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Abstract: With the help of deepfake algorithms and social bots, the problems of consciousness 

penetration and cognitive manipulation caused by the outbreak of internet rumors have become 

prominent. Accurately locating the rumor sources and quickly cutting off the critical paths of rumor 

propagation will become an effective ways to curb the explosive spread of rumors and the sudden 

accumulation of negative emotions. In this paper, we combine the complementary advantages of signed 

graph convolutional networks in spatial and spectral domains, propose an improved multirumor source 

localization framework for signed social networks, and extend the rumor centrality principle and 

source prominence theory to the scope of signed networks. First, structural balance theory is used to 

accurately model positive and negative social relations. Second, a signed graph convolutional network 

based on signed attention mechanism is proposed to extract the rumor centrality feature from the 

infection subgraph. Then, a two-stream graph convolutional network based on a label propagation 

mechanism is proposed to extract the source prominence feature from the subgraph containing only 

positive edges and the subgraph containing only negative edges, respectively. Finally, the center feature 

of the infected structure and the position distribution feature of infected and uninfected nodes are 

integrated in a unified framework for multirumor source localization. Extensive experimental results 

on four real-world social network datasets show that compared with state-of-the-art algorithms, our 

proposed algorithm further improves the accuracy and robustness in the task of multiple rumor source 

localization. 

Keywords: rumor source localization; signed graph convolutional network; signed attention 

mechanism; label propagation; two-stream network 
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1. Introduction 

The problem of source node localization is to infer the initial infection sources in the network 

according to one snapshot of the infection state of all nodes at a certain time [1]. Because there may 

be one or more infection sources, the source localization problem is further divided into single-source 

localization and multisource localization. Most of the current research ideas are to combine node 

infection status and network topology for source localization. Multiple rumor source localization 

(MRSL) determines the location of multiple rumor sources in the context of online social networks. 

Internet rumors spread rapidly, often with emotional polarity, and even containing ideological views 

which may erode mainstream values, lead to social trust crisis, and threaten national political security. 

Therefore, rumor source localization has increasingly become a hotbed for research activity [2]. 

There are several possible solutions to the problem of MRSL. The first approach is from the 

perspective of complex networks: the source centrality index is proposed, and the center of the 

infection subgraph is defined as the source node. Common methods include rumor centrality [3], a 

combination of eccentricity and closeness centrality [4], and so on. However, these methods are unable 

to dynamically model the propagation process. The second approach is from the perspective of 

diffusion models, proposing models suitable for online social networks. Existing diffusion models are 

usually divided into two categories: influence models and infection models [5]. Common influence 

models include the independent cascade (IC) model and the linear threshold (LT) model, while 

common infection models include the susceptible–infected (SI) model and the susceptible–infected–

recovered (SIR) model. Due to the prevalence of emotional polarity in social networks, Zhang et al. [6] 

proposed an asymmetric flip cascade (MFC) model based on signed social networks, considering the 

asymmetry of the influence of positive and negative edges on information dissemination. They 

increased the activation probability of positive edges through the asymmetric boosting coefficient and 

then extracted a set of the roots of infection cascade trees as the rumor source set. Li et al. [7] 

incorporated the theory of social psychology to calculate the infection probability of positive and 

negative edges, respectively, and constructed the signed-SI (S-SI) model for epidemic spreading 

dynamics on signed social networks. Jiang et al. [1] proposed a signed-SIR (S-SIR) model to adapt to 

signed networks and used an improved message passing algorithm for source identification. However, 

these methods require the diffusion model as prior knowledge.  

A third approach, from the perspective of label propagation, multisource rumor localization is 

conducted by using the source prominence theory without knowing the underlying diffusion model. 

Wang et al. [8] were the first to propose label propagation-based source identification (LPSI). At first, 

each node is assigned an initial label value. After that, their label values are propagated and updated 

iteratively. Finally, the convergence result is obtained, where the local maximum points are identified 

as the source nodes. Subsequently, many variants of the LPSI algorithm emerged. Ma et al. [9] 

combined the direction-induced search (DIS) and LPSI algorithms and proposed the DISLPSI 

framework, which adaptively selects observer nodes by the adaptive observation node selection 

(AONS) algorithm. First, observer nodes are dynamically selected to record the propagation direction. 

Then, the source nodes are traced back through iterative search. However, observer-based source 

localization methods not only have performance directly related to the selection of observer nodes but 

also require additional information beyond network snapshots such as the infection paths (i.e., the 

neighbors that sent the information) and infection times (i.e., the times when the information was 
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received) recorded by the observer nodes. Such information is often difficult to obtain in real-world 

social networks, however.  

A fourth approach, from the perspective of backpropagation, source localization is regarded as 

the inverse of information dissemination, and the backpropagation algorithm is utilized to detect the 

source node. Qiu et al. [10] proposed a single-source localization method (BPSL) applicable to general 

networks which takes into account both infection structure and time delay. First, they put forward an 

observer selection strategy based on maximizing influence to minimize the number of observers. 

Second, they proposed a source localization method using the reverse propagation of timestamps. 

However, this algorithm assumes that the transmission probabilities of all edges are the same. Ma 

et al. [11] first proposed a single-source localization method for signed networks, taking into account 

both the propagation structure and the sign characteristics. They first introduced an observer selection 

strategy based on effective distance to optimize the quality of observers and then proposed a source 

localization method based on reverse propagation. Although this algorithm takes into account the 

difference in the propagation ability between positive and negative edges, showing that positive edges 

usually have a stronger propagation ability, it does not normalize the relationship strength of the same-

order neighbors and does not consider the balance issue between positive and negative edges. 

The fifth approach is to use graph neural networks for source localization from the perspective of 

machine learning. Currently, the research on information dissemination in complex networks has 

gradually shifted from modeling-driven methods to data-driven methods [12‒16]. Graph convolutional 

networks (GCNs) are based on the message-passing mechanism, which realizes the layer-wise 

propagation of information in the network by iteratively aggregating neighborhood information [17]. 

Dong et al. [18] were the first to apply GCNs to solve the multisource localization problem, proposing 

graph convolutional network-based source identification (GCNSI). They took the convergence result 

of the LPSI algorithm as the model input and considered the situation where positive and negative 

label values offset each other in label propagation. They aggregated source prominence features from 

three aspects (the entire graph, only infected nodes, and only uninfected nodes) to achieve multiple 

rumor source localization. Ling et al. [19] were the first to propose a source localization variational 

autoencoder (SL-VAE) from a probabilistic perspective, combining the forward diffusion estimation 

model with the deep generative model to quantify the uncertainty of the source by approximating the 

distribution of the diffusion source and learning the generation prior to represent the complex patterns 

of source diffusion with the prior knowledge provided by the observed source-observation pairs. 

However, VAEs may not sufficiently model the uncertainty of diffusion sources, Xu et al. [20] 

proposed a probabilistic graph diffusion model for source localization (PGSL), which integrates the 

deep generative model with the graph neural network (GNN) model. Their PGSL model handles the 

uncertainty of the diffusion process by normalizing flows and invertible transformations and is 

empowered with GNNs to capture the information dissemination features, which are able to 

reconstruct the graph diffusion process under arbitrary diffusion patterns. Yan et al. [21] introduced 

reversible residual networks and constructed a discrete denoising diffusion model (DDMSL) for 

restoring diffusion paths and locating diffusion sources. However, this method requires prior 

knowledge about the propagation model. GNN-based signed graph embedding methods, although 

specifically designed for signed graphs to learn high-level features and typically utilize multiorder 

neighbor aggregation and multifaceted attention to fully capture local and global structural 

features [22,23], mostly fail to learn universal node representations and are only applicable to specific 

downstream tasks such as link sign prediction and community detection, lacking strong specificity for 

the multisource rumor localization task. A summary of the comparison of the main literature is 

presented in Table 1. 
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Table 1. Comparison table of relevant algorithms. 

Due to the fact that social relationships in online social networks often have emotional polarity, 

such as trust or distrust, friends or enemies, positive attitudes or negative attitudes, users tend to 

maintain the same opinion with friends and the opposite opinion with enemies, thus forming signed 

social networks [24]. Moreover, most existing studies ignore the negative edge characteristics and treat 

them equally with positive edges [25]. Therefore, this paper considers the structural balance properties 

of signed social networks, sufficiently exploits the different roles of heterogeneous relationships on 

rumor propagation, and proposes a signed graph convolutional network algorithm combining spatial 

and spectral domains to specifically address the problem of multirumor source localization in signed 

social networks. Moreover, the principle of rumor centrality and the theory of source saliency are 

extended to signed social networks. 

