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Abstract: This work introduced a novel control strategy for the chaos suppression in a numerical
wave tank with chaotic vortices. The control strategy is based on designing a robust passivity-based
boundary control for the uncertain Navier-Stokes equation interacting with a wave energy converter.
First, the dynamic analysis of the uncertain Navier-Stokes equation was presented by determining
the eigenfunction and eigenvalues along with computing the phase portraits, bifurcation diagrams,
and Lyapunov exponents. Additionally, the proposed boundary controller was derived by selecting
an appropriate Lyapunov functional, aiming to suppress the chaotic vortices present in the uncertain
Navier-Stokes equation. In addition to the theoretical and numerical results, we also numerically
evaluated the interactions between an energy wave converter generator and the chaotic vortices, first
as an open-loop problem, and next, the proposed boundary control strategy was tested to suppress the
chaotic behavior. Finally, the discussion and conclusion of this research study were presented.
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1. Introduction

As is known, chaotic phenomena are found in many kinds of physical systems, which are described
as dynamical systems in integer-order or fractional-order domains. Among these kinds of systems are
electrical, mechanical, biological, and chemical ones. In recent years, chaotic behavior has also been
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observed in systems described by partial differential equations, such as fluid, optical, electromagnetic,
and quantum systems. Therefore, the interest in studying chaotic systems described by partial
differential equations has recently increased. In the meantime, the port-Hamiltonian formulation for
partial differential equations is an attractive tool due to its advantages in expressing the energy and
structure of a dynamical system based on partial differential equations.

This research paper aims to explore and examine the chaotic phenomena in fluid systems governed
by the Navier-Stokes equations. Then, we present a literature survey of analytical and numerical
solutions for the Navier-Stokes equation. Reference [1] presented the global solution of the 3D Navier-
Stokes equation. The Navier-Stokes equation for a phase-field crystal system was analyzed in [2]. The
weak solution of the Navier-Stokes equation with minor regularity was then demonstrated in [3]. The
Rayleigh-Stokes equations were explored using the finite element approach in [4], and the conditional
regularity of the Navier-Stokes equation was shown in [5].

Some references related to chaos-based video encryption techniques have also been given. For
instance, in [6], a video encryption strategy for the discrete sinusoidal memristive Rulkov neuron was
presented. In [7], a pseudorandom generator and video encryption strategy were given, in which a
three-dimensional memristive hyperchaotic system was employed. Then, in [8], a chaos-based video-
encryption technique was also presented.

Other related research studies can be found in references such as [9], where the weak solution
of a Navier-Stokes equation was analyzed. Next, in [10], an essential reference for this research, a
2D Navier-Stokes equation was studied to investigate its periodic behavior. Meanwhile, in [11], the
numerical solution of the Navier-Stokes equation by the finite element method was presented.

Additionally, several studies have examined chaotic fluid vortices. For instance, the multimodal
motion dynamics of a top-tensioned riser triggered by vortices were demonstrated in [12]. The chaotic
quantification in a vortex system was examined in [13] while ocean turbulence was studied in [14].
Also, the experimental observation of a chaotic vortex in a turbulent flow was presented in [15]. The
dynamic study of a chaotic ellipsoidal vortex was then carried out in [16]. Reference [17] presented
the numerical analysis of unsteady non-isothermal flows. Finally, in [18], the solution of the stationary
Navier-Stokes equation was established.

In the meantime, several authors have presented the Navier-Stokes equation in the port-Hamiltonian
formulation, arguing that it provides a compact formulation that offers an energetic and structural
perspective for dynamic analysis, yielding improved results. For instance, fluid modeling and control
using the port-Hamiltonian formulation was described in [19]. The port-Hamiltonian formulation of
observed flows was then shown in [20]. In [21], an exergetic port-Hamiltonian formulation was used to
model a Navier-Stokes-Fourier fluid. Then in [22], the incompressible Navier-Stokes equations were
formulated as a port-Hamiltonian system.

Besides, in [23], the characteristics of a vortex found in a water pump were presented. In [24],
a neural network was implemented to simulate a 3D turbulent flow. Then, in [25], the numerical
study of laminar flow in fully wavy flow micro channels was presented. In [26], the hydrodynamic
characteristics in oscillating feedback micromixers were introduced, and in [27], the flow dynamics
behavior of a reactor was presented.

Other research studies regarding the port-Hamiltonian formulation can be found in [28], where a
boundary-controlled port-Hamiltonian system using the backstepping control technique was presented.
In [29], the model reduction of a distributed parameter system in the form of a port-Hamiltonian system
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was studied. Meanwhile, in [30], the structure preserving a 1D distributed parameter system in the
form of a port-Hamiltonian formulation was presented. Then, in [31], a discrete-time representation of
a port-Hamiltonian system was given, while the learning of partial differential equations by quantified
stochastic port-Hamiltonian systems was presented [32].

