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1. Introduction

The classical Black-Scholes model [1] has been applied extensively to the valuation of financial
derivatives. However, a growing body of empirical evidence suggests that the assumptions of the
BS model are overly restrictive. In order to relax these assumptions, many scholars have conducted
extended research based on this model. For example, Merton [2] proposed an option pricing model
based on a jump-diffusion process, yielding results that align more closely with real financial markets.
Vasicek [3] pioneered the extension of the Black-Scholes formula from a constant to a stochastic
interest rate. Amihud and Mendelson [4, 5] first proposed the concept of a liquidity premium,
demonstrating the relationship between market liquidity and the returns of risky assets.

Since then, many scholars have incorporated the impact of liquidity factors on the underlying asset
price into their option pricing research. In 2018, Li et al. investigated the impact of liquidity factors
on quanto options [6], Asian options [7], and discrete barrier options [8]. Recently, He et al. [9, 10]
investigated the impact of stochastic liquidity factors on exchange option pricing through numerical
simulations. In addition to accounting for the influence of liquidity factors, He and Mittal et al. [11,12]

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2026073


1762

also incorporated the effect of default risk in option valuation. Further studies on the effect of liquidity
on option prices can be found in [13, 14]. Collectively, these findings demonstrate that liquidity is a
significant factor influencing option prices. The results summarized above are all based on the partial
differential equation framework for option pricing.

When market liquidity is insufficient, multiple risk-neutral measures exist in incomplete markets,
and thus classic pricing theory cannot be directly applied. Therefore, it is crucial for researchers to
identify a suitable pricing measure applicable in incomplete markets. To address this, Gerber et al. [15]
suggested employing the Esscher measure transformation in order to identify a suitable equivalent
martingale measure for pricing options. By utilizing the Esscher measure transformation, Feng et
al. [16] proposed a liquidity-adjusted European option pricing model. Compared to models that ignore
liquidity effects, their model yields smaller pricing errors and greater stability. Gao et al. derives
closed-form solutions for liquidity-adjusted European options [17], exchange options [18], and quanto
options [19] using the Esscher measure transformation. Li [20] introduced the digital power exchange
option, an extension of the power exchange option, designed to mitigate losses caused by a significant
price deviation between the two underlying assets.

A novel contribution of this paper is the consideration of liquidity risk’s effect on the underlying
asset price in the valuation of digital power exchange options. In order to derive a closed-form
expression for option prices within the risk-neutral measure framework, the Esscher measure transform
is employed to derive the equivalent martingale measure Q from the real-world probability measure
P. Numerical simulations confirm the accuracy of the derived pricing formula and further investigate
the influence of various parameters on the option’s value. The results show that the option premium
increases significantly when liquidity risk is taken into account.

The rest of this paper is constructed as follows. Section 2 presents some fundamental theories.
Section 3 derived the pricing formula of digital power generalized exchange based on liquidity
adjustment. Section 4 elaborates on empirical analysis and numerical simulation results. Section 5
presents a conclusion.

2. Fundamental theory

First, define a probability space (Ω,Ft, P) to characterize the uncertainty in the financial market,
where Ω denotes the set of all possible states, Ft represents the information available at time t, and P
denotes the real-world probability measure. Then, let S (t) = S (0)eX(t), 0 ≤ t ≤ T , and let {X(t)}t≥0

be a stochastic process with independent and stationary increments. Let F(x, t) = P[X(t) ≤ x]. The
corresponding moment generating function is defined as M(z, t) = E[ezX(t)], and X(t) satisfies condition:
X(0) = 0, M(z, t) = [M(z, 1)]t.

Definition 2.1. [15] Let h be an arbitrary real number. Define the Esscher transform of the probability
density function f (x, t) of X(t) with parameter h as

f (x, t; h) =
ehx f (x, t)∫ +∞

−∞
ehx f (x, t)dx

=
ehx f (x, t)
M(h, t)

.

Definition 2.2. [15] The Esscher transform of the moment generating function M(z, t) of X(t) with
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parameter h is

M(z, t; h) =

∫ +∞

−∞

ehx f (x, t; h)dx.

The essence of applying the Esscher transform to a function is a measure transformation.
Specifically, it involves introducing the Radon-Nikodym derivative on the original probability space
P, so that the new probability measure Q satisfies

dQ
dP

=
ehx

M[h, t]
.

