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Abstract: This investigation systematically examined mixed convection flow of a fractional
micropolar fluid over an oscillating plate, incorporating thermal radiation and memory effects through
Caputo fractional derivatives. The governing equations of the proposed problem were non-
dimensionalized using appropriate dimensionless variables. Exact solutions for velocity, microrotation,
and temperature distributions were derived via the Laplace transform method. The obtained exact
solutions were expressed in terms of Wright functions to preserve memory characteristics. Special
cases, including Stokes' first problem and fractional viscous fluids, were demonstrated, which showed
the model's versatility. The influences of key parameters, such as fractional order (« ), micropolar
material parameter ( £ ), Grashof number ( Gr ), Prandtl number ( Pr ), and radiation parameter ( R ) on
flow and heat transfer characteristics, were analyzed and presented in various graphs. Graphical results
illustrate parametric trends emphasizing memory effects, while tabulated data quantified skin friction,
wall couple stress, and Nusselt number variations. The results yielded: (1) a generalized fractional
micropolar model capturing memory effects, (2) new insights into radiation's role in thermal boundary
layer modulation under non-local dynamics, and (3) benchmark solutions for microfluidic device
design. This work unified fractional calculus (with its inherent memory effects), micropolar theory,
and oscillatory boundary conditions, establishing a foundation for advanced fluid mechanics research.
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1. Introduction

Niels Abel’s 1823 approach to the autochrome phenomenon was its first application in practice
in solving integral problems, while its conceptual roots remain similar to those of traditional calculus,
with Euler and Fourier considering arbitrary-order derivatives. Although the area was mostly restricted
to theoretical mathematics for over a century, Liouville later offered the first demanding mathematical
description of fractional derivatives [1], but in the latter part of the 20" and early 21% centuries, a
paradigm change occurred when fractional calculus emerged as an effective instrument for describing
intricate real-world phenomena that are marked by power-law dynamics, memory effects, and non-
locality. Fractional calculus is now a very useful tool in many different domains, having advanced far
beyond abstract theory. In fields such as fluid mechanics [2], where it aids in the modeling of complex
flows; bioengineering [3], where it simulates tissue behavior and drug delivery; electrochemistry [4],
where it enhances battery models and reaction kinetics; signal processing [5], which facilitates better
analysis of real-world data; and viscoelasticity [6], where it captures the memory-dependent behavior
of polymers and gels, researchers now frequently use it. Fractional models are particularly useful in
fluid dynamics for investigating non-Newtonian fluids, such as blood, creams, or molten polymers,
since they provide more precise predictions of their flow behavior, heat transfer, and small-scale
interactions than conventional techniques. New applications in fields like anomalous diffusion [7] (e.g.,
pollutant dispersion or cellular transport), thermodynamic modeling of memory-dependent materials [8]
(e.g., shape-memory alloys), and data-driven parameter identification [9] in complex systems using
machine learning are just a few examples of recent expansions that continue to increase its utility. This
continuous development demonstrates how fractional calculus has genuinely transformed from a
mathematical curiosity into a versatile, crucial foundation for contemporary engineering and research.

In the meantime, a significant departure from traditional modeling techniques is represented by
the creation of fractional derivative models for fluids, both Newtonian and non-Newtonian. In contrast
to conventional techniques, these models more correctly depict how fluids “remember” previous loads
and deformations by capturing subtle fluid behaviors such as memory effects and genetic
characteristics. This is particularly helpful for comprehending and forecasting the behavior of
complicated fluids under real-world circumstances, such as blood, polymer solutions, or colloidal
suspensions. These generalized models are obtained by methodically substituting fractional-order
operators for the typical time derivatives in traditional constitutive equations. This allows the fluid's
stress-strain relationship to incorporate non-locality and long-range temporal dependencies. For
instance, well-established non-Newtonian frameworks, including the Maxwell, Oldroyd-B, and
Burgers’ fluid models, have been successfully extended into their fractional analogues to capture
anomalous stress relaxation, frequency-dependent viscosity, and enhanced viscoelastic characteristics.
Pioneering work by Friedrich [10] laid crucial groundwork by reformulating the classical Maxwell
model using fractional calculus, explicitly expressing the mechanical response in terms of fractional-
order relaxation and retardation times. This foundational study demonstrated that fractional operators
naturally model the broad spectrum of relaxation times observed in real polymeric and biological fluids.
Building on this, Tan et al.[11] analyzed unsteady channel flows of a fractional Maxwell fluid,
providing early insights into the transient flow dynamics governed by fractional kinetics. Concurrently,
Makris et al. [12] contributed to the field's expansion by adapting the fractional Maxwell formulation
for applications in structural engineering, specifically in modeling the damping behavior of
viscoelastic materials in seismic isolation devices. The research trajectory was further enriched by
subsequent investigations. Zafer et al. [13] obtained analytical solutions for the velocity field in flows
driven by a boundary shear stress using a fractional Maxwell formulation, while Shaikh et al. [14]
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explored the hydrodynamic start-up flow of a fractional Oldroyd-B fluid within an annular geometry,
highlighting the interplay between fractional parameters. Together, these and numerous additional
studies [15—17] have established a solid mathematical and practical basis for the use of fractional
calculus in rheology. They unambiguously demonstrate that fractional models perform better than
conventional methods in forecasting the behavior of complicated fluids, including synthetic polymers,
molten plastics, biological fluids like blood or mucus, and even geophysical materials like sediment or
magma. This expanding quantity of work demonstrates the profound impact of fractional calculus. It is
more than simply a theoretical update; it is strengthening our basic comprehension of fluid behavior and
significantly increasing our capacity to simulate and forecast fluid occurrences in the real world.