Given that new control techniques were herein applied to the 2D Navier-Stokes equation port-
Hamiltonian formulation, passivity-based controllers are crucial for this research work. Since the
uncertain port-Hamiltonian formulation is the primary focus of this work, it is worth noting that
the literature has reported a small number of results. Most of the references listed dealt only with
nominal distributed parameter port-Hamiltonian systems that were controlled by passivity [33-36].
The lumped parameter version and the passivity-based control for the distributed parameter port-
Hamiltonian system share a similar nature. A storage function was designed as part of the passivity-
based boundary control, and the passivity-based control law was then synthesized. In such cases,
in [37], the vibration suppression of a flexible beam was realized by a passivity-based controller.
In [38], the matching equations of kinetic energy shaping for interconnection and damping assignment-
passivity-based control were given. In [39], the design of fault-tolerant and non-fragile control for
parabolic port-Hamiltonian systems with semi-Markov chains was presented. In [40], adaptive energy-
shaping control for a cable-driven underactuated parallel robot was presented.

It is important to note the differences and advantages of the proposed robust boundary control
strategy in comparison with other control techniques for the stabilization of the Navier-Stokes equation.
For example, the difference between the proposed control strategy and [41] lies in the use of a stochastic
version of the Navier-Stokes equation and its associated optimal controller. As a result, the controller
developed in [41] does not take into account uncertainties of any kind. In [42], different Reynolds
numbers were considered for optimal control problems of the Navier-Stokes equation. The present
study does not account for variations in Reynolds number, but it does account for uncertainties in
the boundary conditions. It represents a significant insight in comparison with [42]. Meanwhile,
in [43], results for the control of a 2D Navier-Stokes equation were presented, in which, in contrast
to the present study, periodic and temporally steady forcing terms were considered. However, the
port-Hamiltonian formulation surpasses a standard Navier-Stokes formulation, yielding a more robust
controller because unmodelled dynamics were not accounted for in the latter. Then, in [44], the weak
solution of a time fractional Navier-Stokes equation was given. It is important to note that an optimal
controller was implemented in that reference. So the dissipative conditions of the Navier-Stokes
equation presented in this research study were an advantage, facilitating the control of the Navier-
Stokes equation in the port-Hamiltonian formulation.

Before presenting the theoretical and experimental insights of this work, we would like to outline a
route map for the entire study, clarifying and detailing the path of the investigation.

e The main result of this research study is to find a chaotic or hyper-chaotic attractor in the 2D
Navier-Stokes equation. To this end, the respective eigenvalues and Lyapunov exponents of the
Navier-Stokes equation are found, as well as the bifurcation analysis.

e Another important goal of this research study is to develop a feasible and robust passivity-based
controller that achieves optimal performance for chaos suppression in the 2D Navier-Stokes
equation in its port-Hamiltonian formulation.

e The robust passivity-based controller is chosen taking into consideration the energy characteristics
of the Navier-Stokes equation in the port-Hamiltonian form. Using the input-output attributes of
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the distributed parameter port-Hamiltonian mathematical model, the appropriate control law is
synthesized.

e A last objective is to determine whether the proposed robust boundary passivity-based controller
eliminates and suppresses the chaotic and turbulent behavior of the water fluid to protect a wave
energy converter. By employing a proportional derivative controller, the wave energy converter
velocity is regulated to protect it both mechanically and electrically.

For those purposes, a comprehensive dynamic analysis is performed to find and analyze the
eigenfunctions and eigenvalues of the system. Next, the phase portraits, bifurcation diagrams, and the
respective Lyapunov exponents are derived. In addition, the uncertain port-Hamiltonian formulation
of the 2D Navier-Stokes equation is obtained by selecting the appropriate Hamiltonian function, which
facilitates the subsequent design of the boundary controller for chaos suppression.

Next, a robust passivity-based boundary controller is designed for the port-Hamiltonian system in
order to stabilize the system and to generate the flow velocity used as a reference for the wave energy
converter (WEC). The wave energy converter uses the flow potential velocity generated in a numerical
wave tank (NWT) which results from the simulation of the 2D Navier-Stokes equation as a reference.
Then this variable is tracked by a standard proportional-derivative (PD) controller for the (WEC). This
means that, apart from suppressing chaos artificially in a numerical wave tank experimental setup, the
shaft velocity of the wave energy converter is achieved by the implementation of a single PD controller.
Then, the angular velocity of the shaft is regulated by considering the potential velocity vector of
the water fluid. In this way, the WEC is protected mechanically by avoiding structural damage and
electrically by avoiding exceeding the nominal power generated.

2. Theoretical background of the Navier-Stokes equation

The Navier-Stokes equation is a crucial theoretical formulation for modeling the flow and vorticity
of various types of fluids. In this paper, it is shown how to use the Navier-Stokes equation to solve a
chaotic vortex water fluid model in a numerical wave tank. As a result, we can simulate how to drive
and protect a wave energy converter from chaotic turbulence by suppressing the chaotic behavior of
water with a robust passivity-based boundary controller.