Property 2.1. [15]

M(z, t; h) =
M(z + h, t)

M(h, t)
. (2.1)

Property 2.2. [15] Let S t = S 0eXt , Xt = µt + σWt, 0 ≤ t ≤ T, {Wt}0≤t≤T is the standard Brownian
motion in probability space (Ω,Ft, P), and µ, σ are constants. Xt is a normal distribution with mean µ
and variance σ2 per unit time. Then,

M(z, t) = E
[
ezXt

]
= e(zµ+ 1

2 z2σ2)t.

According to Eq (2.1), the moment-generating function of Xt under the Esscher measure (parameter h)
is

M(z, t; h) = EQ
[
ezXt

]
= E

[
ezXt ; h

]
= e[z(µ+hσ2)+ 1

2 z2σ2]t.

Therefore, the drift rate of Xt per unit time changes from µ to µ + hσ2, and the volatility remains
unchanged under the Esscher measure (parameter h).

Lemma 2.1. (Bayes’ theorem) [21] Let P and Q be probability measures on the measurable space
(Ω,Ft). Let G be a sub-σ-algebra of Ft, and Λ =

dQ
dP denote the Radon-Nikodym derivative of Q with

respect to P. Then, for any measurable random variable X, we have

EQ[X | G] =
EP[XΛ | G]
EP[Λ | G]

. (2.2)

3. Main contents

The pricing of generalized digital power generalized exchange options, considering the effects of
liquidity, will be presented in this section. The valuation will be conducted under incomplete market
conditions using a measure transformation technique.

3.1. Model specification

In order to derive the stock price process under illiquidity conditions, Brunetti and
Caldarera [22] assume that the stock demand function D ≡ D(S (t), L(t), I(t)) is related to the stock
price S (t), liquidity discount factor L(t), and information process I(t), and it takes the following form

D(S (t), L(t), I(t)) = F
(

(I(t))ι

L(t)S (t)

)
(3.1)
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where, F(·) is a smooth and strictly increasing function with parameters ι > 0. The stock information
process I(t) follows

dI(t)
I(t)

= αIdt + σIdW I,P(t) (3.2)

where, the parameter αI > 0, σI > 0, W I,P(t) represents a standard Brownian motion under the actual
probability measure P. Both Eqs (3.1) and (3.2) demonstrate that the impact of liquidity on stock prices
can be captured by a liquidity discount factor L(t) defined by

dL(t)
L(t)

=

(
1
2
ξ2ω2(t) − ξω(t)

)
dt − ξω(t)dWL,P(t) (3.3)

where ω(t) represents the stock liquidity level at time t, ω(t) > 0(ω(t) < 0) means that the market is
in shortage(surplus), ω(t) = 0 indicates a perfectly liquid market, and ξ is the sensitivity of stock
prices S (t) to liquidity levels. The standard Brownian motion processes W I,P(t) and WL,P(t) are
independent of each other, that is dW I,P(t)dWL,P(t) = 0. Under the market clearing condition,
Brunetti and Caldarera solved the equilibrium equation (3.1) by using the chain rule of implicit function
derivation, and obtained a liquidity-adjusted stock pricing model

dS (t)
S (t)

=

(
µ + ξω(t) +

1
2
ξ2ω2(t)

)
dt + ξω(t)dWL,P(t) + λdW I,P(t) (3.4)

where, µ = αIι + 1
2σ

2
I ι(ι − 1), λ = ισI .

3.2. Risk-neutral dynamics

In the probability space (Ω,Ft, P), we assume that the two risky assets (i = 1, 2) follow the following
processes:

dS i(t)
S i(t)

=

(
µi + ξiωi(t) +

1
2
ξ2

i ω
2
i (t)

)
dt + ξiωi(t)dWL,P

i (t) + λidW I,P
i (t) (3.5)

where, WL,P
i (t) and W I,P

i (t) are pairwise independent standard Brownian motions. Furthermore, WL,P
1 (t)

and WL,P
2 (t) are mutually independent, while W I,P

1 (t) and W I,P
2 (t) have a correlation coefficient of ρ, i.e.,

dW I,P
1 (t) · dW I,P

2 (t) = ρdt. To derive a closed-form solution, this paper assumes ωi(t) to be constant. By
solving stochastic differential Eq (3.5), we obtain the closed-form expression for the underlying stock

