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List of acronyms and notations

Acronym/Notation Definition
CFDS Caputo Fractional Derivative with Sliding Memory
FD Fractional Derivative
FDE Fractional-Order Differential Equation
FG-PS Fourier–Gegenbauer Pseudospectral
RFOCP Reduced Fractional-Order Optimal Control Problem
N Set of positive integer numbers
fav Average Value of a Periodic Function f Over One Period
fε,av Average Value of a Periodic Function fε Over One Period
ξ∗av Average Value of ξ∗ Over One Period
Γ(·) The Gamma Function
Eα(z) The One-Parameter Mittag-Leffler Function with α > 0, Defined by

Eα(z) =

∞∑
n=0

zn

Γ(nα + 1)
MC
L Dα

t f (t) The (left-sided) Caputo Fractional Derivative of the Function f with Sliding Memory, Defined by
MC
L Dα

t f =
1

Γ(1 − α)

∫ t

t−L
(t − τ)−α f ′(τ) dτ, where α ∈ (0, 1) is the fractional order and L > 0 is the,

sliding memory length
MC
L+

Dα
t f The right-sided Caputo Fractional Derivative of the Function f with Sliding Memory, Defined by

MC
L+ Dα

t f = −
1

Γ(1 − α)

∫ t+L

t
(τ − t)−α f ′(τ) dτ, where α ∈ (0, 1) is the fractional order and L > 0 is the,

sliding memory length
W1,1

loc ([a, b]) Sobolev space of functions whose first weak derivative exists and is locally integrable over the interval [a, b]
ACT The absolutely continuous space of T -periodic functions with the norm ‖s‖AC = ‖s‖∞ + ‖s′‖L1 ,

where ‖s‖∞ = supt∈[0,T ] |s(t)| and ‖s′‖L1 =
∫ T

0
|s′(t)| dt

1. Introduction

The chemostat is a fundamental bioreactor in environmental engineering, enabling microbial
cultivation for pollutant degradation and forming the backbone of many biological water treatment
processes. While chemostats are traditionally operated at steady state, recent studies, using optimal
control theory, have shown that periodic modulation of dilution rates in continuously operated
chemostats can substantially improve pollutant removal efficiency when aligned with microbial growth
kinetics [1–3]. This evolution from early cyclic treatment concepts to modern, optimally designed
periodic controls expands the potential for enhancing bioprocess performance, enabling more efficient
pollutant removal and supporting cleaner water production and ecosystem protection.

Classical chemostat models rely on integer-order differential equations that assume instantaneous
microbial responses and neglect the hereditary effects observed in real biological systems. A growing
body of work demonstrates that biological processes often exhibit long-term memory, anomalous
diffusion, and multi scale adaptation that are more accurately captured by fractional calculus [4–6].
Fractional models have been successfully applied across physics, engineering, and biology—from
viscoelasticity and bioimpedance to predator–prey dynamics and multi-frame imaging [7–9]—and
have recently gained traction in environmental applications, including water pollution modeling [2,10].
These developments underscore the relevance of fractional formulations for systems where past states
influence present behavior.

Motivated by these observations, we introduce a fractional-order chemostat model that incorporates
microbial memory through the Caputo fractional derivative (FD) with sliding memory (CFDS). This
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operator captures history-dependent growth and degradation dynamics over a finite window [t − L, t],
reflecting realistic microbial adaptation timescales [11, 12]. Unlike classical Caputo or Riemann–
Liouville derivatives, the CFDS preserves periodicity, avoids nonphysical dependence on the entire
past history, and eliminates the need for fractional initial conditions. Its finite-memory structure also
enables efficient numerical treatment via pseudospectral methods [2]. For further details on CFDS
properties and applications, see [13–15].

Building on this modeling framework, we study optimal periodic control of a fractional-order
chemostat system for continuous biological water treatment. The goal is to minimize the average
pollutant concentration over a fixed period while respecting operational constraints on dilution rates
and treatment capacity. By employing fractional dynamics, the model captures memory-driven
responses that can yield superior pollutant removal compared with integer-order periodic controls and
steady-state operation.