In the following subsections, the standard and Eulerian formulations of the Navier-Stokes equation
are presented, which are later converted to an uncertain port-Hamiltonian formulation in this paper
to facilitate the design of the proposed stabilization and chaos suppression strategy. Additionally, a
comparative table of the different Navier-Stokes formulations, presented in both Eulerian and port-
Hamiltonian forms, is provided.

2.1. Standard and Eulerian formulation of the Navier-Stokes equation

The standard formulation of the Navier-Stokes equation is obtained from Cauchy’s differential
equation of motion for incompressible and compressible fluids [45]:

DU
— =V.o +pg, 2.1
Py o +pg (2.1)
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in which U is the fluid velocity, p is the fluid density, g is the gravity vector, and o is stress tensor. So
the Navier-Stokes equation is obtained as shown below [45]:
p% = -Vp +uViu +pg, 2.2)
Dt

in which p is the viscosity of the fluid. In the literature, some results regarding the solution of the
Navier-Stokes equation have been found. For example, in [46], the blow-up criterion for the Navier-
Stokes-Fourier equations was evinced. In [9], the L, decay of the weak solution of the Navier-Stokes
equation was shown. In [47], the research on the aerodynamic drag by the Navier-Stokes formulation
was presented. On the other hand, in [48], a two-phase flow was analyzed using the Navier-Stokes
equation. Then, in [49], the boundary value problem for the solution of the Navier-Stokes equation
with density-dependent viscosity was given.

The Eulerian formulation of the Navier-Stokes equation is fundamental for spatio-temporal analysis
and transformation to the port-Hamiltonian formulation. The Eulerian formulation is given as:

Jo, (%_lt] + u.Vu) = —Vp+uVu+pg, (2.3)
where p is the pressure vector. Regarding the port-Hamiltonian formulation of the Navier-Stokes
equation, various works can be found. In [19], the port-Hamiltonian formulation of fluid for dynamic
modeling and control was evinced. In [50], the port-Hamiltonian formulation of continuum mechanics
was discussed. In [20], the port-Hamiltonian formulation of ocean flow was presented. In [22], the
incompressible Navier-Stokes equation in the port-Hamiltonian formulation was given. Finally, in [S51],
the geometric decomposition of the Navier-Stokes equation in the Port-Hamiltonian formulation was
shown.

2.2. Analytic solutions of the Navier-Stokes equation

The analytic solution of the Navier-Stokes equation is crucial for this research study, as a partial
solution is required to find the eigenfunctions and eigenvectors of this partial differential equation. In
the following paragraph, we will show some results found in the literature regarding the weak or strong
solution of the Navier-Stokes equation. As it is known, the solution of the Navier-Stokes equation
depends on factors such as the dimension and boundary conditions. For instance, in [9], the £, weak
solution of the Navier-Stokes equation was presented. Reference [52] showed the strong solution of
the 3D Navier-Stokes equation. Then, in [53], the time periodic strong solution of the incompressible
Navier-Stokes equation was presented, and in [54], the two-variable solution of the Navier-Stokes
equation was presented.

The eigenfunction and solution of the Navier-Stokes equation in this research paper are obtained
using a method similar to that described in [54], which involves a separation of spatial and temporal
variables.

One of the most interesting results is the strong solution of the Navier-Stokes equations as evinced
in [52], which can be described as:

uy + uVu + alul”u + Vp = V.(S (Vu)),
V.u=0, (2.4)
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where u € R is the velocity potential of the fluid. Based on the following initial condition [52]:
u(x,0) = uo(x), (2.5)

the solutions are given by:

1) S(Vu) = [Vul""2Vu + Va.
2) S(Vu) = [Vul92Va.

We refer readers to [52] for an extended derivation of both results.
3. Problem formulation

As explained before, the main problem to be solved in this research study is to suppress the chaos
phenomenon in the port-Hamiltonian formulation of a numerical wave tank to protect a wave energy
converter from the damage generated by a chaotic vortex. Therefore, the problem formulation section
is established in two parts:

1) The 2D Navier-Stokes equations. These equations are important because the 2D numerical wave
tank is represented by the Navier-Stokes equations. The numerical wave tank consists of a 2D
grid in which the wave energy converter is tested.

2) The second part of the problem formulation consists of establishing the WEC dynamic behavior.
In this way, the angular velocity of the WEC, along with the generated power, is computed to
observe and protect the WEC from damage generated by the chaotic behavior of the fluid in the
2D confinement.

