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Abstract: This study explores the mathematical and computational characteristics of geometrically
weighted circulant and symmetric geometric semicirculant matrices with the aim of identifying their
potential as efficient structural tools in artificial intelligence (AI) architectures and data compressions.
At the preliminary stage, a comprehensive mathematical framework was established, including the
derivation of various matrix norms (such as spectral and Frobenius norms), determinants, and matrix
inverses. The construction of these matrices is guided by Fibonacci numbers, whose intrinsic
link to the golden ratio introduces a natural geometric decay pattern. This biologically inspired
structure contributes to the balance, regularity, and interpretability of the resulting matrices, which
are particularly well-suited for low-complexity modeling in AI systems. Subsequently, singular
value decomposition (SVD) was employed to perform low-rank approximations, with a focus on
evaluating information loss through Frobenius norm differences between original and reconstructed
matrices. Techniques such as soft-thresholding and selective singular value removal were applied to
assess data compression performance. Results demonstrated that symmetric geometric semicirculant
matrices yielded smaller norm deviations, indicating superior data retention. Moreover, by tuning the
geometric ratio parameter r, further improvements in matrix compactness and fidelity were achieved,
especially when reducing r to values like 1

4 . These outcomes were visually confirmed through heatmap
representations, highlighting the robustness and compression potential of the proposed matrices.
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1. Introduction

In the field of matrix theory study, special matrices are a popular topic. In particular, special
matrices with well-known number sequences and polynomials as their entries have grown in interest
recently, and some researchers have produced some promising findings in this field. The norms of the
special matrices involving well-known number sequences and polynomials are the subject of extensive
investigation. Numerous characteristics of these matrices have been discovered, including accurate
values for the spectral norms, eigenvalues, Frobenius norms, determinants, and permanents, as well
as lower and upper bounds. Estimates for norms of circulant, r-circulant, and geometric circulant
matrices have been the subject of numerous articles to date. These issues are related to signal and
image processing, coding theory, time-series analysis, and numerous other issues.

A circulant, r-circulant, and geometric circulant matrix are of the form, respectively [24, 28, 29],

C = Circ(C) =



c1 c2 c3 · · · cn−1 cn

cn c1 c2 · · · cn−2 cn−1

cn−1 cn c1 · · · cn−3 cn−2
...

...
...
. . .

...
...

c3 c4 c5 · · · c1 c2

c2 c3 c4 · · · cn c1


,

Cr = Circr(C) =



c1 c2 c3 · · · cn−1 cn

rcn c1 c2 · · · cn−2 cn−1

rcn−1 rcn c1 · · · cn−3 cn−2
...

...
...
. . .

...
...

rc3 rc4 rc5 · · · c1 c2

rc2 rc3 rc4 · · · rcn c1


,

and

C(rn−1) = Circ(rn−1)(C) =



c1 c2 c3 · · · cn−1 cn

rcn c1 c2 · · · cn−2 cn−1

r2cn−1 rcn c1 · · · cn−3 cn−2
...

...
...

. . .
...

...

rn−2c3 rn−3c4 rn−4c5 · · · c1 c2

rn−1c2 rn−2c3 rn−3c4 · · · rcn c1


,

where cn denotes the nth element of a sequence and r is a nonzero complex number. Numerous writers
have researched circulant matrices with particular entries, as well as general circulant matrices [22,32,
33].

The Fibonacci sequence is a well-known sequence of integers that is defined recursively by the
relation [4]

Fn = Fn−1 + Fn−2, for n ≥ 2

with F0 = 0, F1 = 1. The first ten Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.
The nth Lucas number is defined recursively by

Ln = Ln−1 + Ln−2, for n ≥ 2
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with L0 = 2, L1 = 1. The first ten Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76. The Binet formulas
for the sequences Fn and Ln are given by

Fn =
αn − βn

α − β
, Ln = α

n + βn,

where α = 1+
√

5
2 and β = 1−

√
5

2 . It is clear that [14]

n∑
i=0

F2
i = FnFn+1, (1.1)

n∑
i=0

L2
i = LnLn+1 + 2. (1.2)

For some recent generalizations about number sequences, see [1, 19, 23]. Let M = (m1,m2, ...,mn)
be an n-tuple of integers, and a Ducci sequence generated by M = (m1,m2, ...,mn) is a sequence
M,DM,D2M, ... obtained by iterating the map D : Zn −→ Zn defined by

D(M) = D(m1,m2, ...,mn) = (|m2 − m1|, |m3 − m2|, ..., |mn − mn−1|, |mn − m1|).

Each row of the circulant matrix was subjected to the Ducci map by Solak and Bahşi [31]. The
authors also discovered correlations between the supplied circulant matrix and its image under the
Ducci map and its eigenvalues, Frobenius norm, spectral norm, determinant, and lp norm. In [3],
assuming that some sequences naturally exhibit the same behavior, the precise number of periodic
Ducci sequences of vectors with any dimensions but a given period is calculated. Breuer [2] used the
fundamental characteristics of cyclotomic polynomials over the integers, modulo two to study Ducci
sequences. They calculated the period of a given Ducci sequence using the multiplicative orders of
specific elements in finite fields as well as the order of a polynomial. By viewing the Ducci game as a
map on the vector space Zn

2 , in [6], authors provided additional information about the period durations
for any positive integer n. Glaser and Schöffl [13] demonstrated the strong relationship between the
Ducci sequences and Pascal’s triangle, as well as the fact that many of the cyclic structures’ features
may be discovered and demonstrated when taking Pascal’s triangle modulo two.

In the present study, let F = (F1, F2, F3, ..., Fn) ∈ Zn and L = (L1, L2, L3, ..., Ln) ∈ Zn, where Fn

denotes the nth Fibonacci number, and Ln denotes the nth Lucas number. We have

DF = (|F2 − F1|, |F3 − F2|, |F4 − F3|, ..., |Fn − Fn−1|, |Fn − F1|)
= (|F1 + F0 − F1|, |F2 + F1 − F2|, ..., |Fn−1 + Fn−2 − Fn−1|, |Fn − 1|)
= (F0, F1, F2, ..., Fn−2, Fn − 1),

D2F = D(DF)
= (|F1 − F0|, |F2 − F1|, |F3 − F2|, ..., |Fn − 1 − Fn−2|, |Fn − 1|)
= (1, F0, F1, ..., Fn−4, Fn−1 − 1, Fn − 1),

DL = (|L2 − L1|, |L3 − L2|, |L4 − L3|, ..., |Ln − Ln−1|, |Ln − L1|)
= (|L1 + L0 − L1|, |L2 + L1 − L2|, ..., |Ln−1 + Ln−2 − Ln−1|, |Ln − 1|)
= (L0, L1, L2, ..., Ln−2, Ln − 1),
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and

D2L = D(DL)
= (|L1 − L0|, |L2 − L1|, |L3 − L2|, ..., |Ln − 1 − Ln−2|, |Ln − 1 − 2|)
= (1, L0, L1, ..., Ln−4, Ln−1 − 1, Ln − 3).

Then, Circ(rn−1)(F) = (F1, F2, · · · , Fn−1, Fn), Circ(rn−1)(DF) = (F0, F1, · · · , Fn−2, Fn − 1), Circ(rn−1)

(D2F) = (1, F0, · · · , Fn−1 − 1, Fn − 1), and Circ(rn−1)(L) = (L1, L2, · · · , Ln−1, Ln), Circ(rn−1)(DL) =
(L0, L1, · · · , Ln−2, Ln−1), Circ(rn−1)(D2L) = (1, L0, · · · , Ln−1−1, Ln−3) are geometric circulant matrices.
Note that if we take r = 1, we obtain circulant matrices Circ(F), Circ(DF), Circ(D2F), Circ(L),
Circ(DL), and Circ(D2L), respectively.

