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Abstract: With the help of deepfake algorithms and social bots, the problems of consciousness
penetration and cognitive manipulation caused by the outbreak of internet rumors have become
prominent. Accurately locating the rumor sources and quickly cutting off the critical paths of rumor
propagation will become an effective ways to curb the explosive spread of rumors and the sudden
accumulation of negative emotions. In this paper, we combine the complementary advantages of signed
graph convolutional networks in spatial and spectral domains, propose an improved multirumor source
localization framework for signed social networks, and extend the rumor centrality principle and
source prominence theory to the scope of signed networks. First, structural balance theory is used to
accurately model positive and negative social relations. Second, a signed graph convolutional network
based on signed attention mechanism is proposed to extract the rumor centrality feature from the
infection subgraph. Then, a two-stream graph convolutional network based on a label propagation
mechanism 1s proposed to extract the source prominence feature from the subgraph containing only
positive edges and the subgraph containing only negative edges, respectively. Finally, the center feature
of the infected structure and the position distribution feature of infected and uninfected nodes are
integrated in a unified framework for multirumor source localization. Extensive experimental results
on four real-world social network datasets show that compared with state-of-the-art algorithms, our
proposed algorithm further improves the accuracy and robustness in the task of multiple rumor source
localization.

Keywords: rumor source localization; signed graph convolutional network; signed attention
mechanism; label propagation; two-stream network



1928

Mathematics Subject Classification: 68T20, 68T37, 91D30, 91E10

1. Introduction

The problem of source node localization is to infer the initial infection sources in the network
according to one snapshot of the infection state of all nodes at a certain time [1]. Because there may
be one or more infection sources, the source localization problem is further divided into single-source
localization and multisource localization. Most of the current research ideas are to combine node
infection status and network topology for source localization. Multiple rumor source localization
(MRSL) determines the location of multiple rumor sources in the context of online social networks.
Internet rumors spread rapidly, often with emotional polarity, and even containing ideological views
which may erode mainstream values, lead to social trust crisis, and threaten national political security.
Therefore, rumor source localization has increasingly become a hotbed for research activity [2].

There are several possible solutions to the problem of MRSL. The first approach is from the
perspective of complex networks: the source centrality index is proposed, and the center of the
infection subgraph is defined as the source node. Common methods include rumor centrality [3], a
combination of eccentricity and closeness centrality [4], and so on. However, these methods are unable
to dynamically model the propagation process. The second approach is from the perspective of
diffusion models, proposing models suitable for online social networks. Existing diffusion models are
usually divided into two categories: influence models and infection models [5]. Common influence
models include the independent cascade (IC) model and the linear threshold (LT) model, while
common infection models include the susceptible—infected (SI) model and the susceptible—infected—
recovered (SIR) model. Due to the prevalence of emotional polarity in social networks, Zhang et al. [6]
proposed an asymmetric flip cascade (MFC) model based on signed social networks, considering the
asymmetry of the influence of positive and negative edges on information dissemination. They
increased the activation probability of positive edges through the asymmetric boosting coefficient and
then extracted a set of the roots of infection cascade trees as the rumor source set. Li et al. [7]
incorporated the theory of social psychology to calculate the infection probability of positive and
negative edges, respectively, and constructed the signed-SI (S-SI) model for epidemic spreading
dynamics on signed social networks. Jiang et al. [1] proposed a signed-SIR (S-SIR) model to adapt to
signed networks and used an improved message passing algorithm for source identification. However,
these methods require the diffusion model as prior knowledge.

A third approach, from the perspective of label propagation, multisource rumor localization is
conducted by using the source prominence theory without knowing the underlying diffusion model.
Wang et al. [8] were the first to propose label propagation-based source identification (LPSI). At first,
each node is assigned an initial label value. After that, their label values are propagated and updated
iteratively. Finally, the convergence result is obtained, where the local maximum points are identified
as the source nodes. Subsequently, many variants of the LPSI algorithm emerged. Ma et al. [9]
combined the direction-induced search (DIS) and LPSI algorithms and proposed the DISLPSI
framework, which adaptively selects observer nodes by the adaptive observation node selection
(AONS) algorithm. First, observer nodes are dynamically selected to record the propagation direction.
Then, the source nodes are traced back through iterative search. However, observer-based source
localization methods not only have performance directly related to the selection of observer nodes but
also require additional information beyond network snapshots such as the infection paths (i.e., the
neighbors that sent the information) and infection times (i.e., the times when the information was
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received) recorded by the observer nodes. Such information is often difficult to obtain in real-world
social networks, however.

A fourth approach, from the perspective of backpropagation, source localization is regarded as
the inverse of information dissemination, and the backpropagation algorithm is utilized to detect the
source node. Qiu et al. [10] proposed a single-source localization method (BPSL) applicable to general
networks which takes into account both infection structure and time delay. First, they put forward an
observer selection strategy based on maximizing influence to minimize the number of observers.
Second, they proposed a source localization method using the reverse propagation of timestamps.
However, this algorithm assumes that the transmission probabilities of all edges are the same. Ma
et al. [11] first proposed a single-source localization method for signed networks, taking into account
both the propagation structure and the sign characteristics. They first introduced an observer selection
strategy based on effective distance to optimize the quality of observers and then proposed a source
localization method based on reverse propagation. Although this algorithm takes into account the
difference in the propagation ability between positive and negative edges, showing that positive edges
usually have a stronger propagation ability, it does not normalize the relationship strength of the same-
order neighbors and does not consider the balance issue between positive and negative edges.

The fifth approach is to use graph neural networks for source localization from the perspective of
machine learning. Currently, the research on information dissemination in complex networks has
gradually shifted from modeling-driven methods to data-driven methods [12—16]. Graph convolutional
networks (GCNs) are based on the message-passing mechanism, which realizes the layer-wise
propagation of information in the network by iteratively aggregating neighborhood information [17].
Dong et al. [ 18] were the first to apply GCNs to solve the multisource localization problem, proposing
graph convolutional network-based source identification (GCNSI). They took the convergence result
of the LPSI algorithm as the model input and considered the situation where positive and negative
label values offset each other in label propagation. They aggregated source prominence features from
three aspects (the entire graph, only infected nodes, and only uninfected nodes) to achieve multiple
rumor source localization. Ling et al. [19] were the first to propose a source localization variational
autoencoder (SL-VAE) from a probabilistic perspective, combining the forward diffusion estimation
model with the deep generative model to quantify the uncertainty of the source by approximating the
distribution of the diffusion source and learning the generation prior to represent the complex patterns
of source diffusion with the prior knowledge provided by the observed source-observation pairs.
However, VAEs may not sufficiently model the uncertainty of diffusion sources, Xu et al. [20]
proposed a probabilistic graph diffusion model for source localization (PGSL), which integrates the
deep generative model with the graph neural network (GNN) model. Their PGSL model handles the
uncertainty of the diffusion process by normalizing flows and invertible transformations and is
empowered with GNNs to capture the information dissemination features, which are able to
reconstruct the graph diffusion process under arbitrary diffusion patterns. Yan et al. [21] introduced
reversible residual networks and constructed a discrete denoising diffusion model (DDMSL) for
restoring diffusion paths and locating diffusion sources. However, this method requires prior
knowledge about the propagation model. GNN-based signed graph embedding methods, although
specifically designed for signed graphs to learn high-level features and typically utilize multiorder
neighbor aggregation and multifaceted attention to fully capture local and global structural
features [22,23], mostly fail to learn universal node representations and are only applicable to specific
downstream tasks such as link sign prediction and community detection, lacking strong specificity for
the multisource rumor localization task. A summary of the comparison of the main literature is
presented in Table 1.
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Table 1. Comparison table of relevant algorithms.