3.1. Navier-Stokes equations for the NWT

The Navier-Stokes equation used herein is a spatio-temporal 2D partial differential equation that is
later converted into a port-Hamiltonian formulation. For these purposes, the appropriate Hamiltonian is
implemented to obtain the required port-Hamiltonian formulation. Consider the following 2D Navier-
Stokes partial differential equations in Eulerian form [45]:

Ouy \ Ouy | Ou) - p (Pue Gu,
PUlar "% x "™y | = Tax "M\ e T a2 )
du, duy du, dp u,  u,

— Ut Uy—| = —— +pu|—=+—=|,
P ( or M ax T ay) oy M\ T 9y

3.1)

in which the components of the vector velocity field are given by u = [u,, u,]’, p is the pressure variable,
o is the density constant, and u is the viscosity constant that, in this case, is related to water. Numerical
simulations are shown in Figures 1 and 2, respectively. It is worth noting that the uncertainties and
boundary conditions are explained in detail later in Subsection 4.1. In this manner, the theoretical and
experimental setup of the wave energy converter is given by:

1) Stabilization and chaos suppression by robust passivity-based boundary control.
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2) Numerical wave tank for wave energy conversion simulation.
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Figure 1. Mesh plot of the numerical wave tank by solving the 2D Navier-Stokes equations.
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Figure 2. Contour plot of the numerical wave tank by solving the 2D Navier-Stokes
equations.

Figure 3 shows the schematic diagram of the NWT setup implemented for the simulation of the
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chaotic vortex. In Section 5, it is explained in detail how this numerical wave tank experimental setup
is established by using real laboratory components:

A water pump,

A manometer to measure the water pressure,

A water level meter in the x direction,

A water level meter in the y direction,

e The passivity-based boundary controller,

e A voltage converter to transform the input value into a voltage for the pump.

Water Pump
—p | Voltage
Converter
@ Manometer

hv2

Water Level MeterinY

Numerical Wave Tank

[ | Water
Level
Meter

Water Level Meter in X

-—————

L5

Boundary

Figure 3. Numerical wave tank schematic diagram.

3.2. Wave energy converter formulation

The wave energy converter dynamics are detailed in Subsection 5.1. The wave energy converter
dynamics are composed of:

1) Shaft angular velocity of the WEC.
2) Generated power of the WEC.

Although the dynamics of the WEC are relatively simple, they are crucial for the trajectory tracking
of the WEC. This trajectory tracking consists of obtaining the norm of the fluid velocity potential as
the desired angular velocity of the shaft. The relationship between the wave energy converter and
the numerical wave tank serves as a mechanism to mitigate chaotic behavior within the tank. This
suppresses chaos in the waves and protects the wave energy converter.

4. Stabilization and chaos suppression by robust passivity-based boundary control

The robust passivity-based boundary stabilization for chaos suppression in the numerical wave
tank involves finding an appropriate boundary control law that considers the energy properties of the
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uncertain port-Hamiltonian formulation. The variables implicated are given in Table 1.

Table 1. Variables in the Navier-Stokes equation in the uncertain port-Hamiltonian

formulation.
Variable Definition Formula
q This variable is the flow ¢ =I[q.q,]"
position with ¢ = u as the
velocity potential vector.
M, This  variable is the M, =[M,M,]"
volumetric momentum
vector.
p This variable is the pressure  p = [p1, p2]” = [pysin(X), p, cos(Y)]"
vector.
g This variable is the gravity See Eq (4.1)
variable.
Uy, Uo, Uz, Uy These variables are the See Eq (4.9)
boundary inputs.
1,12, M3, M4 These are the boundary m = —sin(X), n, = sin(Y), n3 = —cos(X),

uncertainties.

14 = cos(Y)

In Table 2, a quantitative comparative analysis of the proposed control strategy with other techniques
found in the literature is presented.

Table 2. Comparative analysis of the proposed control strategy.

Reference

Advantages

Disadvantages

(Gao et al., 2025
A) [55]

(Gao et al., 2025
B) [56]

(Ma et al., 2025)
[57]

(Shi et al., 2024)
[58]

The 2D formulation is
appropriate and suitable for
this research study.

Available for three
dimensions.

Available for energy
consumption and dissipation.
Similar to the proposed
control strategy.

Available for multi-agent
systems with delay. It is
only applicable to stochastic
systems.

Available only in a discrete time
formulation.

Not implementable for spatio-temporal
analysis and available only in a discrete
time formulation.

Not available for spatio-temporal
analysis.
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The gravity vector g in Table 1 is described by:
g = [9.81 cos(t), 9.81 sin(1)][0.3cos((270.5)¢), 0.3 sin((270.5)1)]" . 4.1)
For the robust passivity-based stabilization, consider the following theorems.

Theorem 1. Consider the control input u € R" and the output y € R", so the following storage function
Vi(x) : R" = R is implemented for robust passivity-based stability and the following is met [59]:

Vi(x) < > auys 4.2)
i=1

for @; € R*, in which u; € R are the boundary control inputs and y; € R are the outputs of the port-
Hamiltonian distributed parameter system.