This work makes several contributions to bioprocess engineering and fractional optimal control.
(i) We develop a fractional-order chemostat model with CFDS memory, extending the integer-
order framework of [1] to incorporate biologically realistic hereditary effects. (ii) In addition
to the fractional order α, we introduce a dynamic scaling parameter ϑ > 0 that modulates the
amplitude of system dynamics through the factor ϑ1−α, allowing independent tuning of memory depth
and responsiveness. (iii) We reduce the two-dimensional fractional system to a one-dimensional
fractional differential equation using the transformation in [2], yielding analytical simplification and
computational efficiency. (iv) We formulate a fractional optimal control problem to minimize average
pollutant concentration under periodic dilution-rate control, incorporating fractional dynamics and
practical operational constraints. (v) We establish existence of optimal periodic solutions using
compactness arguments and Schauder’s fixed-point theorem, and provide uniqueness conditions for
specific parameter regimes. (vi) We perform a detailed sensitivity analysis showing how the fractional
order α, scaling parameter ϑ, and memory length L influence optimal control performance and pollutant
removal, offering actionable guidance for system designers. (vii) Unlike [2], which developed the
CFDS-based fractional chemostat model, the present work establishes the corresponding optimal
periodic control theory, including existence, uniqueness, and a fractional Pontryagin framework.

The motivation for this study stems from the need for efficient and sustainable water treatment
technologies capable of handling variable environmental conditions while minimizing ecological
impact. By integrating microbial memory effects through the CFDS, we develop a biologically
grounded and practically implementable periodic control strategy for real-world wastewater treatment
systems. This work advances the theory and practice of fractional-order optimal control
in environmental engineering and provides a pathway toward improved pollutant removal and
ecosystem health.

The remainder of the paper is organized as follows. Section 2 reviews essential preliminaries on
fractional calculus and the CFDS. Section 3 presents the problem formulation. Section 4 reduces
the model to a one-dimensional fractional-order differential equation (FDE), establishes existence
and uniqueness, and analyzes computational complexity. Section 5 derives the optimal control
strategy using the fractional Pontryagin maximum principle. Section 6 examines memory effects
on control and orbital stability. Section 7 provides sensitivity analysis and numerical simulations.
Section 8 discusses the biological and practical implications of the results, compares the approach
with alternative modeling frameworks, and addresses implementation considerations. Section 9
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concludes the paper. The appendices contain supporting theoretical results, including CFDS integral
properties (Section A), convexity analysis (Section B), equilibrium stability (Section C), orbital
stability (Section D), perturbation analysis (Section E), right-sided CFDS derivation (Section F),
numerical optimization techniques (Section G), and the complete solution algorithm (Section H).

2. Preliminaries

This section provides a brief introduction to the key concepts of fractional calculus employed
in this paper, with a focus on the Caputo FD and its sliding memory variant (CFDS). Fractional
calculus extends traditional integer-order differentiation and integration to noninteger orders, enabling
the modeling of systems with memory and hereditary properties [16, 17]. In biological systems like
chemostats, these tools capture time-dependent behaviors such as microbial adaptation delays, which
integer-order models overlook.

2.1. FDs and integrals

The Riemann-Liouville fractional integral of order α > 0 for a function f is defined as

Iαa f (t) =
1

Γ(α)

∫ t

a
(t − τ)α−1 f (τ) dτ.

FDs build upon this, with several definitions available (e.g., Riemann-Liouville, Caputo, Grünwald-
Letnikov). The left-sided Caputo FD of order α ∈ (n − 1, n) for n ∈ N is

C
a Dα

t f (t) = In−α
a f (n)(t) =

1
Γ(n − α)

∫ t

a
(t − τ)n−α−1 f (n)(τ) dτ.

For 0 < α < 1, this simplifies to

C
a Dα

t f (t) =
1

Γ(1 − α)

∫ t

a
(t − τ)−α f ′(τ) dτ.