Year Name Network type Propagation Additional information Algorithm type
model

2017 LPSI[8] Unsigned network General No Traditional algorithm

2024 DISLPSI [9] Signed network SI Dynamic  selection  of Traditional algorithm
observer

2022 BPSL[10] Unsigned network SI Observer selection based on  Traditional algorithm
influence maximization

2024  Source localization based on  Signed network SI Observer selection based on  Traditional algorithm

reverse propagation [11] effective distance

2019 GCNSI[18] Unsigned network General No Learning algorithm

2022 SL-VAE[19] Unsigned network General Source-observation pairs Learning algorithm

2024  PGSL [20] Unsigned network General No Learning algorithm

2023 DDMSL [21] Unsigned network SIR Infection rate and Recovery Learning algorithm
rate

2023 MUSE [22] Signed network General No Learning algorithm

2024  SiG [23] Signed network General No Learning algorithm

Due to the fact that social relationships in online social networks often have emotional polarity,
such as trust or distrust, friends or enemies, positive attitudes or negative attitudes, users tend to
maintain the same opinion with friends and the opposite opinion with enemies, thus forming signed
social networks [24]. Moreover, most existing studies ignore the negative edge characteristics and treat
them equally with positive edges [25]. Therefore, this paper considers the structural balance properties
of signed social networks, sufficiently exploits the different roles of heterogeneous relationships on
rumor propagation, and proposes a signed graph convolutional network algorithm combining spatial
and spectral domains to specifically address the problem of multirumor source localization in signed
social networks. Moreover, the principle of rumor centrality and the theory of source saliency are
extended to signed social networks.

The unique advantage of this paper lies in its simultaneous consideration of signed networks and
multisource localization, integrating sociological theories with source location features to conduct
multisource localization in online social networks. Specifically, compared with the source localization
methods in unsigned graphs, this paper takes into account the characteristics of signed social networks,
treats positive and negative neighbors differently, and utilizes social psychological theories. Compared
with the signed graph embedding methods, this paper utilizes the centrality and salience of sources,
making the learned representations more regular. Compared with the methods that require additional
information and are applicable to specific propagation models, the algorithm in this paper is more
general and practical, only using network snapshots and being applicable to general propagation
models.

The main innovations of this paper are as follows:

(1) Based on the theory of structural balance, this paper optimizes the propagation rules and
proposes an information propagation model suitable for signed social networks, namely the
asymmetric boosting signed susceptible—infected model (AS-SI), to construct the information
dissemination process in signed social networks. First, considering the different transmission rates of
positive and negative edges, the positive edges are enhanced asymmetrically. Second, it takes into
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account the influence of structural balance on the transmission rate, that is, the balanced triangle
structure promotes the information dissemination of positive edges and inhibits that of negative edges.
Finally, the ultimate AS-SI model based on the SI model is obtained.

(2) This paper leverages the complementary advantages of the rumor centrality principle and the
source prominence theory to propose a spatial and spectral domain combined signed graph
convolutional network architecture (3SGCN) for addressing the problem of multiple rumor source
localization in online social network settings. First, the principle of rumor centrality is generalized to
signed networks, and a signed graph convolutional network based on signed attention mechanism is
proposed, which implicitly encodes the positional information of nodes in the infection subgraph.
Second, the theory of source prominence is generalized to signed networks, and a two-stream graph
convolutional network based on label propagation mechanism is proposed to learn the positional
distribution features of infected and uninfected nodes. Finally, the multilayer perceptron (MLP)
network is used for a binary classification task to detect whether each node is an infection source or
not.

The structure of this paper is arranged as follows. Section 2 defines the research problem and
constructs the propagation model. Section 3 elaborates on the overall framework of the proposed
algorithm, the two main modules it contains, and the objective function that matches the task.
Section 4 evaluates the effectiveness of the proposed method through a large number of experiments.
Section 5 summarizes the entire paper, points out the limitations of the proposed algorithm, and
indicates directions for future development.

2. Problem modeling

2.1. Problem definition

Consider the infected snapshot G(V,E, S, A) of an undirected signed network at a specific time,
where V' is the node set, E isthe edge set, S is the vector formed by the infected states of all nodes,
and A is the adjacency matrix. Because this paper regards the MRSL problem as a binary
classification task in machine learning, that is, to determine whether each node is a rumor source or
not [18], it is defined as finding a classification function f:V — {0,1} such that the set of predicted
rumor sources R*satisfies Eq (2.1), where f(v;) =0 indicates that v; is not rumor source;
otherwise, f(v;) =1 indicates it is rumor source, R is the set of true rumor sources, and R* =
{vi eVIf(v) =1}

[R*NR|
|[R*UR|’

R* = argmax 2.1
R
It should be noted that, considering the bidirectional characteristics of rumor propagation and
diffusion [26], this paper mainly studies the information dissemination patterns and source localization
strategies in undirected signed networks. The mathematical notations of this paper are summarized in
Table 2.
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Table 2. Mathematical notations.

Notation Description
v; The node i.
e j The edge between v; and v;.
S; The infection state of v;, each s; € {—1,1}, where s; = —1 means that v; is uninfected, and otherwise s; = 1
means it is infected.
ai; The sign of e;;, each a;; € {—1,0,1}, where a;; = —1 means that e;; is a negative edge, a;; = 1 means that
ej; is apositive edge, and a;; = 0 means that there exists no edge between v; and v;.
G(V,E,S,A)  The infected snapshot of an undirected signed network at a given time, where V is the node set, E is the edge set,

Gl(V' E1'S'A1)

GZ(V' EZ' S'AZ)

Dy
D,

+
Hi,j

Hij
B

ai'j

S is the vector composed of the infected states of all nodes, A is the adjacency matrix, s; is an element of S, and
a;; is an element of A.

The subgraph formed by all nodes and their positive edges in G, where E; is the edge set of G, A; is the
adjacency matrix of G;, and its elements take values from the set {0,1}, where 0 indicates no edge exists, and 1
indicates an edge exists.

The subgraph formed by all nodes and their negative edges in G, where E, is the edge set of G,, A, is the
adjacency matrix of G, and its elements take values from the set {0,1}, where 0 indicates no edge exists, and 1
indicates an edge exists.