The lp (1 < p < ∞) norm of the matrix A is defined as [17]

∥A∥p =

 n∑
i, j=1

∣∣∣ai j

∣∣∣p
1/p

. (1.3)

The Frobenius norm of the matrix A is defined as [17]

∥A∥F =

 n∑
i, j=1

∣∣∣ai j

∣∣∣2
1/2

. (1.4)

The singular values of the matrix A are

σi =
√
λi(A∗A), i ∈ {1, 2, ..., n},

where λi is an eigenvalue of A∗A, and A∗ is the conjugate transpose of matrix A [17].
The square roots of the maximum eigenvalues of A∗A are called the spectral norm of A and are

induced by ∥A∥2. The following inequality holds [17]:

1
√

n
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F . (1.5)

The Hadamard product of A =
(
ai j

)
n×n

and B =
(
bi j

)
n×n

is defined by A ◦ B =
(
ai jbi j

)
n×n

. The

Hadamard inverse of A, denoted by A◦−1 =
(
a−1

i j

)
, exists if and only if ai j , 0 for all i, j. Define

the maximum column length norm c1(.) and the maximum row length norm r1(.) of any matrix A by
c1(A) = max j

∑
i |ai j|

2 and r1(A) = maxi
∑

j |ai j|
2, respectively. Let A, B, and C be m × n matrices. If

A = B ◦C, then, ||A||2 ≤ r1(B)c1(C) [25].

Lemma 1.1. [31] Let µ j, λ j be eigenvalues of the matrices Circ (DA) , Circ (A), respectively. If
a1 ≤ a2 ≤ · · · ≤ an, then,

µ j =
(
λ j+2an − 2a1

)
w− j − λ j, 0 ≤ j ≤ n − 1,

where w = e
2πi
n , and a1 ≤ a2 ≤ · · · ≤ an are elements of the circulant matrix.
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Lemma 1.2. [31] The spectral norm of the matrix Circ (DA) with a1 ≤ a2 ≤ · · · ≤ an satisfies

∥Circ (DA)∥n2 = (2(an − a1))n.

Lemma 1.3. [31] The determinant of the matrix Circ (DA) satisfies

|detCirc (DA) | ≤
1
√

nn
∥Circ (DA)∥nF .

A semicirculant matrix is a generalization of a circulant matrix. In a standard circulant matrix, each
row is obtained by cyclically shifting the previous row to the right. In contrast, a semicirculant matrix
only partially exhibits this circular structure, usually in the lower triangular or upper triangular portion
of the matrix. That is, only part of the matrix obeys the cyclic property.

A typical semicirculant matrix (e.g., with a lower triangular structure) looks like this:

A =



a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...
. . .

...

an−1 an−2 an−3 · · · a0


.

In this form, each row below the first is a left-shifted version of the row above it (excluding the
zeros). So, only the lower triangular part of the matrix follows a kind of “reversed circulant” structure.

Matrix operations such as multiplication or inversion are generally more complex than those
involving full circulant matrices. The structure is preserved under certain operations, meaning the
product of two semicirculant matrices may still be semicirculant, depending on their form. Properties
such as determinant, rank, and trace differ from standard circulant matrices and often require special
techniques to analyze. Spectral properties (eigenvalues and eigenvectors) may be more difficult to
compute due to the partial cyclic nature. However, Fourier-based methods can still be helpful in
some cases.

For completeness, we note that while the literature on special matrices primarily contains articles,
classical monographs can also provide valuable background. In particular, Davis [9] presented a
comprehensive treatment of circulant matrices. Moreover, as our work relies heavily on matrix
operations, especially multiplication, we point out that a variety of fast algorithms and extended
operations are available; a clear and comprehensive overview is provided in Respondek [27].

In recent decades, matrix decomposition techniques have become central tools in various disciplines
including data science, signal processing, image denoising, machine learning, and statistical inference.
Among these, singular value decomposition (SVD) has emerged as a foundational method for
dimensionality reduction and matrix approximation. SVD allows a matrix to be expressed in terms
of its singular values and orthogonal vectors, providing both theoretical clarity and computational
advantages [15].

One of the most celebrated results connected to SVD is the Eckart-Young-Mirsky theorem, which
states that the truncated SVD provides the best low-rank approximation to a matrix under both the
spectral and Frobenius norms. This result has been extensively utilized in applications such as latent
semantic indexing, collaborative filtering, and image compression [11, 21].
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To enhance the robustness of SVD-based approximations in noisy environments, thresholding
techniques, especially soft-thresholding, have been widely adopted. Originally proposed by Donoho
and Johnstone [10, 12] in the context of wavelet shrinkage, soft-thresholding operates on singular
values and effectively suppresses small components assumed to be noise. This procedure has laid
the groundwork for modern matrix denoising and completion frameworks [5].

In particular, the universal threshold, given by τ = σ
√

2logn , has become a widely accepted
heuristic for balancing noise suppression and information retention in high-dimensional data settings.
Donoho and Johnstone’s pioneering work on this concept provided strong theoretical guarantees under
Gaussian noise models and has since been adapted for matrix-based problems, notably in nuclear norm
minimization and compressed sensing [7, 12].

Low-rank matrix recovery techniques, which often involve nuclear norm regularization as a convex
relaxation of rank minimization, have received significant attention in the context of matrix completion
problems, such as in the Netflix Prize challenge [8, 26]. These approaches leverage SVD and
thresholding to efficiently recover underlying structures from incomplete or corrupted data.

In light of these developments, our study builds upon the principles of SVD, soft-thresholding,
and low-rank approximation to perform a comparative analysis of matrix denoising under various
thresholding strategies. We further examine the performance and interpretability of the resulting
decompositions using singular value distribution analysis, informed by the universal threshold rule.
This work contributes to the growing body of literature on robust matrix representations and seeks to
provide practical insights for denoising applications across disciplines.

In the era of big data, efficient and robust matrix decomposition techniques have become
indispensable across various domains, including signal processing, machine learning, and medical
imaging. Among these techniques, SVD stands out as a fundamental tool for dimensionality reduction,
noise suppression, and data compression. Recent advancements have focused on enhancing SVD’s
capabilities through methods such as soft-thresholding and low-rank matrix approximation (LRMA),
leading to significant improvements in data analysis and interpretation [16, 34].

Soft-thresholding, in particular has been instrumental in refining SVD-based approaches. By
attenuating smaller singular values, it effectively reduces noise while preserving essential data
structures. For instance, a recent study introduced a hybrid threshold denoising framework that
combines hard and soft thresholding techniques, resulting in improved signal-to-noise separation in
side-channel analysis applications [34].

In the realm of image processing, enhanced low-rank approximation methods leveraging SVD
have demonstrated superior performance in denoising tasks. A notable approach exploits the optimal
energy compaction property of SVD to achieve better low-rank approximations of similar patch groups,
leading to more effective noise reduction in images [30].

Medical imaging has also benefited from these advancements. A comprehensive review highlighted
the application of low-rank and local low-rank matrix approximations in computed tomography (CT)
image reconstruction, emphasizing their potential in enhancing image quality while reducing radiation
exposure [16].

Furthermore, the integration of nonconvex regularization techniques into LRMA has shown promise
in improving approximation accuracy. Recent research proposed a convex optimization framework
with nonconvex regularization to estimate low-rank matrices more effectively, demonstrating enhanced
performance in various signal processing tasks [20].
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These developments underscore the evolving landscape of matrix decomposition techniques,
highlighting the critical role of SVD, soft-thresholding, and LRMA in modern data analysis. Building
upon this foundation, our study aims to further explore and compare the efficacy of these methods in
specific application contexts.

Now, in the light of the explanations given above, let us give the following definitions:

Definition 1.1. Let A ∈ Rm×n be a real matrix. Then, the SVD of A is given by

A = UΣVT ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices.

Σ ∈ Rm×n is a diagonal matrix with nonnegative real numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (the singular
values) on the diagonal, and r = rank(A).

Definition 1.2. Low-rank matrix approximation: The best rank-k approximation Ak of a matrix A in
the Frobenius norm is given by the truncated SVD:

Ak = UkΣkVT
k ,

where Uk, Σk, and Vk are matrices formed by taking the first k singular vectors and singular values.