The unique advantage of this paper lies in its simultaneous consideration of signed networks and 

multisource localization, integrating sociological theories with source location features to conduct 

multisource localization in online social networks. Specifically, compared with the source localization 

methods in unsigned graphs, this paper takes into account the characteristics of signed social networks, 

treats positive and negative neighbors differently, and utilizes social psychological theories. Compared 

with the signed graph embedding methods, this paper utilizes the centrality and salience of sources, 

making the learned representations more regular. Compared with the methods that require additional 

information and are applicable to specific propagation models, the algorithm in this paper is more 

general and practical, only using network snapshots and being applicable to general propagation 

models. 

The main innovations of this paper are as follows: 

(1) Based on the theory of structural balance, this paper optimizes the propagation rules and 

proposes an information propagation model suitable for signed social networks, namely the 

asymmetric boosting signed susceptible–infected model (AS-SI), to construct the information 

dissemination process in signed social networks. First, considering the different transmission rates of 

positive and negative edges, the positive edges are enhanced asymmetrically. Second, it takes into 

Year Name Network type Propagation 

model 

Additional information 

 

Algorithm type 

2017 LPSI [8] Unsigned network General No Traditional algorithm 

2024 DISLPSI [9] Signed network SI Dynamic selection of 

observer 

Traditional algorithm 

2022 BPSL [10] Unsigned network SI Observer selection based on 

influence maximization 

Traditional algorithm 

2024 Source localization based on 

reverse propagation [11] 

Signed network SI Observer selection based on 

effective distance 

Traditional algorithm 

2019 GCNSI [18] Unsigned network General No Learning algorithm 

2022 SL-VAE [19] Unsigned network General Source-observation pairs Learning algorithm 

2024 PGSL [20] Unsigned network General No Learning algorithm 

2023 DDMSL [21] Unsigned network SIR Infection rate and Recovery 

rate 

Learning algorithm 

2023 MUSE [22] Signed network General No Learning algorithm 

2024 SiG [23] Signed network General No Learning algorithm 
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account the influence of structural balance on the transmission rate, that is, the balanced triangle 

structure promotes the information dissemination of positive edges and inhibits that of negative edges. 

Finally, the ultimate AS-SI model based on the SI model is obtained. 

(2) This paper leverages the complementary advantages of the rumor centrality principle and the 

source prominence theory to propose a spatial and spectral domain combined signed graph 

convolutional network architecture (3SGCN) for addressing the problem of multiple rumor source 

localization in online social network settings. First, the principle of rumor centrality is generalized to 

signed networks, and a signed graph convolutional network based on signed attention mechanism is 

proposed, which implicitly encodes the positional information of nodes in the infection subgraph. 

Second, the theory of source prominence is generalized to signed networks, and a two-stream graph 

convolutional network based on label propagation mechanism is proposed to learn the positional 

distribution features of infected and uninfected nodes. Finally, the multilayer perceptron (MLP) 

network is used for a binary classification task to detect whether each node is an infection source or 

not. 

The structure of this paper is arranged as follows. Section 2 defines the research problem and 

constructs the propagation model. Section 3 elaborates on the overall framework of the proposed 

algorithm, the two main modules it contains, and the objective function that matches the task. 

Section 4 evaluates the effectiveness of the proposed method through a large number of experiments. 

Section 5 summarizes the entire paper, points out the limitations of the proposed algorithm, and 

indicates directions for future development. 

2. Problem modeling 

2.1. Problem definition 

Consider the infected snapshot 𝐺(𝑉, 𝐸, 𝑆, 𝐴) of an undirected signed network at a specific time, 

where 𝑉 is the node set, 𝐸 is the edge set, 𝑆 is the vector formed by the infected states of all nodes, 

and 𝐴  is the adjacency matrix. Because this paper regards the MRSL problem as a binary 

classification task in machine learning, that is, to determine whether each node is a rumor source or 

not [18], it is defined as finding a classification function 𝑓: 𝑉 → {0,1} such that the set of predicted 

rumor sources 𝑅∗ satisfies Eq (2.1), where 𝑓(𝑣𝑖) = 0  indicates that 𝑣𝑖  is not rumor source; 

otherwise, 𝑓(𝑣𝑖) = 1  indicates it is rumor source, 𝑅  is the set of true rumor sources, and 𝑅∗ =
{𝑣𝑖 ∈ 𝑉|𝑓(𝑣𝑖) = 1}. 

𝑅∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑅

|𝑅∗∩𝑅|

|𝑅∗∪𝑅|
.                            (2.1) 

It should be noted that, considering the bidirectional characteristics of rumor propagation and 

diffusion [26], this paper mainly studies the information dissemination patterns and source localization 

strategies in undirected signed networks. The mathematical notations of this paper are summarized in 

Table 2. 
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Table 2. Mathematical notations. 

Notation Description 

𝑣𝑖 The node 𝑖. 

𝑒𝑖,𝑗 The edge between 𝑣𝑖 and 𝑣𝑗 . 

𝑠𝑖 The infection state of 𝑣𝑖, each 𝑠𝑖 ∈ {−1,1}, where 𝑠𝑖 = −1 means that 𝑣𝑖 is uninfected, and otherwise 𝑠𝑖 = 1 

means it is infected. 

𝑎𝑖𝑗 The sign of 𝑒𝑖𝑗, each 𝑎𝑖𝑗 ∈ {−1,0,1}, where 𝑎𝑖𝑗 = −1 means that 𝑒𝑖𝑗 is a negative edge, 𝑎𝑖𝑗 = 1 means that 

𝑒𝑖𝑗 is a positive edge, and 𝑎𝑖𝑗 = 0 means that there exists no edge between 𝑣𝑖 and 𝑣𝑗 . 

𝐺(𝑉, 𝐸, 𝑆, 𝐴) The infected snapshot of an undirected signed network at a given time, where 𝑉 is the node set, 𝐸 is the edge set, 

𝑆 is the vector composed of the infected states of all nodes, 𝐴 is the adjacency matrix, 𝑠𝑖 is an element of 𝑆, and 

𝑎𝑖𝑗 is an element of 𝐴. 

𝐺1(𝑉, 𝐸1, 𝑆, 𝐴1) The subgraph formed by all nodes and their positive edges in 𝐺 , where 𝐸1  is the edge set of 𝐺1 , 𝐴1  is the 

adjacency matrix of 𝐺1, and its elements take values from the set {0,1}, where 0 indicates no edge exists, and 1 

indicates an edge exists. 

𝐺2(𝑉, 𝐸2, 𝑆, 𝐴2) The subgraph formed by all nodes and their negative edges in 𝐺 , where 𝐸2  is the edge set of 𝐺2 , 𝐴2  is the 

adjacency matrix of 𝐺2, and its elements take values from the set {0,1}, where 0 indicates no edge exists, and 1 

indicates an edge exists. 

𝐷1 The degree matrix of 𝐴1, which is a diagonal matrix with its (𝑖, 𝑖)-element equal to the sum of the 𝑖-th row of 𝐴1. 

𝐷2 The degree matrix of 𝐴2. 

𝜆 The asymmetric boosting coefficient, 𝜆 > 1. 

𝛾 The constant infection probability, 0 < 𝛾 < 1. 

𝜇𝑖,𝑗
+  The positive edge transmission rate. 

𝜇𝑖,𝑗
−  The negative edge transmission rate. 

𝛽𝑖,𝑗
+  The positive edge infection intensity. 

𝛽𝑖,𝑗
−  The negative edge infection intensity. 

𝛼𝑖,𝑗
+  The positive edge attention weight. 

𝛼𝑖,𝑗
−  The negative edge attention weight. 

𝑁𝑖 The set of 𝑣𝑖’s direct linked neighbors. 

𝑁𝑖
+ The set of 𝑣𝑖’s neighbors linked by a positive edge. 

𝑁𝑖
− The set of 𝑣𝑖’s neighbors linked by a negative edge. 

𝑁𝑖,𝑙 The set of 𝑙-order neighbors of 𝑣𝑖, where 𝑁𝑖,1 = 𝑁𝑖. 