S i(t) = S (0) exp
[∫ t

0
(µi + ξiωi(s) −

1
2
λ2

i )ds +

∫ t

0
ξiωi(s)dWL,P

i (s) +

∫ t

0
λidW I,P

i (s)
]
. (3.6)

Let

Xi(t) =

∫ t

0
(µi + ξiωi(s) −

1
2
λ2

i )ds +

∫ t

0
ξiωi(s)dWL,P

i (s) +

∫ t

0
λidW I,P

i (s). (3.7)

When market liquidity is insufficient, the equivalent martingale measure in incomplete markets
is not unique. According to the martingale pricing principle, this renders the pricing of options
impossible. In incomplete markets, it has been proposed by Gerber et al. [15] to employ the
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Esscher transform to identify an equivalent martingale measure suitable for option pricing. Therefore,
according to Definition 2.2, we introduce a new measure Q with respect to P. It is defined by

dQ
dP
| Ft = exp

 2∑
i=1

[∫ t

0
−

1
2

h2
i

(
ξ2

i ω
2
i (u) + λ2

i

)
du +

∫ t

0
hiξiωi(u)dWL,P

i (u)
∫ t

0
hiλidW I,P

i (u)
] . (3.8)

To ensure that the transformed measure Q is a risk-neutral measure, the parameter hi must satisfy

hi = −
µi + ξiωi(t) + 1

2ξ
2
i ω

2
i (t) − r

ξ2
i ω

2
i (t) + λ2

i

, i = 1, 2 (3.9)

where r is the risk-free interest rate. By Girsanov’s theorem, the Brownian motion under the risk-
neutral measure Q satisfies

dWL,Q
i (t) = dWL,P

i (t) − hiξiωi(t)dt,

dW I,Q
i (t) = dW I,P

i (t) − hiλidt

where WL,Q
1 (t) and WL,Q

2 (t) are independent and the correlation coefficient between W I,Q
1 (t) and W I,Q

2 (t)
is ρ.

Under the risk-neutral measure Q, the dynamics of two risky assets prices can be rewritten by

dS i(t)
S i(t)

= rdt + ξiωi(t)dWL,Q
i (t) + λidW I,Q

i (t).

3.3. Pricing model for digital power generalized exchange options

This section is devoted to the formulation of digital power generalized exchange options under the
consideration of liquidity factors and provides a closed-form solution for their valuation.

Definition 3.1. [20] Let a1, a2, b1, b2,K1, and K2 be constants. χ{.} represents the indicative function.
At the maturity T, if the payoff of an option satisfies

C(T ) =
[
b1S a1

1 (T ) − b2S a2
2 (T )

]+
χ{

K1≤
S

a1
1 (T )

S
a2
2 (T )

≤K2

}, (K2 ≥ K1 > 0). (3.10)

We refer to this type of option as a digital power generalized exchange option.
Where [K1,K2] represents the exercise interval of the option, a1,a2 are exponents, and b1, b2

are the coefficients for the two assets.

Compared to the standard power exchange option, this model incorporates an additional indicator
function, denoted by

χ{
K1≤

S
a1
1 (T )

S
a2
2 (T )

≤K2

}.

This indicator function χ{.} assumes the value one provided that the power ratio S a1
1 (T )

S a2
2 (T )

satisfies the
interval condition [K1,K2] and the value zero if this condition is not met. If the deviation between
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S a1
1 (T ) and S a2

2 (T ) is too large, the resulting ratio will become excessively high or low. For the
conventional power exchange option, the option price can be excessively high or fall to zero, which
presents a significant risk to investors. Consequently, by defining an appropriate interval, the model
hedges against the risk associated with overly large deviations in the prices of the two assets.