The Caputo FD is particularly suited for initial value problems, as it incorporates initial conditions
in terms of integer-order derivatives, aligning with physical interpretations like the initial substrate
concentrations in bioprocesses. Unlike integer-order derivatives, which are local, Caputo FDs are
nonlocal operators that depend on the entire history from a to t, modeling hereditary phenomena in
microbial kinetics [5].

2.2. CFDS

Traditional Caputo FDs use a fixed lower limit a (often 0), implying dependence on the entire past
history from the initial time. In periodic bioprocesses with cyclic operations, this can conflict with
periodicity and bounded historical dependence such as the microbial responses influenced only by
recent environmental changes over a finite window L. To address this, we employ the CFDS, a finite-
memory variant introduced in [18], and modified later by [13, 14] for improved numerical stability.
The left-sided CFDS is

MC
L Dα

t f (t) =
1

Γ(1 − α)

∫ t

t−L
(t − τ)−α f ′(τ) dτ,
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where L > 0 is the sliding memory length (a bounded horizon [t − L, t]). This preserves the
Caputo kernel but localizes memory to a finite sliding window [t − L, t], making it ideal for modeling
systems with hereditary effects over bounded horizons, such as slow microbial adaptation or persistent
finite influences in biological tissues and physiological processes [11]. In the context of wastewater
treatment, this finite memory captures nutrient or pollutant history over practical timescales (like
hours of inflow variability resetting microbial responses), avoiding the unphysical full history recall
of classical FDs while aligning with observed nonlocal behaviors in bioprocesses [12].

The CFDS offers several advantages over standard Caputo or Riemann-Liouville FDs: (i) Its sliding
window [t−L, t] ensures that for f ∈ ACT , the integral of the CFDS over [0,T ] vanishes (see Lemma 1
in Section A), guaranteeing compatibility with the periodic boundary conditions (3.1h)–(3.1j)—
this distinction from the classical Caputo FD is clarified in Remark 3; (ii) the finite window L
confines convolutions to bounded intervals, in contrast to the infinite memory in classical definitions,
facilitating efficient pseudospectral discretization and reducing computational complexity [13,14]; (iii)
it is more biologically plausible, as the sliding memory mechanism localizes hereditary effects (i.e.,
captures microbial memory over recent time), thereby preventing the unphysical dependence on the
entire distant history that characterizes standard Caputo/Riemann–Liouville FDs with fixed lower
limits [11,12], whereas the CFDS’s sliding memory aligns with periodicity and preserves this property.
For further details on the properties of the CFDS, see [2, 18] and the references therein.

3. Problem statement

In this paper, we address the optimization of a chemostat model for continuous biological water
treatment, where we focus on minimizing the average output concentration of pollution under
periodic control strategies. Our primary goal is to minimize the average output concentration of the
pollutant (substrate), denoted s, over a fixed period T . This translates to the practical goal of reducing
pollutant levels in the effluent of a water treatment process. The total amount of water treated during
the period T is required to have an average removal rate D̄, calculated by dividing the total treated
volume Q̄ by the product of the chemostat volume V and the period T , i.e., D̄ = Q̄/(VT ). This
constraint ensures a consistent treatment capacity by explicitly quantifying the total treated volume,
modeling practical limitations such as reactor volume or pump rates in wastewater facilities, thereby
ensuring operational feasibility. The fractional-order optimal control problem is formulated as follows:

min
D

J(D), (3.1a)

subject to the integral constraint on the control variable D, the dilution rate

Dav = D̄, (3.1b)

the state and control bounds

0 ≤ s(t) ≤ sin, (3.1c)
x(t) > 0, (3.1d)

Dmin ≤ D(t) ≤ Dmax, (3.1e)
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and the following 2D FDEs expressing the system dynamics:

MC
L Dα

t s(t) = ϑ1−α
[
D(t)(sin − s(t)) −

1
Y
µ(s(t), x(t))x(t)

]
, (3.1f)

MC
L Dα

t x(t) = ϑ1−α [µ(s(t), x(t)) − D(t)] x(t), (3.1g)

with the following periodic boundary conditions:

s(t) = s(t + T ), ∀t ∈ [0,∞), (3.1h)
x(t) = x(t + T ), ∀t ∈ [0,∞), (3.1i)

