AIMS Mathematics, 11(1): 1878-1899.
DOI: 10.3934/math.2026078
ATMS Mathematics Received: 21 October 2025

Revised: 02 December 2025

Accepted: 15 December 2025
https://www.aimspress.com/journal/Math Published: 20 January 2026

Research article

Non-linear transformations combinations on fractal structures and
aggregates

Sancho Salcedo-Sanz'*, Pablo Alvarez-Couso?, Luis Castelo-Sardina? and Jorge Pérez-Aracil’

! Department of Signal Processing and Communications, Universidad de Alcald, 20805 Alcala de
Henares, Madrid, Spain

2 Department of Design and Image, Universidad Complutense de Madrid, 28040, Madrid, Spain

* Correspondence: Email: sancho.salcedo@uabh.es.

Abstract:  This paper discusses the effects of applying different non-linear transformations
in combination to well-known fractal structures and aggregates, to obtain novel fractal images.
Five different non-linear transformations are selected to be combined, and applied to existing
aggregates, and the new fractal structures obtained are discussed. We show how different non-linear
transformations effects (bending effects, diffusion effects, etc.) can be combined just by function
composition processes, and their final results as new fractal images. We analyze the effects of the
combination of non-linear transformations over classical fractals such as the Sierpinski triangle and
Sierpinski carpet, in terms of the fractal dimension of the new structures created. Finally, we will also
show the effect of the non-linear transformation on other fractal structures, such as diffusion limited
aggregation and strange attractors.
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1. Introduction

The creation of new aesthetic fractal images from fractal aggregate generation methods has called
the attention of researchers and artists from the 80’s [1,2]. For instance, non-equilibrium growth
models such as diffusion limited aggregation (DLA) [3,4] were proposed in the 80’s as a way of
generating self-organized fractal-like particle clusters [5]. Iterated function systems (IFS) [6-8] have
also been proposed for fractal image generation, and they have been widely used in fractal art and
computer graphics [9-12]. Strange attractors (SA), are the solutions of non-linear iterative equations,
and they have been studied in statistical physics [13,14] and also used for generating fractal images and
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aggregates [15]. Lindenmayer systems (L-systems) [16], is another family of methods for generating
fractal structures, which have been applied to construct fractal images, in many cases related to plants
and vegetation representation [17, 18]. There are other works in the literature that have described
hybrid approaches, merging some of these classical fractal aggregates generation methods (and also
other alternatives), to obtain new fractal structures [19-23].

In previous years, different works have studied the effect of non-linear transformation for generating
new fractal images [24]. In [25], non-linear IFS were described to generate fractal patterns over regular
polygons. In other cases, shape inversion transformations have been applied. For instance, in [26] the
star-shaped set inversion was studied for fractal image generation. In [27], the idea of star-shaped
set inversion fractals was generalized, using iterations from fixed point theory. New aesthetic fractal
computer graphics were obtained in this case. In [28] shape inversions were applied to Mandelbrot-
like fractals in the complex plane. In [29], the p-circle transformation was studied, and novel fractal
structures were obtained by the application of this transformation. In [30], different families of fractal
tilings were described and applied to obtain Escher-like fractal images, which were further processed
by applying non-linear transformations, such as stereographic projection, in order to obtain spherical
representation of the fractals.

As shown above, the application of non-linear transformations to existing fractal structures has
been considered an efficient method to obtain novel fractal images with different properties. In this
paper, we analyze how non-linear transformations can be combined (sequentially applied by function
composition) to fractal structures and aggregates in a simple way, to obtain new fractal structures, in
many cases with marked aesthetic properties. Fractal structures such as the Sierpinski triangle, the
Sierpinski carpet, and aggregates from DLA, SAs, L-Systems, and IFS are considered as initial shapes,
which will be transformed by applying combinations of five different non-linear transformations. The
composition of the different non-linear transformations to the initial fractal images and aggregates
leads to different final fractal structures, including effects such as bending forms, or diffusion effects
on aggregates. We will characterize the new fractal structures by means of their fractal dimensions

The remainder of the paper has been structured in the following way: Section 2 describes some
classical fractal image generation methods such as DLA, IFS, L-Systems and SA construction. We also
describe different non-linear transformations whose effects on fractal aggregates will be evaluated, as
well as the box-counting method for the fractal dimension calculation for the newly generated fractals.
Section 3 presents the results obtained and discusses the effect of applying combinations of different
non-linear transformations to well known fractal structures and aggregates. Finally, Section 4 closes
the paper by extracting some conclusions and remarks on the research.