To derive a closed-form expression for the option under the risk-neutral measure Q, now we
introduce an equivalent martingale measure Q2 with respect to Q, whose Radon-Nikodym derivative is
given by

dQ2

dQ
=

S a2
2 (T )

EQ

[
S a2

2 (T )
] . (3.11)

Denote by V(0,T ) the digital power generalized option price, which is represented by

V(0,T ) =EQ

[
e−rTC(T )

]
=EQ

e−rT
[
b1S a1

1 (T ) − b2S a2
2 (T )

]+
χ{

K1≤
S

a1
1 (T )

S
a2
2 (T )

≤K2

}


=e−rT b1EQ

EQ(S a2
2 (T )) ·

S a2
2 (T )

EQ

[
S a2

2 (T )
] · (S a1

1 (T )
S a2

2 (T )
−

b2

b1

)+

χ{
K1≤

S
a1
1 (T )

S
a2
2 (T )

≤K2

}


=e−rT b1EQ(S a2
2 (T )) · EQ2


(
S a1

1 (T )
S a2

2 (T )
−

b2

b1

)+

χ{
K1≤

S
a1
1 (T )

S
a2
2 (T )

≤K2

}
 .

(3.12)

Let

G(T ) =
S a1

1 (T )
S a2

2 (T )

and

C∗(T ) =

(
G(T ) −

b2

b1

)+

χ{
K1≤

S
a1
1 (T )

S
a2
2 (T )

≤K2

}.
Then, Eq (3.12) can be rewritten as

V(0,T ) = e−rT b1EQ(S a2
2 (T )) · EQ2(C

∗(T )). (3.13)

Property 3.1. (1) If b2
b1
> K2, then C∗(T ) = 0.

(2) If K1 ≤
b2
b1
≤ K2, then C∗(T ) =

(
G(T ) − b2

b1

)+
χ{

b2
b1
≤G(T )≤K2

}.
(3) If b2

b1
≤ K1, then C∗(T ) =

(
G(T ) − b2

b1

)+
χ{K1≤G(T )≤K2}.

Theorem 3.1. Assuming that the stock with liquidity risk is considered as the underlying asset of
the digital power generalized exchange option, its price process satisfies the Eq (3.5). Combining
Property 3.1, the price of the option at the initial time is obtained as follows:

(1) If b2
b1
> K2, then C∗(T ) = 0.
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(2) If K1 ≤
b2
b1
≤ K2, then

V(0,T ) = b1 · e−rT+M2+ 1
2Σ2 ·

{
eM1+ρ̄

√
Σ1
√

Σ2+ 1
2 Σ1 · [N(d2) − N(d1)] −

b2

b1
· [N(d4) − N(d3)]

}
(3.14)

where

M2 = lnS a2
2 (0) + a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T

M1 = ln
S a1

1 (0)
S a2

2 (0)
+ a1(r −

1
2
λ2

1 −
1
2
ξ2

1ω
2
1(T ))T − a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T

Σ2 =
[
a2

2λ
2
2 + a2

2ξ
2
1ω

2
2(t)

]
T, Σ1 =

[
a2

1λ
2
1 + a2

1ξ
2
1ω

2
1(T ) − 2ρa1a2λ1λ2 + a2

2λ
2
2 + a2

2ξ
2
2ω

2
2(T )

]
T

ρ̄ =

[
ρa1a2λ1λ2 − a2

2λ
2
2 − a2

2ξ
2
2ω

2
2(T )

]
T

√
Σ1
√

Σ2

d2 =
ln K2 − M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

, d1 =
ln b2

b1
− M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

d4 = d2 +
√
Σ1, d3 = d1 +

√
Σ1.

(3) If b2
b1
≤ K1, then

V(0,T ) = b1 · e−rT+M2+ 1
2Σ2 ·

{
eM1+ρ̄

√
Σ1
√

Σ2+ 1
2 Σ1 ·

[
N(d′2) − N(d′1)

]
−

b2

b1
·
[
N(d′4) − N(d′3)

]}
(3.15)

where

M2 = lnS a2
2 (0) + a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T

M1 = ln
S a1

1 (0)
S a2

2 (0)
+ a1(r −

1
2
λ2

1 −
1
2
ξ2

1ω
2
1(T ))T − a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T

Σ2 =
[
a2

2λ
2
2 + a2

2ξ
2
1ω

2
2(t)

]
T, Σ1 =

[
a2

1λ
2
1 + a2

1ξ
2
1ω

2
1(T ) − 2ρa1a2λ1λ2 + a2

2λ
2
2 + a2

2ξ
2
2ω

2
2(T )

]
T

ρ̄ =

[
ρa1a2λ1λ2 − a2

2λ
2
2 − a2

2ξ
2
2ω

2
2(T )