𝑁𝑖,𝑙
+  The set of 𝑙-order neighbors of 𝑣𝑖 connected with (𝑙 − 1)-order neighbors by a positive edge, where 𝑁𝑖,1

+ = 𝑁𝑖
+. 

𝑁𝑖,𝑙
−  The set of 𝑙-order neighbors of 𝑣𝑖 connected with (𝑙 − 1)-order neighbors by a negative edge, where 𝑁𝑖,1

− = 𝑁𝑖
−. 

𝐵𝑖(𝑙) The set of 𝑙-order positive neighbors that 𝑣𝑖 reaches through a balanced path of length 𝑙. 

𝑈𝑖(𝑙) The set of 𝑙-order negative neighbors that 𝑣𝑖 reaches through an unbalanced path of length 𝑙. 

𝐻1
(𝑙)

 The result of performing 𝑙-layer spectral domain GCN on 𝐺1. 

𝐻2
(𝑙)

 The result of performing 𝑙-layer spectral domain GCN on 𝐺2. 

𝐻 The final output of the spatial GCN module, where the element of 𝐻 is denoted as ℎ𝑖. 

𝐻′ The final output of the spectral GCN module, where the element of 𝐻′ is denoted as ℎ𝑖
′. 

ℎ𝑖 The final position embedding of 𝑣𝑖, namely the feature representation of rumor centrality. 

ℎ𝑖
′ The final label value of 𝑣𝑖, namely the feature representation of source prominence. 

𝐿1 The number of convolutional layers in the spatial GCN module. 

𝐿2 The number of convolutional layers in the spectral GCN module. 
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2.2. Propagation model 

According to the characteristics of rumor spreading in online social networks, based on the 

structural balance theory of social psychology, combining the complementary advantages of the S-SI 

and MFC models, this paper proposes an asymmetric boosting signed susceptible–infected (AS-SI) 

model. First, inspired by the S-SI propagation model [7], in accordance with the structural balance 

theory and considering the balance of triangular structure, a balanced triangular relationship facilitates 

the dissemination of the same information, and an unbalanced one promotes the propagation of 

opposite information. Thus, the transmission rate of a positive or negative edge is defined as the 

proportion of balanced or unbalanced triangles, respectively, in which it is involved. Second, inspired 

by the MFC propagation model [6], considering the different effects of heterogeneous relationships on 

the transmission rates, the asymmetric boosting coefficient 𝜆  is introduced to improve the 

transmission rate of positive edges. Finally, the AS-SI model of this paper is obtained by optimizing 

the SI model. The specific calculation process is as follows: 

In accordance with the structural balance theory in social psychology [27,28], taking into account 

the balance of triangular structures and that of propagation paths, balanced triangles and unbalanced 

triangles, as well as balanced paths and unbalanced paths, are defined respectively, as shown in 

Figure 1. The number of negative edges in balanced triangles and balanced paths is even, while in 

unbalanced triangles and unbalanced paths, it is odd. 

 

Figure 1. The structural balance theory. (a) The balance of triangular structures; (b) The 

balance of propagation paths. 

(1) According to the balance of triangles, the transmission rate and infection intensity of 

positive/negative edges are defined. 

First, based on the structural balance theory, the transmission rate of a positive/negative edge is 

calculated. If the edge 𝑒𝑖,𝑗 constitutes a triangular structure with other edges in the network, when 

𝑎𝑖𝑗 = 1 , the 𝑒𝑖,𝑗 ’s transmission rate 𝜇𝑖,𝑗
+   is presented in Eq (2.2); when 𝑎𝑖𝑗 = −1 , the 𝑒𝑖,𝑗 ’s 

transmission rate 𝜇𝑖,𝑗
−  is presented in Eq (2.3). If the edge 𝑒𝑖,𝑗 does not form a triangular structure 

with any edge, when 𝑎𝑖𝑗 = 1, the 𝑒𝑖,𝑗’s transmission rate is 𝜇𝑖,𝑗
+ = 1, and when 𝑎𝑖𝑗 = −1, the 𝑒𝑖,𝑗’s 

transmission rate is 𝜇𝑖,𝑗
− = 0. 
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where 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘  denote the vertices of the triangle, and |𝑁𝑖 ∩ 𝑁𝑗|  denotes the total number of 

triangles that contain the edge 𝑒𝑖,𝑗. 

Second, based on the AS-SI model proposed in this paper, the infection intensity of the 

positive/negative edge is computed. When 𝑎𝑖𝑗 = 1, the infection intensity 𝛽𝑘,𝑗
+  of 𝑒𝑖,𝑗 is shown in 

Eq (2.4). When 𝑎𝑖𝑗 = −1, the infection intensity 𝛽𝑘,𝑗
−  of 𝑒𝑖,𝑗 is shown in Eq (2.5). 

𝛽𝑘,𝑗
+ = 𝜆 × 𝛾 × 𝜇𝑖,𝑗

+ ,                              (2.4) 

𝛽𝑘,𝑗
− = 𝛾 × 𝜇𝑖,𝑗

− ,                                (2.5) 

where 𝜆  denotes the asymmetric boosting coefficient, and 𝛾  denotes the constant infection 

probability. 

(2) According to the balance of the path, the set of positive/negative neighbors is defined 

recursively. 

Based on the structural balance theory, the positive neighbors on the balanced path are regarded 

as friends, and the negative neighbors on the unbalanced path are regarded as enemies. When 𝑙 = 1, 

the 1-order positive neighbors set 𝐵𝑖(1)  and the 1-order negative neighbors set 𝑈𝑖(1)  of 𝑣𝑖  are 

expressed in Eqs (2.6) and (2.7), respectively. When 𝑙 > 1, the set of 𝑙-order positive neighbors 𝐵𝑖(𝑙) 

and the set of 𝑙 -order negative neighbors 𝑈𝑖(𝑙)  of 𝑣𝑖  are expressed in Eqs (2.8) and (2.9), 

respectively: 

𝐵𝑖(1) = 𝑁𝑖
+ = {𝑣𝑗|𝑣𝑗 ∈ 𝑁𝑖

+},                           (2.6) 

𝑈𝑖(1) = 𝑁𝑖
− = {𝑣𝑗|𝑣𝑗 ∈ 𝑁𝑖

−},                           (2.7) 

𝐵𝑖(𝑙) = {𝑣𝑗|𝑣𝑘 ∈ 𝐵𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘
+} ∪ {𝑣𝑗|𝑣𝑘 ∈ 𝑈𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘

−},           (2.8) 

𝑈𝑖(𝑙) = {𝑣𝑗|𝑣𝑘 ∈ 𝑈𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘
+} ∪ {𝑣𝑗|𝑣𝑘 ∈ 𝐵𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘

−}.           (2.9) 

The following provides an example for illustration. As shown in Figure 2(a), suppose edge 𝑒1,2 

forms only three triangular structures in the network, namely 𝑣1𝑣2𝑣3, 𝑣1𝑣2𝑣4, and 𝑣1𝑣2𝑣5. For the 

first two triangles, because there are an even number of negative edges, they are balanced triangles. 

The last triangle, however, is an unbalanced triangle due to the odd number of negative edges. As edge 

𝑒1,2 is a positive edge, its propagation rate is the proportion of balanced triangles, that is, 𝜇1,2
+ =

2

3
. As 

shown in Figure 2(b), if the current node is 𝑣1 , then 𝑣2  and 𝑣3  are its third-order positive and 

negative neighbors, respectively. This is because the path from 𝑣1 to 𝑣2 contains an even number of 

negative edges, making it a balanced path. Conversely, the path from 𝑣1 to 𝑣3 is an unbalanced path. 
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Figure 2. Simple example. (a) Calculate the propagation rate of the edge; (b) Determine 

positive and negative neighbors. 