The degree matrix of A;, which is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of Aj.
The degree matrix of A,.

The asymmetric boosting coefficient, 1 > 1.

The constant infection probability, 0 <y < 1.

The positive edge transmission rate.

The negative edge transmission rate.

The positive edge infection intensity.

The negative edge infection intensity.

The positive edge attention weight.

The negative edge attention weight.

The set of v;’s direct linked neighbors.

The set of v;’s neighbors linked by a positive edge.

The set of v;’s neighbors linked by a negative edge.

The set of [-order neighbors of v;, where N;; = N;.

The set of l-order neighbors of v; connected with (I — 1)-order neighbors by a positive edge, where Ni,+1 = N
The set of [-order neighbors of v; connected with (I — 1)-order neighbors by a negative edge, where N3 = N; .
The set of [-order positive neighbors that v; reaches through a balanced path of length 1.

The set of [-order negative neighbors that v; reaches through an unbalanced path of length [.

The result of performing [-layer spectral domain GCN on G;.

The result of performing [-layer spectral domain GCN on G,.

The final output of the spatial GCN module, where the element of H is denoted as h;.

The final output of the spectral GCN module, where the element of H' is denoted as h;.

The final position embedding of v;, namely the feature representation of rumor centrality.

The final label value of v;, namely the feature representation of source prominence.

The number of convolutional layers in the spatial GCN module.

The number of convolutional layers in the spectral GCN module.
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2.2. Propagation model

According to the characteristics of rumor spreading in online social networks, based on the
structural balance theory of social psychology, combining the complementary advantages of the S-SI
and MFC models, this paper proposes an asymmetric boosting signed susceptible—infected (AS-SI)
model. First, inspired by the S-SI propagation model [7], in accordance with the structural balance
theory and considering the balance of triangular structure, a balanced triangular relationship facilitates
the dissemination of the same information, and an unbalanced one promotes the propagation of
opposite information. Thus, the transmission rate of a positive or negative edge is defined as the
proportion of balanced or unbalanced triangles, respectively, in which it is involved. Second, inspired
by the MFC propagation model [6], considering the different effects of heterogeneous relationships on
the transmission rates, the asymmetric boosting coefficient A is introduced to improve the
transmission rate of positive edges. Finally, the AS-SI model of this paper is obtained by optimizing
the SI model. The specific calculation process is as follows:

In accordance with the structural balance theory in social psychology [27,28], taking into account
the balance of triangular structures and that of propagation paths, balanced triangles and unbalanced
triangles, as well as balanced paths and unbalanced paths, are defined respectively, as shown in
Figure 1. The number of negative edges in balanced triangles and balanced paths is even, while in
unbalanced triangles and unbalanced paths, it is odd.

(a) (b)
balanced paths

+ + Y, + B;(1) + B;(2) + B;(3) B;(D

A AR

v Tu@ T ue no

balanced triangles unbalanced triangles unbalanced paths

Figure 1. The structural balance theory. (a) The balance of triangular structures; (b) The
balance of propagation paths.

(1) According to the balance of triangles, the transmission rate and infection intensity of
positive/negative edges are defined.

First, based on the structural balance theory, the transmission rate of a positive/negative edge is
calculated. If the edge e; ; constitutes a triangular structure with other edges in the network, when

a;j =1, the e;;’s transmission rate ,u;'j is presented in Eq (2.2); when a;; = —1, the ¢;;’s
transmission rate ;; is presented in Eq (2.3). If the edge e;; does not form a triangular structure
with any edge, when a;; = 1, the e; ;’s transmission rate is ,u;'j =1, and when a;; = —1, the ¢;;’s

transmission rate is y; ; = 0.
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+ ZkeNimijax {0’ Ay X dy % aﬂf}

/uz‘,j = Z
keN;NN;

a!./. Xa, X ajk‘

, (2.2)

B ‘Zkezv,mzv,mm{o’ aii X ay Xajk}
ij

Xa, Xd.
ZkeN,.mN,‘aU Qi a./k‘

p , (2.3)

where v;, vj, vy denote the vertices of the triangle, and |Ni N N]| denotes the total number of
triangles that contain the edge e; ;.

Second, based on the AS-SI model proposed in this paper, the infection intensity of the
positive/negative edge is computed. When a;; = 1, the infection intensity ,3,: j of e;; is shown in
Eq (2.4). When q;; = —1, the infection intensity B ; of e;; is shown in Eq (2.5).

Bij=AXy X uij, (2.4)
Brj =V X Ui (2.5)

where A denotes the asymmetric boosting coefficient, and y denotes the constant infection
probability.

(2) According to the balance of the path, the set of positive/negative neighbors is defined
recursively.

Based on the structural balance theory, the positive neighbors on the balanced path are regarded
as friends, and the negative neighbors on the unbalanced path are regarded as enemies. When [ =1,
the Z-order positive neighbors set B;(1) and the Z-order negative neighbors set U;(1) of v; are
expressed in Egs (2.6) and (2.7), respectively. When [ > 1, the set of [-order positive neighbors B; (1)
and the set of [-order negative neighbors U;(l) of v; are expressed in Egs (2.8) and (2.9),
respectively:

B;(1) = N} = {v;|v; € N/}, (2.6)
U;(1) = N7 ={v;|v; e N7}, (2.7)
B;() = {vj|vy € B;(l— 1) Av; € Nf}u{v|ve € U;(1— 1) Av; € N, (2.8)
U;(D = {vj|vx € U;(1— 1) Avj € N} U {vj|vx € Bi(1— 1) Av; € N }. (2.9)

The following provides an example for illustration. As shown in Figure 2(a), suppose edge e ,
forms only three triangular structures in the network, namely v;v,v;, v,v,v,, and v,v,vs. For the
first two triangles, because there are an even number of negative edges, they are balanced triangles.
The last triangle, however, is an unbalanced triangle due to the odd number of negative edges. As edge
e;, isapositive edge, its propagation rate is the proportion of balanced triangles, that is, uf, = % As
shown in Figure 2(b), if the current node is v;, then v, and vy are its third-order positive and
negative neighbors, respectively. This is because the path from v; to v, contains an even number of
negative edges, making it a balanced path. Conversely, the path from v; to v; isanunbalanced path.
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(a)

balanced triangle

(b)
balanced path

balanced triangle unbalanced triangle
V3 Vy Vs + + 172 € 31 (3)

~_ + +/ Y
</ g \
vi tow - el (3)

unbalanced path

Figure 2. Simple example. (a) Calculate the propagation rate of the edge; (b) Determine
positive and negative neighbors.