Tan et al. [ 18] made a significant breakthrough by adding fractional derivatives to the constitutive
model of a second-grade fluid, building on previous fundamental work on fractional viscoelastic fluids.
Because of this change, the model was able to account for hereditary effects, which means that the
fluid's current behavior is now influenced by its history of deformation rather than just its current
condition. Compared to conventional models, this method provides a deeper and more physically
realistic depiction of the natural memory-dependent response observed in many non-Newtonian fluids,
such as biological materials or polymer solutions. By deriving exact analytical solutions for oscillating
flows of a generalized Casson fluid, Khan et al. [19] expanded on this strategy and showed how
fractional calculus may accurately represent the variable shear-thinning tendency under motion that is
periodic. Subsequently, Kamran et al. [20] analyzed unsteady rotational flow of a fractional second-
grade fluid through a circular cylinder, highlighting the influence of fractional parameters on torque
and angular velocity. A critical limitation of these studies, however, was their exclusive focus on
momentum transfer, neglecting the coupled thermal dynamics that often govern real-world
applications. Recognizing this gap, Shakeel et al. [21] pioneered the extension of time-fractional
derivatives to heat transfer phenomena, investigating free convection flow of a viscous fluid near a
vertical plate and uncovering memory effects in thermal boundary layer development. This thematic
progression continued with Khan et al. [22], who integrated the Caputo fractional derivative into the
constitutive equation of a generalized Casson fluid flowing over an infinite oscillating plate, thereby
coupling non-integer order dynamics with wall-driven motion. Shah and Khan [23] expanded this
framework by employing the Caputo-Fabrizio derivative, notable for its non-singular kernel, to study
heat transfer in a second-grade fluid over an oscillating plate, revealing enhanced accuracy in modeling
thermal memory. Furthermore, Ali et al. [24] obtained exact solutions involving special functions for
free convective heat transfer in a generalized Brinkman-type fluid, underscoring the analytical
tractability of fractional models even with coupled heat flow. The application of fractional calculus
extends to numerous non-Newtonian fluid models, offering a superior framework for capturing their
memory-dependent and hereditary properties in thermal and solute transport processes [25-27]. Within
this class of fluids, the micropolar model is particularly notable for its ability to describe fluids
containing microstructures, such as polymeric suspensions or liquid crystals. This study, therefore,
focuses on implementing a fractional derivative formulation to investigate combined heat and mass
transfer within a micropolar fluid flow.

Micropolar fluids represent a fundamental subclass of microfluids characterized by six
independent degrees of freedom: three for translational motion and three for rotational motion. This
advanced constitutive framework accounts not only for classical velocity fields but also for
microrotation, a local internal rotation of fluid particles, and micro-rotational inertia, enabling the
modeling of fluids with inherent microstructure such as liquid crystals, colloidal suspensions,
polymeric fluids, biological fluids, and lubricants containing suspended particles. The foundational
theory for these fluids was first established by Eringen [28], who introduced the broad concept of
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microfluids and systematically categorized them into three distinct classes based on their kinematic
and microstructural properties. Ariman and Cakmak [29] made early theoretical advances by creating
some of the earliest analytical solutions for basic micropolar fluid flows. Their research highlighted
the significance of micro-rotational effects and helped to explain how these fluids behave differently
from conventional Newtonian fluids. The effects of magnetic fields on micropolar fluids flowing
across a moving surface were further investigated by Seddeek et al. [30]. They demonstrated how
magnetic forces, also known as Lorentz forces, impact the fluid's internal rotation, or microrotation, in
addition to its velocity, exposing more intricate physical layers. Further developments resulted from
the search for precise answers under time-dependent circumstances. For instance, unsteady flows close
to an oscillating plate where fluid motion is driven by both temperature and concentration variations
were examined by Sharief et al. [31] and Khalid et al. [32]. Their research shedes significant light on
the interactions between heat, mass, and microstructure in dynamic systems, both mathematically and
physically. By creating exact solutions for heat and mass transfer in micropolar fluids under Newtonian
heating conditions, Hussanan et al. [33] achieved significant progress. Their research provided a more
comprehensive understanding of the interrelationships between temperature, concentration, and the
fluid's internal micro-rotation. By examining real-world situations such as flow through porous materials,
peristaltic pumping (seen in biological systems), and boundary layer behavior, other studies [34-36]
have further increased the applicability of micropolar models. These studies attest to the adaptability
and applicability of micropolar theory in a variety of real-world situations. The incorporation of
fractional calculus into micropolar fluid dynamics, particularly for flows with oscillatory boundaries
and memory-dependent heat and mass transport, is yet an unexplored field. In the end, closing this gap
could boost theoretical and applied research in the field by enabling more effective and predictive
models that include history-dependent effects frequently observed in complex fluids like polymers,
biological media, or smart materials.

Based on the discussed literature, we came to know that fractional operators have been
successfully applied to various fluid models, yet their application to micropolar fluid systems, essential
for describing fluids with suspended microstructures, remains entirely unexplored. To address these
research gaps, the major contributions and novelty of this study are as follows:

1) Develops a generalized fractional micropolar fluid model that simultaneously incorporates mixed
convection, oscillatory boundary conditions, and thermal radiation.

2) Integrates Caputo fractional derivatives to realistically capture thermal and momentum memory
effects, which are absent in classical micropolar models.

3) Derives exact analytical solutions for velocity, microrotation, and temperature fields using the
Laplace transform technique, expressed in terms of Wright functions.