Theorem 2. Consider the following control variable u € R" and the output y € R", and the following
storage function Vy(x) : R" — R with the following « function a = x> + y*. To obtain robust passivity
stability the following is required [60-64]:

infsup[V(x,y,u, 1) + a(x,y)] < 0. (4.3)
uelU xeQ

4.1. Uncertain representation of the Navier-Stokes equation in the port-hamiltonian formulation

Consider the following augmented state:

X = [qT, M\?]Ta q= [qm CIy]Ta M, =[M,,, ny]Ta (44)
and the following Hamiltonian:
H(g,M,) = %M—fﬁﬂ@+gfwfw+%%, (4.5)
q q

in which M, = pg, where M, indicates the volumetric momentum. The multiplicative parametric
uncertainty is given by:

’ﬁq ]:[On h}[—vp+ﬂVﬁ+pg ’ “46)
=M, =1, 0, q
G f
with the following boundary conditions, considering that the system variable trajectory is periodic:
gx(x,0) = uy + 11, qx(x,0) = x, 4.7
M (x,0) = up + 13, M,(x,0) = —x,
4y, 0) = uz + 13, 7,5, 0) =,
M,(7,0) = uy + na, M,(y,0) = -y,

where the boundary uncertainty 7 = [17;,7:]7 meets the following property.

Property 1. Considering the boundary uncertainty n, the following property is met:
In(x, Ml <y, (4.8)

in which y > 0, so in other words 7(x, y) is bounded for all ¢ > 0.
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4.2. Theoretical derivations

To obtain the robust passivity-based boundary controller, the following theorem is needed:

Theorem 3. Consider the following robust passivity-based control laws:

_ x—m if x#0,
s -m if x=0,
x-=m I x#0,
U, = .
=2 lf x =0,
u = {y—na if y#0,
-3 lf y:()’
y—-ns if y#0,
Uy = : 4.9
* { -y if y=0, 49)

with output y = [gy, gy, My, My]"so system (4.6) is stabilized.

Proof. Consider the following storage function:

1 Lx 1 L}' 1 Lx 1 Ly
V== f *(x,0)dx + = f 7> (y,0)dy + = f M?(x,0)dx + = f M?(y, 0)dy. (4.10)
2 Jo 2Jo 2 Jo 2Jo 7

So the first derivative of the previous equation is given by:

Ly L,
Vo= f 4x(x, 0)g(x, O)dx + f 4(. 0)dy(y, 0)dy
0 0
Ly . L,V .
+ f M. (x,0)M (x,0)dx + f M, (x, 0)M,(x, 0)dx. (4.11)
0 0

By using Theorems 1 and 2, we obtain:

W< infsup[)c2 + yz] = infsup[2u,y; + uxy, + 2usys + ugys4], 4.12)
uelU xeQ uelU xeQ

with W = V(x,y,t) — a(x,y,t) and @ = x*> + y>. With these results, the robust passivity-based control
law is established, and the proof of the theorem is complete.
O

The proof of the presented theorem provides sufficient conditions for stabilizing the uncertain
Navier-Stokes equation in the port-Hamiltonian formulation. This fact is achieved by selecting an
appropriate storage function to synthesize the passivity-based boundary controller. As verified, the
uncertainties in this case are found in the boundary conditions, which makes it difficult for controller
synthesis. However, this problem is tackled efficiently by selecting the appropriate robust storage
function, so that boundary robust stability conditions are met. These conditions ensure that the waves
shown in the numerical analysis section are suppressed efficiently.

From the application point of view, the results found by the previous theorem are helpful to obtain
the wave suppression as found in the numerical wave tank as depicted in Figure 3. The proposed
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robust boundary control strategy provides a sufficient control input that is later converted into the
pump voltage to regulate the flow in the numerical wave tank.

In this way, the proposed robust boundary control strategy stabilizes the waves in the NWT and
suppresses chaotic behavior, thereby protecting offshore renewable energy systems. As verified later
in this research paper, the flow in the numerical wave tank is stabilized to protect a wave energy
converter, to avoid damage to the WEC, and to suppress over-voltages.

5. Numerical wave tank for a wave energy converter

In this section, the numerical setup of the wave tank to be tested by a wave energy converter is
presented. In this section, the following subsections are analyzed.

e Wave energy converter dynamics.
e Numerical setup of the numerical wave tank in Figure 3.
e Numerical experiments.

The main reason to establish this numerical setup is to test the wave energy converter under severe
conditions, in order to stabilize the WEC and protect it from damage and destruction in its mechanical
and electrical parts.

5.1. Wave energy converter dynamics
The wave energy converter dynamical behaviors are given by:
P turb — P gen
= — + N
a u
where Q is the angular velocity of the generator, [ is the inertia of the generator, P, 1s the power of
the turbine, and P,,, is the applied power [65]. The power generated by the turbine is [65, 66]:

0 (5.1)

Pturb = pinQ3DsfH(\P)’ (52)
where p;, 1s the air density in the turbine, D is the turbine generator diameter, and ¥ is given as [65,66]:

Ap

Y=
pingzzD2

(5.3)

in which Ap is the pressure differential. Meanwhile, fi;(‘t') is a non-dimensional function.