]
T

√
Σ1
√

Σ2

d′2 =
ln K2 − M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

, d′1 =
ln K1 − M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

d′4 = d2 +
√
Σ1, d′3 = d1 +

√
Σ1.
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Proof. (1) As shown in Property 3.1(1).
(2) According to Eq (3.13), to compute the option price, one only needs to calculate EQ(S a2

2 (T )) and
EQ2(C

∗(T )). By Itô formula, we have

lnS i(T ) = lnS i(0) + (r −
1
2
λ2

i −
1
2
ξ2

i ω
2
i (T ))T + λiW

I,Q
i (T ) + ξiωi(T )WL,Q

i (T ). (3.16)

From Eq (3.16), we can obtain

lnS a2
2 (T ) = lnS a2

2 (0) + a2(r −
1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T + a2λ2W I,Q

2 (T ) + a2ξ2ω2(T )WL,Q
2 (T )

ln
S a1

1 (T )
S a2

2 (T )
=ln

S a1
1 (0)

S a2
2 (0)

+ a1(r −
1
2
λ2

1 −
1
2
ξ2

1ω
2
1(T ))T − a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T

+ a1λ1W I,Q
1 (T ) + a1ξ1ω1(T )WL,Q

1 (T ) − a2λ2W I,Q
2 (T ) − a2ξ2ω2(T )WL,Q

2 (T ).

The above equation states that lnS a2
2 (T ) and lnS a1

1 (T )

S a2
2 (T )

are normally distributed random variables, with
means of

E
[
lnS a2

2 (T )
]

= lnS a2
2 (0) + a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T , M2

E
[
ln

S a1
1 (T )

S a2
2 (T )

]
= ln

S a1
1 (0)

S a2
2 (0)

+ a1(r −
1
2
λ2

1 −
1
2
ξ2

1ω
2
1(T ))T − a2(r −

1
2
λ2

2 −
1
2
ξ2

2ω
2
2(T ))T , M1.

According to the definition of covariance, their covariance is

Cov
(
ln

S a1
1 (T )

S a2
2 (T )

, lnS a2
2 (T )

)
=Cov

(
lnS a1

1 (T ) − lnS a2
2 (T ), lnS a2

2 (T )
)

=Cov
(
lnS a1

1 (T ), lnS a2
2 (T )

)
− Var

(
lnS a2

2 (T )
)

=
[
ρa1a2λ1λ2 − a2

2λ
2
2 − a2

2ξ
2
2ω

2
2(T )

]
T.

Since ln S a1
1 (T )

S a2
2 (T )

and lnS a2
2 (T ) have a bivariate normal distribution, they can be expressed as

lnS a2
2 (T ) = M2 +

√
Σ2ε2,

ln
S a1

1 (T )
S a2

2 (T )
= M1 +

√
Σ1ε1,

where Σ2 is the variance of lnS a2
2 (T ) and Σ1 is the variance of lnS a1

1 (T )

S a2
2 (T )

, with their respective values being

Σ2 =
[
a2

2λ
2
2 + a2

2ξ
2
1ω

2
2(T )

]
T
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Σ1 =
[
a2

1λ
2
1 + a2

1ξ
2
1ω

2
1(T ) − 2ρa1a2λ1λ2 + a2

2λ
2
2 + a2

2ξ
2
2ω

2
2(T )

]
T.

Here, ε1 and ε2 are two random variables following a standard normal distribution, with a correlation
coefficient of

ρ̄ =

Cov
(
lnS a2

2 (T ), ln S a1
1 (T )

S a2
2 (T )

)
√

Σ1
√

Σ2
=

[
ρa1a2λ1λ2 − a2

2λ
2
2 − a2

2ξ
2
2ω

2
2(T )

]
T

√
Σ1
√

Σ2
.

According to Property 2.1, it is easy to get that

EQ

[
S a2

2 (T )
]

= EQ

[
eM2+

√
Σ2ε2

]
= eM2+ 1

2Σ2 .