3. General framework

In this paper, by integrating the complementary advantages of model-driven and data-driven
approaches, a new architecture of signed graph convolutional networks combining spatial and spectral
domains (3SGCN) is proposed for multisource rumor localization in online social networks. First,
according to the characteristics of rumor propagation in signed social networks, an AS-SI model based
on structural balance theory and asymmetric enhancement is proposed to describe the distinct
contributions of positive and negative edges in information dissemination. Second, the original
network snapshot is divided into the subgraph consisting of only infected nodes and their edges, the
subgraph consisting of only positive edges and the subgraph consisting of only negative edges, and the
propagation structure features are extracted from different perspectives to encode the positional
information of nodes. Finally, the principle of rumor centrality and the theory of source prominence
are generalized to the signed network, establishing the coherent logic between qualitative theoretical
models and quantitative learning algorithms, comprehensively extracting the propagation structural
features and learning the positional representation from big data, thereby improving the accuracy and
robustness of the multisource rumor localization task in the specific context of signed social networks.
The overall framework of the proposed 3SGCN is shown in Figure 3, mainly including graph
preprocessing, the spatial domain GCN module, the spectral domain GCN module, and the MLP
classifier.

Graph preprocessing  Initial embedding ~ Structure embedding Feature aggregation  Binary classifier

Signed attention

\ Rumor centrality feature h,
_ _ ——SSE algorithm—Signed GON— o CoIlY SEamre f
Signed social network  Network snapshot s )Rumor

at a certain ime source

Feature

- ~y — . ) P
concatenation
*LPSI algorithm—Spectral GCN
t Non-rumor

N , " source
Source prominence feature h;

Two-stream
merging

label propagation

~LPSI algorithm—*Spectral GCN

Figure 3. The overall framework of 3SGCN mainly consists of four modules, namely
graph preprocessing, spatial domain GCN module, spectral domain GCN module, and
MLP classifier.
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The first module is graph preprocessing, which splits the network snapshot into different
subgraphs, namely the infection subgraph, the positive-only subgraph, and the negative-only subgraph.
In the spatial GCN module, the initial embedding is first obtained by applying the signed spectral
embedding (SSE) algorithm based on signed spectral clustering. Then, the signed graph convolutional
network based on the signed attention mechanism proposed in this paper is utilized to extract the
propagation structure features of the infected nodes. The characteristics of this module are that it
considers the underlying propagation model and the interrelationship between positive and negative
edges, learns the position information of the source nodes from the mixed path, and generalizes the
principle of rumor centrality to signed social networks. In the spectral GCN module, the initial
embedding is first obtained by utilizing the LPSI algorithm based on label propagation, and then the
two-stream graph convolutional network based on the label propagation mechanism proposed in this
paper is employed to extract the position distribution features of the infected nodes and the uninfected
nodes. This module does not rely on the underlying propagation model and treats positive and negative
edges differently, learning the position information of the source nodes from the single path and
generalizing the source significance theory to the signed social network. The last module is the MLP
classifier. In this paper, the MRSL problem is transformed into a binary classification problem for all
nodes, and the MLP is used to output whether each node is a rumor source or not.

3.1. Spatial GCN module

In accordance with the principle of rumor centrality, the likelihood that node v; being the source
node in the infection subgraph is proportional to the weighted sum of the number of distinct spreading
orders starting from this node, where the weight of a spreading order could depend on the specific
graph structure and spreading time distribution of the SI model. In other words, the source node tends
to be in the center position of the network structure, and its paths to all nodes could be as many and as
close as possible. Hence, this paper extends to signed social networks, encodes all the reachable paths
of nodes from balanced and unbalanced paths respectively, and employs the normalized positive and
negative infection intensities as signed attention weights, proposing a signed graph convolutional
network based on a signed attention mechanism to learn the source centrality representation of nodes
by extracting the propagation structure features of infected nodes. It is worth noting that for the
embedding representation of uninfected nodes, this paper sets them as zero vectors of the same
dimension. The details of this module are as follows:

(1) The initial position embedding of the infected nodes is obtained by employing the SSE
algorithm [29], and the [-order positively linked neighbor set Nl-“_Ll and the [-order negatively linked
neighbor set N;; of the infected node v; are recursively defined. When [ =1, N;; and N;; are
presented by Eqs (3.1) and (3.2); when [ > 1, N:'l and N, are depicted in Egs (3.3) and (3.4).

Ny = N ={vj|v; € Nj*}, (3.1)
N7 = N ={v;lv; e N7}, (3.2)
N = {vjlve € B{(l— 1) Av; € N} u {vj|v, € U(1 — 1) Avj € N}, (3.3)
N = {vjlve € B{(l— 1) Av; € N} U {vjlv, € U(1— 1) Avj € N}, (3.4)

where the v;’s l-order neighbor set N;; = N;; UN;; = B;(1) U U;(1), B;(l) represents the l-order
positive neighbor set of v;, and U;(l) represents the [-order negative neighbor set of v;.
(2) Inspired by the signed attention networks [30,31] but considering the differences in the
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propagation model and learning tasks, this paper proposes a calculation method for positive/negative
attention weights to measure the trust degree between social users.
Let the v;’s (I — 1)-order neighbor be v, and [-order neighbor be v;. When ay; = 1, the

ex,j’s positive attention weight is a,t ;j as shown in Eq (3.5); when ay; = —1, the e ;’s negative
attention weight is @, ; as shown in Eq (3.6).

Pj = INEI .
- _ By
Ay = T (3.6)

where B ; indicates the positive infection intensity of ey j, B ; indicates the negative infection
intensity of ey ;, and |-| indicates the modulus of a set.

(3) Inspired by signed graph convolutional networks (SGCN) [32], in order to align with the
multirumor source localization task in signed social networks, this paper proposes a signed graph
convolutional network based on the signed attention mechanism. It performs neighborhood
aggregation from balanced and unbalanced paths, respectively, and assigns distinct attention weights
to positive and negative neighbors. Eventually, the high-order friend and enemy representations of
nodes are obtained. The specific process is depicted in Figure 4.

(a) Original graph (b) Tree-like graph (c) The third aggregation layer
51 Vs Vi Vi
® ®
-~ N —/ \¢ = +
V. — - v ; ;
2 N > o 6 Ni,] ‘ hlB(z) ) ht/(z)
e + + o d ++ : ++
v ++ Vi ++ : Ni,z , . N, ) ;
3 7 —/—+/4 N\ +\4+ " Vs Vg V3 V4 V1 Vp Uy Vg
+ - A ] i S
Vs Vg V1 V2 V3 V4 Vs Vg V7 Vg A
Ui S
Nis Bi(3) N3

Figure 4. A simple network with eight nodes for illustrating the aggregation process in
spatial GCN module. (a) represents the given original graph. (b) denotes the tree-like graph
derived from the original graph. (c) illustrates the graph structure during the aggregation
of the third layer.