D(t) = D(t + T ), ∀t ∈ [0,∞). (3.1j)

In the above fractional-order optimal control problem, s represents the substrate concentration, x the
biomass concentration, D the time-varying dilution rate (control input) with minimum and maximum
values Dmin and Dmax, respectively. J(D) = sav is the objective functional, which represents the average
substrate concentration over the period T , sin is the inlet substrate concentration, Y > 0 the yield
coefficient, µ(s, x) the specific growth rate of the microorganisms, and ϑ > 0 is a dynamic scaling
parameter that controls the magnitude of the system dynamics and ensures dimensional consistency
in the fractional-order equations. The specific growth rate µ is assumed to follow the Contois growth
model given by

µ(s, x) =
µmaxs

Kx + s
, (3.2)

where µmax > 0 is the maximum growth rate, and K > 0 is the saturation constant. The fractional
dynamics are modeled using the CFDS. The sliding memory window [t − L, t] introduces a finite
memory effect, which captures the influence of past states on current dynamics. This formulation
extends the integer-order chemostat model studied in [1] by accounting for memory effects, which can
lead to a more realistic representation of microbial growth and substrate degradation. The challenge
lies in determining the optimal periodic control D∗ that minimizes the average substrate concentration
while satisfying the treatment constraint and periodic conditions in this fractional-order context.

3.1. Biological interpretation of CFDS and fractional parameters

The CFDS is biologically motivated, not merely mathematical. In real fractional-order
chemostat systems, the following apply

• The microbial memory is finite and local [19, 20]. In fact, bacteria respond to nutrient and stress
history over hours to days, not since reactor startup. The CFDS window [t−L, t] in MC

L Dα
t enforces

this bounded memory, avoiding unphysical infinite recall.

• Fractional order α quantifies memory strength [11, 21, 22]:

– α→ 1: Weak memory (short-term memory, fast-growing strains).

– α→ 0: Strong memory (persistent historical dependence like biofilm populations [23]).

Lower α increases the weight of past states in Eqs (3.1f) and (3.1g), requiring more dynamic
optimal periodic control to overcome inertia, as we demonstrate later in Section 7.
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• Memory length L reflects ecological timescale; for example, L may equal the hydraulic residence
time [24].

• Scaling parameter ϑ controls responsiveness: Larger ϑ amplifies dilution and growth terms.
Tuning ϑ enables strain-specific optimal periodic control like, for example, selecting high-ϑ
strains for unstable inflows.

This framework predicts how memory-aware optimal periodic control outperforms steady-state by
aligning control with microbial timescales, enabling smarter bioprocess engineering.

3.1.1. Biological evidence supporting finite sliding memory

Experimental microbiology provides strong evidence that microbial memory operates over finite
physiological timescales rather than over the entire historical trajectory of the system. Regulatory
mechanisms such as enzyme induction and repression exhibit characteristic adaptation windows
lasting minutes to hours, after which cells reset their metabolic state [25, 26]. Stress–response
pathways, including heat–shock and oxidative stress responses, similarly decay over finite horizons
once environmental conditions stabilize [27]. Quorum–sensing signals also impose finite memory
due to autoinducer degradation and dilution, limiting the temporal range over which past population
densities influence current behavior [28].

Recent studies on microbial ecological memory show that environmental history affects population
behavior only over bounded timescales before adaptation erases earlier states [19,29,30]. In engineered
bioreactors, including wastewater treatment systems, microbial responses are governed by finite
hydraulic retention times and short–term substrate histories rather than long–term past conditions [31].
These findings support the use of a finite sliding memory window [t − L, t] in the CFDS, whereas
classical FDs with infinite memory imply dependence on the entire past since reactor startup, a behavior
not supported by microbial physiology or bioprocess observations.