The Eckart-Young-Mirsky theorem states that this approximation minimizes the error [18]:

∥A − Ak∥F = min︸︷︷︸
rank(B)=k

∥A − B∥F .

Definition 1.3. Nuclear norm minimization: Often used as a convex surrogate for rank minimization,
defined as

∥A∥∗ =
r∑

i=1

σi,

it plays a critical role in optimization problems involving low-rank recovery.

Definition 1.4. Soft-thresholding is a nonlinear shrinkage technique applied to singular values to
enforce sparsity or to perform noise reduction. Given a threshold parameter τ > 0, the soft-
thresholding operator S τ is defined as

S τ (σi) = max(σi − τ, 0).

Applied elementwise to the singular values in Σ, the soft-thresholding operation yields a modified
matrix,

Aτ = US τΣVT .

This operation results in a matrix with reduced rank and smaller singular values, effectively
denoising the original matrix, where Ak denotes the rank-k approximation of the matrix A, obtained by
retaining the k dominant singular values in its singular value decomposition. In contrast, Aτ represents
the thresholded version of A, where singular values smaller than a prescribed threshold τ are attenuated
or removed according to the selected thresholding rule. Ak controls approximation quality via rank,
and Aτ controls it via magnitude, meaning that these two parameters play distinct but complementary
roles in the proposed framework.
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Definition 1.5. The universal threshold was introduced by Donoho and Johnstone in the context of
wavelet shrinkage, but is also used in matrix denoising tasks. It is defined as

τ = σ
√

2logn ,

where σ is the noise standard deviation, and n is the dimension (typically the number of columns or
the larger dimension of the matrix).

Applying this threshold during soft-thresholding tends to remove most of the noise with high
probability under Gaussian noise assumptions. To formalize the approximation strategy discussed
above, we now introduce a threshold-based matrix operator. Although the previous discussion focused
on the conceptual distinction between rank truncation and thresholding, the following definition
provides a precise mathematical formulation of the thresholded matrix approximation used throughout
the remainder of the paper.

Definition 1.6. Hard thresholding: Similar to soft-thresholding but sets all singular values below τ to
zero without modifying those above,

Hτ (σi) =
{
σi, i f σi ≥ τ,

0, otherwise.

2. Main results

Having laid the foundational definitions and properties of geometrically weighted circulant matrices
inspired by Fibonacci and Lucas sequences, along with their Ducci iterations, we now present the core
analytical results. In the following section, we derive explicit formulas for the Frobenius norms and
establish lower and upper bounds for the spectral norms of these matrices under different conditions
on the geometric ratio r.

Theorem 2.1. The Frobenius norms of the matrices Circ(rn−1)(F), Circ(rn−1)(DF), and Circ(rn−1)(D2F)
are

||Circ(rn−1)(F)||2F =
n∑

i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)|rn−i+1|2F2
i ,

||Circ(rn−1)(DF)||2F =
n−2∑
i=0

(n − i)F2
i +

n−2∑
i=0

i|rn−i|2F2
i + (n − 1)r2(Fn − 1)2 + (Fn − 1)2,

and

||Circ(rn−1)(D2F)||2F =
n−4∑
i=0

(n − i − 1)F2
i +

n−4∑
i=0

(i + 1)|rn−i−1|2F2
i + n

+ (nr4 − 2r4 + 2)(Fn−1 − 1)2 + (nr2 − r2 + 1)(Fn − 1)2.
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Proof. Because

Circ(rn−1)(F) =



F1 F2 F3 · · · Fn−1 Fn

rFn F1 F2 · · · Fn−2 Fn−1

r2Fn−1 rFn F1 · · · Fn−3 Fn−2
...

...
...

. . .
...

...

rn−2F3 rn−3F4 rn−4F5 · · · F1 F2

rn−1F2 rn−2F3 rn−3F4 · · · rFn F1


,

it follows that ∥∥∥Circ(rn−1)(F)
∥∥∥2

F
=

(
nF2

1 + (n − 1)F2
2 + ... + F2

n

)
+

(
r2(n − 1)F2

n + (r2)2(n − 2)F2
n−1 + ... + (rn−1)2F2

2

)
=

n∑
i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)|rn−i+1|2F2
i .

Other equalities are shown in a similar way.

Theorem 2.2. The Frobenius norms of the matrices Circ(rn−1)(L), Circ(rn−1)(DL), and Circ(rn−1)(D2L) are

||Circ(rn−1)(L)||2F =
n∑

i=1

(n − i + 1)L2
i +

n∑
i=1

(i − 1)|rn−i+1|2L2
i ,

||Circ(rn−1)(DL)||2F =
n−2∑
i=0

(n − i)L2
i +

n−2∑
i=0

i|rn−i|2L2
i + (n − 1)r2(Ln − 1)2 + (Ln − 1)2,

and

||Circ(rn−1)(D2L)||2F =
n−4∑
i=0

(n − i − 1)L2
i +

n−4∑
i=0

(i + 1)|rn−i−1|2L2
i + n

+ (nr4 − 2r4 + 2)(Ln−1 − 1)2 + (nr2 − r2 + 1)(Ln − 3)2.

Proof. The proof can be easily obtained in a manner similar to the proof of Theorem 2.1.

Theorem 2.3. For the geometric circulant matrices Circ(rn−1)(F), Circ(rn−1)(DF), and Circ(rn−1)(D2F):
ai) If |r| > 1, then

√
FnFn+1 ≤ ||Circ(rn−1)(F)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
(FnFn+1).

aii) If |r| = 1, then √
FnFn+1 ≤ ||Circ(rn−1)(F)||2 ≤

√
n(FnFn+1).

aiii) If |r| < 1, then

|r|n+1

√√√√
1
5

 α2

|r|2

α2n

|r|2n − 1
α2

|r|2 − 1
+
β2

|r|2

β2n

|r|2n − 1
β2

|r|2 − 1
− 2

1
|r|2

(−1)n

|r|2n − 1
1
|r|2 + 1

 ≤ ||Circ(rn−1)(F)||2 ≤
√

n (FnFn+1).
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bi) If |r| > 1, then

√
Fn−2Fn−1 + (Fn − 1)2 ≤ ||Circ(rn−1)(DF)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
(Fn−2Fn−1 + (Fn − 1)2).

bii) If |r| = 1, then√
Fn−2Fn−1 + (Fn − 1)2 ≤ ||Circ(rn−1)(DF)||2 ≤

√
n(Fn−2Fn−1 + (Fn − 1)2).

biii) If |r| < 1, then √√√√
|r|2n

5

 α
2n−2

|r|2n−2 − 1
α2

|r|2 − 1
+

β2n−2

|r|2n−2 − 1
β2

|r|2 − 1
− 2

(−1)n

|r|2n−2 + 1
1
|r|2 + 1

 + |r|2(Fn − 1)2

≤ ||Circ(rn−1)(DF)||2 ≤
√

n(Fn−2Fn−1 + (Fn − 1)2).

ci) If |r| > 1, then√
Fn−4Fn−3 + (Fn−1 − 1)2 + (Fn − 1)2 + 1

≤ ||Circ(rn−1)(D2F)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
n(Fn−4Fn−3 + (Fn−1 − 1)2 + (Fn − 1)2 + 1).

cii) If |r| = 1, then√
Fn−4Fn−3 + (Fn−1 − 1)2 + (Fn − 1)2 + 1

≤ ||Circ(rn−1)(D2F)||2 ≤
√

n(Fn−4Fn−3 + (Fn−1 − 1)2 + (Fn − 1)2 + 1).

ciii) If |r| < 1, then√√√√
|r|2n−2

5

 α
2n−6

|r|2n−6 − 1
α2

|r|2 − 1
+

β2n−6

|r|2n−6 − 1
β2

|r|2 − 1
− 2

(−1)n

|r|2n−6 + 1
1
|r|2 + 1

 + |r|4(Fn−1 − 1)2 + |r|2(Fn − 1)2 + |r|2

≤ ||Circ(rn−1)(D2F)||2 ≤
√

n(Fn−4Fn−3 + (Fn−1 − 1)2 + (Fn − 1)2 + 1),

where α = 1+
√

5
2 , β = 1−

√
5

2 , |α| > 1, and |β| < 1.