3. General framework 

In this paper, by integrating the complementary advantages of model-driven and data-driven 

approaches, a new architecture of signed graph convolutional networks combining spatial and spectral 

domains (3SGCN) is proposed for multisource rumor localization in online social networks. First, 

according to the characteristics of rumor propagation in signed social networks, an AS-SI model based 

on structural balance theory and asymmetric enhancement is proposed to describe the distinct 

contributions of positive and negative edges in information dissemination. Second, the original 

network snapshot is divided into the subgraph consisting of only infected nodes and their edges, the 

subgraph consisting of only positive edges and the subgraph consisting of only negative edges, and the 

propagation structure features are extracted from different perspectives to encode the positional 

information of nodes. Finally, the principle of rumor centrality and the theory of source prominence 

are generalized to the signed network, establishing the coherent logic between qualitative theoretical 

models and quantitative learning algorithms, comprehensively extracting the propagation structural 

features and learning the positional representation from big data, thereby improving the accuracy and 

robustness of the multisource rumor localization task in the specific context of signed social networks. 

The overall framework of the proposed 3SGCN is shown in Figure 3, mainly including graph 

preprocessing, the spatial domain GCN module, the spectral domain GCN module, and the MLP 

classifier. 

 

Figure 3. The overall framework of 3SGCN mainly consists of four modules, namely 

graph preprocessing, spatial domain GCN module, spectral domain GCN module, and 

MLP classifier. 
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The first module is graph preprocessing, which splits the network snapshot into different 

subgraphs, namely the infection subgraph, the positive-only subgraph, and the negative-only subgraph. 

In the spatial GCN module, the initial embedding is first obtained by applying the signed spectral 

embedding (SSE) algorithm based on signed spectral clustering. Then, the signed graph convolutional 

network based on the signed attention mechanism proposed in this paper is utilized to extract the 

propagation structure features of the infected nodes. The characteristics of this module are that it 

considers the underlying propagation model and the interrelationship between positive and negative 

edges, learns the position information of the source nodes from the mixed path, and generalizes the 

principle of rumor centrality to signed social networks. In the spectral GCN module, the initial 

embedding is first obtained by utilizing the LPSI algorithm based on label propagation, and then the 

two-stream graph convolutional network based on the label propagation mechanism proposed in this 

paper is employed to extract the position distribution features of the infected nodes and the uninfected 

nodes. This module does not rely on the underlying propagation model and treats positive and negative 

edges differently, learning the position information of the source nodes from the single path and 

generalizing the source significance theory to the signed social network. The last module is the MLP 

classifier. In this paper, the MRSL problem is transformed into a binary classification problem for all 

nodes, and the MLP is used to output whether each node is a rumor source or not. 

3.1. Spatial GCN module 

In accordance with the principle of rumor centrality, the likelihood that node 𝑣𝑖 being the source 

node in the infection subgraph is proportional to the weighted sum of the number of distinct spreading 

orders starting from this node, where the weight of a spreading order could depend on the specific 

graph structure and spreading time distribution of the SI model. In other words, the source node tends 

to be in the center position of the network structure, and its paths to all nodes could be as many and as 

close as possible. Hence, this paper extends to signed social networks, encodes all the reachable paths 

of nodes from balanced and unbalanced paths respectively, and employs the normalized positive and 

negative infection intensities as signed attention weights, proposing a signed graph convolutional 

network based on a signed attention mechanism to learn the source centrality representation of nodes 

by extracting the propagation structure features of infected nodes. It is worth noting that for the 

embedding representation of uninfected nodes, this paper sets them as zero vectors of the same 

dimension. The details of this module are as follows: 

(1) The initial position embedding of the infected nodes is obtained by employing the SSE 

algorithm [29], and the 𝑙-order positively linked neighbor set 𝑁𝑖,𝑙
+ and the 𝑙-order negatively linked 

neighbor set 𝑁𝑖,𝑙
−  of the infected node 𝑣𝑖 are recursively defined. When 𝑙 = 1, 𝑁𝑖,1

+  and 𝑁𝑖,1
−  are 

presented by Eqs (3.1) and (3.2); when 𝑙 > 1, 𝑁𝑖,𝑙
+  and 𝑁𝑖,𝑙

− are depicted in Eqs (3.3) and (3.4). 

𝑁𝑖,1
+ = 𝑁𝑖

+ = {𝑣𝑗|𝑣𝑗 ∈ 𝑁𝑖
+},                            (3.1) 

𝑁𝑖,1
− = 𝑁𝑖

− = {𝑣𝑗|𝑣𝑗 ∈ 𝑁𝑖
−},                            (3.2) 

𝑁𝑖,𝑙
+ = {𝑣𝑗|𝑣𝑘 ∈ 𝐵𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘

+} ∪ {𝑣𝑗|𝑣𝑘 ∈ 𝑈𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘
+},            (3.3) 

𝑁𝑖,𝑙
− = {𝑣𝑗|𝑣𝑘 ∈ 𝐵𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘

−} ∪ {𝑣𝑗|𝑣𝑘 ∈ 𝑈𝑖(𝑙 − 1) ∧ 𝑣𝑗 ∈ 𝑁𝑘
−},            (3.4) 

where the 𝑣𝑖’s 𝑙-order neighbor set 𝑁𝑖,𝑙 = 𝑁𝑖,𝑙
+ ∪ 𝑁𝑖,𝑙

− = 𝐵𝑖(𝑙) ∪ 𝑈𝑖(𝑙), 𝐵𝑖(𝑙) represents the 𝑙-order 

positive neighbor set of 𝑣𝑖, and 𝑈𝑖(𝑙) represents the 𝑙-order negative neighbor set of 𝑣𝑖. 

(2) Inspired by the signed attention networks [30,31] but considering the differences in the 
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propagation model and learning tasks, this paper proposes a calculation method for positive/negative 

attention weights to measure the trust degree between social users. 

Let the 𝑣𝑖 ’s (𝑙 − 1) -order neighbor be 𝑣𝑘  and 𝑙 -order neighbor be 𝑣𝑗  . When 𝑎𝑘𝑗 = 1 , the 

𝑒𝑘,𝑗 ’s positive attention weight is 𝛼𝑘,𝑗
+   as shown in Eq (3.5); when 𝑎𝑘𝑗 = −1 , the 𝑒𝑘,𝑗 ’s negative 

attention weight is 𝛼𝑘,𝑗
−  as shown in Eq (3.6). 

𝛼𝑘,𝑗
+ =

𝛽𝑘,𝑗
+

|𝑁𝑖,𝑙
+ |

,                                (3.5) 

𝛼𝑘,𝑗
− =

𝛽𝑘,𝑗
−

|𝑁𝑖,𝑙
− |

,                                (3.6) 

where 𝛽𝑘,𝑗
+   indicates the positive infection intensity of 𝑒𝑘,𝑗 , 𝛽𝑘,𝑗

−   indicates the negative infection 

intensity of 𝑒𝑘,𝑗, and |∙| indicates the modulus of a set. 

(3) Inspired by signed graph convolutional networks (SGCN) [32], in order to align with the 

multirumor source localization task in signed social networks, this paper proposes a signed graph 

convolutional network based on the signed attention mechanism. It performs neighborhood 

aggregation from balanced and unbalanced paths, respectively, and assigns distinct attention weights 

to positive and negative neighbors. Eventually, the high-order friend and enemy representations of 

nodes are obtained. The specific process is depicted in Figure 4. 

 

Figure 4. A simple network with eight nodes for illustrating the aggregation process in 

spatial GCN module. (a) represents the given original graph. (b) denotes the tree-like graph 

derived from the original graph. (c) illustrates the graph structure during the aggregation 

of the third layer. 

Let the 𝑣𝑖’s initial embedding representation be ℎ𝑖
(0)

, and after each layer of aggregation, two 

representations of 𝑣𝑖 can be obtained, namely the friend and enemy representations. 

First, after the first aggregation layer, the 1-order friend representation ℎ𝑖
𝐵(1)

 and the 1-order 

enemy representation ℎ𝑖
𝑈(1)

 of 𝑣𝑖 are obtained, as expressed in Eqs (3.7) and (3.8). 

ℎ𝑖
𝐵(1)

= 𝜎 (𝑊𝐵(1) [∑𝑣𝑗∈𝐵𝑖(1) 𝛼𝑖,𝑗
+ × ℎ𝑗

(0)
, ℎ𝑖

(0)
]),                      (3.7) 

ℎ𝑖
𝑈(1)

= 𝜎 (𝑊𝑈(1) [∑𝑣𝑗∈𝑈𝑖(1) 𝛼𝑖,𝑗
− × ℎ𝑗

(0)
, ℎ𝑖

(0)
]),                      (3.8) 

where ℎ𝑖
(0)

 and ℎ𝑗
(0)

 respectively denote the initial embedding representations of 𝑣𝑖 and 𝑣𝑗 , 𝑊𝐵(1) 

and 𝑊𝑈(1) are the weight matrices to be learned, and 𝜎 denotes the activation function. 
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Second, after the 𝑙 -layer (𝑙 ≥ 2)  of aggregation, the 𝑙 -order friend representation ℎ𝑖
𝐵(𝑙)

  and 

the 𝑙-order enemy representation ℎ𝑖
𝑈(𝑙)

 of 𝑣𝑖 are presented in Eqs (3.9) and (3.10). 