(0
l

Let the v;’s initial embedding representation be h; ’, and after each layer of aggregation, two

representations of v; can be obtained, namely the friend and enemy representations.
First, after the first aggregation layer, the Z-order friend representation hf(l) and the 7-order

enemy representation hf] @ of v; are obtained, as expressed in Egs (3.7) and (3.8).
B 0 0
h; @ = o (WB(D [ZvjEBi(l) a;-j X hJ( )'hg )])’ G-
U — 0 0
h; @ = o (Wu(l) [ZvjeUi(l) a;,j X hJ( )'hg )])’ G.8)

where hgo) and h}o) respectively denote the initial embedding representations of v; and v;, W &Y
and WU are the weight matrices to be learned, and ¢ denotes the activation function.
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Second, after the [-layer (I > 2) of aggregation, the [-order friend representation R and

l
the [-order enemy representation hlg W of v; are presented in Eqs (3.9) and (3.10).

l 1— _ 1— 1—
(i 0<WB(D Tveema-n @y XY Sy evaon ey x b Y )
UjEBi(l) ‘UjEBi(l)

(3.9)

Ul U(l-1 - B(l—-1 U(l-1
hi o =0 (WU(I) kaEUi(l—l) a]-cl_,] X h] { )l kaEBi(l—l) ak‘j X h] ( )rhi ( ) )a
'U]'EUi(l) 'UjEUl'(l)

(3.10)

where a;f ; represents the positive attention weight of ey j, @ ; represents the negative attention
weight of ey ;, WBW and WU® represent the weight matrices to be learned, and ¢ represents the
activation function.

f(l) of v; aggregates neighbor
information from two aspects, namely the neighbors of its (I — 1)-order friend connected through a

positive edge and the neighbors of its(l — 1)-order enemy connected through a negative edge.

It is worth noting that the [-order friend representation h

Similarly, the [-order enemy representation h? ® of v; also aggregates neighbor information from
two aspects, namely the neighbors of its (I — 1)-order enemy connected through a positive edge and
the neighbors of its (I — 1)-order friend connected through a negative edge.

Finally, after the L;-layer (L, = 2) of aggregation, the two hidden representations H?®1) and
HY®1) are concatenated to obtain the final embedded representation H of all infected nodes, as
shown in Eq (3.11).

H = concat(HED, gUD), (3.11)

T T
where HBUID = [hf(Ll),hg(Ll),---,hﬁ,(lLl) , HV@D = [hf(“),hg(m,---,hlLI’,(lLl) and concat(*)

represents the concatenation operation.
3.2. Spectral GCN module

The spatial GCN module focuses on the propagation structure characteristics of infected nodes
under the AS-SI model, learns the source centrality representation of nodes, and captures the
interaction of heterogeneous edges in the propagation structure by encoding the mixed path composed
of positive and negative edges. The spectral GCN module, however, focuses on the positional
distribution characteristics of infected and uninfected nodes without relying on the underlying
diffusion model, learns the source prominence representation of nodes, and encodes the single paths
constituted by positive and negative edges, respectively, to capture the different impacts of
heterogeneous edges on the dissemination structure. Hence, the spatial GCN module and the spectral
GCN module are complementary to each other and integrate qualitative theoretical models with
quantitative data learning to describe the positional information of rumor sources comprehensively
and from multiple perspectives, thereby enhancing the accuracy and robustness of the multirumor
source localization. This not only validates the rumor centrality principle and the source prominence
theory but also extends them to signed social networks. In the spectral GCN module, inspired by the
LPSI algorithm [8] and its variants [18], this paper transforms the MRSL problem into a label
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propagation problem and subsequently into a binary classification problem. Meanwhile, the
convergence result of label propagation is utilized as input to improve the training efficiency and
learning quality of the model. Second, the idea of subgraph splitting in the relational graph neural
networks [33] is combined with the two-stream graph convolutional networks architecture [34].
Simultaneously taking into account the inherent inconsistency of the propagation structure constituted
by positive and negative edges, the original network snapshot is decomposed into a subgraph
containing only positive edges and a subgraph containing only negative edges, and two-stream spectral
domain graph convolution operations are performed on these two subgraphs. Finally, the two label
values are aggregated with weights to obtain the source prominence representation of all nodes.

According to the source prominence theory, the proportion of infected nodes surrounding the
source node is typically higher. In other words, the nodes surrounded by larger proportions of infected
nodes are more likely to be infection sources [8]. Hence, the positional distribution of infected and
uninfected nodes can be utilized for source localization. The source localization method based on label
propagation applies the source prominence theory to label propagation. Initially, it considers the
scenario of two types of labels competing to propagate in the network, where the positive labels of
infected nodes and the negative labels of uninfected nodes are simultaneously propagated. The source
node, as the “strongest” infected node, often has the maximum label value in its local neighborhood.
Nevertheless, due to the mutual cancellation of positive and negative labels, the scenario of single-
label propagation is considered, concerning only the propagation of positive labels by infected nodes
and only the propagation of negative labels by uninfected nodes. Nodes with the local maximum
positive label value and the local minimum negative label value are frequently the source nodes. On
this basis, this paper takes into account the different propagation structures formed by heterogeneous
edges in signed networks. First, the original graph is split into positive-only and negative-only
subgraphs. Then, the label distribution features are respectively extracted from the two subgraphs. The
positive and negative label values, positive label values, and negative label values of each node are
iteratively calculated, corresponding separately to the three situations of competitive propagation:
positive and negative labels, only positive labels, and only negative labels. It should be noted that in
this paper, the label convergence result is adopted as the initial label value, and the spectral domain
graph convolution operation [35] is used to realize the label propagation process. The main steps of
this module are as follows:

(1) Based on the convergence result of label propagation [8], the initial embeddings I-Il(o) and

HZ(O) of the positive subgraph G; and the negative subgraph G, are generated. The specific process
is shown in Algorithm 1. In lines 4-10 of Algorithm 1, S; is a vector generated by changing all -1 to
Oin S,and S, isavector generated by changingall 1toOin S. S, Sy, and S, respectively represent
the initial label values of all nodes in the three scenarios of positive and negative label competitive
propagation, only positive label propagation, and only negative label propagation. As introduced in
lines 11-13, Hl(o) consists of three components, H1(2)s Hl(g) and Hl(g), which respectively represent
the final label values of all nodes obtained by applying the label convergence formula to graph G,
under the three propagation scenarios S, S;, and S,. As presented in lines 14—16, HZ(O) consists of
three components, HZ((P, Hz(g) and Hz(g), which respectively represent the final label values of all

nodes in the three propagation scenarios obtained by applying the label convergence formulato S, S,
and S, in G,.
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Algorithm 1. Input Generation
Input: The positive-only networks G;(V, E;,S,A;) and the negative-only networks G,(V, E,, S, A;) based
on the infected networks G(V,E,S,A) ,where S = (51, Sy, S|V|)T parameter @;

1. Initial label value matrices H(O) [Hl((l)),Hl(g),H(O)] H(O) [Hz(g),Hz(g),Hz(g)

2. Construct the matrices M, = D; 2 >< Ay XDy 2z and My =D, 2X A, XD, 2 ,where D; and D, are
the diagonal matrices with their (i, i)-element equal to the sum of the i-th row of A; and A,, separately;
3. Initialize the vectors S; = S, =S where S; = (511, 512,---,51|V|)T, S, = (521,522,---,52|V|)T;

4. for i < len(S) do

5. if s; == —1 then
6. 51, =0;

7. else

8 S2i = 05

9. endif

10. end for

11. HY = (1 - @) x (I — pM;)"1 X S;
12. Hl(g) =(1-@)x (U —pM) xS,
13. HY = (1= ) x (I — pM;) ™" X Sy;
14. HO = (1 —9) x (I —oM,)" 1 X S;
15. HO = (1 — ) x (I — M,)™* X Sy;
16. HY = (1— @) x (I — pM,) ™" X Sy,

17. return H1( ) = concat (Hl(g),Hl(g),H(O)) H(O) = concat (Hz(g),Hz(g),H(o))

(2) Spectral domain GCN is performed on G; and G,, respectively, and the graph convolution
operations for each layer are shown in Eqs (3.12) and (3.13).