2. Methods
This section summarizes some classical methods used to generate fractal 2D aggregates (fractal-

like particle clusters in a 2D plane). We specifically focus on diffusion limited aggregation and strange
attractors fractals.
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2.1. Fractal structures and aggregates
2.1.1. Diffusion limited aggregation

Diffusion limited aggregation (DLA) [3,31] is a simple algorithm that generates random fractal
clusters or aggregates [32]. Aiming at illustrating the DLA method, we have considered the general
DLA model implementation described in [33]. This DLA model takes into account a unique seed at the
beginning of the simulations, located at the center of a given discrete lattice, which will be the initial
cluster to be grown. Then, particles are sequentially released at a circle distant from the cluster. The
positions of these particles are modified by means of a random walk. The distance between the center
of the lattice and the launching circle is denoted as R;. The random walks are defined as follows:

Xp1 X, cos(¢ + 16,) )
= +| . , 2.1
( Yoot ) ( Y ) ( Sin( + 16,) -
where x, and y, are the particle positions at the nth step of the random walk, ¢ € [-r, 7] is a random
angle that defines the direction of the particle’s trajectory, 4 € [0, 1] is a parameter that introduces
the random component of the trajectories, and 6, € [—x, ] is a random direction. The random walk
also ends if the distance between the particle and the cluster is larger than a killing radius Ry. In the

latter case, the particle is eliminated and a new one is released at the launching circle R;. Usually, the
relationship between R; and Ry is defined as:

R; = Ryux + Ro, (22)

where R, 1s the maximum distance from the center of the lattice to a particle belonging to the cluster,
and Ry is a defined radius. The killing radius Ry is then defined as:

Ry = 2Rmax + Ro = Ryux + Ry, (23)

which gives the relationship between R; and R;. Figure 1 shows the DLA procedure, and Figure 2
shows an example of a fractal structure generated by DLA simulation.

Particle “a”

Figure 1. Example of a DLA simulation construction.
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Figure 2. Example of a fractal structure in the phase space (x vs. y), obtained by means of
a classical DLA simulation (around 8000 particles).

2.1.2. Strange attractors

Another method to obtain fractal-like 2D structures is to consider strange attractors (SA) of
dynamical systems with chaotic behavior [13, 14,34]. A SA can be seen as the solution to a non-linear
dynamic system (usually chaotic), in such a way that the pattern generated in the phase space is fractal
in nature. Usually, SAs are generated using iterated non-linear maps, which can be quadratic, cubic,
etc. For instance, the general two-dimensional iterated quadratic map can be described as follows:

(2.4)

_ 2 2
Xpt1 = A1 + QaXy + a3X;, + A4 XY, + Asy, + Aey,

_ 2 2
Yn+1 = Q7 + agX, + AgX,, + A10XpYn + A11Yn + A12),-

Note that, as reported in [15], a small percentage of the solutions from Eq (2.4) are SAs (depending
on the parameters {ay, ..., a;»}) and, in fact, some of them are chaotic, but there are others intermittent
or convergent to a periodic orbit. Figure 3 shows some examples of SAs, obtained from Eq (2.4),
initialized with (xo, yo) = (0.6, 0.9).

AIMS Mathematics Volume 11, Issue 1, 1878-1899.



1882

(® () ®

Figure 3. Examples of SAs in the phase space (x vs. y), from Eq (2.4).

2.1.3. Iterated function systems

An iterated function system (IFS) [7, 35, 36] is a way of generating fractal-like 2D aggregates
and geometric patterns based on the iteration of one or more affine transformations, i.e., recursive
transformations involving rotations, scalings, and translations [37]. They have the following general

form in R?:
Xoe1 |\ _[a b X, e
(yn+1 )_(6 d)'(yn)+(f)' 2

The idea behind IFS is to apply different affine transformations, in some cases with a given
probability, until obtaining the desired fractal form. We illustrate the application of an IFS to obtain
fractal structures in Figure 4, where we show the Sierpinski carpet aggregate. The IFS equations to
generate this fractal are detailed in the Appendix section of the paper (see Appendix).
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Figure 4. Example of an IFS construction of the Sierpinski carpet.