ℎ𝑖
𝐵(𝑙)

= 𝜎 (𝑊𝐵(𝑙) [∑𝑣𝑘∈𝐵𝑖(𝑙−1)

𝑣𝑗∈𝐵𝑖(𝑙)

𝛼𝑘,𝑗
+ × ℎ𝑗

𝐵(𝑙−1)
, ∑𝑣𝑘∈𝑈𝑖(𝑙−1)

𝑣𝑗∈𝐵𝑖(𝑙)

𝛼𝑘,𝑗
− × ℎ𝑗

𝑈(𝑙−1)
, ℎ𝑖

𝐵(𝑙−1)
]),            

(3.9) 

ℎ𝑖
𝑈(𝑙)

= 𝜎 (𝑊𝑈(𝑙) [∑𝑣𝑘∈𝑈𝑖(𝑙−1)

𝑣𝑗∈𝑈𝑖(𝑙)

𝛼𝑘,𝑗
+ × ℎ𝑗

𝑈(𝑙−1)
, ∑𝑣𝑘∈𝐵𝑖(𝑙−1)

𝑣𝑗∈𝑈𝑖(𝑙)

𝛼𝑘,𝑗
− × ℎ𝑗

𝐵(𝑙−1)
, ℎ𝑖

𝑈(𝑙−1)
]),           

(3.10) 

where 𝛼𝑘,𝑗
+   represents the positive attention weight of 𝑒𝑘,𝑗 , 𝛼𝑘,𝑗

−   represents the negative attention 

weight of 𝑒𝑘,𝑗, 𝑊𝐵(𝑙) and 𝑊𝑈(𝑙) represent the weight matrices to be learned, and 𝜎 represents the 

activation function. 

It is worth noting that the 𝑙 -order friend representation ℎ𝑖
𝐵(𝑙)

  of 𝑣𝑖  aggregates neighbor 

information from two aspects, namely the neighbors of its (𝑙 − 1)-order friend connected through a 

positive edge and the neighbors of its (𝑙 − 1) -order enemy connected through a negative edge. 

Similarly, the 𝑙-order enemy representation ℎ𝑖
𝑈(𝑙)

 of 𝑣𝑖 also aggregates neighbor information from 

two aspects, namely the neighbors of its (𝑙 − 1)-order enemy connected through a positive edge and 

the neighbors of its (𝑙 − 1)-order friend connected through a negative edge.  

Finally, after the 𝐿1-layer (𝐿1 ≥ 2) of aggregation, the two hidden representations 𝐻𝐵(𝐿1) and 

𝐻𝑈(𝐿1)  are concatenated to obtain the final embedded representation 𝐻  of all infected nodes, as 

shown in Eq (3.11). 

𝐻 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐻𝐵(𝐿1), 𝐻𝑈(𝐿1)),                         (3.11) 

where 𝐻𝐵(𝐿1) = [ℎ1
𝐵(𝐿1)

, ℎ2
𝐵(𝐿1)

, ⋯ , ℎ|𝑉|
𝐵(𝐿1)

]
𝑇

 , 𝐻𝑈(𝐿1) = [ℎ1
𝑈(𝐿1)

, ℎ2
𝑈(𝐿1)

, ⋯ , ℎ|𝑉|
𝑈(𝐿1)

]
𝑇

 and 𝑐𝑜𝑛𝑐𝑎𝑡(∙) 

represents the concatenation operation. 

3.2. Spectral GCN module 

The spatial GCN module focuses on the propagation structure characteristics of infected nodes 

under the AS-SI model, learns the source centrality representation of nodes, and captures the 

interaction of heterogeneous edges in the propagation structure by encoding the mixed path composed 

of positive and negative edges. The spectral GCN module, however, focuses on the positional 

distribution characteristics of infected and uninfected nodes without relying on the underlying 

diffusion model, learns the source prominence representation of nodes, and encodes the single paths 

constituted by positive and negative edges, respectively, to capture the different impacts of 

heterogeneous edges on the dissemination structure. Hence, the spatial GCN module and the spectral 

GCN module are complementary to each other and integrate qualitative theoretical models with 

quantitative data learning to describe the positional information of rumor sources comprehensively 

and from multiple perspectives, thereby enhancing the accuracy and robustness of the multirumor 

source localization. This not only validates the rumor centrality principle and the source prominence 

theory but also extends them to signed social networks. In the spectral GCN module, inspired by the 

LPSI algorithm [8] and its variants [18], this paper transforms the MRSL problem into a label 
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propagation problem and subsequently into a binary classification problem. Meanwhile, the 

convergence result of label propagation is utilized as input to improve the training efficiency and 

learning quality of the model. Second, the idea of subgraph splitting in the relational graph neural 

networks [33] is combined with the two-stream graph convolutional networks architecture [34]. 

Simultaneously taking into account the inherent inconsistency of the propagation structure constituted 

by positive and negative edges, the original network snapshot is decomposed into a subgraph 

containing only positive edges and a subgraph containing only negative edges, and two-stream spectral 

domain graph convolution operations are performed on these two subgraphs. Finally, the two label 

values are aggregated with weights to obtain the source prominence representation of all nodes. 

According to the source prominence theory, the proportion of infected nodes surrounding the 

source node is typically higher. In other words, the nodes surrounded by larger proportions of infected 

nodes are more likely to be infection sources [8]. Hence, the positional distribution of infected and 

uninfected nodes can be utilized for source localization. The source localization method based on label 

propagation applies the source prominence theory to label propagation. Initially, it considers the 

scenario of two types of labels competing to propagate in the network, where the positive labels of 

infected nodes and the negative labels of uninfected nodes are simultaneously propagated. The source 

node, as the “strongest” infected node, often has the maximum label value in its local neighborhood. 

Nevertheless, due to the mutual cancellation of positive and negative labels, the scenario of single-

label propagation is considered, concerning only the propagation of positive labels by infected nodes 

and only the propagation of negative labels by uninfected nodes. Nodes with the local maximum 

positive label value and the local minimum negative label value are frequently the source nodes. On 

this basis, this paper takes into account the different propagation structures formed by heterogeneous 

edges in signed networks. First, the original graph is split into positive-only and negative-only 

subgraphs. Then, the label distribution features are respectively extracted from the two subgraphs. The 

positive and negative label values, positive label values, and negative label values of each node are 

iteratively calculated, corresponding separately to the three situations of competitive propagation: 

positive and negative labels, only positive labels, and only negative labels. It should be noted that in 

this paper, the label convergence result is adopted as the initial label value, and the spectral domain 

graph convolution operation [35] is used to realize the label propagation process. The main steps of 

this module are as follows: 

(1) Based on the convergence result of label propagation [8], the initial embeddings 𝐻1
(0)

 and 

𝐻2
(0)

 of the positive subgraph 𝐺1 and the negative subgraph 𝐺2 are generated. The specific process 

is shown in Algorithm 1. In lines 4–10 of Algorithm 1, 𝑆1 is a vector generated by changing all -1 to 

0 in 𝑆, and 𝑆2 is a vector generated by changing all 1 to 0 in 𝑆. 𝑆, 𝑆1, and 𝑆2 respectively represent 

the initial label values of all nodes in the three scenarios of positive and negative label competitive 

propagation, only positive label propagation, and only negative label propagation. As introduced in 

lines 11–13, 𝐻1
(0)

 consists of three components, 𝐻11
(0)

, 𝐻12
(0)

 and 𝐻13
(0)

, which respectively represent 

the final label values of all nodes obtained by applying the label convergence formula to graph 𝐺1 

under the three propagation scenarios 𝑆, 𝑆1, and 𝑆2. As presented in lines 14‒16, 𝐻2
(0)

 consists of 

three components, 𝐻21
(0)