Proof. ai) Let |r| > 1, so that we have

||Circ(rn−1)(F)||2F =
n∑

i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)|rn−i+1|2F2
i ,

||Circ(rn−1)(F)||2F ≥
n∑

i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)F2
i = n (FnFn+1) .

It follows that
1
√

n
||Circ(rn−1)(F)||F ≥

√
FnFn+1.
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We get
||Circ(rn−1)(F)||2 ≥

√
FnFn+1.

On the other hand, let the matrices B and C be

B =



1 1 1 · · · 1 1
r 1 1 · · · 1 1
r2 r 1 · · · 1 1
...

...
...
. . .

...
...

rn−2 rn−3 rn−4 · · · 1 1
rn−1 rn−2 rn−3 · · · r 1


and C =



F1 F2 · · · Fn−1 Fn

Fn F1 · · · Fn−2 Fn−1

Fn−1 Fn · · · Fn−3 Fn−2
...

...
. . .

...
...

F3 F2 · · · F1 F2

F2 F3 · · · Fn F1


such that A = B ◦C. Then,

r1(B) = maxi

√∑
j

∣∣∣bn j

∣∣∣2 = √
1 + |r|2 + |r2|2 + · · · + |rn−1|2 =

√
|r|2n − 1
|r|2 − 1

,

c1(C) = max j

√∑
i

|cin|
2 =

√√
n∑

i=1

F2
i =

√
FnFn+1.

We have

||Circ(rn−1)(F)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
(FnFn+1).

aii) Let |r| = 1, so that we have

||Circ(rn−1)(F)||2F =
n∑

i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)|rn−i+1|2F2
i ,

||Circ(rn−1)(F)||2F =
n∑

i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)F2
i = n (FnFn+1) .

It follows that
1
√

n
||Circ(rn−1)(F)||F ≥

√
FnFn+1.

We get
||Circ(rn−1)(F)||2 ≥

√
FnFn+1.

On the other hand, let the matrices B and C be

B =



1 1 1 · · · 1 1
r 1 1 · · · 1 1
r2 r 1 · · · 1 1
...

...
...
. . .

...
...

rn−2 rn−3 rn−4 · · · 1 1
rn−1 rn−2 rn−3 · · · r 1


and C =



F1 F2 · · · Fn−1 Fn

Fn F1 · · · Fn−2 Fn−1

Fn−1 Fn · · · Fn−3 Fn−2
...

...
. . .

...
...

F3 F2 · · · F1 F2

F2 F3 · · · Fn F1


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such that A = B ◦C. Then,

r1(B) = maxi

√∑
j

∣∣∣bn j

∣∣∣2 = √1 + 1 + 1 + · · · + 1 =
√

n,

c1(C) = max j

√∑
i

|cin|
2 =

√√
n∑

i=1

F2
i =

√
FnFn+1.

We have
||Circ(rn−1)(F)||2 ≤

√
n (FnFn+1).

aiii) From |r| < 1, so that we have

||Circ(rn−1)(F)||2F =
n∑

i=1

(n − i + 1)F2
i +

n∑
i=1

(i − 1)|rn−i+1|2F2
i ,

||Circ(rn−1)(F)||2F ≥
n∑

i=1

(n − i + 1)|rn−i+1|2F2
i +

n∑
i=1

(i − 1)|rn−i+1|2F2
i = n|r|2n+2

n∑
i=1

(
Fi

|r|i

)2

.

It follows that

1
√

n
||Circ(rn−1)(F)||F ≥

√√√√
|r|2n+2

5

 α2

|r|2

α2n

|r|2n − 1
α2

|r|2 − 1
+
β2

|r|2

β2n

|r|2n − 1
β2

|r|2 − 1
− 2

1
|r|2

(−1)n

|r|2n − 1
1
|r|2 + 1

.
We get

||Circ(rn−1)(F)||2 ≥ |r|n+1

√√√√
1
5

 α2

|r|2

α2n

|r|2n − 1
α2

|r|2 − 1
+
β2

|r|2

β2n

|r|2n − 1
β2

|r|2 − 1
− 2

1
|r|2

(−1)n

|r|2n − 1
1
|r|2 + 1

.
On the other hand, let the matrices B and C be

B =



1 1 1 · · · 1 1
r 1 1 · · · 1 1
r2 r 1 · · · 1 1
...

...
...
. . .

...
...

rn−2 rn−3 rn−4 · · · 1 1
rn−1 rn−2 rn−3 · · · r 1


and C =



F1 F2 · · · Fn−1 Fn

Fn F1 · · · Fn−2 Fn−1

Fn−1 Fn · · · Fn−3 Fn−2
...

...
. . .

...
...

F3 F2 · · · F1 F2

F2 F3 · · · Fn F1


such that A = B ◦C. Then,

r1(B) = maxi

√∑
j

∣∣∣bn j

∣∣∣2 = √n,

c1(C) = max j

√∑
i

|cin|
2 =

√√
n∑

i=1

F2
i =

√
FnFn+1.

We have
||Circ(rn−1)(F)||2 ≤

√
n (FnFn+1).

Other inequalities are shown in a similar way.
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Theorem 2.4. For the geometric circulant matrices Circ(rn−1)(L), Circ(rn−1)(DL), and Circ(rn−1)(D2L):
ai) If |r| > 1, then

√
LnLn+1 − 2 ≤ ||Circ(rn−1)(L)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
(LnLn−1 − 2).

aii) If |r| = 1, then √
LnLn+1 − 2 ≤ ||Circ(rn−1)(L)||2 ≤

√
n (LnLn−1 − 2).

aiii) If |r| < 1, then

|r|n+1

√√√√ α2

|r|2

α2n

|r|2n − 1
α2

|r|2 − 1
+
β2

|r|2

β2n

|r|2n − 1
β2

|r|2 − 1
+ 2

1
|r|2

(−1)n

|r|2n − 1
1
|r|2 + 1

 ≤ ||Circ(rn−1)(L)||2 ≤
√

n (LnLn−1 − 2).

bi) If |r| > 1, then

√
Ln−2Ln−1 + (Ln − 1)2 + 2 ≤ ||Circ(rn−1)(DL)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
(Ln−2Ln−1 + (Ln − 1)2 + 2).

bii) If |r| = 1, then√
Ln−2Ln−1 + (Ln − 1)2 + 2 ≤ ||Circ(rn−1)(DL)||2 ≤

√
n(Ln−2Ln−1 + (Ln − 1)2 + 2).

biii) If |r| < 1, then √√√√
|r|n

 α
2n−2

|r|2n−2 − 1
α2

|r|2 − 1
+

β2n−2

|r|2n−2 − 1
β2

|r|2 − 1
+ 2

(−1)n

|r|2n−4 + 1
1
|r|2 + 1

 + |r|2(Ln − 1)2

≤ ||Circ(rn−1)(DL)||2 ≤
√

n(Ln−2Ln−1 + (Ln − 1)2 + 2).

ci) If |r| > 1, then√
Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3

≤ ||Circ(rn−1)(D2L)||2 ≤

√(
|r|2n − 1
|r|2 − 1

)
(Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3).

cii) If |r| = 1, then√
Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3

≤ ||Circ(rn−1)(D2L)||2 ≤
√

n(Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3).

ciii) If |r| < 1, then√√√√
|r|2n−2

 α
2n−6

|r|2n−6 − 1
α2

|r|2 − 1
+

β2n−6

|r|2n−6 − 1
β2

|r|2 − 1
+ 2

(−1)n

|r|2n−6 + 1
1
|r|2 + 1

 + n(Ln−1 − 2)2 + nL2
n−2 + (2n − 1)

≤ ||Circ(rn−1)(D2L)||2 ≤
√

n(Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3).
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Proof. The proof of the theorem can be carried out similarly to the proof of the above Theorem 2.3.