P = o(MH! D), (3.12)
1Y = o(MHg P ), (3.13)

where Hl(l) and H 2(1) respectively denote the outcomes of applying the [-layer spectral domain GCN
1

1

to G, and G,; M; and M, denote the convolution kernel functions; M; = D; 2 X A; X D; 2,
1 1

M,=D, :xA,xD, 2, A, =A,+1, A, =A, +1, A;,and A, denote the adjacency matrices of
G, and G,; I istheidentity matrix; D; and D, denote the degree matrices of 4; and 4j; Wl(l_l)

and Wz(l_l) are the weight matrices to be learned; and ¢ denotes the activation function.
(3) By stacking L,-layer spectral domain graph convolution and merging the outputs of two

parallel networks together with weight, the final label value of all nodes is acquired as shown in
Eq (3.14).

H = 6H™ + (1 - §)H™, (3.14)
where & is the adjustment weight.

3.3. Classifier

The final module in the proposed model is the classifier. First, we synthesize the output of the
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spatial GCN module and the spectral GCN module into a concatenated representation as the ultimate
position of all nodes as presented in Eq (3.15). Subsequently, the MLP classifier is employed to
undertake a binary classification task, distinguishing whether each node is a rumor source or not. The
MLP classifier is depicted in Eq (3.16), and the cross-entropy loss function is given in Eq (3.17).

X = concat(H,H), (3.15)
Y = sigmoid(MLP(X)), (3.16)
loss = = Ypev (Vi X log yi + (1 = yi) X log(1 = ), (3.17)

where H represents the source centrality feature matrix; H' represents the source prominence

feature matrix; concat(-) indicates the concatenation operation; ¥ = [ﬂ,---,ﬁﬁ]T, Vi denotes the
predicted label; and y, denotes the true label.

The 3SGCN algorithm mainly consists of two parts: spatial GCN and spectral GCN, with
corresponding time complexities of O(|V|? = L;) and O(|V|3 = L,), respectively. Therefore, the
overall time complexity of this algorithm is O(|V|3 * L,).

4. Experiment and discussion

This paper proposes a multirumor source localization framework tailored to signed social
networks. First, an AS-SI propagation model based on the structural balance theory is put forward,
which accurately depicts the distinct impacts of positive and negative relationships on message passing
in signed networks. Second, a multirumor source localization approach called 3SGCN is proposed,
which integrates the rumor centrality principle and the source prominence theory. It thoroughly
excavates the propagation structure information of infected nodes as well as the positional distribution
information between infected and uninfected nodes. By encoding the source centrality and source
prominence features of nodes, the task of multirumor source localization is achieved.

To verify the effectiveness of the algorithm presented in this paper, four real-world online social
network datasets are chosen, namely Bitcoin-Alpha [36], Bitcoin-OTC [36], Slashdot [37], and
Epinions [37]. The statistics of these datasets are showed in Table 3. Bitcoin-Alpha and Bitcoin-OTC
are weighted and directed signed networks composed of Bitcoin transaction users and their trust
relationship scores. Its edge weights range from -10 (complete distrust) to +10 (complete trust), with
a step of 1, representing various emotional relationships from complete distrust to complete trust.
Slashdot is a directed signed network composed of news comment users and their marked friend or
enemy relationships. Epinions is a directed signed network composed of product review users and their
support or opposition relationships.

Table 3. The statistics of four signed social networks. ‘nodes’ depicts the number of nodes,
‘pos edges’ indicates the number of positive edges, ‘neg edges’ shows the number of
negative edges, and ‘%pos’ presents the proportion of positive edges within the network.

networks nodes pos edges neg edges Y%pos
Bitcoin-Alpha 3783 22650 1536 93.65
Bitcoin-OTC 5881 32029 3563 89.99
Slashdot 82140 425072 124130 77.40
Epinions 131828 717667 123705 85.30
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In order to serve the task of multiple rumor source localization, this paper utilizes the directional
information in the graph to construct diffusion cascades. Specifically, for Bitcoin-Alpha and Bitcoin-
OTC, Bitcoin users are considered as infection sources, and their transaction counterparts are regarded
as infection nodes; for Slashdot and Epinions, comment users are considered as infection sources, and
their follow-up commenters are regarded as infection nodes. The construction process of the infection
source set is to add users randomly one by one until the number of infected nodes in the network
reaches the specified value and then stops.

4.1. Experimental settings

The experimental environment of this paper is equipped with an Intel (R) Core (TM) 19-14900HX
CPU and an NVIDIA GeForce RTX 4090 24GB GPU. Pytorch [38] and Pytorch Geometric [39] are
utilized. Hyperparameters are adjusted for different datasets. The range of GCN layers is {4, 6, 8, 10},
the range of hidden layer dimensions is {64, 128, 256, 512}, the range of dropout rates is {0.2, 0.3,
0.4, 0.5}, the range of learning rates is {0.001, 0.003, 0.005}, and the range of training epochs is {1000,
1500, 2000} . Five-fold cross-validation is adopted. The original dataset is randomly partitioned into a
training set and a test set at a ratio of 4:1. Subsequently, the training set is further divided into a new
training set and a validation set in the same ratio. As a result, the proportion of the training set,
validation set and test set is 16:4:5. Here, the training set is utilized for learning the model parameters,
the validation set is employed to optimize the hyperparameters, and the test set is used to assess the
performance of the algorithm. The rectified linear unit (ReLU) function is selected as the activation
function in GCN, and the number of hidden layers in MLP is set to 2. The model is trained using the
Adam optimization algorithm and the Dropout strategy, and early stopping is implemented. Training
will be terminated in advance when the loss function of the validation set shows no decrease over 10
consecutive training rounds. Following the LPSI algorithm, the parameter ¢ 1is set to 0.5. Referring
to the MFC model, the parameter A is set to 3. All evaluation metrics are the average of 500
independent experiments to ensure the credibility of the results.

Considering an imbalance between the number of positive and negative samples, this paper
selects the F1-score and AUC (i.e., the area under the receiver operating characteristic (ROC) curve)
as evaluation metrics. Generally speaking, higher F1 and AUC mean better performance. It can be
proved that maximizing the F1-score is equivalent to maximizing Eq (2.1) [18].