4. Simplification of the fractional-order chemostat model

To facilitate analysis and computation, we can reduce the fractional-order chemostat model,
characterized by the 2D FDEs (3.1f) and (3.1g), to a 1D FDE. As shown in [2, Section 2.2], the 2D
fractional-order chemostat system can be transformed into a 1D FDE using a transformation that uses
periodic boundary conditions and the properties of the CFDS. In particular, the transformation

z(t) = Y(sin − s(t)) − x(t), (4.1)

applied to the fractional-order chemostat system (3.1f) and (3.1g) results in the FDE:

MC
L Dα

t z(t) = −ϑ1−αD(t)z(t), (4.2)

with periodic boundary condition z(t) = z(t +T ), which follows from s(t) = s(t +T ) and x(t) = x(t +T ).
Using an energy dissipation argument, it can be shown that the FDE (4.2) admits no nontrivial periodic
solutions under the specified dynamics and boundary conditions. Consequently, we have z(t) ≡ 0,
and hence,

x(t) = Y(sin − s(t)). (4.3)
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Using the relation (4.3), the FDEs (3.1f) and (3.1g) are reduced to the following 1D FDE:

MC
L Dα

t s(t) = F (t, s(t)), (4.4)

subject to the periodic boundary condition (3.1h), where

F (t, s(t)) = ϑ1−α[D(t) − ν(s(t))](sin − s(t)), (4.5)

and
ν(s(t)) = µ(s(t),Y(sin − s(t))) =

µmaxs(t)
KY(sin − s(t)) + s(t)

. (4.6)

Here, ν(s(t)) represents “the substrate-dependent specific growth rate”. This FDE governs the substrate
concentration s, with D as the control input, enabling optimization of the objective (3.1a) under
constraints (3.1b), (3.1c), (3.1e), (3.1h), and (3.1j). We refer to this reduced fractional-order optimal
control problem by the reduced fractional-order optimal control problem (RFOCP).

For a constant dilution rate D ≡ D̄ and constant substrate concentration s ≡ s̄, the nontrivial
equilibrium solution of (4.4) is given by [2, Section 2.3]:

s̄ =
D̄KY sin

D̄KY + µmax − D̄
, (4.7)

provided D̄ < µmax, ensuring s̄ < sin and a positive biomass concentration via Eq (4.3). This
equilibrium satisfies ν(s̄) = D̄.

4.1. Computational complexity analysis

The computational complexity of solving the reduced fractional-order chemostat system (4.4) is
primarily governed by the evaluation of the CFDS. As established in our previous work [13], the CFDS
operator MC

L Dα
t s(t) introduces computational challenges due to its nonlocal nature, requiring integration

over the sliding memory window [t − L, t] at each time step.
For a numerical solution discretized over N time steps with step size ∆t = T/N, the memory length L

covers M = bL/∆tc = bLN/T c previous steps. For any general time step ti with i ≥ M, a naive
implementation evaluating the CFDS via direct quadrature summation requires O(M) operations per
time step, as it must integrate over the entire memory window [ti − L, ti]. Over N total time steps,
this results in O(NM) = O(N2) computational complexity in the worst case, when L is comparable
to the period T . However, our Fourier-Gegenbauer pseudospectral (FG-PS) method [13] significantly
reduces this complexity through several key innovations:

(i) The CFDS operator MC
L Dα

t s(t) is discretized using the α-th order FG-PS integration
matrix (FGPSIM) developed in [13], which serves as a discrete fractional differentiation operator.
Due to the convolutional nature of the sliding-memory kernel [13, Theorem 4.1], this matrix
exhibits a Toeplitz structure that reduces storage from O(N2) to O(N) and, combined with the
periodic nature of the problem, enables matrix–vector products inO(N log N) time via fast Fourier
transform-based convolution. This significantly improves overall scalability for large-scale and
real-time bioprocess optimization.

(ii) Unlike classical FDs with infinite memory, the CFDS employs a finite memory length L, bounding
the effective historical dependence and preventing unbounded computational growth.
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(iii) The FG-PS method exhibits spectral convergence [15, Theorem 5.2], meaning that moderate
values of N (typically 300–400 in our simulations) suffice for engineering accuracy, keeping
computational requirements manageable.