4) Demonstrates the versatility of the proposed model by recovering important limiting cases,
including Stokes’ first problem and fractional viscous fluids.

5) Provides benchmark analytical results for skin friction, wall couple stress, and Nusselt number,
useful for validation of numerical and experimental studies.

6) Offers new physical insights into how thermal radiation interacts with nonlocal (fractional)
dynamics in modulating the thermal boundary layer.

In light of the above discussion, the following research questions are formulated to guide this study.

1) How do fractional-order derivatives influence velocity, microrotation, and temperature
distributions in mixed convection micropolar flows?

2) What is the role of thermal radiation in altering heat transfer characteristics under memory-
dependent fluid behavior?
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3) How do key parameters suchas «, £, Gr, Pr, R affect flow, skin friction, wall couple stress,
Nusselt number, and thermal responses?

4) How can the obtained exact solutions serve as reliable benchmarks for the design and analysis of
microfluidic and thermal systems?

2. Description of the problem

This study analyzes an unsteady, one-dimensional free convection flow of an incompressible
micropolar fluid past an infinite vertical plate. The physical configuration, illustrated in Figure 1,
consists of a rigid plate that is set into oscillatory motion in its own plane at time ¢ =0. The definition
of a Cartesian coordinate framework is that the x-axis is aligned to the gravitational field and the
direction of plate motion, whereas the y-axis is normal to the plate surface. At a fixed temperature 7,
the fluid is initially stationary and isothermal. The oscillation of the plate (#(0,¢) = UH (¢) cos wt ) starts

the motion at #=0". At the same time, a buoyancy force is created by instantly raising the plate
temperature to a constant value 7, , which is maintained for all #>0.

Assuming the flow is unidirectional and applying the Boussinesq approximation, the governing
equations for momentum, microrotation, and energy are derived as follows [32,37]:

ou(y,t O*u(y,t ON (.t
(81‘ ):(ﬂ+al) aiz )+al éy )+g(PﬂT)(T(J’J)—Tw); y,t>0, (1)

,aN(y,t) azN(y,t)
2

= : ,1 >0, 2

- 7 & y (2)
oT (y,t o°’T(y,t) &

pC, ( )=k1 (2 ) 9y >0 (3)
ot oy oy

MB: Momentum boundary layer
TB: Thermal boundary layer

pel
0" MF: Micropolar Fluid

Figure 1. Geometrical sketch.
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Applying the Rosseland approximation, the radiative heat flux term in Eq (3) simplifies to:

4o, OT*
qr == ! ) (4)
3k, Oy

where o, represents Stefan-Boltzmann constant and &, 1is the mean absorption coefficient.
By expanding 7" using a Taylor series about the ambient temperature 7. and neglecting

higher-order terms beyond the linear component, we obtain the linearized form as:
T =4T’T -3T". (3)

Substituting Eqs (4) and (5) into Eq (3) yields:

OT (v,t 3N\ T (y,t

—(y ): +16G‘T°° ({ ); »,t>0. (6)
POt 3k k, oy
Corresponding initial and boundary conditions are:
u(y,0)=0, N(y,0)=0, T(y,0)=T,,
ou (0, t)
u(0,t) =UH (t)coswt, N(0,t) = —na—, 70,0)=T,,¢, (7)
y

u(o0,1) =0, N(o0,1)=0, T(c0,1) =T,

where u(y,t) is the fluid velocity, N(y,t) is the microrotation, 7'(y,?) is the fluid temperature, p
is the fluid density, u is the dynamic viscosity, ¢, is the vortex viscosity, g 1is the gravitational
acceleration, B, is the coefficient of thermal expansion, j 1is microinertia, y 1s spin gradient
viscosity, C, is the specific heat at constant pressure, k, 1is the thermal conductivity, g, is
radiative heat flux, U is the characteristic velocity, H(t) is the Heaviside unit step function and @
is the frequency of oscillations of the plate. Introducing the nondimensional variables

u U U’ T-T,

v
N Ay
U g o° v U’ T -T,

into Eqgs (1), (2), (6), and (7) yields the following transformed governing equations and boundary
conditions (dropping out * sign from N )

6v(§,r): 82v(§,r) 8N(§,r) _
T(1+IB) o + 5 +Gre; &, >0, )]
ON(&r) _1ON(ET) ©)
ot n o& 7 ’
00(&,7) ’0(&.7)
Pr——— —(1+R)—8§2 ;& 7>0, (10)

and
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WE,0)=0, N(£,0)=0, 8(£,0)=0,

w(0,7) = H(z)cos oz, N(0,7)=-n02, 0(0,7) =1, . (11)

v(0,7) =0, N(0,7) =0, N(0,7)=0, &(0,7)=1

vgpB (T, -T,)

Here, f= A s the micropolar fluid parameter, Gr = e is the thermal Grashof number,
U
n =#J s the dimensionless spin gradient, Pr= sl is the Prandtl number, Pr,, is the
% k, 7 1+R
160,T

effective Prandtl number, and R = is the radiation parameter. In order to develop the

"2
generalized micropolar fluid model, the governing Eqs (7)—(9) are transformed to the Caputo time
fractional model as:

Dfv(é,7)= (1+ﬂ) v(er) ﬁaN(f’T)mre; £, 7>0, (12)
o0&’ 0s
D;‘N:l%f’r); £ 7>0, (13)
n
PrD*6 (f,f)z(l-f-R)w; £, 7>0, (14)

off 0&°

where D () is the Caputo time fractional operator and is defined by [1]

J‘ f a’z' O<a<l,
D f(1)= (15)
af(y,t).
ot

a=1.