Theorem 2.5. The determinant of the n × n matrix Circ(rn)(D2F) satisfies the following:
If n is even,

∣∣∣∣det
(
Circ(rn−1)(D

2F)
)∣∣∣∣ ≤



F2
n−4 − Fn−4Fn−3 +

∑4
i=0 (i + 1)

∣∣∣rn−i−1
∣∣∣2 F2

i + n

+ (nr4 − 2r4 + 2) (Fn−1 − 1)2

+ (nr2 − r2 + 1) (Fn − 1)2

n



n
2

.

If n is odd,

∣∣∣∣det
(
Circ(rn−1)(D

2F)
)∣∣∣∣ ≤



F2
n−4 − 1 − Fn−4Fn−3 +

∑4
i=0 (i + 1)

∣∣∣rn−i−1
∣∣∣2 F2

i + n

+ (nr4 − 2r4 + 2) (Fn−1 − 1)2

+ (nr2 − r2 + 1) (Fn − 1)2

n



n
2

,

where n ≥ 4.

These determinant upper bounds are particularly useful in theoretical analyses of structured
matrices, where exact determinant evaluation is often infeasible but global growth control remains
essential.

Proof. From Lemma 1.3, we get∣∣∣∣det
(
Circ(rn−1)(D2F)

)∣∣∣∣ ≤ 1
√

nn

∥∥∥Circ(rn−1)(D2F)
∥∥∥n

F

=
1
√

nn


n−4∑
i=0

(n − i − 1)F2
i +

4∑
i=0

(i + 1)
∣∣∣rn−i−1

∣∣∣2 F2
i

+ n + (nr4 − 2r4 + 2)(Fn−1 − 1)2

+ (nr2 − r2 + 1)(Fn − 1)2



n
2

=
1
√

nn



n−4∑
i=0

nF2
i −

n−4∑
i=0

iF2
i −

n−4∑
i=0

F2
i

+

4∑
i=0

(i + 1)
∣∣∣rn−i−1

∣∣∣2 F2
i + n

+ (nr4 − 2r4 + 2)(Fn−1 − 1)2

+ (nr2 − r2 + 1)(Fn − 1)2



n
2

.

AIMS Mathematics Volume 11, Issue 1, 1968–1997.



1982

If n is even,

1
√

nn

∥∥∥Circ(rn−1)(D2F)
∥∥∥n

F
=

1
√

nn



nFn−4Fn−3 −
(
nFn−4Fn−3 − F2

n−4

)
− Fn−4Fn−3 +

4∑
i=0

(i + 1)
∣∣∣rn−i−1

∣∣∣2 F2
i

+ n + (nr4 − 2r4 + 2)(Fn−1 − 1)2

+ (nr2 − r2 + 1)(Fn − 1)2



n
2

is obtained.
If n is odd,

1
√

nn

∥∥∥Circ(rn−1)(D2F)
∥∥∥n

F
=

1
√

nn



nFn−4Fn−3 −
(
nFn−4Fn−3 − F2

n−4 + 1
)

− Fn−4Fn−3 +

4∑
i=0

(i + 1)
∣∣∣rn−i−1

∣∣∣2 F2
i

+ n + (nr4 − 2r4 + 2)(Fn−1 − 1)2

+ (nr2 − r2 + 1)(Fn − 1)2



n
2

is obtained. Hence, the desired result is obtained.

3. Symmetric geometric semicirculant matrix

We introduce the symmetric geometric semicirculant matrix for D2F sequences as follows:

Circ(rn)(S D2F) =



1 F0 F1 · · · Fn−4 Fn−1 − 1 Fn − 1
0 1 F0 · · · Fn−5 Fn−4 r (Fn−1 − 1)
0 0 1 · · · Fn−6 rFn−5 r2Fn−4
...
...
...
. . .

...
...

...

0 0 0 · · · 0 rn−31 rn−2F0

0 0 0 · · · 0 0 rn−1.1


, (3.1)

where r ∈ C− {0} , F0 = 0, and n ∈ Z+.

Theorem 3.1. Define the symmetric geometric semicirculant matrix as in Eq (3.1). Then, we have the
Frobenius norm as follows:

If n is even,

∥∥∥Circ(rn)(S D2F)
∥∥∥2

F
=

n
2
+

n−4
2∑

k=0

(F2k)2
(n
2
− k

)
+

n−6
2∑

k=0

(F2k+1)2
(n
2
− (k + 1)

)

+ (Fn−1 − 1)2 + (Fn − 1)2 +

n−2
2∑

k=0

(
r2k+1

)2
+

n−2
2∑

k=1

(
F0r2k

)2

+

n−4
2∑

k=0

(
F1r2k+1

)2
+ · · · + (r(Fn−1 − 1))2 .
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If n is odd,

∥∥∥Circ(rn)(S D2F)
∥∥∥2

F
=

n + 1
2
+

n−3
2∑

k=1

(F2k−2)2
(
n + 1

2
− k

)

+

n−3
2∑

k=1

(F2k−1)2
(
n + 1

2
− k

)
+ (Fn−1 − 1)2 + (Fn − 1)2

+

n−1
2∑

k=1

(
r2k

)2
+

n−3
2∑

k=0

(
F0r2k+1

)2
+ · · · +

(
Fn−4r2

)2
+ (r(Fn−1 − 1))2 .

Proof. The proof is based on the definition of the Frobenius norm given in (1.4) and the definition of
the Frobenius norm; we have

∥A∥2F =
n∑

i=1

n∑
j=1

|ai j|
2.

After the necessary values are entered and the basic calculations are performed, the desired result is
obtained.

Theorem 3.2. Consider the matrix defined in Eq (3.1) so that

Circ(rn)(S D2F) =
[

Circ(rn−1)(S D2F) Y
0 rn−1

]
,

where Y =
(
Fn − 1, r (Fn−1 − 1) , r2Fn−4, . . . , rn−2F0

)T
and

Circ(rn−1)
(
S D2F

)
=



1 F0 F1 · · · Fn−1 − 1
0 1 F0 · · · Fn−4

0 0 1 · · · rFn−5
...
...
...
. . .

...

0 0 0 · · · rn−31


.

If Circ(rn)(S D2F) is a nonsingular matrix, then the inverse of
(
Circ(rn)(S D2F)

)−1
is acquired as

follows: (
Circ(rn)(S D2F)

)−1
=

 (
Circ(rn−1)(S D2F)

)−1
−v

(
Circ(rn−1)(S D2F)

)−1
Y

0 v

 ,
where v = 1

rn−1 .

Proof. Because the statement is already valid in its general form for n, for n = 4, result is true; that is,

Circ(r4)
(
S D2F

)
=


1 F0 F3 − 1 F4 − 1
0 1 F0 r(F3 − 1)
0 0 1.r r2F0

0 0 0 r31

 ,
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det
(
Circ(r4)

(
S D2F

))
= r4 , 0.

Because the determinant is nonzero, the matrix is invertible.

(
Circ(r4)(S D2F)

)−1
=


1 −F0

F2
0

r + 1 − F3 F0

(
−

F3−1
r +

F2
0

r

)
+ 1 − F4

0 1 −
F0
r −

F3−1
r2 +

F2
0

r2

0 0 1
r −

F0
r2

0 0 0 1
r3

 ,

(
Circ(r3)(S D2F)

)−1
=


1 −F0

F2
0

r + 1 − F3

0 1 −
F0
r

0 0 1
r

0 0 0

 .
Our assertion is true for n = 4. Assume that our claim is true for n − 1. Then, by multiplying
Circ(rn)(S D2F) and

(
Circ(rn)(S D2F)

)−1
, we obtain

[
Circ(rn−1)(S D2F) Y

0 rn−1

]
.

 (
Circ(rn−1)(S D2F)

)−1
−v

(
Circ(rn−1)(S D2F)

)−1
Y

0 v

 = [
1 0
0 1

]
.

Theorem 3.3. The characteristic polynomial of the symmetric geometric semicirculant matrix
Circ(rn−1)(S D2F) satisfies the recurrence relation.