The overall computational complexity of solving the reduced 1D system is dominated by the FG-PS
discretization, which requires O(N log N) operations for the FD evaluations, plus the cost of solving
the resulting nonlinear programming problem.

The reduction from the original 2D system (3.1f) and (3.1g) to the 1D formulation (4.4) provides
substantial computational advantages by reducing the number of state variables from two (s and x) to
one (s only). This simplification decreases both the dimensionality of the discretized system and the
complexity of the resulting nonlinear programming problem, leading to faster computation times and
reduced memory requirements compared to solving the full coupled system.

4.2. Existence of solutions to the RFOCP

Define
X = {s ∈ ACT | 0 ≤ s(t) ≤ sin}. (4.8)

Then, X is a compact and convex subset of ACT representing the set of feasible substrate concentrations.
We also take the admissible control set to be

D = {D ∈ L∞([0,T ])|D satisfies (3.1b), (3.1e), and (3.1j)}. (4.9)

The following theorem uses results from [2] to establish the existence of an optimal periodic control D∗

and its corresponding state s∗ for the RFOCP.

Theorem 1. (Existence of optimal periodic control) Suppose that s(0) ∈ (0, sin), x(0) > 0, and
D(t) < µmax for all t ≥ 0. Then, the RFOCP admits at least one optimal periodic solution (s∗,D∗) ∈
X ×D satisfying s∗ < sin.

Proof. Notice first that the set D is nonempty, since D ≡ D̄ ∈ L∞([0,T ]) satisfies (3.1b), (3.1e),
and (3.1j). [2, Theorem 2.2] guarantees the existence of a nontrivial, T -periodic Carathéodory solution
to the FDE (4.4) with s < sin for any admissible control D ∈ D. This ensures that the dynamics
are well-defined. Since s is absolutely continuous and the control-to-state mapping T : D → X
is continuous (by [2, Lemma 2.3]), the objective functional J(D) is continuous. Notice also that D
is norm-bounded in L∞([0,T ]) by (3.1e) and weakly-∗ closed, since the integral constraint (3.1b) is
weakly-∗ continuous, and the uniform bounds (3.1e) and periodicity (3.1j) are preserved under weak-∗
convergence. Thus, by the Banach-Alaoglu theorem, D is weakly-∗ compact [32]. Moreover, for any
sequence of controls {Dn} ∈ D converging weakly-∗ to D, the corresponding solutions sn → s ∈ X (by
compactness of X). By [2, Lemma 2.3], s solves (4.4) for D, as the solution of the Volterra integral
equation [2, Eq (22)] converges to the solution of the reduced fractional chemostat equation (4.4). The
weak-∗ compactness of D, continuity of J, and compactness of X ensure the infimum of (3.1a) is
attained at (s∗,D∗) [33]. �

Remark 1. The condition D(t) < µmax in Theorem 1 ensures the dilution rate does not exceed the
maximum growth rate, preventing washout, where biomass is flushed out faster than it grows.
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Having established the existence of optimal periodic controls, we now prove the possible existence
of nonconstant optimal periodic controls for the RFOCP. To prove Theorem 2 below, we introduce the
following assumption.

Assumption 1. For sufficiently small ε, there exists a perturbed control Dε(t) = D̄+εv(t), where v is T-
periodic with vav = 0, ensuring Dε,av = D̄, with the corresponding state having the form sε(t) = s̄+εz(t),
with T-periodic z.

Notice that, due to the well-posedness of the FDE and the continuity of the control-to-state mapping,
Assumption 1 is always valid under the conditions of the RFOCP, provided ε is sufficiently small, as
established in [2].

While Theorem 1 guarantees the existence of an optimal periodic solution pair (s∗,D∗) for the
RFOCP, it does not determine whether the optimal periodic control D∗ must be constant or if non-
constant solutions are possible. A natural question arises: Are all possible optimal periodic controls
necessarily constant, or can nonconstant controls yield better performance? Theorem 2 addresses
this critical gap by proving that, under specific conditions, nonconstant optimal periodic controls may
indeed exist and can achieve superior performance compared to steady-state solutions. This result
underscores the potential advantages of periodic control strategies, particularly when accounting for
memory effects and dynamic scaling in fractional-order systems.