4.2. Comparison results

To verify the superiority of the 3SGCN algorithm proposed in this paper, six state-of-the-art
baseline models are selected for performance comparison: LPSI [8], GCNSI [18], SL-VAE [19],
PGSL [20], multifaceted attention-based signed network embedding (MUSE) [22], and global
information-based signed network embedding (SiG) [23], which are described as follows. The
hyperparameters of the above models are chosen according to their original papers. In this paper, the
proportion of infected nodes is set to range from 10% to 20%, and extensive experiments are conducted
on four real-world social network datasets. Then, the changing trends of the F1-score and AUC of each
model is obtained, as depicted in Figure 5.

« LPSI: A multisource detection framework based on label propagation.

« GCNSI: A multirumor source detection framework based on graph convolutional networks.

« SL-VAE: A multisource localization framework based on variational autoencoder.

« PGSL: A multisource localization framework combining deep generative and graph neural
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network models.
« MUSE: A signed network embedding method based on multifaceted attention mechanism.
« SiG: A signed network embedding method based on global information.
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Figure 5. The performance comparison of five algorithms on four datasets. The subgraphs
depict the variations in the F1-scores and AUC values of all algorithms as the percentage
of infected nodes ranges from 10% to 20% in the following datasets: (a) Bitcoin-Alpha, (b)
Bitcoin-OTC, (c) Slashdot, and (d) Epinions. Distinct curves correspond to different
algorithms.
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The paired t-test results of the algorithm in this paper are shown in Table 4. Statistical significance:
kA * for p-value<0.01, 0.05, 0.1 respectively.

Table 4. Statistical significance of 3SGCN.

Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions
3SGCN F1 AUC F1 AUC F1 AUC F1 AUC
Signiﬁcance skoksk skkosk skksk skkosk kk skkosk skkosk kook

On the Epinions dataset, this paper sets the proportion of rumor sources at 1%, 3%, 5%, and 7%
to compare the source localization performance of various models. The experimental results are
presented in Tables 5 and 6.

Table 5. The comparison among five algorithms in terms of Fl-score under different
proportion of rumor sources.

Proportion\Model LPSI GCNSI SL-VAE PGSL 3SGCN
1% 0.065 0.340 0.561 0.748 0.880
3% 0.057 0.236 0.487 0.726 0.879
5% 0.046 0.223 0.480 0.763 0.855
7% 0.034 0.218 0.466 0.711 0.845

Table 6. The comparison among five algorithms in terms of AUC under different
proportion of rumor sources.

Proportion\Model LPSI GCNSI SL-VAE PGSL 3SGCN
1% 0.511 0.562 0.598 0.781 0.928
3% 0.438 0.510 0.624 0.819 0.943
5% 0.436 0.413 0.621 0.804 0.930
7% 0.447 0.445 0.553 0.772 0.911

The analysis of the above experimental results is as follows:

First, in terms of all metrics on all datasets, the localization performance of the 3SGCN
significantly outperforms that of other comparison methods by over 10% in F1-score and over 15% in
AUC on average. Notably, for the Bitcoin-OTC and Slashdot datasets, the superiority of our algorithm
in localization accuracy is fully manifested. Meanwhile, for the task of multiple rumor source
localization, as the number of rumor sources and infected nodes rises, the overall performance of all
existing algorithms shows a decline. Nevertheless, the generalization performance of 3SGCN far
surpasses that of its counterparts. It can still maintain a high level of accuracy and relative stability.
This can be attributed to the fact that our algorithm combines social theory with a learning algorithm
to customize the multirumor source localization framework suitable for signed social networks.
Therefore, the 3SGCN algorithm can be closer to the real rumor spread scenario and further improve
the accuracy and robustness of source localization even when the difficulty of the multisource
localization task increases.
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Second, with the growth of network size and the alteration of topological structure, the
performance of all existing models drops to a certain extent. Nevertheless, in terms of multisource
localization accuracy, our algorithm is proved with less reduction than other methods. It shows that the
model we proposed has strong generalization. This is because this paper takes into account the
characteristics of rumor dissemination in online social networks. It makes full use of the structural
balance theory in social psychology to delve deeply into the intricate propagation structure formed by
heterogeneous edges and integrates the characteristics of rumor centrality and source prominence to
learn high-quality representations of rumor source locations. Consequently, it can effectively address
the challenges posed by complex networks.

Finally, regarding different ratios of positive and negative edges, in comparison with other state-
of-the-art models, the proposed algorithm demonstrates strong robustness and can still maintain a high
level of source localization performance.

4.3. Ablation study

In the 3SGCN model, there are two critical modules, namely the spatial GCN module and the
spectral GCN module. In order to verify the effectiveness of these two modules, four variants are
designed for ablation study. Specifically, the source localization framework based on label propagation
is first used as the base model. Subsequently, other modules are gradually added, including two streams
merging, different paths aggregation, and signed attention mechanism. Eventually, the 3SGCN model
is obtained. In this paper, the proportion of infected nodes is fixed at 25%, and a series of experiments
are carried out on four real-world social networks. The contribution of each component to the overall
performance is shown in Figure 6.

(1) Variant a (+ label propagation mechanism): Graph convolutional networks are applied to
locate multiple rumor sources. First, features are extracted from three dimensions of positive and
negative label propagation, positive label propagation only and negative label propagation only. Then,
an MLP classifier is employed to determine whether each node is a rumor source or not.

(2) Variant b (+ separate processing of positive and negative subgraphs): The original graph is
partitioned into positive and negative subgraphs. Graph convolution operations are carried out
separately in the spectral domain for each subgraph, and then they are merged to acquire the source
prominence feature of the node.

(3) Variant ¢ (+ SI model + GAT [40]): For the infection subgraph, the unsigned SI model and
unsigned graph attention network (GAT) are adopted to learn the positional representation of nodes.

(4) Variant d (+ AS-SI model + positive and negative neighbor split aggregation): Based on the
AS-SI model, the representations of friends and enemies are aggregated separately from balanced and
unbalanced paths and then merged to obtain the source centrality feature of nodes.

(5) Variant d (+ signed attention mechanism): Different attention weights are assigned to positive
and negative neighbors on different paths.
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Bitcoin-Alpha Bitcoin-OTC|| Slashdot Epinions

(a) (b)

100% 100%

80% 80%

60% 60%

AUC

40% 1 40%

20% ' 'f 20%
0 L 0

Figure 6. The performance comparison of the four variants on the following two metrics:
(a) F1- score, (b) AUC. Bars of distinct colors denote the experimental outcomes on
various datasets.

From the above experimental results, it can be seen that for the multisource rumor localization
task, the removal of any module will lead to a decline in the overall performance of the model, which
fully demonstrates the effectiveness of each component in 3SGCN. Simultaneously, different datasets
exert an influence on the performance of each module, especially in large-scale networks such as
Epinions and networks with more negative edges such as Slashdot, where the performance of each
module generally shows a decline, but the overall impact is relatively small. This indicates that our
proposed algorithm can adapt well to a variety of network types and maintain a high-level localization
performance even in large-scale and complex networks.