The control law u is basically a proportional-derivative controller considering the error variables
eq = Q — Q,; in which Q is the velocity of the wave energy converter and €); is the desired angular
velocity. The PD controller is given by:

u= erg + K éq 5.4)

with K,,, K; > 0 being positive constants. The main variables are summarized in Table 3 and evinced
in Figure 4:
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Table 3. Variables of the wave energy converter

Variable Definition Type of variable

Q This variable is the angular velocity of the WEC’s Controlled variable
shaft.

Qy This variable is the angular velocity reference of the Reference variable
WEC’s shaft. It is given by Q; = ||[g,, g,]l|.

Py This variable is the power of the turbine. System variable

Pen This variable is the generated power of the WEC. System variable

u This variable is the control input of the WEC. Manipulated variable

o | waveenergy |
velocit ] :
y _.O_. PD controller dynamic
equation (6.1)

Q,=ld,.dq,]l

Figure 4. Block diagram of the control scheme of the wave energy converter.

As shown in Figure 4, the resultant of the velocity potential of the fluid Q; = [|g., gl 1s the
shaft angular velocity reference of the WEC. The primary reason is that the water velocity must be
synchronized with the angular velocity of the shaft of the wave energy converter. In this way, when the
chaotic vortex velocity is stabilized, the wave energy converter’s angular shaft velocity is diminished
smoothly to keep the WEC in safer operation until the water velocity is reduced to zero.

6. Numerical dynamic analysis and experiments

6.1. Dynamic analysis of the uncertain chaotic 2D Navier-Stokes equation

To find the eigenfunction of the Navier-Stokes equation along with the respective eigenvalues, the
following separation of variables must be considered:

T(HX(x,y),
T(HY(x,y). (6.1)

Uy

u,

AIMS Mathematics Volume 11, Issue 1, 1777-1806.
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So, the following partial derivatives are computed for u,:

al/lx , 8ux ’
=T"(DX(x,y), =T(OX (x,y), (6.2)
ot ox
2
Ot _ piyx”(x, 1), Us _ 10x(x, ), 6.3)
Ox? Oy
0u, .
57 = TOX (). (6.4)
y
and the following partial derivatives are computed for u,:
Oy _ T ()Y (x,y) M T®OY'(x,y)
o Y ox Y
azuy—TtY" t Ay Ty
6)72 - () (-x’ )’ ax - () (x,)’),
& uy ..
ol T(®HY(x,y). (6.5)
X

Then, the eigenfuction is obtained from (3.1) by implementing the two previous equations:

op
X
’ v / (9]7 v 17
PT'Y + pTXTY + pTYTY' = ===+ uT¥ + uTY" = =4,
y

oT'X + pTXTX +pTYTX = —— + uTX" +uTX = -1y,

(6.6)

in which A; and A, are the eigenvalues of the Navier-Stoke equation in 2D. By rearranging, the
following eigenfunctions are obtained:

~1 4 V2 X — p(UVX) + A1x = 0,

—+ L+ uVEY - p(UVY) + oy = 0, (6.7)

with the following boundary conditions:

ux(Lx’ t) = UxL0, My(Ly’ t) = Uyro,
ux(()’ t) = Ux0, uy(()’ t) = uytO,
ux(x,0) = s, ux(y, 0) = utsoy. (6.8)

In Figure 5, the phase portraits of the chaotic vortices of the numerical wave tank are shown. In
Figure 6, the evolution in time of the fluid velocity in the x- and y-axes, respectively, was given. These
phase portraits were obtained at x = 18 m and y = 8 m. We can observe the water waves generated in
the numerical wave tank, which should be suppressed and controlled. In Figure 7, the evolution in time
of the eigenvalues of the system is shown. It can be observed that these eigenvalues reach stability at
A1 = 0.5849 and 1, = —0.1998. This fact indicates that the solution of the system is unstable under

AIMS Mathematics Volume 11, Issue 1, 1777-1806.



1791

these conditions. Therefore, in the next section, the system is stabilized to suppress the chaotic vortex
of the Navier-Stokes equation in the port-Hamiltonian formulation.

Bl
15

25 | X(m
A 05 0 05 2 3 ax (m)

-3 -25 -2 -15
gx (m)

(a) Phase plot of g, and g,

(b) 3D phase plot of gy, gy, and g’

0
qayp p
(m/s)
-2

-3 -2 -1 0 1 2 3

qxp (m/s)
(¢) 3D phase plot of g, gy, and g, (d) Phase plot of ¢} and ¢,

Figure 5. Phase plots of the chaotic 2D Navier-Stokes equations.
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Figure 6. Evolution in time of ¢, and ¢; at x = 8 mand y = 8 m.
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Figure 7. Eigenvalues of the numerical wave tank by solving the 2D Navier-Stokes
equations.