 , 𝐻22
(0)

  and 𝐻23
(0)

 , which respectively represent the final label values of all 

nodes in the three propagation scenarios obtained by applying the label convergence formula to 𝑆, 𝑆1, 

and 𝑆2 in 𝐺2. 
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Algorithm 1. Input Generation 

Input: The positive-only networks 𝐺1(𝑉, 𝐸1, 𝑆, 𝐴1) and the negative-only networks 𝐺2(𝑉, 𝐸2, 𝑆, 𝐴2) based 

on the infected networks 𝐺(𝑉, 𝐸, 𝑆, 𝐴) ,where 𝑆 = (𝑠1, 𝑠2, ⋯ , 𝑠|𝑉|)
𝑇
; parameter 𝜑; 

1. Initial label value matrices 𝐻1
(0)

= [𝐻11
(0)

, 𝐻12
(0)

, 𝐻13
(0)

] , 𝐻2
(0)

= [𝐻21
(0)

, 𝐻22
(0)

, 𝐻23
(0)

]; 

2. Construct the matrices 𝑀1 = 𝐷1
−

1

2 × 𝐴1 × 𝐷1
−

1

2 and 𝑀2 = 𝐷2
−

1

2 × 𝐴2 × 𝐷2
−

1

2 , where 𝐷1 and 𝐷2 are 

the diagonal matrices with their (𝑖, 𝑖)-element equal to the sum of the 𝑖-th row of 𝐴1 and 𝐴2, separately; 

3. Initialize the vectors 𝑆1 = 𝑆2 = 𝑆 where 𝑆1 = (𝑠11, 𝑠12, ⋯ , 𝑠1|𝑉|)
𝑇

, 𝑆2 = (𝑠21, 𝑠22, ⋯ , 𝑠2|𝑉|)
𝑇
; 

4. for 𝒊 < 𝑙𝑒𝑛(𝑆) do 

5.  if 𝑠𝑖 == −1 then 

6.    𝑠1𝑖 = 0; 

7.  else 

8.    𝑠2𝑖 = 0; 

9.  end if 

10. end for 

11. 𝐻11
(0)

= (1 − 𝜑) × (𝐼 − 𝜑𝑀1)−1 × 𝑆; 

12. 𝐻12
(0)

= (1 − 𝜑) × (𝐼 − 𝜑𝑀1)−1 × 𝑆1; 

13. 𝐻13
(0)

= (1 − 𝜑) × (𝐼 − 𝜑𝑀1)−1 × 𝑆2; 

14. 𝐻21
(0)

= (1 − 𝜑) × (𝐼 − 𝜑𝑀2)−1 × 𝑆; 

15. 𝐻22
(0)

= (1 − 𝜑) × (𝐼 − 𝜑𝑀2)−1 × 𝑆1; 

16. 𝐻23
(0)

= (1 − 𝜑) × (𝐼 − 𝜑𝑀2)−1 × 𝑆2; 

17. return 𝐻1
(0)

= 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐻11
(0)

, 𝐻12
(0)

, 𝐻13
(0)

) , 𝐻2
(0)

= 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐻21
(0)

, 𝐻22
(0)

, 𝐻23
(0)

);  

(2) Spectral domain GCN is performed on 𝐺1 and 𝐺2, respectively, and the graph convolution 

operations for each layer are shown in Eqs (3.12) and (3.13). 

𝐻1
(𝑙)

= 𝜎(𝑀1̃𝐻1
(𝑙−1)

𝑊1
(𝑙−1)

),                           (3.12) 

𝐻2
(𝑙)

= 𝜎(𝑀2̃𝐻2
(𝑙−1)

𝑊2
(𝑙−1)

),                           (3.13) 

where 𝐻1
(𝑙)

 and 𝐻2
(𝑙)

 respectively denote the outcomes of applying the 𝑙-layer spectral domain GCN 

to 𝐺1  and 𝐺2 ; 𝑀1̃  and 𝑀2̃  denote the convolution kernel functions; 𝑀1̃ = 𝐷1̃
−

1

2 × 𝐴1̃ × 𝐷1̃
−

1

2，

𝑀2̃ = 𝐷2̃
−

1

2 × 𝐴2̃ × 𝐷2̃
−

1

2，𝐴1̃ = 𝐴1 + 𝐼，𝐴2̃ = 𝐴2 + 𝐼, 𝐴1, and 𝐴2 denote the adjacency matrices of 

𝐺1 and 𝐺2; 𝐼 is the identity matrix; 𝐷1̃ and 𝐷2̃ denote the degree matrices of 𝐴1̃ and 𝐴2̃; 𝑊1
(𝑙−1)

 

and 𝑊2
(𝑙−1)

 are the weight matrices to be learned; and 𝜎 denotes the activation function. 

(3) By stacking 𝐿2 -layer spectral domain graph convolution and merging the outputs of two 

parallel networks together with weight, the final label value of all nodes is acquired as shown in 

Eq (3.14). 

𝐻′ = 𝛿𝐻1
(𝐿2)

+ (1 − 𝛿)𝐻2
(𝐿2)

,                          (3.14) 

where 𝛿 is the adjustment weight. 

3.3. Classifier 

The final module in the proposed model is the classifier. First, we synthesize the output of the 
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spatial GCN module and the spectral GCN module into a concatenated representation as the ultimate 

position of all nodes as presented in Eq (3.15). Subsequently, the MLP classifier is employed to 

undertake a binary classification task, distinguishing whether each node is a rumor source or not. The 

MLP classifier is depicted in Eq (3.16), and the cross-entropy loss function is given in Eq (3.17). 

𝑋 =  𝑐𝑜𝑛𝑐𝑎𝑡(𝐻, 𝐻′),                             (3.15) 

𝑌̂ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃(𝑋)),                           (3.16) 

𝑙𝑜𝑠𝑠 = − ∑𝑣𝑘∈𝑉 (𝑦𝑘 × 𝑙𝑜𝑔 𝑦𝑘̂ + (1 − 𝑦𝑘) × 𝑙𝑜𝑔(1 − 𝑦𝑘̂)),                  (3.17) 

where 𝐻  represents the source centrality feature matrix; 𝐻′  represents the source prominence 

feature matrix; 𝑐𝑜𝑛𝑐𝑎𝑡(∙) indicates the concatenation operation; 𝑌̂ = [𝑦1̂, ⋯ , 𝑦|𝑉|̂ ]
𝑇
, 𝑦𝑘̂ denotes the 

predicted label; and 𝑦𝑘 denotes the true label. 

The 3SGCN algorithm mainly consists of two parts: spatial GCN and spectral GCN, with 

corresponding time complexities of 𝑂(|𝑉|2 ∗ 𝐿1)  and 𝑂(|𝑉|3 ∗ 𝐿2) , respectively. Therefore, the 

overall time complexity of this algorithm is 𝑂(|𝑉|3 ∗ 𝐿2). 

4. Experiment and discussion 

This paper proposes a multirumor source localization framework tailored to signed social 

networks. First, an AS-SI propagation model based on the structural balance theory is put forward, 

which accurately depicts the distinct impacts of positive and negative relationships on message passing 

in signed networks. Second, a multirumor source localization approach called 3SGCN is proposed, 

which integrates the rumor centrality principle and the source prominence theory. It thoroughly 

excavates the propagation structure information of infected nodes as well as the positional distribution 

information between infected and uninfected nodes. By encoding the source centrality and source 

prominence features of nodes, the task of multirumor source localization is achieved.  

To verify the effectiveness of the algorithm presented in this paper, four real-world online social 

network datasets are chosen, namely Bitcoin-Alpha [36], Bitcoin-OTC [36], Slashdot [37], and 

Epinions [37]. The statistics of these datasets are showed in Table 3. Bitcoin-Alpha and Bitcoin-OTC 

are weighted and directed signed networks composed of Bitcoin transaction users and their trust 

relationship scores. Its edge weights range from -10 (complete distrust) to +10 (complete trust), with 

a step of 1, representing various emotional relationships from complete distrust to complete trust. 

Slashdot is a directed signed network composed of news comment users and their marked friend or 

enemy relationships. Epinions is a directed signed network composed of product review users and their 

support or opposition relationships. 