Specifically, we first observe the contribution of variant a to the overall performance. In this paper,
the GCNSI framework and MLP classifier are incorporated into the basic model, which can effectively
utilize the distribution characteristics of infected and uninfected nodes for multisource localization,
thus significantly improving the localization performance of the 3SGCN model. Second, when variant
b is introduced to separately process positive and negative subgraphs, by mining the diverse impacts
of heterogeneous edges on information dissemination, the consistent propagation structure
characteristics are comprehensively extracted. As a result, the performance of the 3SGCN model is
greatly enhanced. Third, after adding the unsigned graph embedding learning of variant c, although
the node representations contain rich graph structure information, the ability to extract the location
information of the propagation source is insufficient, and the balance of the structure composed of
positive and negative edges is ignored. Therefore, the contribution of this module to the source
localization performance is limited. Then, after adding variant d to the infection subgraph for branch
aggregation, by encoding complex paths containing both positive and negative edges, the positive and
negative neighbor embedding representations are learned, which can capture more complex
propagation structure information. Therefore, this module also makes a positive contribution to the
overall performance. Finally, through the incorporation of variant e's signed attention mechanism, the
levels of trust in positive and negative neighbors are accurately described, which is consistent with the
real-world scenarios of online network rumor propagation and is conducive to improving the accuracy
of the multirumor source localization task. In summary, due to the collaborative and synergistic effects
among the various modules, the proposed 3SGCN achieves the optimal performance among existing
similar methods.
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4.4. Parameter analysis
44.1. Impactof y

In this paper, the proportion of infected nodes is fixed as 30%, and the value range of y is set to
[0.1, 0.9]. A series of experiments are conducted on four real-world datasets to observe the changes in
the source localization performance of the 3SGCN model as the parameter y increased continuously.
The results are presented in Figure 7.

Bitcoin-Alpha Biteoin-OTC Slashdot Epinions

0.95

= 090

Figure 7. The impact of ¥y on the performance of 3SGCN algorithm. Variations in F1-
scores as ¥ ranges from 0.1 to 0.9.

As can be seen from Figure 7, with the gradual increase of y, the Fl-score of the 3SGCN
algorithm exhibits certain fluctuations yet generally remains above 0.85, indicating its excellent
robustness. This is because this paper combines the complementary advantages of model-driven and
data-driven approaches, integrating the spatial and spectral GCN models within a unified framework.
This approach can not only give priority attention to the AS-SI propagation model but also avoid
complete reliance on a specific underlying model. Without the need for prior knowledge, it strikes an
effective balance between accurate modeling and uncertain diffusion. Nonetheless, for distinct datasets,
there exists an optimal value of y that maximizes the performance of the 3SGCN model. Specifically,
for the Bitcoin-Alpha, Bitcoin-OTC, Slashdot, and Epinions datasets, the optimal values of y are 0.3,
0.4, 0.2, and 0.1, respectively.

4.4.2. Impactof §

In the spectral domain GCN module, § is used to adjust the aggregation weights between the
positive and negative streams. In this paper, the proportion of infected nodes is fixed at 30%, and
extensive experiments are carried out on four real-world datasets to observe the influence of the
parameter § on the performance of the 3SGCN model. Taking the Bitcoin-Alpha dataset as an
example, the experimental results are shown in Figure 8. Similar curves can also be obtained on other
datasets.
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Figure 8. The impact of § on the performance of 3SGCN algorithm. Variations in AUV
values as § ranges from O to 1.

As can be seen from Figure 8, when § = 0.5, the AUC value of our proposed algorithm reaches
the optimum. This indicates that the positive stream is as important as the negative stream in
contributing to the performance of source localization.

4.4.3. Impactof A

In this paper, the proportion of infected nodes is fixed at 20%, and the range of A is set to [2, 4].
Experiments are conducted on four real datasets to observe the impact of A values on the performance
of the 3SGCN model. The results are shown in Figure 9.

Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions

0.95

=
= 0.90

0.85

Figure 9. Performance comparison under different A.
As can be seen from Figure 9, the value of 4 has little impact on the AUC value of the algorithm

proposed in this paper. Although the optimal value varies for different datasets, most of them are
concentrated around the value of 3.
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4.44. Impact of Hyperparameters

The optimal settings of the four hyperparameters, namely the number of GCN layers, the
dimension of the hidden layer, the dropout rate, and the learning rate, were obtained through fivefold
cross-validation. It is worth noting that when adjusting one hyperparameter, all other hyperparameters
should be fixed at their optimal values. In this paper, the proportion of infected nodes was fixed
at 20%. Taking the Bitcoin-Alpha dataset as an example, the F1 value of 3SGCN is shown in
Figure 10.

(a) GCN layer (b) Hidden layer dimension
0.95 0.95

= 0.90 = 0.90

0.85 0.85

(c) Dropout rate (d) Learmng rate
0.95 0.95

& 0.90 = 0.90

0.85 0.85
02 0.3 0.4 0.5 0.001 0.002 0.003 0.004

Figure 10. Performance comparison under different hyperparameters.

As can be seen from Figure 10, when 3SGCN achieves the best performance, the number of GCN
layers is 6, the hidden layer dimension is 256, the dropout rate is 0.2, and the learning rate is 0.0001.
This indicates that if the number of GCN layers and the hidden layer dimension are too few, it will
lead to underfitting, while if they are too many, it will lead to overfitting. For the Bitcoin-Alpha dataset,
an appropriate dropout rate and learning rate can further improve the performance of multisource
localization. Although this paper adopts the Adam optimizer, which automatically adjusts the learning
rate during training, the initial learning rate is still crucial to the training effect.

5. Conclusions

In the context of real-world online social networks, this paper proposes a multirumor source
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localization framework integrating multidisciplinary approaches. First, combining social psychology
theory and an epidemic model, an AS-SI propagation model suitable for signed social networks is
proposed. Second, combining a complex network analysis method with a deep learning algorithm, an
improved multirumor source localization algorithm that integrates spatial domain convolution and
spectral domain convolution is proposed, and the rumor centrality principle and source prominence
theory extend the scope to signed social networks. Upon conducting extensive experiments on four
real-world social network datasets, the results demonstrate that AS-SI works very well in modeling
information diffusion in signed networks, and 3SGCN can significantly outperform other comparative
methods in identifying rumor initiators. At the same time, we also recognize that the overall complexity
of the 3SGCN algorithm is relatively high, making it difficult to be efficiently applied to large-scale
social networks. In the future, we will further enhance its operational efficiency and extend the static
graph to a dynamic graph. By integrating the quasiequilibrium index and social status theory, we will
construct a spatiotemporal dynamic model [41] to further improve the quality and efficiency of source
localization.
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