Then, Eq (3.11) can be simplified to an expression involving only ε2

dQ2

dQ
=

S a2
2 (T )

EQ

[
S a2

2 (T )
] =

eM2+
√

Σ2ε2

eM2+ 1
2Σ2

= e
√

Σ2ε2−
1
2Σ2 . (3.17)

From the definition of the Esscher measure transformation, the parameter h is given by
√

Σ2. From
Property 2.1, we know that under the new probability measure Q2, ε2 ∼ N(

√
Σ2, 1). Under the original

measure Q, ε1 and ε2 follow a bivariate standard normal distribution with correlation coefficient ρ̄.
Using the property of the bivariate normal distribution, ε1 can be decomposed into a part correlated
with ε2 and an independent part

ε1 = ρ̄ε2 +
√

1 − ρ̄2ε. (3.18)

By

EQ2 [C∗(T )] =EQ2

[(
G(T ) −

b2

b1

)+

χ{
b2
b1
≤G(T )≤K2

}]
=EQ2

[
G(T )χ{

b2
b1
≤G(T )≤K2

}] − b2

b1
EQ2

[
χ{

b2
b1
≤G(T )≤K2

}]
=Λ1 − Λ2.

Next, we calculate Λ1 and Λ2

Λ1 =EQ2

[
G(T )χ{

b2
b1
≤G(T )≤K2

}]
=EQ2

[
eM1+

√
Σ1ε1 · χ{

b2
b1
≤eM1+ρ̄

√
Σ1
√

Σ2+
√

Σ1ε≤K2

}]
=EQ2

[
eM1+ρ̄

√
Σ1
√

Σ2+
√

Σ1ε · χ{
b2
b1
≤eM1+ρ̄

√
Σ1
√

Σ2+
√

Σ1ε≤K2

}]
=eM1+ρ̄

√
Σ1
√

Σ2+ 1
2 Σ1 · [N(d2) − N(d1)]

Λ2 =
b2

b1
EQ2

[
χ{

b2
b1
≤eM1+ρ̄

√
Σ1
√

Σ2+Σ1ε≤K2

}] =
b2

b1
· [N(d4) − N(d3)]
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where N(·) denotes the cumulative distribution function of the standard normal distribution and

d2 =
ln K2 − M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

, d1 =
ln b2

b1
− M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

d4 = d2 +
√
Σ1, d3 = d1 +

√
Σ1.

Hence, it follows that the option price is given by

V(0,T ) = b1 · e−rT+M2+ 1
2Σ2 ·

{
eM1+ρ̄

√
Σ1
√

Σ2+ 1
2 Σ1 · [N(d2) − N(d1)] −

b2

b1
· [N(d4) − N(d3)]

}
.

(3) The proof of Eq (3.15) is the same as that of Eq (3.14). Here, only the differences from
Theorem 3.1(2) are presented. When b2

b1
≤ K1, we need to calculate the option price V(0,T ). By

EQ2 [C∗(T )|Ft] =EQ2

[(
G(T ) −

b2

b1

)+

χ{K1≤G(T )≤K2}

]
=EQ2

[
G(T )χ{K1≤G(T )≤K2}

]
−

b2

b1
EQ2

[
χ{K1≤G(T )≤K2}

]
=Λ1 − Λ2.

Next, we calculate Λ1 and Λ2

Λ1 =EQ2

[
G(T )χ{K1≤G(T )≤K2}

]
=EQ2

[
eM1+

√
Σ1ε1 · χ{

K1≤eM1+ρ̄
√

Σ1
√

Σ2+Σ1ε≤K2

}]
=EQ2

[
eM1+ρ̄

√
Σ1
√

Σ2+Σ1ε · χ{
K1≤eM1+ρ̄

√
Σ1
√

Σ2+Σ1ε≤K2

}]
=eM1+ρ̄

√
Σ1
√

Σ2+ 1
2 Σ1 · [N(d2) − N(d1)]

Λ2 =
b2

b1
EQ2

[
χ{

K1≤eM1+ρ̄
√

Σ1
√

Σ2+Σ1ε≤K2

}|Ft

]
=

b2

b1
· [N(d4) − N(d3)]

where N(·) denotes the cumulative distribution function of the standard normal distribution, and

d′2 =
ln K2 − M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

, d′1 =
ln K1 − M1 − ρ̄

√
Σ1
√

Σ2 − Σ1
√
Σ1

d′4 = d′2 +
√
Σ1, d′3 = d′1 +

√
Σ1.