Additionally, bifurcation diagrams and Lyapunov exponents are used to validate whether the Navier-
Stokes uncertain formulation exhibits chaotic or hyper-chaotic behavior. Let us define the pressure
vector of the Navier-Stokes equation as:

D1 Px sin(X),
P> = pycos(Y). (6.9)

By selecting p, = 2 x 107> while varying p, the bifurcation diagrams are obtained. In Figure 8,
the bifurcation diagrams for the variables g, g, g, and g, are shown. It is verified that for the lowest
values of the constant A, the solution of the Navier-Stokes equation in the port-Hamiltonian formulation
converges to chaotic behavior, where the area in blue in the bifurcation diagrams corresponds to the
chaotic regime.

The Lyapunov exponents are given in Table 4. Figure 9 shows the Lyapunov exponents with the
respective evolution in time. It is noticeable that the real part of one Lyapunov exponent /; is positive,
meanwhile the Lyapunov exponent [, /3, and I, possess negative real parts, so the distributed parameter
port-Hamiltonian system suggests a chaotic behavior.
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Figure 8. Bifurcation diagrams for the variables ¢, and g,.

Table 4. Lyapunov exponents for the Navier-Stokes equation in the port-Hamiltonian form.

Lyapunov exponent Value

L 7.5129 x 1072

b -5.9064 x 1073

l; -1.5837 x 107*

Iy —-0.034605
AIMS Mathematics
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Figure 9. Evolution in time of the Lyapunov exponents.

6.2. Numerical experiment of the stabilization of the Navier-Stokes equation and the numerical wave
tank

The numerical experiment consists of a simulation time of ¢ = 500 s, meanwhile the parameters
of the numerical wave tank are p = 1000 Kgm/m?* and u = 1 x 107 Pa.s for the water density and
viscosity, respectively. The uncertainties are given as n; = sin(x) and 1, = sin(y). In Figure 10, the
mesh plot and the contour plot of the variable g, are shown. As shown in that figure, it is noticeable
that the variables are stabilized in comparison with the plots shown in Figures 1 and 2. The effect of the
robust passivity-based controller evinces that this control strategy is effective for the stabilization and
wave suppression in the numerical wave tank. The numerical method used to solve the Navier-Stokes
equation in the port-Hamiltonian formulation employs the finite difference method. The scheme is very
similar to the numerical method which appears in [27,49, 54, 67-69], where the discretization scheme
is given as:

n+l _ _n

q; —49;
h b

Q?+1 - Zq;l - QJ—I
Ay? ’

q‘;:-l - 2q;l - Qj—l
Ax? ’

(g, = (@), = (G = (6.10)
where i = At [67]. The finite difference method for solving this numerical setup involves creating a 2D

mesh and then calculating the first-order and second-order partial derivatives. In this case, system (4.6)
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is represented in a numerical scheme in the following way:

4\ =g+ h(g))]. 6.11)
and
dq "
E = (q]‘)t,
oM ()" }
— = Vp- 7xx | _ o, 6.12
Y p .U[(qj),;y rg (6.12)

Qxp (M/s)
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Figure 10. Plot of the variable g,.

Therefore, to solve the previous scheme numerically, a mesh grid must be implemented to solve
the Navier-Stokes problem with determined boundary conditions. The parameters of the wave energy
converter are given as R = 10 m, J = 1 x 10° Kgm.m?, and rated power of 10 MW. The controller
gains are given by K; = 1 X 107 and K, = 1 x 10 whereas the proportional and derivative gains of
the wave energy converter are K, = 1 X 107" and K; = 1 x 107",

In Figure 11, the evolution in time of the input variables of the proposed control strategy is shown.
It is verified how these input variables drove the position and velocity variables of the fluid to the
equilibrium. In Figure 12, the evolution in time of how the velocities of the fluid in the x- and y-axes
are driven to the equilibrium in finite time is shown. In Figure 13, the evolution of the variable P,,,
which is the measured power of the wave energy converter, is displayed. As illustrated, this variable is
maintained in a safe region because it remains below the rated power when the wave is suppressed.
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500

Figure 13. Plot of the variable P,,.

Also, in Figures 14 and 15, the evolution in time of the angular velocity w and the error velocity e
are shown, respectively. In the first case, this variable reaches stability due to wave suppression in the
numerical wave tank. The error variable e = Q — Q, converges rapidly to the origin due to the action
of the robust passivity-based boundary controller.

80
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40

Q (rad/s)

20

100
500

Figure 14. Plot of the variable Q.
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Figure 15. Plot of the error variable e = Q — Q.

Finally, in this subsection, a robustness analysis is performed considering the following boundary

conditions:

AIMS Mathematics

g = —Ksin(x),
gy = Ksin(y). (6.13)
100000 T w
= gpx(x,0)=-sin(x)
0 ——— gpx(x,0)=-100sin(x)
-100000 | gpx(x,0)=-200sin(x)
—— gpx(x,0)=-300sin(x)
-200000 | e (PX(X,0)=-500sin(x)
-300000
-400000 : : : :
0 0.002 0.004 0.006 0.008 0.01
400000 T !
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200000 r —— gpy(y,0)=-300sin(y)
~— gpy(y,0)=-500sin(y)
100000
0
0 0.002 0.004 0.006 0.008 0.01

Figure 16. Robustness analysis while varying the constant K.
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This robustness analysis consists of varying the constant value K in the values K =
1, 100, 200, 300, 500 to observe how the stabilization is performed under different boundary conditions.
It is observed in Figure 16 how the stabilized variables vary according to the changes in the boundary
conditions. It is evident that at low constant values, the overshoot is small; however, as the constant K
increases, the overshoot in the stabilized variables increases.