Theorem 2. (Possible existence of nonconstant optimal periodic controls) Let KY , 1, α ∈ (0, 1),
and suppose that the conditions of Theorem 1 are satisfied. Then, the RFOCP may admit an optimal
periodic solution (s∗,D∗) ∈ X×D, where D∗ is nonconstant, and the corresponding nonconstant state s∗

satisfies s∗av < s̄, with the potential to improve upon the steady-state average substrate concentration.

Proof. By Theorem 1, the RFOCP admits an optimal solution (s∗,D∗) ∈ X × D with s∗ < sin.
Following [1, Lemma 2], consider a T -periodic, measurable function v that is nonzero almost
everywhere with vav = 0. Define the control Dε(t) = D̄ + εv(t), with ε > 0 small enough that
Dmin ≤ Dε(t) ≤ Dmax. Since vav = 0, we have Dε,av = D̄, so Dε ∈ D. Define the mapping as

θ(s0, ε) = s(T,Dε, s0) − s0,

where s(t,Dε, s0) is the solution to the FDE (4.4) with control Dε and initial condition s(0) = s0.
By [2, Lemma 2.3], the control-to-state mapping T : D → X is continuous. Since F is Lipschitz
in s [2, Lemma 2.1], the solution s is continuous in s0. Thus, θ(s0, ε) is continuous in s0 and ε. For
ε = 0, D0 ≡ D̄, and s ≡ s̄, so θ(s̄, 0) = 0. In accordance with Theorem 4 (referenced in Section C), the
behavior of s(t, D̄, s0) can be described as follows:

• If s−0 < s̄, then s(t, D̄, s−0 ) will increase asymptotically towards s̄.

• Conversely, if s+
0 > s̄, then s(t, D̄, s+

0 ) will decrease asymptotically towards s̄.

Thus,
θ(s−0 , 0) > 0, θ(s+

0 , 0) < 0.

For small ε, continuity ensures θ(s−0 , ε) > 0, θ(s+
0 , ε) < 0, so there exists s̄0 ∈ (s−0 , s

+
0 ) such that

θ(s̄0, ε) = 0, giving us a T -periodic, nonconstant solution sε.
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For improvement, suppose that KY < 1. In this case, ν is strictly concave, so,

ν(sε(t)) < ν(s̄) + ν′(s̄)(sε(t) − s̄), for almost everywhere t, (4.10)

where
ν′(s) =

KYµmaxsin

(KY(sin − s) + s)2 . (4.11)

Taking the time average of both sides of inequality (4.10) gives

[ν(sε)]av < ν(s̄) + ν′(s̄)(sε,av − s̄), for almost everywhere t. (4.12)

Rearranging the inequality, we get

[ν(sε)]av − ν(s̄) < ν′(s̄)(sε,av − s̄). (4.13)

From Assumption 1 and Eq (E.2) in Section E, we have [ν(sε)]av < D̄ = ν(s̄). Therefore, [ν(sε)]av −

ν(s̄) < 0. Since ν′ is always positive, we have ν′(s̄) > 0. The inequality’s negative right-hand side,
arising when

sε,av < s̄, (4.14)

confirms that nonconstant optimal periodic controls can reduce the average substrate concentration
below the steady-state level. To support this claim further, notice by Jensen’s inequality that

ν(sε,av) > [ν(sε)]av. (4.15)

However, [ν(sε)]av < D̄ = ν(s̄) by Eq (E.2), so

ν(sε,av) > [ν(sε)]av < ν(s̄). (4.16)

This suggests that ν(sε,av) < ν(s̄) ⇔ sε,av < s̄ may take place for some nonconstant, T -periodic states,
but it is not guaranteed for all.