Table 3. The statistics of four signed social networks. ‘nodes’ depicts the number of nodes, 

‘pos edges’ indicates the number of positive edges, ‘neg edges’ shows the number of 

negative edges, and ‘%pos’ presents the proportion of positive edges within the network. 

networks nodes pos edges neg edges %pos 

Bitcoin-Alpha 3783 22650 1536 93.65 

Bitcoin-OTC 5881 32029 3563 89.99 

Slashdot 82140 425072 124130 77.40 

Epinions 131828 717667 123705 85.30 
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In order to serve the task of multiple rumor source localization, this paper utilizes the directional 

information in the graph to construct diffusion cascades. Specifically, for Bitcoin-Alpha and Bitcoin-

OTC, Bitcoin users are considered as infection sources, and their transaction counterparts are regarded 

as infection nodes; for Slashdot and Epinions, comment users are considered as infection sources, and 

their follow-up commenters are regarded as infection nodes. The construction process of the infection 

source set is to add users randomly one by one until the number of infected nodes in the network 

reaches the specified value and then stops. 

4.1. Experimental settings 

The experimental environment of this paper is equipped with an Intel (R) Core (TM) i9-14900HX 

CPU and an NVIDIA GeForce RTX 4090 24GB GPU. Pytorch [38] and Pytorch Geometric [39] are 

utilized. Hyperparameters are adjusted for different datasets. The range of GCN layers is {4, 6, 8, 10}, 

the range of hidden layer dimensions is {64, 128, 256, 512}, the range of dropout rates is {0.2, 0.3, 

0.4, 0.5}, the range of learning rates is {0.001, 0.003, 0.005}, and the range of training epochs is {1000, 

1500, 2000}. Five-fold cross-validation is adopted. The original dataset is randomly partitioned into a 

training set and a test set at a ratio of 4:1. Subsequently, the training set is further divided into a new 

training set and a validation set in the same ratio. As a result, the proportion of the training set, 

validation set and test set is 16:4:5. Here, the training set is utilized for learning the model parameters, 

the validation set is employed to optimize the hyperparameters, and the test set is used to assess the 

performance of the algorithm. The rectified linear unit (ReLU) function is selected as the activation 

function in GCN, and the number of hidden layers in MLP is set to 2. The model is trained using the 

Adam optimization algorithm and the Dropout strategy, and early stopping is implemented. Training 

will be terminated in advance when the loss function of the validation set shows no decrease over 10 

consecutive training rounds. Following the LPSI algorithm, the parameter 𝜑 is set to 0.5. Referring 

to the MFC model, the parameter 𝜆  is set to 3. All evaluation metrics are the average of 500 

independent experiments to ensure the credibility of the results.  

Considering an imbalance between the number of positive and negative samples, this paper 

selects the F1-score and AUC (i.e., the area under the receiver operating characteristic (ROC) curve) 

as evaluation metrics. Generally speaking, higher F1 and AUC mean better performance. It can be 

proved that maximizing the F1-score is equivalent to maximizing Eq (2.1) [18]. 

4.2. Comparison results 

To verify the superiority of the 3SGCN algorithm proposed in this paper, six state-of-the-art 

baseline models are selected for performance comparison: LPSI [8], GCNSI [18], SL-VAE [19], 

PGSL [20], multifaceted attention-based signed network embedding (MUSE) [22], and global 

information-based signed network embedding (SiG) [23], which are described as follows. The 

hyperparameters of the above models are chosen according to their original papers. In this paper, the 

proportion of infected nodes is set to range from 10% to 20%, and extensive experiments are conducted 

on four real-world social network datasets. Then, the changing trends of the F1-score and AUC of each 

model is obtained, as depicted in Figure 5. 

⚫ LPSI: A multisource detection framework based on label propagation. 

⚫ GCNSI: A multirumor source detection framework based on graph convolutional networks.  

⚫ SL-VAE: A multisource localization framework based on variational autoencoder. 

⚫ PGSL: A multisource localization framework combining deep generative and graph neural 
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network models.  

⚫ MUSE: A signed network embedding method based on multifaceted attention mechanism. 

⚫ SiG: A signed network embedding method based on global information. 

 

 

Figure 5. The performance comparison of five algorithms on four datasets. The subgraphs 

depict the variations in the F1-scores and AUC values of all algorithms as the percentage 

of infected nodes ranges from 10% to 20% in the following datasets: (a) Bitcoin-Alpha, (b) 

Bitcoin-OTC, (c) Slashdot, and (d) Epinions. Distinct curves correspond to different 

algorithms. 
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The paired t-test results of the algorithm in this paper are shown in Table 4. Statistical significance: 

***, **, * for p-value<0.01, 0.05, 0.1 respectively. 

Table 4. Statistical significance of 3SGCN. 

 Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions 

3SGCN F1 AUC F1 AUC F1 AUC F1 AUC 

Significance *** *** *** *** ** *** *** ** 

On the Epinions dataset, this paper sets the proportion of rumor sources at 1%, 3%, 5%, and 7% 

to compare the source localization performance of various models. The experimental results are 

presented in Tables 5 and 6. 

Table 5. The comparison among five algorithms in terms of F1-score under different 

proportion of rumor sources. 

Proportion\Model LPSI GCNSI SL-VAE PGSL 3SGCN 

1% 0.065 0.340 0.561 0.748 0.880 

3% 0.057 0.236 0.487 0.726 0.879 

5% 0.046 0.223 0.480 0.763 0.855 

7% 0.034 0.218 0.466 0.711 0.845 

Table 6. The comparison among five algorithms in terms of AUC under different 

proportion of rumor sources. 

Proportion\Model LPSI GCNSI SL-VAE PGSL 3SGCN 

1% 0.511 0.562 0.598 0.781 0.928 

3% 0.438 0.510 0.624 0.819 0.943 

5% 0.436 0.413 0.621 0.804 0.930 

7% 0.447 0.445 0.553 0.772 0.911 

The analysis of the above experimental results is as follows: 

First, in terms of all metrics on all datasets, the localization performance of the 3SGCN 

significantly outperforms that of other comparison methods by over 10% in F1-score and over 15% in 

AUC on average. Notably, for the Bitcoin-OTC and Slashdot datasets, the superiority of our algorithm 

in localization accuracy is fully manifested. Meanwhile, for the task of multiple rumor source 

localization, as the number of rumor sources and infected nodes rises, the overall performance of all 

existing algorithms shows a decline. Nevertheless, the generalization performance of 3SGCN far 

surpasses that of its counterparts. It can still maintain a high level of accuracy and relative stability. 

This can be attributed to the fact that our algorithm combines social theory with a learning algorithm 

to customize the multirumor source localization framework suitable for signed social networks. 

Therefore, the 3SGCN algorithm can be closer to the real rumor spread scenario and further improve 

the accuracy and robustness of source localization even when the difficulty of the multisource 

localization task increases. 
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Second, with the growth of network size and the alteration of topological structure, the 

performance of all existing models drops to a certain extent. Nevertheless, in terms of multisource 

localization accuracy, our algorithm is proved with less reduction than other methods. It shows that the 

model we proposed has strong generalization. This is because this paper takes into account the 

characteristics of rumor dissemination in online social networks. It makes full use of the structural 

balance theory in social psychology to delve deeply into the intricate propagation structure formed by 

heterogeneous edges and integrates the characteristics of rumor centrality and source prominence to 

learn high-quality representations of rumor source locations. Consequently, it can effectively address 

the challenges posed by complex networks. 

Finally, regarding different ratios of positive and negative edges, in comparison with other state-

of-the-art models, the proposed algorithm demonstrates strong robustness and can still maintain a high 

level of source localization performance. 

4.3. Ablation study 

In the 3SGCN model, there are two critical modules, namely the spatial GCN module and the 

spectral GCN module. In order to verify the effectiveness of these two modules, four variants are 

designed for ablation study. Specifically, the source localization framework based on label propagation 

is first used as the base model. Subsequently, other modules are gradually added, including two streams 

merging, different paths aggregation, and signed attention mechanism. Eventually, the 3SGCN model 

is obtained. In this paper, the proportion of infected nodes is fixed at 25%, and a series of experiments 

are carried out on four real-world social networks. The contribution of each component to the overall 

performance is shown in Figure 6. 

(1) Variant a (+ label propagation mechanism): Graph convolutional networks are applied to 

locate multiple rumor sources. First, features are extracted from three dimensions of positive and 

negative label propagation, positive label propagation only and negative label propagation only. Then, 

an MLP classifier is employed to determine whether each node is a rumor source or not. 

