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Abstract: Traditional option pricing models mostly assume that the market is frictionless, ignoring
the impact of liquidity on option price. In response, this paper considers a digital power generalized
exchange option pricing problem when the underlying asset has liquidity risk. We obtained a closed-
form digital power option pricing formula in a incomplete market by measure transformation. Finally,
numerical experiments were conducted by comparing the prices computed by the new formula with
those from Monte-Carlo simulations, thereby validating the accuracy of the new formula. Building on
this, the impact of liquidity on option prices was further investigated.

Keywords: digital power exchange options; liquidity; measure transformation; numerical analysis
Mathematics Subject Classification: Primary 91G20, 60G44; Secondary 60HO0S5, 65C05

1. Introduction

The classical Black-Scholes model [1] has been applied extensively to the valuation of financial
derivatives. However, a growing body of empirical evidence suggests that the assumptions of the
BS model are overly restrictive. In order to relax these assumptions, many scholars have conducted
extended research based on this model. For example, Merton [2] proposed an option pricing model
based on a jump-diffusion process, yielding results that align more closely with real financial markets.
Vasicek [3] pioneered the extension of the Black-Scholes formula from a constant to a stochastic
interest rate. Amihud and Mendelson [4, 5] first proposed the concept of a liquidity premium,
demonstrating the relationship between market liquidity and the returns of risky assets.

Since then, many scholars have incorporated the impact of liquidity factors on the underlying asset
price into their option pricing research. In 2018, Li et al. investigated the impact of liquidity factors
on quanto options [6], Asian options [7], and discrete barrier options [8]. Recently, He et al. [9, 10]
investigated the impact of stochastic liquidity factors on exchange option pricing through numerical
simulations. In addition to accounting for the influence of liquidity factors, He and Mittal et al. [11,12]
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also incorporated the effect of default risk in option valuation. Further studies on the effect of liquidity
on option prices can be found in [13, 14]. Collectively, these findings demonstrate that liquidity is a
significant factor influencing option prices. The results summarized above are all based on the partial
differential equation framework for option pricing.

When market liquidity is insufficient, multiple risk-neutral measures exist in incomplete markets,
and thus classic pricing theory cannot be directly applied. Therefore, it is crucial for researchers to
identify a suitable pricing measure applicable in incomplete markets. To address this, Gerber et al. [15]
suggested employing the Esscher measure transformation in order to identify a suitable equivalent
martingale measure for pricing options. By utilizing the Esscher measure transformation, Feng et
al. [16] proposed a liquidity-adjusted European option pricing model. Compared to models that ignore
liquidity effects, their model yields smaller pricing errors and greater stability. Gao et al. derives
closed-form solutions for liquidity-adjusted European options [17], exchange options [18], and quanto
options [19] using the Esscher measure transformation. Li [20] introduced the digital power exchange
option, an extension of the power exchange option, designed to mitigate losses caused by a significant
price deviation between the two underlying assets.

A novel contribution of this paper is the consideration of liquidity risk’s effect on the underlying
asset price in the valuation of digital power exchange options. In order to derive a closed-form
expression for option prices within the risk-neutral measure framework, the Esscher measure transform
is employed to derive the equivalent martingale measure Q from the real-world probability measure
P. Numerical simulations confirm the accuracy of the derived pricing formula and further investigate
the influence of various parameters on the option’s value. The results show that the option premium
increases significantly when liquidity risk is taken into account.

The rest of this paper is constructed as follows. Section 2 presents some fundamental theories.
Section 3 derived the pricing formula of digital power generalized exchange based on liquidity
adjustment. Section 4 elaborates on empirical analysis and numerical simulation results. Section 5
presents a conclusion.

2. Fundamental theory

First, define a probability space (Q, 7,, P) to characterize the uncertainty in the financial market,
where Q denotes the set of all possible states, 7, represents the information available at time ¢, and P
denotes the real-world probability measure. Then, let S(f) = S(0)e*®, 0 < ¢t < T, and let {X(1)}1s0
be a stochastic process with independent and stationary increments. Let F(x,t) = P[X(¢) < x]. The
corresponding moment generating function is defined as M(z, ) = E[e*X], and X(¢) satisfies condition:
X(0)=0,M(z,t) = [M(z, D].