2.1.4. Lindenmayer systems (L-systems)

A Lindenmayer system or L-system [16,38] is a well-known method to obtain fractal images [39],
which, in principle, is not focused on aggregates or clusters, but it can be adapted to generate fractal-
like cluster structures. A L-system can be seen as an encoder-decoder system, in which the encoding
of the message is carried out through the application of certain rules involving different variables and
constants, from an initial seed point. The message produced by the encoder is a sequence of symbols
that will be interpreted by the decoder part of the system. The recursive application of the encoder to
previous messages will generate other messages of a larger length, which will be passed to the decoder
in order to obtain the fractal structure. We will illustrate the L-systems procedure in the generation of
the well-known Sierpinski triangle. The L-system to generate this fractal form is the following:

Encoder: Variables : A, B
Constants : +, —
Seed point: A
Rule 1: (A - +B— A — B+)
Rule 2: (B—> -A+ B+ A-)

Decoder: A: draw forward.
B: draw forward.
+: turn left 60 degrees.
—: turn right 60 degrees.

The iterative application of this L-system produces the Sierpinski triangle, as illustrated in Figure 5,
which shows the procedure and the final fractal obtained.

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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Figure 5. Sierpinski triangle construction from an L-system in the phase space (x vs. y)
with n = 9 iterations.

2.2. Non-linear transformations in 2D spaces

Non-linear transformations in the plane can be applied to aggregates to obtain new fractal-like
forms. In this paper we consider a number of well-known non-linear transformations which will be
analyzed in terms of their effect on aggregates as function composites. Specifically we consider the
following non-linear transformations: p-circle inversion, z — z? transform and some variations and 2D
sine transform.

The p-circle inversion [29] has been previously applied to obtain new fractals from existing
structures, such as the Sierpinski triangle. Mathematical details and theorems related to this non-
linear transformation can be found in [29]. In this paper, we use the p-circle inversion jointly with
other non-linear transformations and apply it to obtain new fractal aggregates. The p-circle inversion
can be applied in the following way:

Let us consider a p-circle C),, characterized by a center Q = (a, b), and a radius r. Then, the p-circle
inversion of a point P = (x,y) from C,,, is the following:

20+ 2(v, _
Plz(a+ rix-a b+ ro-5 ) (2.6)

(e =al +1y = bI)@P " " (lx=alr + Iy — bIr)@P

We will denote the p-circle inversion as f; in this paper, so fi(P) = P,

The second non-linear transformation considered in this work is obtained from the non-linear
transformation in the complex plane, which produces z — z2. Specifically, this transformation has
the following effect when applied at a point P = (x, y):

P, = (x2 -y, 2xy). 2.7

We will denote this transformation as f>, so f>o(P) = P,. We also consider two other non-linear
transformations based on f;, as follows:

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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P = (x2 -y, xz) (2.8)

and

Py= (2 =y 5). (2.9)

We will denote these transformations as f3 and f;, respectively, in such a way that f3(P) = P3 and

f4(P) = P,. Finally, we also consider a final transformation ( f5) defined in such a way that if P = (x, y),
f5(P) = Ps, where Ps is defined as follows:

Ps = (x+ a-sin(y),y + a - sin(x)), (2.10)

where « is a real positive parameter of the transformation.

2.3. Fractal dimension calculation

We can characterize the fractals obtained with the non-linear transformations applied, by obtaining
the fractal dimensions of the new fractals. For this, we have calculated the fractal dimensions using
the well-known box-counting method [40-43]. Let C be a fractal structure in 2D. The box counting
method is a procedure to obtain the fractal dimension of C. To calculate this dimension for a fractal C,
the box-counting algorithm works by counting how many boxes are required to cover the set. The box-
counting dimension is obtained by calculating how this number changes as we make the grid finer. Let
us suppose that n(r) is the number of boxes of size r required to cover the set. Then the box-counting
dimension is defined as:

a = lim —log(n(r))'
=0 log(r)
In other words, if C is a fractal set, with the fractal dimension a@ < 2, then n(r) scales as r~*. Note
that « is also known as Minkowski-Bouligand dimension, Kolmogorov dimension, or box-counting
dimension.
In this paper, we have used the implementation of the box-counting method provided by Matlab®.
It operates by counting the number n of 2-dimensional boxes of size r needed to cover the nonzero
elements of C, uploaded as a binary matrix. The box sizes are, in this case, considered as powers of
two, i.e., r=1,2,4,...,2" where P is the smallest integer such that

max(size(C)) < 2F. (2.12)

2.11)

If the size of C over each dimension is smaller than 2°, C is padded with zeros to size 27 over each
dimension (for instance a 400 x 200 image is padded to 512 X 512). The output vectors n(r) and r are
of size P + 1. Equation (2.11) is then considered to obtain the fractal dimension @, as the slope of the
log-log plot r vs. n(r).