3. Solutions of the problem

The set of partial differential equations (12)—(14) is solved analytically via the Laplace transform
method. The solutions in the transform domain are inverted to the physical domain using a standard
inverse Laplace transform technique.

3.1. Solutions for temperature profile

The Laplace transform is applied to the energy Eq (14). Utilizing the initial condition defined in (11),
the transformed equation is obtained as:

d*0(£,q)
dé&?

along with transformed boundary conditions:

Pr,q“0(&,q)=0; &>0, (16)
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_ 1 -

H(Oa Q) :gv H(OO, Q) =0. (17)
Using Eq (17), the solution to the differential equation (16) is found to be:

o, q)- el (18)

The solution in the physical time domain is then obtained by performing the inverse Laplace transform
on Eq (18), resulting in:

O(&,7) = CD( Ziefpr, o j (19)

where @ (a,b;c) is the Wright function.

3.2. Solutions for microrotation profile

The Laplace transform is applied to the momentum Eq (13). Incorporating the initial condition
given by Eq (11) provides the transformed equation:

d* N(&,q) y:
i — @ 9 = O; > 0’ 20
e nq ¢ (20)
with transformed boundary conditions:
_ ov ( 0, q)
N(0,q) =—n , N(0,q) =0. (21)
o5
Employing the condition prescribed in Eq (21), the solution of Eq (20) is obtained as follows:
N, q) = Wl \/7 R L (22)

e

The inverse Laplace transform is applied to Eq (22) to obtain the solution in the time domain:

N D) =a L. (———1 ~&ne ZJHZCI)(— N j (23)
z—2

2
where
a, = ”\/ﬁo(ﬂ—ﬂo) , a4y =a,Gr4, —anGr4,|/Pr,;, Al:LandﬂO:L.
(=B, + 0B, ~nppin) (Pr,— 1) 1+

3.3. Solutions for velocity profile

The Laplace transform is applied to Eq (12) and its associated boundary conditions are from Eq (11).
Substituting the expressions from Eqs (18) and (22) into the resulting transformed equation yields:
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d’v(£,9) q) _dN(&.q)
e ,Boq V= E +Gro, >0, (24)
and
v(0,q)=—2L— v(o0,q)=
V(an)_q2+a)25 ( ’q) 0 (25)

The solution to Eq (24), subject to the boundary conditions (25), is given by:
;(é’ q)=a 2 - 2 6_5\/%7 R e —— 9 _NUT eig\/ﬂo7 % -6_5\/77 _ % -eiém (26)
qg +o

2 7€ a+l T anl a+l >

qg to q q

where

BB
Gr4,, = .
4 (77 - ﬂo )

Finally, applying the inverse Laplace transform to Eq (26) yields the solution for the velocity field in
the time domain:

=(1—a1A0), a, =a 4y, a;=Grd +a,4,, ag=a,4,, a, =

W&, 1) =a,cosmT*T 1@(0 = & j+a4 cosa)r*r_l(I)(O,—%,—é\/;r_gj
+asrl®(a+1,—%,—§ ﬂofzj a,r” (a—i—l =z _5\/_sz 27)

S a —a
—-a,7 d)(a+1,—2 =&\Pr, 7 j

3.4. Numerical results for surface transport phenomena

The key engineering parameters, skin friction, wall couple stress, and Nusselt number, are given
in their dimensional and dimensionless forms by the following expressions:

C = —(1 +le +aN| _, (28)
’ a oy o =
8v(§,r)
C,=2[1+(1-n)] Y. (29)
£=0
c,’;=—7—aN*(y’t) : (30)
ay y=0
c, =—(1+ﬂ)av(;:;r) 31)
£=0
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Nu = , 32
u T _T. (32)
_ 60( ,r)
N Re (33)
o0& o

4. Special cases

This section outlines the reduction of the generalized fractional micropolar model to several
recognized fluid flow problems. These special cases serve to validate the present model, and they
highlight the versatility and analytical strength of the derived solutions across different physical regimes.

4.1. Solution of Stokes’ first problem

In the limiting case, when @ — 0, the solutions obtained in Eq (27) are reduced to the form of
Stokes’ first problem as:

V(C—’E’ T)=a3q)(la_%a_§ ﬂoT_CZ(J‘HM(D(L—%,—f\/;f‘;]
a a a " a B
Tast q’(“ L2 eNAT j—a(,r d)(a +1,—?_§\/;, ; ) (34)
—a7r“®(a+1’_%’_§ IHOT{;).
This confirms the consistency of our generalized model with the established theory.

4.2. Fractional viscous fluid

In the absence of micropolar effects, i.e., when the vortex viscosity parameter f — 0,= £, —1

and Eq (27) reduce to the fractional velocity profile for a viscous (Newtonian) fluid

1 o -z a a -2
v(&,7)=coswr*+7 @(O,—E,fr ]—Gror @(0{+1,—5,1/Prejf§r j (35)
where
Gr, = or .
Pr, -1

This recovery of the established solution validates our generalized model.
4.3. Ordinary viscous fluid

The consistency of our fractional model is verified by examining its limiting behavior. When the
fractional parameter o — 1, the memory effects inherent to the fractional calculus vanish, and the
Caputo derivative converges to the classical first-order derivative. Consequently, Eq (35) reduces to

integer-order solutions.
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_efa Gry, &g
e &a® -—re ,

V(& q) = (36)
q +to q
_ P R N L)
v(§,z‘)—cos(a)r £ Z}e '[cosw(r q)2u\/Ee du .