Definition 2.1. [15] Let h be an arbitrary real number. Define the Esscher transform of the probability
density function f(x,t) of X(t) with parameter h as

e f(x, 1) e f(x, 1)
S h) = —= = .
fxth) [ Temfx,ndx M0

Definition 2.2. [15] The Esscher transform of the moment generating function M(z,t) of X(t) with
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parameter h is

M(z,t;h) = f e f(x, t; h)dx.

The essence of applying the Esscher transform to a function is a measure transformation.
Specifically, it involves introducing the Radon-Nikodym derivative on the original probability space
P, so that the new probability measure Q satisfies

dQ B ehx
dP  M[h, 1]’
Property 2.1. [15]
M(z+h,1)
M(z,t;h) = ———. 2.1
(z,1; 1) MLD) (2.1)

Property 2.2. [15] Let S; = Soe*, X, = ut + oW, 0 < t < T, {W,}o<<r is the standard Brownian
motion in probability space (Q, F,, P), and u, o are constants. X, is a normal distribution with mean u
and variance o per unit time. Then,

1.2 2
M(z,t) =E [eZX’] = et

According to Eq (2.1), the moment-generating function of X; under the Esscher measure (parameter h)

(A
1

M(z,t;h) = E? [er,] =E [eZX';h] = e[Z(,U+h0'2)+§Z20'2]t.

Therefore, the drift rate of X, per unit time changes from u to p + ho?, and the volatility remains
unchanged under the Esscher measure (parameter h).

Lemma 2.1. (Bayes’ theorem) [21] Let P and Q be probability measures on the measurable space
(Q,F,). Let G be a sub-o-algebra of F,, and A = j—g denote the Radon-Nikodym derivative of Q with
respect to P. Then, for any measurable random variable X, we have

Ep[XA | G]

BolX161=§ 71

(2.2)

3. Main contents

The pricing of generalized digital power generalized exchange options, considering the effects of
liquidity, will be presented in this section. The valuation will be conducted under incomplete market
conditions using a measure transformation technique.

3.1. Model specification

In order to derive the stock price process under illiquidity conditions, Brunetti and
Caldarera [22] assume that the stock demand function D = D(S(¢), L(¢), I(t)) is related to the stock
price S (1), liquidity discount factor L(¢), and information process /(¢), and it takes the following form

() )
LS (1)

D(S (), L(0), (1)) = F( (3.1)
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where, F(-) is a smooth and strictly increasing function with parameters ¢ > 0. The stock information
process I(t) follows

di(¢) 1P

—— =qdt + o dW (1 3.2

1) a 01 0] (3.2)
where, the parameter a; > 0,0; > 0, W'P(¢) represents a standard Brownian motion under the actual
probability measure P. Both Eqgs (3.1) and (3.2) demonstrate that the impact of liquidity on stock prices
can be captured by a liquidity discount factor L(¢) defined by

dL@ _
L

where w(?) represents the stock liquidity level at time ¢, w(f) > O(w(f) < 0) means that the market is
in shortage(surplus), w(t) = 0 indicates a perfectly liquid market, and ¢ is the sensitivity of stock
prices S(f) to liquidity levels. The standard Brownian motion processes W/F(t) and WEP(r) are
independent of each other, that is dW’P()dW%"(t) = 0. Under the market clearing condition,
Brunetti and Caldarera solved the equilibrium equation (3.1) by using the chain rule of implicit function
derivation, and obtained a liquidity-adjusted stock pricing model

(%gzaﬂ(t) - fw(t)) dr — Ew()dWEL (1) (3.3)

as@

So = X +Ew() + %fzwz(t)) dr + Eo()dWE (1) + AW (1) (3.4)

_ 1 2 _
where, u = ap + 307t — 1), 1 = w07

3.2. Risk-neutral dynamics
In the probability space (€2, ;, P), we assume that the two risky assets (i = 1, 2) follow the following

processes:

dsi(n
Si(0)

— (,h. + &wi(1) + %g,?w,?(t)) dt + Ei (AW (1) + 4,dWHE (1) (3.5)

where, Wl.L’P (1) and Wf () are pairwise independent standard Brownian motions. Furthermore, WIL’P 63)
and WZL’P (#) are mutually independent, while W]' P(¢) and Wé’P (1) have a correlation coeflicient of p, i.e.,
dWII @) - dWé’P (t) = pdt. To derive a closed-form solution, this paper assumes w;(f) to be constant. By
solving stochastic differential Eq (3.5), we obtain the closed-form expression for the underlying stock