3. Results: construction of new fractal structures and aggregates with non-linear
transformations combinations

In this section, we show the results obtained by applying the combinations of different non-linear
transformations to existing (known) fractals and aggregates. We have structured this section in two

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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different parts: first, we will show the effect of the combination of non-linear transformations on
well-known fractal structures, such as the Sierpinski carpet (Figure 4) and the Sierpinski triangle
(Figure 5), shown before. We will carry out here an analysis of the fractals obtained by the non-
linear transformations by calculating their fractal dimensions using the box-counting method described
above. Then, we will show the effect of the non-linear transformations combination on different
aggregates from DLAs and strange attractors (shown in Figure 3).

3.1. New fractals from the Sierpinski triangle and Sierpinski carpet with non-linear transformation
combinations

Let us denote the Sierpinski triangle as 7, and the Sierpinski carpet as C. First, note that
the effect of the f; non-linear transformation (p-circle) on the Sierpinski triangle (f;(7°)) and the
outcome fractals obtained have been previously discussed in [29]. We reproduce the results in
Figure 6(a),(b). The application of the non-linear transformation f; on the Sierpinski Carpet (f(C))
is shown in Figure 6(c),(d).

(e) ® ® ()

Figure 6. Application of f; transformation to the Sierpinski triangle, and the Sierpinski
carpet, with different values of p; (a) Original Sierpinski triangle (77); (b) f1(7) with p = 2;
(c) f1(7) with p = 3; (d) fi1(7) with p = 4; (e) Original Sierpinski carpet (C); (f) fi(C) with
P =2;(g) fi(C) with p = 3; (h) f1(C) with p = 4.

Note that the p-circle transformation can be applied with p = 2, 3,4, etc. Figure 6 shows non-linear
transformations of 7~ and C with different values of the parameter p. These fractals can be characterized
by calculating their fractal dimensions, using the box counting method described above. Figure 7 shows
the log-log plot r vs. n(r) graphs for the Sierpinski triangle and Sierpinski carpet fractals, as well as
the application of f; to these fractals. Table 1 shows the fractal dimensions calculated from the log-log
plots of Figure 7.

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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Figure 7. Evaluation of the fractal dimension calculation for the Sierpinski triangle (7°) and
Jf1(7) with different values of parameter p (see Eq (2.6)), using the box-counting algorithm;
(a) log-log plot r vs. n(r) for the original Sierpinski triangle; (b) log-log plot r vs. n(r) for
J1(T) with p = 2; (¢) log-log plot r vs. n(r) for fi(7) with p = 3; (d) log-log plot r vs. n(r)
for f1(7°) with p = 4; (e) log-log plot r vs. n(r) for the original Sierpinski carpet; (f) log-log
plot r vs. n(r) for f1(C) with p = 2; (g) log-log plot r vs. n(r) for f,(C) with p = 3; (h)
log-log plot r vs. n(r) for f1(C) with p = 4.

Table 1. Fractal dimensions of the Sierpinski triangle and Sierpinski carpet (original and
after the application of f), obtained from subfigures shown in Figure 7.

Fractal known value Fractal Dimension (Box Counting)

Sierpinski Triangle 7 1.585 1.59
AT (p=2) . 1.58
AT (p=3) . 1.57
H(T) =4 - 1.59
Sierpinski Carpet C 1.892 1.90
H(O) (p=2) - 1.81
H©) (p=3) - 1.80
HO) (p=4) - 1.85

We now produce new fractal aggregates by composing some of the different non-linear
transformations considered. For instance, Figure 8 shows the combination of different transformations
applied to the Sierpinski triangle and Sierpinski carpet. Specifically, the figure shows the outcomes
of the transformations f>(7") (a), £2(C) (d), fi(f2(7)) (b), and fi(f>(C)) (e). As can be seen, the

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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combination of non-linear functions leads to completely different fractal forms from the original 7~
and C fractals. Figure 8(c),(f) shows the log-log plots r vs. n(r) for the fractals f;(f>(7")) and f,(f>2(C)),
obtaining a fractal dimension of 1.56 and 1.8, respectively.
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Figure 8. Application of f, transformation to the Sierpinski triangle and Sierpinski carpet
((a) and (c)), and the composition fi(f>(77)) and f;(f2(C)), (b) and (e), respectively. We also
show here the log-log r vs. n(r) plots for the composition fractals ((c) and (f)).