(2) Variant b (+ separate processing of positive and negative subgraphs): The original graph is 

partitioned into positive and negative subgraphs. Graph convolution operations are carried out 

separately in the spectral domain for each subgraph, and then they are merged to acquire the source 

prominence feature of the node. 

(3) Variant c (+ SI model + GAT [40]): For the infection subgraph, the unsigned SI model and 

unsigned graph attention network (GAT) are adopted to learn the positional representation of nodes. 

(4) Variant d (+ AS-SI model + positive and negative neighbor split aggregation): Based on the 

AS-SI model, the representations of friends and enemies are aggregated separately from balanced and 

unbalanced paths and then merged to obtain the source centrality feature of nodes. 

(5) Variant d (+ signed attention mechanism): Different attention weights are assigned to positive 

and negative neighbors on different paths. 
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Figure 6. The performance comparison of the four variants on the following two metrics: 

(a) F1- score, (b) AUC. Bars of distinct colors denote the experimental outcomes on 

various datasets. 

From the above experimental results, it can be seen that for the multisource rumor localization 

task, the removal of any module will lead to a decline in the overall performance of the model, which 

fully demonstrates the effectiveness of each component in 3SGCN. Simultaneously, different datasets 

exert an influence on the performance of each module, especially in large-scale networks such as 

Epinions and networks with more negative edges such as Slashdot, where the performance of each 

module generally shows a decline, but the overall impact is relatively small. This indicates that our 

proposed algorithm can adapt well to a variety of network types and maintain a high-level localization 

performance even in large-scale and complex networks.  

Specifically, we first observe the contribution of variant a to the overall performance. In this paper, 

the GCNSI framework and MLP classifier are incorporated into the basic model, which can effectively 

utilize the distribution characteristics of infected and uninfected nodes for multisource localization, 

thus significantly improving the localization performance of the 3SGCN model. Second, when variant 

b is introduced to separately process positive and negative subgraphs, by mining the diverse impacts 

of heterogeneous edges on information dissemination, the consistent propagation structure 

characteristics are comprehensively extracted. As a result, the performance of the 3SGCN model is 

greatly enhanced. Third, after adding the unsigned graph embedding learning of variant c, although 

the node representations contain rich graph structure information, the ability to extract the location 

information of the propagation source is insufficient, and the balance of the structure composed of 

positive and negative edges is ignored. Therefore, the contribution of this module to the source 

localization performance is limited. Then, after adding variant d to the infection subgraph for branch 

aggregation, by encoding complex paths containing both positive and negative edges, the positive and 

negative neighbor embedding representations are learned, which can capture more complex 

propagation structure information. Therefore, this module also makes a positive contribution to the 

overall performance. Finally, through the incorporation of variant e's signed attention mechanism, the 

levels of trust in positive and negative neighbors are accurately described, which is consistent with the 

real-world scenarios of online network rumor propagation and is conducive to improving the accuracy 

of the multirumor source localization task. In summary, due to the collaborative and synergistic effects 

among the various modules, the proposed 3SGCN achieves the optimal performance among existing 

similar methods. 
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4.4. Parameter analysis 

4.4.1. Impact of 𝛾 

In this paper, the proportion of infected nodes is fixed as 30%, and the value range of 𝛾 is set to 

[0.1, 0.9]. A series of experiments are conducted on four real-world datasets to observe the changes in 

the source localization performance of the 3SGCN model as the parameter 𝛾 increased continuously. 

The results are presented in Figure 7. 

 

Figure 7. The impact of 𝛾 on the performance of 3SGCN algorithm. Variations in F1-

scores as 𝛾 ranges from 0.1 to 0.9. 

As can be seen from Figure 7, with the gradual increase of 𝛾 , the F1-score of the 3SGCN 

algorithm exhibits certain fluctuations yet generally remains above 0.85, indicating its excellent 

robustness. This is because this paper combines the complementary advantages of model-driven and 

data-driven approaches, integrating the spatial and spectral GCN models within a unified framework. 

This approach can not only give priority attention to the AS-SI propagation model but also avoid 

complete reliance on a specific underlying model. Without the need for prior knowledge, it strikes an 

effective balance between accurate modeling and uncertain diffusion. Nonetheless, for distinct datasets, 

there exists an optimal value of 𝛾 that maximizes the performance of the 3SGCN model. Specifically, 

for the Bitcoin-Alpha, Bitcoin-OTC, Slashdot, and Epinions datasets, the optimal values of 𝛾 are 0.3, 

0.4, 0.2, and 0.1, respectively. 

4.4.2. Impact of 𝛿 

In the spectral domain GCN module, 𝛿 is used to adjust the aggregation weights between the 

positive and negative streams. In this paper, the proportion of infected nodes is fixed at 30%, and 

extensive experiments are carried out on four real-world datasets to observe the influence of the 

parameter 𝛿  on the performance of the 3SGCN model. Taking the Bitcoin-Alpha dataset as an 

example, the experimental results are shown in Figure 8. Similar curves can also be obtained on other 

datasets. 
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Figure 8. The impact of 𝛿 on the performance of 3SGCN algorithm. Variations in AUV 

values as 𝛿 ranges from 0 to 1. 

As can be seen from Figure 8, when 𝛿 = 0.5, the AUC value of our proposed algorithm reaches 

the optimum. This indicates that the positive stream is as important as the negative stream in 

contributing to the performance of source localization. 

4.4.3. Impact of 𝜆 

In this paper, the proportion of infected nodes is fixed at 20%, and the range of 𝜆 is set to [2, 4]. 

Experiments are conducted on four real datasets to observe the impact of 𝜆 values on the performance 

of the 3SGCN model. The results are shown in Figure 9. 

 

Figure 9. Performance comparison under different 𝜆. 

As can be seen from Figure 9, the value of 𝜆 has little impact on the AUC value of the algorithm 

proposed in this paper. Although the optimal value varies for different datasets, most of them are 

concentrated around the value of 3. 
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4.4.4. Impact of Hyperparameters 

The optimal settings of the four hyperparameters, namely the number of GCN layers, the 

dimension of the hidden layer, the dropout rate, and the learning rate, were obtained through fivefold 

cross-validation. It is worth noting that when adjusting one hyperparameter, all other hyperparameters 

should be fixed at their optimal values. In this paper, the proportion of infected nodes was fixed 

at 20%. Taking the Bitcoin-Alpha dataset as an example, the F1 value of 3SGCN is shown in 

Figure 10. 

 

Figure 10. Performance comparison under different hyperparameters. 

As can be seen from Figure 10, when 3SGCN achieves the best performance, the number of GCN 

layers is 6, the hidden layer dimension is 256, the dropout rate is 0.2, and the learning rate is 0.0001. 

This indicates that if the number of GCN layers and the hidden layer dimension are too few, it will 

lead to underfitting, while if they are too many, it will lead to overfitting. For the Bitcoin-Alpha dataset, 

an appropriate dropout rate and learning rate can further improve the performance of multisource 

localization. Although this paper adopts the Adam optimizer, which automatically adjusts the learning 

rate during training, the initial learning rate is still crucial to the training effect. 

5. Conclusions 

In the context of real-world online social networks, this paper proposes a multirumor source 
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localization framework integrating multidisciplinary approaches. First, combining social psychology 

theory and an epidemic model, an AS-SI propagation model suitable for signed social networks is 

proposed. Second, combining a complex network analysis method with a deep learning algorithm, an 

improved multirumor source localization algorithm that integrates spatial domain convolution and 

spectral domain convolution is proposed, and the rumor centrality principle and source prominence 

theory extend the scope to signed social networks. Upon conducting extensive experiments on four 

real-world social network datasets, the results demonstrate that AS-SI works very well in modeling 

information diffusion in signed networks, and 3SGCN can significantly outperform other comparative 

methods in identifying rumor initiators. At the same time, we also recognize that the overall complexity 

of the 3SGCN algorithm is relatively high, making it difficult to be efficiently applied to large-scale 

social networks. In the future, we will further enhance its operational efficiency and extend the static 

graph to a dynamic graph. By integrating the quasiequilibrium index and social status theory, we will 

construct a spatiotemporal dynamic model [41] to further improve the quality and efficiency of source 

localization. 
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