St) = S(0)exp [ f (,u,~+§,~w,-(s)—%/li2)ds+ f Ewi()AW' () + f /l,-de’P(s)]. (3.6)

0 0 0

Let . . )
Xi(r) = f (p,.+§,w,-(s)—%ﬂf)ds+ f Ewi(s)AWP(s) + f AW (s). (3.7)

0 0 0

When market liquidity is insufficient, the equivalent martingale measure in incomplete markets
is not unique. According to the martingale pricing principle, this renders the pricing of options
impossible. In incomplete markets, it has been proposed by Gerber et al. [15] to employ the
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Esscher transform to identify an equivalent martingale measure suitable for option pricing. Therefore,
according to Definition 2.2, we introduce a new measure Q with respect to P. It is defined by

2

d ! 1 ! !
£ |7—;:exp{z [ fo —hi (& i) + 1) du+ fo hi&w (W dW-" () fo h,-/ll-dWl.”P(u)]}. (3.8)

i=1
To ensure that the transformed measure Q is a risk-neutral measure, the parameter 4; must satisfy
. (D Le2 205 —
i + Eiwi(1) + 387 w; (1) — 1
2.2 2
Ewi (D) + A

where r is the risk-free interest rate. By Girsanov’s theorem, the Brownian motion under the risk-
neutral measure Q satisfies

h; = ,i=1,2 (3.9

dW;%(0) = dW;" (1) = higii(Ddt,
dWC(0) = AW (1) — hiAidt

where WIL’Q(t) and WZL’Q(I) are independent and the correlation coefficient between Wf’Q(t) and Wé’Q(t)
is p.
Under the risk-neutral measure Q, the dynamics of two risky assets prices can be rewritten by
dS (1)
Si(7)

= rdt + Ew(NAWH2(1) + A, dW2(0).

3.3. Pricing model for digital power generalized exchange options

This section is devoted to the formulation of digital power generalized exchange options under the
consideration of liquidity factors and provides a closed-form solution for their valuation.

Definition 3.1. [20] Let a;, a», by, b>, K,, and K, be constants. y,, represents the indicative function.
At the maturity T, if the payoff of an option satisfies

C(T) = [6:59(T) ~ boS2(T)| X{K st } (K> > K, > 0). (3.10)

1= ay =
$,7()

We refer to this type of option as a digital power generalized exchange option.
Where (K, K,] represents the exercise interval of the option, ai,a, are exponents, and bi,b,
are the coefficients for the two assets.

Compared to the standard power exchange option, this model incorporates an additional indicator
function, denoted by
X{K]SE<K2}.

112 -
S,°(T)

al

I, . . .St
This indicator function y;, assumes the value one provided that the power ratio SIZ_ET; satisfies the

interval condition [Kj, K>] and the value zero if this condition is not met. If the deviation between
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S{(T) and S5°(T) is too large, the resulting ratio will become excessively high or low. For the
conventional power exchange option, the option price can be excessively high or fall to zero, which
presents a significant risk to investors. Consequently, by defining an appropriate interval, the model
hedges against the risk associated with overly large deviations in the prices of the two assets.

To derive a closed-form expression for the option under the risk-neutral measure Q, now we
introduce an equivalent martingale measure Q, with respect to Q, whose Radon-Nikodym derivative is
given by

dQ, _ S3(T)
do  Ey[sem)]

(3.11)

Denote by V(0, T') the digital power generalized option price, which is represented by

V(0.T) =Eg [e"C(T))

:EQ

e’ [blSclll(T) - b,S ZZ(T)]+X s }
{Kls%SKz}

S5(T) ST b\ (3.12)
=¢"ThEp |Eo(S2(T)) - 2 ( i — —) ap
QoY) EQ I:S;Z(T):I SZZ(T) b, {K‘Sii2ET;SK2}
ST b\
=" b1 Eg(S5:(T)) - Eg, (;— - —) X( s :
ST b {Klssi,zmsl(z}
Let
ST(T)
G(T) = —
@ S5(T)
and
; by\"
Cc(T) =G(T) - b_ X st .
1 {KISS‘;Z(T)SKZ}
Then, Eq (3.12) can be rewritten as
V(,T) = e_’TblEQ(ng(T)) -Ep,(C*(T)). (3.13)