The application of non-linear transformations f; and f; and their composition with f; also produces
novel fractals. Figure 9 shows the application of non-linear functions f3(7°) and f4(C) (Subfigures (a)
and (d)) and the compositions f;(f3(7")) and f;(f4(C)), in Figure 9(b),(e), respectively. Figure 9(c),(f)
shows the log-log r vs. n(r) plots for the fractals in Figure 9(b),(d), with fractal dimensions of 1.54 and
1.79 for the fi1(f5(7)) and f(f4(C)) fractals, respectively.

We finally show the effect of the non-linear transformation f5, which is very different to that of
the other transformations analyzed. The sine functions involved in f5 make a kind of “diffusion”
effect when applied with different values of « (10, 20 and 50). This is illustrated for the Sierpinski
triangle and carpet in Figure 10. It is easy to see the diffusion effect in both fractals when f5 is
applied. The combinations fi(f5(7)) and f;(fs(C)) are also shown in Figure 11. In this combination
case, the diffusion aspect of the final fractals is also evident, resulting in a kind of fractal diffusion or
deconstruction from the original aggregate.

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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Figure 9. Application of f; and f; transformations to the Sierpinski triangle and Sierpinski
carpet ((a) and (d)), and the composition fi(f3(7)) and fi(f4(C)), (b) and (e), respectively.
We also show here the log-log r vs. n(r) plots for the composition fractals ((c) and (f)).

(d) (e) (®

Figure 10. Effect of the fs5 application to the Sierpinski triangle (f5(77)) and the Sierpinski
carpet (f5(C)), with different values of the parameter «; (a) f5(7°) with @ = 10; (b) f5(7") with
a = 20; (¢c) f5(7) with @ = 50; (d) f5(C) with @ = 10; (e) f5(C) with a = 20; (f) f5(C) with
a = 50.
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Figure 11. Effect of the composition f;(f5(:)) in the Sierpinski triangle (fi(fs(7))) and the
Sierpinski carpet (f1(f5(C))), with different values of the parameter a; (a) fi(fs(7)) with
a =105 (b) f1(f5(7)) with @ = 20; (c) f1(fs(7)) with & = 50; (d) f1(f5(C)) with & = 105 (e)
f1(fs(C)) with @ = 20; () f1(fs(C)) with @ = 50.

3.2. New fractal aggregates from DLA and strange attractors

Finally, we evaluate the combined application of some of the non-linear transformations considered
to DLA aggregates (Figure 2) and distinct strange attractors (shown in Figure 3). The results are new
fractal aggregates, different from the original ones, some of them with highly aesthetic properties. We
start with the effect of the combined non-linear transformations on the DL A aggregate from Figure 2 (D
hereafter). Specifically, we evaluate the effect of the combination f; and f,. Figure 12 shows the results
obtained with a color applied post-processing (the darker the blue, the earlier the particle was attached
to the aggregate). Note that the non-linear transformations applied do not change the colours of the
particles in the transformed aggregate, so we can approximately track the final location of the particles
with different colours after the transformations. Figure 12(a) shows the original aggregate, Figure 12(b)
shows the outcome of f1(9), Figure 12(c) shows the outcome of f,(9), and finally, Figure 12(d)
shows the outcome of the transformation combination fi(f>(2)). As can be seen, the non-linear
transformations applied on their own to DLA aggregates do not have a deep effect on this aggregate,
which still keeps the classical (recognizable) form of a DLA structure. This is somehow expected,
given the usual circular symmetry of DLA aggregates, which makes the p-circle transformation (f;)
produce much less effect in these kind of structures. Note that this causes the combination of non-linear
transformations not to have a very different effect in this fractal compared to the application of f,(-) on
its own to the original aggregate.

AIMS Mathematics Volume 11, Issue 1, 1878-1899.
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(©) (d)

Figure 12. Application of f; and f, transformations to the DLA aggregate (D); (a) Original
aggregate (9); (b) Non-linear transformation f;(9); (c) Non-linear transformation f,(D);
(d) Non-linear transformation f;(f2(D)).