-G, Kz’ + §_zj erf c(ij - 5\/Zeii } .
2 27 2

This recovery of the classical model serves as a critical validation of our generalized fractional framework.
S. Numerical results

This section presents a comprehensive analysis of how key dimensionless parameters govern the
flow behavior, thermal characteristics, and microstructural response of the fractional micropolar fluid
system. The influence of dimensionless time (7 ), the fractional parameter (¢« ), micropolar material
parameter (S), spin gradient viscosity (77 ), Grashof number ( Gr), effective Prandtl number (Pr, ),

microgyration parameter ( # ), radiation parameter ( R ), and phase angle ( wz ) on the velocity,
microrotation, and temperature profiles is systematically examined. It is important to note that the
numerical values of these parameters were selected based on the studies reported in [21,24,32,37].
Particular attention is given to the distinctive memory effects introduced by the Caputo fractional
derivative framework, which manifest through the fractional order « and its interaction with other
physical parameters. The temperature distribution is specifically analyzed with respect to variations

v, Pr,, and R, highlighting their role in thermal boundary layer development. Each parameter’s

effect on the transfer of heat, fluid velocity, and rotational microstructure is demonstrated by
comparative profiles for two different values. These side-by-side illustrations quantitatively show how
changes in important variables impact the behavior of the system. The Wright function solutions make
it possible to precisely characterize the ways in which parameters change basic flow topologies. The
intricate relationship between memory effects, microstructure, and thermal transport is better
understood because of this analytical method. The findings show complex relationships specific to
micropolar fluid systems.

Figures 2-12 illustrate the influence of the fractional order parameter « on the velocity,
microrotation, and temperature profiles. These figures reveal that all three profiles increase
monotonically with increasing values of & and attain their maximum magnitudes at « =/, which
corresponds to the classical integer-order case. In contrast, for « <1, the profiles exhibit noticeably
reduced magnitudes, reflecting the strong memory effect inherent in the fractional-order formulation.
This memory effect accounts for the history-dependent behavior of the fluid, leading to delayed
momentum and thermal diffusion compared to the classical model.

The memory effects observed for o <1 are particularly relevant to polymeric fluids, where
molecular chain entanglement causes stress relaxation and delayed deformation under applied forces.
Similarly, in biological fluids such as blood, synovial fluid, and cytoplasmic flows, the presence of
suspended cells and micro-constituents induces history-dependent rheological behavior, which is
effectively captured by fractional-order micropolar models. Moreover, materials with hereditary
properties, including viscoelastic composites and smart materials, exhibit responses that depend on
past loading conditions. In such systems, the fractional-order formulation combined with micropolar
effects provides a more realistic representation of momentum and thermal transport mechanisms than
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classical integer-order models.

The influence of dimensionless time (7 ) on flow behavior is shown in Figure 2(a), (b). Velocity
profiles rise significantly with increasing 7 . This occurs due to enhanced momentum diffusion from
the oscillating plate. Fluid particles gain kinetic energy over time, accelerating the flow. Microrotation
intensity also grows with time. Longer duration allows stronger transmission of rotational effects.
Shear from the boundary progressively excites microstructural rotation.

vi{€.1)

—_— =04
2 —e—— 0=04 |
—a— 0=04

—e— =04

N(E.z)

0.75 -1

Figure 2. Velocity and microrotation profiles against ¢ for different values of 7 (a)
=3 and (b) t=5, where =0.2, n=1.5, Gr=10, Pr=10, n=0.1, R=2, and wr=r/2.

Figure 3(a),(b) illustrates the influence of the micropolar parameter S on velocity and
microrotation profiles. These figures clearly demonstrate that f exerts a suppressing effect on both
flow fields. Specifically, velocity and microrotation magnitudes decrease consistently as f increases.
This phenomenon has a clear physical interpretation. The parameter [ represents the ratio of vortex
viscosity to shear viscosity. Higher £ values indicate stronger microstructural resistance to fluid
motion. Consequently, this resistance reduces both translational and rotational momentum within the
fluid. Furthermore, the enhanced viscous effects thicken the momentum boundary layer. This
thickening reduces velocity gradients near the boundary. Meanwhile, the fluid's internal resistance to
rotation increases significantly. This dual effect explains the observed suppression of both
hydrodynamic characteristics.
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I(a) p=0.2

0.5

a=04
a=0.6
a=0.8
a=10

Figure 3. Velocity and microrotation profiles against & for different values of £ (a)
£=0.2 and (b) p=0.5 where =3, n=1.5, Gr=10, Pr=10, n=0.1, R=2, and wt=n/2.

Figure 4(a),(b) displays the effect of spin gradient viscosity (77) on velocity and microrotation.
Velocity profiles show a clear increase with higher values of 7. This occurs because enhanced spin
gradient viscosity improves momentum transfer. Meanwhile, microrotation demonstrates a decreasing
trend under the same conditions. This opposing behavior reflects the competitive energy distribution in
micropolar fluids. Higher 7 facilitates better diffusion of rotational momentum. Consequently, this
reduces local angular velocity gradients. At the same time, it promotes translational kinetic energy. Thus,
the fluid experiences lower resistance to bulk flow. In addition, the thickened momentum boundary layer
supports faster movement. However, rotational effects become more dispersed and less intense.

AIMS Mathematics Volume 11, Issue 1, 1900-1926.