Property 3.1. (1) If 2 > K,, then C*(T) = 0.

b " »n\*
(2) IfKi < % < Ky, then C'(T) = (G(T) - %) X( comyency

N
(3) If 2 < Ky, then C*(T) = (G(T) = 2) xix,=a(r)<ko-

Theorem 3.1. Assuming that the stock with liquidity risk is considered as the underlying asset of
the digital power generalized exchange option, its price process satisfies the Eq (3.5). Combining

Property 3.1, the price of the option at the initial time is obtained as follows:
(1) If 2 > K,, then C*(T) = 0.
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(2) IfK; < Z—f < K, then

V<0,T):b1-e‘f“Mﬂ%fZ-{e“*ﬂi@*%zl-[N(d2> N(dln—b— [N(dy) - N(ds)]} (3.14)

where
_ a _ l R )
M, =1nS3?(0) + ax(r 2/12 5 Sws(TH)T
al(o) 1, 1 1, 1 2 2
M, =1n “2(0) +a,(r — 5/11 - E.f (T))T a(r — /l - 5 w5 (T))T

%) = @34 + BEO|T, I = [a{d} + & wi(T) - 2paiadi Ay + G35 + BEWNT)| T

[palaz/ll/lz - a2/12 - a%f%w%(T)] T

p=
VEIVE,
LK M -pVENE-T, g - M- pVEVE -
2 = , =
VI VI

dy=dy+ N2, dy=d,+ 2.
(3) If 2 < Ky, then

_ b
V(0.T) = b, Lo THMa+A S {eM1+p«/ET«E+§21 - [N(dy) = N(d))] - b_? [N} - N(d;)]} (3.15)

where
1 1
M, = 1InS5*(0) + ax(r - Eag — Eggwg(T))T

5 O +ai(r - l/ﬁ - %fl T(T)NT - ax(r - 1/12 . s (THT

My =In2
1= 15 0) 2 2%

% = &8 + BEGO|T, I = [a]d] + dEW{(T) - 2paialidy + B + GE3(T)| T

[palayh/lz - a3 - a%f%w%(T)] T
VIV,

InK, - M, - pVE, VE, - 5
V2 ’

dy=dy+ 2, ds=d + .

p:

InK, - My - pVZ VE, - 3
V2

) = d) =
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Proof. (1) As shown in Property 3.1(1).
(2) According to Eq (3.13), to compute the option price, one only needs to calculate Eo(S5°(T)) and
Eo,(C*(T)). By Ito formula, we have

InS(T) = InS;(0) + (r — %/lf - %gfwl?(T))T + LWH(T) + Ew(TYWHO(T). (3.16)

From Eq (3.16), we can obtain

1 1
InS(T) = InS5*(0) + ax(r — 5/1% - Eggwg(T))T + ayaWHT) + arérwn(TYWEHE(T)

SUT)  SU(0) 1, 1 Lo Lo,
lnSZZ(T) =In az(O) al(r— 5/11 — Efl (T))T (12(}" —/1 — 5 (T))T

+a Ly Wi (T) + aré o (T)WHA(T) - amWQ’Q(T) — arérn(T)WS ().

s{HD)
S54(T)

The above equation states that InS3*(7’) and In are normally distributed random variables, with

means of

1
E [InS$2(7)| = InS$(0) + ax(r — 54 -

Sal(T) Sal(()) 1
E [In— = In—4—~ _ 2.2
[nS?(T)] R I

According to the definition of covariance, their covariance is

SEWDNT £ M,

1, 1 )
T (TNT = ax(r = 545 = 56@3(THT £ M.,

al( ) ar ai a ar
COV(] ) InS (T)) =Cov (InS{"(T) - InS(T), InS ()

=Cov (InS{(T), InS $2(T)) — Var (InS (7))
= [palaz/h/lz /12 - azfzwz(T)]

ST
SSHT)

Since In and InS 7*(T') have a bivariate normal distribution, they can be expressed as

InS$(T) = Ma + 25,

ST(T)
In =M, + VZ&1,
ST 1
. . . . ST . . . .
where X, is the variance of InS ZZ(T) and X, is the variance of lnSLZ—ET;, with their respective values being
2

% = |33 + &3 (D)| T
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%) = [a}d] + @& N (T) - 2parai dy + B + BEW3(T)| T.