Hence, it follows that the option price is given by

V(0,T ) = b1 · e−rT+M2+ 1
2Σ2 ·

{
eM1+ρ̄

√
Σ1
√

Σ2+ 1
2 Σ1 · [N(d2) − N(d1)] −

b2

b1
· [N(d4) − N(d3)]

}
.
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4. Numerical experiments

This section will present the properties of the new formula Eq (3.14) through numerical
experiments. The accuracy of the pricing formula is verified by a comparison between the analytical
solution and the Monte-Carlo simulation price. To examine the influence of key parameters on the
option price, a sensitivity analysis is then carried out. For simplicity, we assume that the market
liquidity level ωi(T ) is a given constant and it is represented as ω1 and ω2 in the figure. The power
exponent (a1, a2) and coefficient (b1, b2) adjust the leverage effect and nonlinearity of option pricing.
Here, we only consider the general case and set them both to 1. The values of core parameters
(S 1(0), S 2(0), λ1, λ2, ξ1, ξ2, ω1(t), ω2(t)) are strictly based on relevant classic literature in this field [7].
In the following, unless otherwise stated, the parameter values are summarized in Table 1.

Table 1. Parameter values.

Parameter Value Parameter Value

a1 1 a2 1
b1 1 b2 1

S 1(0) 100 S 2(0) 100
λ1 0.2 λ2 0.25
ξ1 0.7 ξ2 0.75
ω1(t) 0.4 ω2(t) 0.5

K2 5 ρ 0.8
r 0.05 T 1

The analytical and simulated prices of the digital power exchange option for various times to
maturity are shown in Figure 1. Figure 2 shows the relative error between the two prices, all of which
are below 1%. This demonstrates the accuracy of the pricing formula. Furthermore, the primary
objective of this paper is to investigate the impact of liquidity risk on the pricing of digital power
exchange options.

Figure 1. Our price vs. MC price.
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Figure 2. Relative errors.

From Figures 3 and 4, it can be observed that the price considering liquidity factors is consistently
higher, demonstrating a positive liquidity premium. This is primarily because an increase in the
liquidity level leads to a corresponding increase in the return of the underlying asset.

Figure 3. Sensitivity of option price to correlation coefficient ρ.
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Figure 4. With vs. without liquidity effects.

As can be observed from Figures 5 and 6, the higher the liquidity of an asset, the higher the
corresponding option price. These findings jointly establish liquidity as a critical factor in option
pricing. In practical applications, the leverage effect of the option can be adjusted by setting different
power parameters.

Figure 5. Option price versus ω2 (ω1 = 0.4).
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Figure 6. Option price versus ω1 (ω2 = 0.5).

5. Conclusions

This paper investigates the pricing of liquidity-adjusted generalized digital power exchange options
under incomplete market conditions. The original use of the measure transformation method yields an
exact closed-form pricing formula for the option. The flexibility of the model was further demonstrated
through numerical experiments, demonstrating how the price of digital power exchange option will be
influenced by liquidity factors.

Appendix

A. Practical applications of digital power exchange options

Hedging the “Safety Margin” of Commodity Processing Margins
Scenario: A refinery’s profit is simplified as “refined product price (e.g., gasoline) - crude oil price”.

However, this relationship is typically non-linear and exists within a historical normal range.
Asset 1: Gasoline price S 1(t). The power a1 might be set slightly greater than 1 (e.g., 1.1) to reflect

that the price elasticity of the refined product is higher than that of crude oil during periods of strong
demand.

Asset 2: Crude oil price S 2(t). The power a2 is set to 1.
Execution Interval: Based on historical data and operational costs, a tolerable profit margin

interval is determined. For instance, a refinery operates at a reasonable profit when the power ratio
of gasoline to crude oil prices ranges from 1.2 to 1.4.

Application:
◦ The refinery purchases a digital power exchange option.

AIMS Mathematics Volume 11, Issue 1, 1761–1776.
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◦ If the ratio falls within interval [1.2, 1.4] and the price of the refined product is higher than that of
crude oil, the option pays a floating payoff.
◦ If the ratio exceeds 1.4, meaning the profit margin is excessively high and likely unsustainable

due to factors, such as policy interventions, then the option does not pay out; however, the company
retains the excess profits earned.
◦If the ratio falls below 1.2, meaning the profit margin is too low, the company is compelled to

implement emergency measures, such as production cuts, and the option does not pay out.
Critically, the removal of these tail events leads to a lower option price, which efficiently contains

the overall cost of hedging.
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