If n is even,

Pn (λ) = (1 − λ)nr
n2
4 .

If n is odd,

Pn (λ) = (1 − λ)nr
n2−1

4 .

Proof. Let Pn (λ) be the characteristic polynomial of the symmetric geometric semicirculant matrix.
Then, we have

Pn (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − λ F0 F1 . . . Fn−1 − 1 Fn − 1
0 1 − λ F0 . . . Fn−4 (Fn−1 − 1) r
0 0 1 − λ . . . (Fn−5) r (Fn−4) r2

...
...

...
. . .

...
...

0 0 0 . . . (1 − λ)rn−3 F0rn−2

0 0 0 . . . 0 (1 − λ)rn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Because the determinant of the upper triangular matrix is the product of the diagonal elements, the
desired equalities are obtained depending on whether n is even or odd. Therefore:

If n is even,
Pn (λ) = (1 − λ)nrr3r5 . . . rn−1 = (1 − λ)nr

n2
4 .

If n is odd,
Pn (λ) = (1 − λ)nr2r4 . . . rn−1 = (1 − λ)nr

n2−1
4 .
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4. SVD-based assessment of geometric circulant-type matrices for AI applications

In the context of modern artificial intelligence systems, the structural properties of matrices play a
crucial role in optimizing performance, stability, and computational efficiency. This section focuses
on evaluating the effectiveness of geometric circulant and symmetric geometric semicirculant matrices
through SVD, aiming to determine which structure is more advantageous for AI-driven algorithms,
especially in low-rank approximations and data compression tasks.

To investigate the practical significance of geometric circulant and symmetric geometric
semicirculant matrices in the context of artificial intelligence, this study presents a series of
numerical examples supported by SVD analysis. These examples were designed to illustrate
how each matrix structure behaves in terms of low-rank approximation, information retention, and
spectral characteristics. Following the analytical phase, the results were visualized graphically
to provide deeper insights into the comparative performance of these matrices. The graphical
representations further reveal trends that may not be immediately evident from numerical tables alone,
especially when assessing the applicability of these matrices in machine learning or neural network-
based architectures.

To illustrate the structure and behavior of the geometric circulant matrix, we begin with a numerical
example where the matrix size is set to n = 4, and the geometric ratio is chosen as r = 1/2. These
parameters are selected to ensure both clarity and meaningful spectral characteristics for comparison.
The matrix is then constructed according to the geometric circulant definition, and its singular
values are computed via SVD. These values are later compared to those of the symmetric geometric
semicirculant matrix generated using the same parameters.

All calculations and graphs given below were made using Mathematica and Python programs.
The motivation for constructing Fibonacci-based geometric and symmetric geometric semicirculant
matrices stems from the intrinsic properties of the Fibonacci sequence. Due to its close connection
with the golden ratio, the Fibonacci sequence naturally introduces a controlled geometric growth
and decay behavior into matrix entries. When combined with geometric weighting, this structure
yields matrices with enhanced regularity, predictable spectral characteristics, and improved numerical
stability. Moreover, Fibonacci-based constructions provide a biologically inspired and interpretable
framework that is particularly well-suited for low-rank approximation, data compression, and AI-
oriented matrix representations. In the symmetric geometric semicirculant setting, the Fibonacci basis
further promotes balanced energy distribution and reduced norm deviations, which explains its superior
performance observed in the numerical experiments.

Circ(1/24−1)
(
D2F

)
=


1 F0 F3 − 1 F4 − 1

r(F4 − 1) 1 F0 F3 − 1
r2(F3 − 1) r(F4 − 1) 1 F0

r3F0 r2(F3 − 1) r(F4 − 1) 1

 =


1 0 1 2
1 1 0 1

1/4 1 1 0
0 1/4 1 1

 .

We proceed with the SVD of the matrix, where it is factorized as Circ(1/24−1)
(
D2F

)
= UΣVT ,

enabling us to examine the distribution of singular values and the contribution of each component
to the overall structure, where U and VT are orthogonal matrices. Σ is a diagonal matrix containing
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singular values.

U =


0.7524 0.4688 −0.0765 −0.4561
0.4511 −0.2861 0.7829 0.3186
0.2584 −0.8353 −0.2986 −0.3822
0.4043 −0.0193 −0.5402 0.7377

 ,

Σ=


3.1368 0 0 0

0 1.3483 0 0
0 0 1.1692 0
0 0 0 0.3159

 ,

VT =


0.4043 0.2584 0.4511 0.7524
−0.0193 −0.8353 −0.2861 0.4688
0.5402 0.2986 −0.7829 0.0765
−0.7377 0.3822 −0.3186 0.4561

 .
In order to construct a low-rank approximation of the original matrix, we apply the soft-thresholding

technique to its singular values. This method, commonly used in signal processing and matrix
denoising tasks, involves modifying the diagonal matrix Σ obtained from SVD by applying a
threshold τ. Specifically, each singular value σi is replaced by σnew

i = max(σi − τ, 0), effectively
shrinking smaller singular values and eliminating those below the threshold. The resulting modified
diagonal matrix Σnew, along with the original U and V matrices, is then used to reconstruct the soft-
thresholded approximation Circ(r4−1)

(
D2F

)
= UΣnewVT . This new matrix captures the dominant

structure of the original data while suppressing less significant components, making it particularly
valuable in applications such as dimensionality reduction and robust learning in artificial intelligence
systems.

τ = σ
√

2logn = 0.4504
√

2log4 = 0.7499.

Here, σ represents the noise level and is usually taken as the standard deviation of small individual
values [10]. In this study, σ is computed by incorporating the smallest singular values 1.3483,
1.1692, and 0.3159 into the standard deviation calculation. The singular value 3.1368 is deliberately
excluded from this computation, because its inclusion would lead to a larger standard deviation, thereby
increasing the risk of excessive data loss.

Largest singular value: 3.1368 − 0.7499 = 2.3868.
In order of smallest singular values: 1.3483 − 0.7499 = 0.5983, 1.1692 − 0.7499 = 0.4192.
The smallest singular value is taken as 0 because it is negative.

Σnew =


2.3868 0 0 0

0 0.5983 0 0
0 0 0.4192 0
0 0 0 0

 ,

Approx
(
Circ(1/24−1)

(
D2F

))
= UΣnewVT =


0.7033 0.2201 0.7551 1.4805
0.6160 0.5193 0.2778 0.7551
0.1914 0.5395 0.5193 0.2201
0.2680 0.1914 0.6160 0.7033

 ,
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where Approx
(
Circ(1/24−1)

(
D2F

))
is a low-rank approximation of the matrix. In this new matrix, small

singular values are reset and given lower rank.

To assess the impact of the soft-thresholding process, we now compare the original matrix with
its low-rank approximation in terms of information loss and compression efficiency. This evaluation
is essential for understanding the trade-off between reducing the matrix size and preserving its core
data structure. By calculating the difference matrix and measuring its norm (e.g., Frobenius norm),
we quantify how much information has been discarded in favor of a more compact representation.
This allows us to judge whether the reduction in complexity yields a meaningful simplification while
still maintaining acceptable accuracy a crucial consideration in AI applications, where computational
efficiency and data fidelity must be carefully balanced.

∥∥∥∥Circ(1/24−1)
(
D2F

)
− Approx

(
Circ(1/24−1)

(
D2F

))∥∥∥∥
F
= 1.3370.

A heatmap visualization is presented to highlight in Figure 1 how matrix values are affected by
soft-thresholding and low-rank approximation.

(1) The original matrix has a distinct pattern where values such as 1 and 0 are dominant, creating a
sharper contrast in the heatmap.

(2) In the SVD-transformed matrix, the colors appear more blended, indicating that the singular value
decomposition has redistributed the information in a more continuous manner.

(3) The redder areas in original matrix (higher values) seem to fade slightly in SVD-transformed
matrix, suggesting some loss of sharpness in value distinction.

(4) The original matrix has exact 0 and 1 values, whereas the SVD-transformed matrix contains
values that are not strictly 0 or 1 but rather approximations.