Here, £ and &, are two random variables following a standard normal distribution, with a correlation
coeflicient of

a s
. Cov (lnS2 (1), ln%) [palaz/h/lz - a5 - a%f%w%(T)] T
p = =
VIV, VE VE,

According to Property 2.1, it is easy to get that

Eo [S§(T)] = Bo [ V5e2] = Mo,
Then, Eq (3.11) can be simplified to an expression involving only &,

a M. e,
sz SZZ(T) e 1+ V28 _ e\/ggz_%fz. (317)

d0  Ey[sem)| et

From the definition of the Esscher measure transformation, the parameter 4 is given by VX,. From
Property 2.1, we know that under the new probability measure Q», £, ~ N( VX, 1). Under the original
measure Q, &, and &, follow a bivariate standard normal distribution with correlation coefficient p.
Using the property of the bivariate normal distribution, &£, can be decomposed into a part correlated
with &, and an independent part

&) = pey + 1 - p’e. (3.18)

By
Ep, [C(T)] =Eq, [|G(T) - by X{%gG(T)SKz}
=E,, |G(T b
=Ey, | G( )X{Z%SG(T)SKQ} b & X{Z%SG(T)SIQ}
:Al - A2.
Next, we calculate A; and A,
A1 =Eg, »G(T)X{Z?<G(T)<Kz}]

_ Mi+VEig .
=Eg, [e X{Z*ZSEM‘ VRV ﬁsSKz}]
1

:EQz eMlJrﬁ\/ZT‘/Ziﬁ Ve .X{ESeMﬁpﬁ\/g*‘ﬁb‘SKZ}]
=M P VENESE L N(dy) ~ N(d)
2
Ar = —Ep, X{[b’?ymwﬁ\/fzmlssm}] = b_l - [N(ds) — N(d5)]
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where N(-) denotes the cumulative distribution function of the standard normal distribution and

K~ M -pVEVE =% In 32— M, —pVEVE; - %
= N l:
Vi Vi

d4:d2+\/2_, d3:d1+ 2.

d>

Hence, it follows that the option price is given by

_ b
V(0,T) = by - e T+¥+3% . {eMW’ﬁ VRS [N(dy) — N(dy)] - b—2 - [N(dy) - N(dm} .
1

(3) The proof of Eq (3.15) is the same as that of Eq (3.14). Here, only the differences from
Theorem 3.1(2) are presented. When Z—f < K, we need to calculate the option price V(0,7). By

. b\
Ey, [C*(T)IF;] =Ey, [(G(T) - b—z) X{KISG(MZ}]
1

by

=Ey, [G(T)X{IQSG(T)SKZ}] - b_]EQ2 [X{KISG(T)SKZ}]

:Al - Az.

Next, we calculate A; and A,

A1 =Eg, [G(T)xk,<cry<ks}]

_ M +Vf£
_EQ2 [e 1 1€1 -/\/{KISeMlJ,,—)\/zT\/gﬂlsSKz}]

— M +pVE1 VE2+516 |
=Ep, [e )({KI SeM1+p\/ET\/$+leSK2}

—eMPVENVER IS [N (dy) — N(d))]

b,
A2 = _EQZ [X{KlﬁeMﬁp\ﬁ\/zizﬁ-Elsus}l?’t] = b_l ' [N(d4) - N(d3)]
where N(-) denotes the cumulative distribution function of the standard normal distribution, and

_InK, - My - pVE VE -3 InK; - M, -pVE V-3

d, d;
’ vZi l vZi
dy=dy+ \Z, d=d + 2.
Hence, it follows that the option price is given by
i b
V(0,T) = by - e/ THMri% . {eMIWZT VL INGd) = N(dD] = 2 - [N(ds) = N(d3>]} :
1
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4. Numerical experiments

This section will present the properties of the new formula Eq (3.14) through numerical
experiments. The accuracy of the pricing formula is verified by a comparison between the analytical
solution and the Monte-Carlo simulation price. To examine the influence of key parameters on the
option price, a sensitivity analysis is then carried out. For simplicity, we assume that the market
liquidity level w;(T) is a given constant and it is represented as w; and w, in the figure. The power
exponent (a;, ay) and coefficient (b, b,) adjust the leverage effect and nonlinearity of option pricing.
Here, we only consider the general case and set them both to 1. The values of core parameters
(5100),5200), A1, A3, &1, &, wi (1), wy(1)) are strictly based on relevant classic literature in this field [7].
In the following, unless otherwise stated, the parameter values are summarized in Table 1.

