced for DMs, leveraging relative closeness 

degrees to quantify and integrate their individual expertise and preferences. This mechanism ensures 

objective weight determination while closely mirroring real-world, differentiated expert 

contributions in complex decision-making scenarios. 

(2) Novel group consensus and inconsistency indices are defined, explicitly incorporating both 

the positive and negative ideal IVPF solutions. This dual-reference-point framework enables a more 

nuanced assessment of group alignment, effectively mitigating the risk of suboptimal alternative 

selection when alternatives deviate significantly from both reference points. 

(3) A dual-objective mathematical programming model is established within the IVPF 



2183 

AIMS Mathematics  Volume 11, Issue 1, 2131–2187. 

framework, designed to jointly minimize the group inconsistency indices associated with the IVPF 

positive and negative ideal solutions. The model is transformed into a linear programming problem, 

facilitating the efficient and unbiased determination of optimal criteria weights. 

(4) The method synthesizes the criterion-specific DM weights and the derived criteria weights 

to calculate the comprehensive relative closeness of each alternative. Finally, a multi-objective 

assignment model, solved efficiently via the Hungarian algorithm, aggregates individual preference 

structures into a robust and reliable group ranking, thereby significantly enhancing the stability and 

credibility of the decision-making process. 

Despite the theoretical contributions of the proposed mathematical programming model for 

interval-valued Pythagorean fuzzy MCGDM, it is essential to acknowledge its inherent limitations to 

provide a balanced perspective and guide subsequent research. The primary challenges pertain to 

computational scalability in complex scenarios and the need for broader methodological 

enhancements. 

(1) A key practical limitation of the model is its growing computational demand in large-scale 

settings. The number of variables and constraints increases polynomially with the number of 

decision-makers, alternatives, and criteria, particularly when comprehensive pairwise comparisons 

are employed. This combinatorial explosion can render the exact optimization model 

computationally intensive for real-time or very-large-scale problems. Therefore, the current 

framework is most applicable to strategic, moderate-scale decision problems where analytical 

precision is paramount and the problem size remains manageable. 

(2) The transformation of linguistic, fuzzy evaluations into a crisp linear programming model, 

while mathematically rigorous, may create a disconnect between the numerical output and the 

original preference semantics used by decision-makers. A key area for improvement to ensure 

practical adoption is enhancing the solution's post-hoc interpretability; this involves translating 

optimization results back into intuitive, fuzzy-linguistic terms. 

To address the aforementioned limitations and enhance the practical value of this framework, 

the following research directions have been systematically outlined, with the aim of advancing the 

field from theoretical validation to engineering implementation: 

(1) Development of Scalable Solution Algorithms. Future work will prioritize creating efficient 

heuristic and metaheuristic algorithms to obtain high-quality approximate solutions for large-scale 

instances. Additionally, exploring model decomposition techniques to break down the problem into 

smaller, solvable units will be crucial for enhancing computational feasibility. 

(2) Using statistical methods such as the Wilcoxon signed-rank test, the ranking results of the 

proposed model will be systematically compared with established methods like IVPF-TOPSIS and 

IVPF-TODIM. This work will rigorously validate the model's consistency and clarify its practical 

advantages and differences. 

(3) The method proposed in this paper can be naturally extended to broader research directions, 

such as heterogeneous MCGDM problems, the integration of social network analysis among 

decision-makers, and the study of the consensus-reaching process in group decision-making. 
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Appendix 

To facilitate clear discussion and presentation in this paper, and to ensure uniformity and clarity 

in the use of terminology, a systematic compilation of the common abbreviations involved in this 

study is provided. Table 22 lists the abbreviations of relevant terms along with their corresponding 

full forms, enabling readers to accurately understand and refer to them. 
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Table 22. List of abbreviations. 

Abbreviation Full term 

MCDM Multi-criteria decision-making 

MCGDM Multi-criteria group decision-making 

FS Fuzzy set 

IFS Intuitionistic fuzzy set 

IVIFS Interval-valued intuitionistic fuzzy set 

PFS Pythagorean fuzzy set 

IVPF Interval-valued Pythagorean fuzzy 

IVPFS Interval-valued Pythagorean fuzzy set 

IVPFN Interval-valued Pythagorean fuzzy number 

PIS Positive ideal solution 

NIS Negative ideal solution 
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