The application of the combination of different non-linear transformations to SA aggregates is now
described. Figure 13 shows the application of non-linear transformation f;(-) to the SAs in Figure 3.
In turn, Figure 14 shows the application of the combination f;(f,(-)) to the SAs in Figure 3. As can be
seen in these figures, the effect of the non-linear transformations combinations on SAs depends much
on the original aggregate. The differences obtained after the composition of non-linear transformations
are evident in the figures: In some cases the effect of f;(f(-)) is quite similar to that of f,(-) on its own,
such as in Figure 3(a), (c) and (e) SAs. However, in other aggregates the differences are much stronger,
such as in Figure 3(b), (d) or (f). In the majority of cases, the final results of the application of non-
linear transformations are highly aesthetic fractal aggregates, which can be further highlighted by a
post-processing. Figure 16 shows a particular example of the application of non-linear transformations
and their combination to SAs with coloring post-processing (again, the darker the blue, the earlier the
particle was added to the aggregate). As can be seen, the application of non-linear transformations
results in attractive artwork fractal patterns based on SAs. Figure 15 shows the recursive combination
of non-linear transformations f; and f, to a different SA, with colouring post-processing, to obtain
different aesthetic fractal aggregates from the initial SA.

AIMS Mathematics Volume 11, Issue 1, 1878—1899.
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Figure 14. Application of composition fi(f>(-)) to the SAs in Figure 3.
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(a) (b)

(©) (d)

Figure 15. Application of non-linear transformations f; and f, to an SA; (a) Original SA
(Figure 3(f)) (8S)); (b) Non-linear transformation fi(S); (c) Non-linear transformation f>(S);
(d) Composition fi(f>(S)).
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(a) (b)

(c) (d)

9] (h)

Figure 16. Recursive composition of non-linear transformations f; and f, to an
SA aggregate; (a) Original SA (Figure 3(b)) (S)); (b) £(S); () fi(/a(S); (d)
LALSE))); @) fAilh(i(H9); (O LHLULEN); (@) AULGLGFLE)); (h)
LA LU LGRS
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4. Conclusions

Fractal aggregates are aesthetic images usually generated in 2D real spaces using different
techniques, such as non-equilibrium growth models, Iterated function systems, Lindenmayer systems
or strange attractors, among others. In this paper we analyze the effect of applying combinations of
non-linear transformations on known fractal structures and aggregates, to obtain new fractal images.
We have selected five different known non-linear transformations and we have combined them and
evaluated their capacity for forming new fractal images and aggregates from existing fractal structures.
We have shown how the non-linear transformations tested may have different effects over the initial
fractal structures: Some of them act by “bending” the initial aggregates, others act similarly to a
“diffusion” process, and the combination of these effects forms aesthetic new fractal images with great
potential as artwork. We have also shown that the aesthetic final result of the non-linear transformations
combination fully depends on the original image. In the experimental section of this paper, we have
discussed the effect of non-linear transformation combinations on classical fractal patterns such as the
Sierpinski triangle and Sierpinski carpet, and we have also shown that some strange attractors may
produce highly aesthetic artwork images after applying a combination of non-linear transformations.
Further research may include studies on the effect of applying new non-linear transformations to
existing fractal structures, and the application of Al-based algorithms such as neural network models
or support vector machines as new potential non-linear transformation sources.

Appendix

Quadratic map parameters for strange attractors fractals construction

Table 2. Parameters of the quadratic map to generate the SAs depicted in Figure 3 (initial
point [0.6, 0.9]).

Attractor Quadratic map parameters (a;-a;»), Eq (2.4)
(a) (-0.3,0.1,0.6,-0.7,-1.1,1.0,0.4,-0.9,-0.1,0.3, 1.1, -1.0)
(b) (-0.2,0.2,09,1,-0.8,0.1,0.5,0.8,—-1.0,0,-0.3,0.3)
(c) (1.1,0.7,-0.7,0.5,-1.2,0.0, -0.3,0.6,0.3, —0.1, —0.8, 0.8)
(d) (0.5,-0.1,0,-0.8,0.9,0.6,-1.1,-0.3,1.2,-0.7,1,0.3)
(e) (1.2,0.1,-0.2,1.1,-0.6,-0.3,0.5,0.9,-1.2,0.4,-0.5,0.3)
) (-0.8,0,04,-0.3,1.1,1.2,-1.2,-1,0.7,-0.6,0.5, 1)
(2) 0.7,-0.5,-0.4,0,-0.2,1.1,1,0.2,-1.2,0.5,-0.3,-0.7)
(h) (0.6,1.1,-0.1,-1.2,0.8,0.1,0.3,-0.8,0.7,0.4, —0.3, -0.2)

(1) (0.64,-0.23,1.39,0,-1.91,1.52,0.34,1.15,0.19, 1.96, -1.29, -0.02)
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