Table 1. Parameter values.

Parameter Value Parameter Value

a; 1 a, 1
by 1 b, 1
S100) 100 S,(0) 100
A4 0.2 A> 0.25
& 0.7 & 0.75
w1 (®) 04 wH(1) 0.5
K 5 0 0.8
r 0.05 T 1

The analytical and simulated prices of the digital power exchange option for various times to
maturity are shown in Figure 1. Figure 2 shows the relative error between the two prices, all of which
are below 1%. This demonstrates the accuracy of the pricing formula. Furthermore, the primary
objective of this paper is to investigate the impact of liquidity risk on the pricing of digital power
exchange options.

20.0

Our price
Monte—Carlo price

~
o

o
o

Option price
~ >
o o

o
o

»
o

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T

Figure 1. Our price vs. MC price.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T

Figure 2. Relative errors.

From Figures 3 and 4, it can be observed that the price considering liquidity factors is consistently
higher, demonstrating a positive liquidity premium. This is primarily because an increase in the

liquidity level leads to a corresponding increase in the return of the underlying asset.

25

201

Option price
G

—_
o
L

AIMS Mathematics

-0.25  0.00 0.25 0.50 0.75
p

100 -0.75 -0.50

Figure 3. Sensitivity of option price to correlation coeflicient p.
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- - N N
N o ~ e
o o ) o

Option price
)
o

0.0 0.2 0.4 0.6 0.8 1.0
T

Figure 4. With vs. without liquidity effects.

As can be observed from Figures 5 and 6, the higher the liquidity of an asset, the higher the
corresponding option price. These findings jointly establish liquidity as a critical factor in option
pricing. In practical applications, the leverage effect of the option can be adjusted by setting different
power parameters.

20.01
— w1=04, w,=0 e
17.51 - W= 04, Wy = 025 e
...... w1=0.4, (A)2=0.5
15.0
[}
9125
~
o
5 10. 0
+
8 7.5
5.0
2.5
0.0 0.2 0.4 0.6 0.8 1.0
T

Figure 5. Option price versus w, (w; = 0.4).
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Option price
- - - - o
S N o ~ (S
o (6,1 o [6,] o

~N
o

0.0 0.2 0.4 0.6 0.8 1.0
T

Figure 6. Option price versus w; (w; = 0.5).

5. Conclusions

This paper investigates the pricing of liquidity-adjusted generalized digital power exchange options
under incomplete market conditions. The original use of the measure transformation method yields an
exact closed-form pricing formula for the option. The flexibility of the model was further demonstrated
through numerical experiments, demonstrating how the price of digital power exchange option will be
influenced by liquidity factors.

Appendix
A. Practical applications of digital power exchange options

Hedging the “Safety Margin” of Commodity Processing Margins

Scenario: A refinery’s profit is simplified as “refined product price (e.g., gasoline) - crude oil price”.
However, this relationship is typically non-linear and exists within a historical normal range.

Asset 1: Gasoline price S (7). The power a; might be set slightly greater than 1 (e.g., 1.1) to reflect
that the price elasticity of the refined product is higher than that of crude oil during periods of strong
demand.

Asset 2: Crude oil price S (7). The power a, is set to 1.

Execution Interval: Based on historical data and operational costs, a tolerable profit margin
interval is determined. For instance, a refinery operates at a reasonable profit when the power ratio
of gasoline to crude oil prices ranges from 1.2 to 1.4.

Application:

o The refinery purchases a digital power exchange option.

AIMS Mathematics Volume 11, Issue 1, 1761-1776.
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o If the ratio falls within interval [1.2, 1.4] and the price of the refined product is higher than that of
crude oil, the option pays a floating payoff.

o If the ratio exceeds 1.4, meaning the profit margin is excessively high and likely unsustainable
due to factors, such as policy interventions, then the option does not pay out; however, the company
retains the excess profits earned.

olf the ratio falls below 1.2, meaning the profit margin is too low, the company is compelled to
implement emergency measures, such as production cuts, and the option does not pay out.

Critically, the removal of these tail events leads to a lower option price, which efficiently contains
the overall cost of hedging.
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