(5) The following observations are obtained from the numerical results reported in Figure 1 and
illustrate the effect of the SVD-based approximation on individual matrix entries:

(a) In the original matrix within that range, [0, 2] = 1, but in the SVD-transformed matrix [0, 2] =
0.755125, showing that SVD reduces the magnitude slightly.

(b) Similarly, in the original matrix, [2, 0] = 0.25, whereas in the SVD-transformed matrix,
[2, 0] = 0.191422, meaning the low values in the original matrix tend to decrease even further
in the SVD-transformed matrix.

(6) If the SVD-transformed matrix were a perfect reconstruction, the heatmaps would be nearly
identical. However, since we see noticeable reductions in high values and minor shifts in small
values, some information loss has occurred.

(7) This is expected in SVD, especially if lower singular values were truncated, as they contribute to
finer details in the original matrix.
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(a) Original matrix (b) Post SVD matrix

Figure 1. Heatmaps generated from the original matrix and the post-SVD matrix for
geometric circulant matrix.

Consequently:

(1) The general structure of the matrix is preserved, but the transformation reduces sharp transitions,
making the data appear more smoothed out.

(2) The diagonal dominance weakens in the SVD-transformed matrix, indicating a redistribution of
information across elements.

Now, let us do the same operations with same values with the symmetric geometric semicirculant
matrix:

Circ(1/24−1)
(
S D2F

)
=


1 F0 F3 − 1 F4 − 1
0 1 F0 r (F3 − 1)
0 0 1r F0r2

0 0 0 1r3

 =


1 0 1 2
0 1 0 1/2
0 0 1/2 0
0 0 0 1/8

 .
We proceed with the SVD of the matrix, where it is factorized as Circ(1/24−1)

(
S D2F

)
= UΣVT .

U =


0.9764 −0.1865 0.0977 −0.0475
0.1956 0.9755 −0.0990 −0.0117
0.0813 −0.1151 −0.9853 0.0961
0.0410 0.0137 0.0987 0.9941

 ,

Σ=


2.5005 0 0 0

0 1.0294 0 0
0 0 0.4476 0
0 0 0 0.0542

 ,

VT =


0.3904 0.0782 0.4067 0.8221
−0.1811 0.9477 −0.2371 0.1131
0.2183 −0.2212 −0.8821 0.3537
−0.8757 −0.2163 0.0104 0.4313

 .
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Although the soft-thresholding technique effectively simplifies the matrix and suppresses less
significant components, in our case, the chosen threshold resulted in two singular values being reduced
to zero simultaneously, which indicates a potentially high level of information loss. To address this, we
adopt a more conservative and controlled approach: instead of using a fixed threshold, we manually
eliminate only the smallest singular value, preserving the remaining spectrum. This strategy allows
for dimensionality reduction while maintaining a greater portion of the matrix’s informative content.
The updated approximation is then reconstructed using the modified singular value set, and compared
again to the original matrix in terms of accuracy and structure preservation.

Σnew =


2.5005 0 0 0

0 1.0294 0 0
0 0 0.4476 0
0 0 0 0

 ,

Approx
(
Circ(1/24−1)

(
S D2F

))
= UΣnewVT =


0.98025 0.05059 1.0282 1.9905
0.0171 0.9480 −0.0285 0.5109
0.1808 −0.5144 0.2154 0.1038
0.0295 0.0633 0.0279 0.0910

 ,
where Approx

(
Circ(1/24−1)

(
S D2F

))
is the low-rank approximation of the matrix. In this new matrix,

small singular values are reset and given lower rank.
To assess the impact of the eliminate only the smallest singular value, we now compare the original

matrix with its low-rank approximation in terms of information loss and compression efficiency.
This evaluation is essential for understanding the trade-off between reducing the matrix size and
preserving its core data structure. By calculating the difference matrix and measuring its norm (e.g.,
Frobenius norm), we quantify how much information has been discarded in favor of a more compact
representation. This allows us to judge whether the reduction in complexity yields a meaningful
simplification while still maintaining acceptable accuracy, a crucial consideration in AI applications,
where computational efficiency and data fidelity must be carefully balanced.∥∥∥∥Circ(1/24−1)

(
S D2F

)
− Approx

(
Circ(1/24−1)

(
S D2F

))∥∥∥∥
F
= 0.6353.

Upon comparing the reconstruction errors between the geometric circulant and the symmetric
geometric semicirculant matrices, it was observed that the norm difference is consistently smaller in
the symmetric variant. This indicates that the symmetric geometric semicirculant structure provides a
more faithful low-rank approximation of the original matrix under the same thresholding conditions.

Figure 2 illustrates the following:
Original matrix: This color pattern suggests that the original matrix has a non-uniform distribution

of values, with some very significant values (such as 1, 2) contrasted with small or near-zero values.
In AI terms, such a matrix could cause difficulty for models that are sensitive to scale differences, as
values vary widely.

Post-SVD matrix: The post-SVD matrix has a more balanced distribution of values and color
transition, indicating that the SVD has effectively condensed the most significant information into
the primary components. This balance is ideal for AI algorithms, as it can prevent models from being
overwhelmed by large value discrepancies and ensure more efficient learning.
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(a) Original matrix (b) Post SVD matrix

Figure 2. Heatmaps generated from the original matrix and the post-SVD matrix for
symmetric geometric semi-circulant matrix (r = 1/2).

Is the transition suitable for AI?

(1) The new matrix after SVD appears to be well-suited for AI applications, especially in the context
of dimensionality reduction or feature extraction. The color transitions show a more uniform and
consistent distribution of values, making it easier for AI algorithms to process the data.

(2) The balanced scale after SVD is crucial because many AI algorithms (especially in supervised
learning) perform better when the data is normalized or standardized. By reducing the
discrepancies between large and small values, SVD has prepared the data to be used more
effectively in modeling, classification, or prediction tasks.

The color transitions in the heatmaps indicate that the post-SVD matrix has undergone a
useful transformation, where large value discrepancies have been reduced, making it more suitable
for machine learning and artificial intelligence applications. This change enhances the matrix’s
performance in tasks such as feature selection and model training by providing a more balanced and
structured representation of the data.

Motivated by this result, we further investigate whether the approximation quality can be improved
even more by tuning the geometric decay factor r. Specifically, we consider a reduced value of r = 1/4
and analyze its effect on the reconstruction error. This parameter adjustment aims to determine whether
a sharper geometric decay can lead to smaller singular value differences, thereby yielding an even lower
approximation error and better preservation of the original data structure.

Circ(1/44−1)
(
S D2F

)
=


1 F0 F3 − 1 F4 − 1
0 1 F0 r (F3 − 1)
0 0 1r F0r2

0 0 0 1r3

 =


1 0 1 2
0 1 0 1/4
0 0 1/4 0
0 0 0 1/64

 .
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We proceed with the SVD of the matrix, where it is factorized as Circ(1/44−1)
(
S D2F

)
= UΣVT .

U =


0.9941 −0.0984 0.0436 −0.0061
0.0994 0.9948 −0.0216 −0.0007
0.0414 −0.0258 −0.9985 0.0247
0.0051 0.0007 0.0249 0.9996

 ,

Σ=


2.4618 0 0 0

0 1.0064 0 0
0 0 0.2270 0
0 0 0 0.0069

 ,

VT =


0.4038 0.0404 0.4080 0.8177
−0.0978 0.9883 −0.1042 0.0514
0.1922 −0.0955 −0.9069 0.3623
−0.8890 −0.1110 0.0006 0.4441

 .
We manually eliminate only the smallest singular value, preserving the remaining spectrum. This

strategy allows for dimensionality reduction while maintaining a greater portion of the matrix’s
informative content. The updated approximation is then reconstructed using the modified singular
value set, and compared again to the original matrix in terms of accuracy and structure preservation.