1913

(b) =25
— =04
2.5

upls
S
>
1
0.5
0% 2 4 6 &
g

0.6 T =
0.55F =
a=04 |
05§ a=06 |7
0.45 B a=038 |4
0.4 a=10 |
.35 .
wrg.3 =
Zpa2s E
0.2 =
0.15 E
0.1 E
0.05 F E
4 ]
0 5 6

Figure 4. Velocity and microrotation profiles against & for different values of 7 (a)
n=1.5 and (b) n=2.5, where =3, f=0.2, Gr=10, Pr=10, n=0.1, R=2, and wr=n/2.

Figure 5(a),(b) demonstrates the influence of the Gr on velocity and microrotation profiles.
Increasing Gr enhances both velocity and microrotation magnitudes significantly. This trend occurs
due to strengthened thermal buoyancy effects. A higher Gr value indicates dominant buoyancy forces
over viscous forces. This thickens the thermal boundary layer and intensifies temperature gradients.
Consequently, the enhanced buoyancy drives stronger convective fluid motion. Meanwhile, the
increased fluid circulation generates greater vorticity. This elevated shear rate subsequently excites
microrotation. Furthermore, the microstructure responds more actively to stronger thermal forcing.
Thus, both translational and rotational motions are amplified. In addition, the fractional model captures
memory effects from past thermal states. This leads to sustained acceleration compared to classical
approaches. Understanding Gr is vital for thermally driven micropolar flows.

AIMS Mathematics Volume 11, Issue 1, 1900-1926.



1914

(b) Gr=l15

0.15 p=

(@) Gr=10 1 i (b) Gr=15

Figure 5. Velocity and microrotation profiles against & for different values of Gr (a)
Gr=10 and (b) Gr=15, where t=3, f=0.2, n=1.5, Pr=10, n=0.1, R=2, and wr=r/2.

Figure 6(a), (b) depicts the influence of the Pr, on velocity and microrotation. Both flow
characteristics show a decreasing trend as Pr,; increases. This behavior results from altered thermal
and momentum transport properties. Higher Pr,;, values indicate reduced thermal diffusivity relative

to momentum diffusivity. This reduces thermal boundary layer thickness significantly. Meanwhile, the
momentum boundary layer remains less affected by this change. Consequently, temperature gradients
near the wall become steeper. This intensifies heat conduction effects locally. Meanwhile, viscous
forces become increasingly dominant in the flow domain. The stronger viscous effects resist fluid
motion more effectively. Thus, velocity profiles show reduced magnitudes overall. Additionally,
diminished flow energy provides less excitation for microrotation. Furthermore, the suppressed
convection limits rotational activation. In addition, the fractional model captures how memory effects
interact with this suppression. This leads to a sustained reduction in both kinematic fields.

AIMS Mathematics Volume 11, Issue 1, 1900-1926.



1915

—
(a) Pr=33

o=04
o=006

(b) Pr =5

25

o=0.8
a=10

Vi{€.t)

0.5

Ll
(b) pr =5
—— =04

Figure 6. Velocity and microrotation profiles against & for different values of Pr,, (a)
Pr,=3.3 and (b) Pr, =3, where =3, f=0.2, n=1.5, Gr=10, Pr=10, n=0.1, R=2, and

wt=1/2.

Figure 7(a),(b) illustrates the effect of the parameter n on velocity and microrotation. As n
increases, the velocity amplitude decreases significantly, while the microrotation distribution shows
substantial enhancement. This contrasting behavior arises from energy redistribution between
translational and rotational motion. Higher n values strengthen the coupling between velocity and
microrotation, transferring more energy to rotational degrees of freedom and leaving less for
translational motion. The intensified microrotation also increases flow resistance, further suppressing
the velocity field.
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Figure 7. Velocity and microrotation profiles against & for different values of n (a) n=0.1
and (b) n=0.6, where =3, f=0.2, n=1.5, Gr=10, Pr=10, n=0.1, R=2, and wt=nr/2.

Figure 8(a), (b) exhibits the influence of R on velocity and microrotation. Both flow
characteristics demonstrate significant enhancement as R increases. This promoting effect stems
from modified thermal transport mechanisms. Higher R values indicate a stronger radiative heat
transfer contribution. This improves thermal energy penetration into the fluid layer. Consequently,
fluid temperature rises more rapidly throughout the domain. The enhanced heating strengthens
buoyancy forces significantly. This accelerates fluid motion through intensified natural convection.
Meanwhile, the increased flow velocity generates greater shear rates. These elevated shear rates excite
stronger microrotation effects. Additionally, radiation provides nonlocal energy transfer mechanisms.
This further activates rotational degrees of freedom in the fluid.
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Figure 8. Velocity and microrotation profiles against & for different values of R (a)
R=2and (b) R=3, where =3, =0.2, n=1.5, Gr=10, Pr=10, n=0.1, R=2, and wt=n/2.

Figure 9(a), (b) displays the influence of w7z on velocity and microrotation. Both hydrodynamic
properties show increasing magnitudes with higher @7 values. This enhancement results from
improved synchronization between plate motion and fluid response. Larger phase angles create
constructive interference in the flow domain. This amplifies resonance effects within the boundary
layer. Consequently, momentum transfer from the boundary becomes more efficient. Meanwhile, the
intensified fluid motion generates stronger vorticity patterns. These patterns directly excite micro-
rotational components in the fluid. Thus, both translation and rotation mechanisms gain energy.
Moreover, the system shows a stronger dynamic response under phase-synchronized excitation.
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Figure 9. Velocity and microrotation profiles against & for different values of wz (a)
wt=nr/3 and (b) wr=n/4, where t=3, f=0.2, n=1.5, Gr=10, Pr=10, n=0.1, and R=2.