7. Discussion

As explained in this paper, the primary objective of this study is to suppress wave-induced chaotic
vortices in a wave energy converter system. Despite the chaotic vortex, this phenomenon is efficiently
suppressed, thereby allowing the wave energy converter to remain in a safe region. For this reason,
it is essential to note that the power is maintained at a secure range while simultaneously keeping
the angular velocity of the wave energy converter at an appropriate level to prevent blade damage. The
results regarding the passivity-based controller action demonstrate that the chaotic vortex is suppressed,
enabling the wave energy converter to remain in a safe region. It is essential to clarify that the measured
power in the wave energy converter is not maintained at the rated power, as the objective of this study
is to ensure safe operation. As a future direction, a maximum power point tracking algorithm will be
developed.

The answers to the hypothesis established in the introduction section are given as follows. In this
case, based on the computed Lyapunov exponents, the system is classified as chaotic. More than two
Lyapunov exponents possess positive real parts. Therefore, the bifurcation diagrams show when the
system is in a chaotic regime, as evinced in Figure 8. Meanwhile, the eigenvalues of the original
Navier-Stokes equations result in one positive and one negative eigenvalue. It is also shown that the
robust passivity-based boundary controller stabilizes the optimal uncertain Navier-Stokes equation as
a port-Hamiltonian system. Finally, the robust passivity-based boundary controller suppresses the
chaotic behavior of the port-Hamiltonian system and protects the wave energy controller.

It is worth clarifying that the dynamic analysis is performed in the coordinates x = 8 m and
y = 8 m, obtaining similar results in the rest of the uncertain Navier-Stokes domain. One of the most
important findings is that a hyper-chaotic attractor is found in all the domains of the uncertain Navier-
Stokes equation. The turbulent chaotic vortex is found to necessitate an appropriate boundary control
strategy to suppress chaotic behavior, maintain the wave energy converter’s optimal performance,
and simultaneously protect the mechanical and electrical integrity of the wave energy converter when
chaotic vortices can damage or even destroy it.

Besides, the primary objective of the proportional-derivative controller of the wave energy converter
is to maintain the angular velocity of the WEC according to the velocity potential of the water contained
in the numerical wave tank. In this way, the velocity potential norm serves as the reference angular
velocity for the wave energy converter, enabling it to achieve the required velocity in accordance with
the fluid velocity. It is noticeable that the PD controller for the wave energy converter is sufficient to
stabilize the angular velocity of the wave energy converter according to the water velocity potential,
thereby stabilizing and protecting the WEC under turbulent, chaotic flow.
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8. Conclusions

In this paper, a robust passivity-based boundary controller for a chaotic vortex in a numerical
wave tank was proposed to protect a renewable wave energy converter. It has been proven both
theoretically and numerically that such a controller efficiently suppresses a chaotic fluid vortex, thereby
keeping a wave energy converter safe. The passivity-based boundary controller was designed using
an appropriate storage function, similar to the lumped-parameter version. The uncertain Navier-
Stokes equation was reformulated as a port-Hamiltonian system to develop a passivity-based boundary
controller for wave suppression. For the wave energy converter, a proportional-derivative controller
was sufficient to stabilize the WEC while maintaining an appropriate angular velocity until the wave is
suppressed. The robust passivity-based boundary controller has been theoretically and experimentally
validated; it is an effective technique for eliminating and suppressing chaotic behavior to protect
the wave energy converter. This strategy is appropriate, given that the Navier-Stokes equations are
formulated in the port-Hamiltonian approach, which enables exploitation of the energy properties
inherent to this formulation. The stabilization technique performed efficiently, and, given that it is
a relatively simple boundary control strategy from a theoretical standpoint, it is appropriate for chaos
suppression in a real experimental setup.

The advantages of the proposed robust passivity-based control strategy are that the port-Hamiltonian
formulation enables us to design the proposed control strategy with respect to input and output
characteristics. Another advantage over other control techniques is that this control strategy accounts
for matched uncertainties, which are commonly found in fluid and other physical systems. The
disadvantages are that disturbances are not accounted for, a common feature of fluid systems. This
issue will be considered as a future research direction.

As a future direction, this research study will be extended for a maximum power point tracking
controller of the wave energy converter under smooth conditions. In this way, the controller can track
the wave energy converter’s rated power, enabling maximum power point tracking and power extraction
even when the wave velocity field in the numerical wave tank is below the average. In this article,
numerical wave tank simulations are conducted to maintain the wave energy converter in a safe region
by suppressing the chaotic vortex, thereby protecting the WEC from damage or destruction.
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