Σnew =


2.4618 0 0 0

0 1.0064 0 0
0 0 0.2270 0
0 0 0 0

 ,

Approx
(
Circ(1/44−1)

(
S D2F

))
= UΣnewVT =


0.9999 0 1 2.00002

0 0.9999 0 0.2500
0.00015 0.000019 0.25 0
0.0061 0.00077 0 0.0125

 .
Here, the values that are 0 in the first, second, third, and fourth rows are −4.8577.10−6,
8.03812.10−8, −0.000076, −4.7594.10−6, respectively, and are considered as zero, where
Approx

(
Circ(1/44−1)

(
S D2F

))
is the low-rank approximation of the matrix. In this new matrix, small

singular values are reset and given lower rank.
To assess the impact of the eliminate only the smallest singular value, we now compare the original

matrix with its low-rank approximation in terms of information loss and compression efficiency.
This evaluation is essential for understanding the trade-off between reducing the matrix size and
preserving its core data structure. By calculating the difference matrix and measuring its norm (e.g.,
Frobenius norm), we quantify how much information has been discarded in favor of a more compact
representation. This allows us to judge whether the reduction in complexity yields a meaningful
simplification while still maintaining acceptable accuracy a crucial consideration in AI applications,
where computational efficiency and data fidelity must be carefully balanced.∥∥∥∥Circ(1/44−1)

(
S D2F

)
− Approx

(
Circ(1/44−1)

(
S D2F

))∥∥∥∥
F
= 0.00694.
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SVD was applied to two types of matrices: circulant matrices and symmetric semicirculant matrices,
each modified by a geometric decay factor denoted by r. The primary goal was to assess their structural
behavior for potential application in artificial intelligence architectures.

Initially, both matrices were multiplied by a geometric sequence with a ratio r = 1/2. The Frobenius
norm of the difference between the original and modified matrices was calculated to measure the effect
of geometric weighting. The results were as follows:

(1) For the circulant matrix, the norm was approximately 1.33.
(2) For the symmetric semicirculant matrix, the norm was significantly lower at 0.63.

Subsequently, a more aggressive decay factor r = 1/4 was applied exclusively to the symmetric
semicirculant matrix. This time, the Frobenius norm dropped drastically to approximately 0.00694,
indicating a strong structural preservation despite the decay. We see that this conclusion is confirmed
in Figure 3.

(a) Original matrix (b) Post SVD matrix

Figure 3. Heatmaps generated from the original matrix and the post-SVD matrix for
symmetric geometric semicirculant matrix (r = 1/4).

These findings suggest that symmetric semicirculant matrices demonstrate higher robustness under
geometric transformation, especially for smaller r, making them potentially more stable and reliable
for structured matrix representations in AI systems.

As demonstrated throughout the analysis, the symmetric geometric semicirculant matrix
consistently yields lower reconstruction errors compared to its geometric circulant counterpart when
subjected to SVD-based low-rank approximation. Motivated by this result, we explored the impact of
adjusting the geometric decay parameter r. By reducing r from 1/2 to 1/4, we achieved an even smaller
Frobenius norm difference, indicating a more accurate approximation. This improvement clearly
suggests that stronger geometric decay (i.e., smaller r) enhances the compressibility and structural
fidelity of the matrix after thresholding.

Figure 4 below visually reinforces this observation, revealing tighter similarity between the original
and approximated matrices as r decreases. Without doubt, further decreasing r would continue to
refine the approximation, approaching near-perfect reconstruction under soft-thresholded or manually
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eliminate method low-rank constraints. Circulant and symmetric semicirculant matrices, especially
with geometric weighting, offer a promising mathematical framework for AI systems. Their low
parameter count and structural regularity enable compact, efficient representations ideal for neural
networks and deep learning. Also, we would like to emphasize that the superior performance of
symmetric geometric semicirculant matrices is a combined effect of both their structure and the choice
of Fibonacci numbers as entries. The semicirculant structure introduces inherent redundancy and
symmetry, and the Fibonacci sequence through its intrinsic connection to the golden ratio induces
a natural geometric progression in the entries. Together, these features lead to a concentration of
energy in a few dominant singular values, which explains why low-rank approximations retain more
information and yield smaller Frobenius norm deviations.

Figure 4. Frobenius norm comparison for geometric and symmetric geometric semicirculant
matrices.

Figure 5 clearly illustrates total energy conservation for r = 1/2 for both circulant and symmetric
semicirculant matrices.

Figure 5. Total energy conservation percentage.

Thanks to fast Fourier transform (FFT) based operations, circulant matrices support faster
computations, benefiting convolutional neural networks (CNNs) and transformers. The geometric
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decay parameter introduces biologically inspired weighting, and our findings show that semi-circulant
matrices handle this decay more robustly suitable for modeling attention, memory fading, and gradient
damping. Due to their compressibility and simplicity, these matrices are also advantageous for
hardware-efficient AI on edge devices. In conclusion, they can serve as both efficient operators and
foundational components in scalable, interpretable AI models.

It should be emphasized that the objective of this study is not to introduce a new data compression
algorithm or to outperform classical approaches such as SVD or wavelet-based methods. Rather, the
proposed framework focuses on the mathematical structure and numerical behavior of geometrically
weighted circulant and symmetric geometric semicirculant matrices as structured operators for
approximation and dimensionality reduction. The numerical experiments presented in this study are
therefore intended as proof-of-concept demonstrations of feasibility and structural advantages, rather
than exhaustive benchmark comparisons.

Remark. The proposed approach emphasizes structural regularity, stability, and interpretability.
These properties make the matrices particularly suitable as building blocks in AI-oriented architectures
and operator design, rather than as direct competitors to classical compression algorithms.

5. Conclusions

In this study, we explored the construction and mathematical properties of geometrically weighted
circulant and symmetric semicirculant matrices, with a particular focus on their performance in low-
rank approximation via SVD. By analyzing key matrix features such as norms, determinants, and
inverses, we established a solid theoretical basis for these structures. Our numerical experiments
demonstrated that symmetric geometric semicirculant matrices yield consistently lower Frobenius
norm differences after soft-thresholding, suggesting that they preserve more meaningful information
during compression. Additionally, adjusting the geometric decay parameter r further improved
approximation accuracy, especially when reduced to r = 1/4, where matrix fidelity increased notably.
Through visual representations using heatmaps, we confirmed that smaller r values enhance structural
similarity between the original and approximated matrices. These findings underscore the potential
of symmetric semicirculant matrices, particularly those with tunable geometric weighting, as efficient
and interpretable operators for AI systems. Overall, this research highlights a promising direction in
matrix design for machine learning, offering compact and computationally efficient structures suitable
for scalable AI model training and hardware-friendly deployment.

Future research directions:
Building upon the promising results of this study, several directions for future research emerge.

First, a deeper investigation into the theoretical bounds of approximation error for symmetric
semicirculant matrices under varying decay parameters r could provide further insights into their
optimal configurations. Second, the integration of these structured matrices into actual neural network
architectures, particularly convolutional and transformer-based models, could validate their practical
utility in real-world AI tasks.

Moreover, exploring their compatibility with hardware acceleration strategies, such as field-
programmable gate arrays (FPGAs) or neuromorphic computing platforms, would address the growing
need for efficient AI computation in edge and mobile environments. Finally, extending this framework
to support non-Frobenius domains, such as graph-based learning or spatio-temporal data modeling,
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could broaden the applicability of semicirculant designs in modern machine learning. Another
natural extension is to investigate analogous geometric and semicirculant matrix structures constructed
from other well-known number sequences such as Lucas, Jacobsthal, Narayana, or generalized
Fibonacci-type sequences, and to compare their spectral and approximation properties. Additionally,
exploring alternative thresholding strategies beyond universal and soft-thresholding, including adaptive
or nonconvex thresholding methods, may further enhance denoising and compression performance.
From an application-oriented perspective, integrating the proposed matrices into real-world signal
processing, image analysis, or AI-driven dimensionality reduction tasks represents a promising avenue
for future research.
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23. B. Kuloğlu, J. F. Peters, M. Uysal, E. Özkan, Investigation of higher order Horadam numbers, their
associated transforms and self-similarity, Math. Montisnigri, LXIII (2025), 33–46.
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