Figure 10 (a),(b) presents the temperature distribution for increasing 7 . Temperature levels show
progressive elevation throughout the fluid domain. This occurs due to sustained thermal energy input
from the boundary. Longer duration allows deeper heat penetration into the fluid. Meanwhile, thermal
diffusion and radiation mechanisms operate continuously. Consequently, the thermal boundary layer
thickens with time. Moreover, radiation facilitates deeper energy penetration through volumetric
heating. Thus, internal fluid layers experience temperature rises even away from the boundary.

w=04
a=06 |4
w=0%8
w=1.0 |7

Figure 10. Temperature profile against & for different values of T (a) =3 and (b) 7=5
where 7=3 R=2 and Pr=10, and R=2.
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Figure 11(a), (b) demonstrates the influence of radiation parameter R on temperature
distribution. Temperature profiles show significant enhancement with increasing R values. This
occurs through two primary radiation mechanisms. First, higher R strengthens radiative thermal
conductivity. This enables more efficient deep-layer energy transport. Second, it augments volumetric
absorption of thermal energy. Radiation bypasses conductive transport limitations. Consequently, heat
penetrates beyond conventional boundary layers. The thermal penetration depth increases substantially.

T T T T T T T
{b) Pr =5
- 09 7
=04 — u=04
=06 |4 —_— =06 |4
=08 — s =08
a=1.0 |7 —— =10 | ]
b | o
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Figure 11. Temperature profile against & for different values of Pr,, (a) Pr,=3.3
and (b) Pr,, =5 where =3, and R=2.

Figure 12 (a),(b) analyzes the influence of Pr, on temperature distribution. Temperature
profiles show a significant decrease with increasing Pr,, values. This suppression results from altered
thermal transport properties. Higher Pr,, indicates reduced thermal diffusivity relative to momentum

diffusivity. This restricts heat propagation away from the heated boundary. Consequently, thermal
energy becomes concentrated near the wall region. Meanwhile, the impaired thermal diffusion creates
steeper temperature gradients. Additionally, the thermal boundary layer thickness reduces substantially.
This confinement limits thermal penetration into the fluid domain. Furthermore, the fractional model
captures how Pr,, interacts with memory effects.

Figure 12. Temperature profile against & for different values of R (a) R=2 and (b)
R=3 where =3, Pr,,=3.3.
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Table 1 presents a systematic numerical investigation of skin friction (C, ) variations across nine

key physical parameters. The analysis reveals distinct parametric influences on wall shear stress
characteristics in fractional micropolar fluid flow. The C, demonstrates a strong positive correlation

with a through memory-enhanced boundary acceleration mechanisms. With increasing « , the skin
friction increases, approaching the classical case without memory effects. Lower « capture the
memory effect, which reduces the wall shear stress compared to the classical model. Higher Gr
intensifies C, by strengthening thermal buoyancy effects and convective momentum transfer. The

R increases C P

Furthermore, 7 shows a progressively increasing relationship with C, . Extended temporal duration

through improved thermal penetration and enhanced energy absorption capabilities.

allows deeper momentum diffusion and boundary layer development. The @z enhances C, through

optimized resonant synchronization with plate oscillations. These factors collectively promote greater
wall shear stress generation through different physical mechanisms. Conversely, C, decreases with

several other parameters. The n reduces shear stress by diverting energy from translational to
rotational motion modes. Pr,, diminishes C, by suppressing thermal boundary layer growth and
buoyancy-driven flow components. £ demonstrates a significant inverse relationship through
enhanced vortex viscosity effects that dampen near-wall velocities. The 7 shows comparatively
minimal influence on C, characteristics. This indicates its primary effect manifests in rotational

dynamics rather than translational boundary layer development. The parameter interactions reveal
complex nonlinear behavior in certain combinations, particularly between o and S where memory

effects partially counteract microstructural resistance.

Table 1. Influence of pertinent parameters on skin friction.

a B n Gr Pr, n R T T C,
04 0.2 1.5 10 3.3 0.1 2 3 /3 16.9
0.6 0.2 1.5 10 3.3 0.1 2 3 /3 19.9
1 0.2 1.5 10 3.3 0.1 2 3 /3 26.651
0.4 0.6 1.5 10 3.3 0.1 2 3 /3 15.7
04 0.2 2.5 10 3.3 0.1 2 3 /3 16.8
0.4 0.2 1.5 15 3.3 0.1 2 3 /3 25.7
04 0.2 1.5 10 5 0.1 2 3 /3 14.5
04 0.2 1.5 10 3.3 0.3 2 3 /3 16.2
0.4 0.2 1.5 10 3.3 0.1 3 3 /3 18.7
0.4 0.2 1.5 10 3.3 0.1 2 5 /3 18.8
0.4 0.2 1.5 10 3.3 0.1 2 3 /2 18.6

Table 2 systematically examines wall couple stress sensitivity to nine physical parameters. The
dimensionless couple stress (C,, )shows distinct response patterns to various influences. This stress

component represents rotational resistance at the boundary surface. The C, increases significantly
with o . Memory effects enhance micro-rotational gradients near the wall. Higher Gr amplifies C,

through buoyancy-driven flow intensification. The n strongly increases rotational stresses through
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enhanced coupling between translation and rotation. The R elevates C, by improving thermal
energy transfer. The @7 increases C, through resonant excitation of rotational modes. These
parameters collectively promote greater micro-rotational resistance at the boundary. Conversely, C,
decreases with several parameters. The [ reduces rotational stress through vortex viscosity
dissipation. The 7 diminishes C, by diffusing rotational momentum. The Prefr lowers rotational
stress by suppressing thermal effects on microstructure. The 7 shows a reducing effect on C, .

Longer duration allows rotational energy dispersion away from the wall. This temporal behavior
contrasts with its effect on C, . Parameter interactions reveal interesting compensatory effects. For

instance, high n with low f produces maximum rotational stress. Meanwhile, high 7 with high Pr,,

shows minimal C, values.

Table 2. Influence of pertinent parameter on wall couple stress.

a B n Gr Pr, n R T ot Cy
04 0.2 1.5 10 33 0.1 2 3 /3 0.68
0.6 0.2 1.5 10 33 0.1 2 3 /3 0.56
0.4 0.6 1.5 10 33 0.1 2 3 /3 0.28
04 0.2 2.5 10 33 0.1 2 3 /3 0.62
0.4 0.2 1.5 15 33 0.1 2 3 /3 1.04
0.4 0.2 1.5 10 5 0.1 2 3 /3 0.37
04 0.2 1.5 10 33 0.3 2 3 /3 1.11
04 0.2 1.5 10 10 0.1 3 3 /3 1.07
0.4 0.2 1.5 10 10 0.1 2 5 /3 0.6
04 0.2 1.5 10 10 0.1 2 3 /2 0.57

Table 3 systematically examines how the Nusselt number (Nu) responds to o, Pr,, and 7. The

Nu decreases with increasing « , indicating reduced heat transfer as the system approaches the
classical model. Lower « enhances the thermal response due to memory effects. The results show
Nu increases with higher Pr,, values. This occurs because greater Pr, enhances thermal

conductivity relative to viscosity. Consequently, heat transfer rates improve significantly at the
boundary. Meanwhile, Nu decreases with advancing 7. Longer duration allows thermal boundary
layer development. This thickening layer reduces temperature gradients at the wall. Thus, heat transfer
efficiency gradually diminishes over time.

Table 3. Influence of pertinent parameters on Nusselt number.

a Pr R T Nu
0.4 10 2 3 2.4
0.6 10 2 3 1.8
1 10 2 3 0.60
0.4 15 2 3 2.9
0.4 10 3 3 3.1
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The bold numbers in all tables indicate parameter variations. These highlight deviations from the
baseline configuration in the first row. Furthermore, they facilitate quick comparison of parametric
influences across different outputs.

6. Conclusions

This study successfully develops a generalized fractional model for analyzing convection flow of
a micropolar fluid over an oscillating vertical plate, incorporating thermal radiation and memory
effects via Caputo fractional derivatives. Exact analytical solutions for velocity, microrotation, and
temperature fields are derived using the Laplace transform method and expressed in terms of Wright
functions, which inherently preserve memory effects and provide a strong mathematical framework
for capturing nonlocal dynamics. The solutions generalize classical fluid models by reducing to
limiting cases such as Stokes’ first problem and fractional viscous fluids, validating the consistency
and versatility of the proposed approach.

Parametric analysis reveals that « significantly enhances velocity, microrotation, and
temperature profiles due to memory-driven acceleration and thermal accumulation. The @z amplifies
microrotation magnitudes through resonant coupling with oscillatory boundary motion, while z
promotes thermal diffusion and boundary layer growth. Conversely, f suppresses flow and rotation
by increasing microstructural resistance, and 7 exhibits dual behavior: enhancing velocity while

dampening microrotation due to energy redistribution between translational and rotational modes. The
R consistently elevates temperature and flow profiles by improving thermal penetration, whereas
Pr,, attenuates temperature distributions through reduced thermal diffusivity.

Quantitative results demonstrate that skin friction intensifies with higher ¢ and Gr, but
diminishes with increasing S and Pr,,. Wall couple stress rises with «, Gr, and n, but declines

with S and 7. The Nusselt number increases with Pr,, due to sharper thermal gradients but

decreases with time as boundary layers stabilize.

This work unified fractional calculus, micropolar theory, and oscillatory boundary conditions to
address memory-dependent phenomena in fluids, offering benchmark solutions for applications in
microfluidics, geothermal systems, and biomedical engineering. Future studies could extend this
model to include mass transfer, chemical reactions, or alternative fractional operators to explore
broader thermodynamic and hydrodynamic interactions

7. Future recommendations

Although the present study focuses on unidirectional, one-dimensional flow, it can be extended
in several directions. Future research may consider other non-Newtonian fluids, such as second-grade,
third-grade, Maxwell, Oldroyd-B, and Berger fluids. Additionally, investigations could include nano
and hybrid nanofluids, as well as new fractional operators, such as Caputo-Fabrizio and Atangana-
Baleanu operators. Moreover, two and three-dimensional flow configurations can be explored to
provide a more comprehensive understanding.
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8. Nomenclature

NN_N b @)
SRS
—~
N—

ST R NNNR Sz

> 7 Q

y

Specific heat
Caputo fractional derivative

Thermal conductivity
Mean absorption

Microinertia
Micro rotation
Microgyration
Radiative heat flux

Fluid temperature
Plate temperature

Ambient temperature

x-component of velocity
Dimensionless velocity
Time

Grashof number

Prandtl number
Radiation parameter
y-coordinate

Greek letters

a

MY R DR ® ™ R

Q

> Q

Fractional order
Vertex viscosity

Micropolar parameter
Thermal expansion

Spin gradient

Density of the fluid
Dynamic viscosity
Dimensionless time
Dimensionless y-coordinate
Stefan-Boltzmann constant
Frequency of oscillation
Dimensionless spin gradient
Dimensionless temperature
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