Now, suppose that KY > 1. In this case, ν is strictly convex, so

ν(sε(t)) > ν(s̄) + ν′(s̄)(sε(t) − s̄), for almost everywhere t. (4.17)

Take the time average of both sides:

[ν(sε)]av > ν(s̄) + ν′(s̄)(sε,av − s̄), for almost everywhere t. (4.18)

Rearrange the inequality:
[ν(sε)]av − ν(s̄) > ν′(s̄)(sε,av − s̄). (4.19)

From Assumption 1 and Eq (E.3) in Section E, we have [ν(sε)]av > D̄ = ν(s̄). Therefore, [ν(sε)]av −

ν(s̄) > 0. Since ν′(s̄) > 0, the fact that a negative value on the right-hand side (which occurs if
sε,av − s̄ < 0) is consistent with the inequality means that sε,av − s̄ < 0 is a possible outcome, and so
Eq (4.14) may take place for some non-constant, T -periodic states. By another similar argument to the
former case, notice by Jensen’s inequality that

ν(sε,av) < [ν(sε)]av. (4.20)
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However, [ν(sε)]av > D̄ = ν(s̄), by Eq (E.2), so

ν(sε,av) < [ν(sε)]av > ν(s̄). (4.21)

This suggests that for certain nonconstant perturbations v, we may have sε,av < s̄, though this
improvement is not guaranteed for all possible perturbations.

Suppose now that KY = 1. In this case, the substrate-dependent specific growth rate is linear:
ν(s) = µmaxs/sin, with ν′(s) = µmax/sin > 0 and ν′′(s) = 0. The steady-state s̄ satisfies ν(s̄) = D̄, so
s̄ = D̄sin/µmax. Using Assumption 1, the perturbation analysis in Section E yields

[ν(sε)]av = Dε,av = D̄ = ν(s̄).

Thus,
µmax

sin
sε,av =

µmax

sin
s̄ =⇒ sε,av = s̄.

This shows that the average substrate concentration under small, nonconstant perturbations equals the
steady-state value, implying no improvement over the steady-state. �

Remark 2. While any nonconstant, admissible solution improves the performance index compared to
the steady-state solution for α = 1, as proven in [1], such improvement is not guaranteed for 0 < α < 1.
However, under the condition KY , 1, there may exist nonconstant, admissible solutions that yield an
improvement, as demonstrated by Theorem 2.

4.3. Positivity and boundedness of optimal periodic solutions

The following corollary establishes the positivity and boundedness of solutions under mild
conditions. Their proofs can be found in [2, Theorem 2.1 and Corollary 2.2].

Corollary 1. Let D(t) be any admissible control for all t ≥ 0, and suppose that s(0) ∈ (0, sin) and
x(0) > 0. Then, the optimal periodic solutions of the RFOCP satisfy the following properties:

(i) The biomass concentration x∗ and periodic substrate concentration s∗ remain strictly positive for
all t > 0, i.e., x∗(t) > 0 and s∗(t) > 0.

(ii) The periodic substrate concentration s∗ satisfies 0 < s∗(t) < sin for all t > 0.

4.4. Uniqueness of solutions to the RFOCP

The uniqueness of the RFOCP depends on two main factors: The uniqueness of the state solution for
a given control input and the convexity properties of the objective function and the system dynamics.
In this section, we use conditions from [2] to establish uniqueness.

Theorem 3. (Uniqueness of optimal periodic control) Let KY , 1, and suppose that the conditions
of [2, Theorem 2.3(ii)] hold true. Specifically,

s(0) ≤ ŝ =
sin
√

KY
√

KY + 1
, (4.22)

and either D(t) ≤ ν(ŝ) for all t ∈ [0,T ] or D̄ ≤ ν(ŝ). Then the optimal solution (D∗, s∗) is unique.
Furthermore, both s∗ and D∗ must be nonconstant, and the strict convexity of J ensures improved
performance over the steady-state.
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Proof. [2, Theorem 2.3(ii)] ensures a unique nontrivial, T -periodic, Carathéodory solution to (4.4).
This establishes that for any given admissible control D, there is a unique corresponding state
trajectory s. Thus, the control-to-state mapping T : D → X is well-defined and single-valued. The
uniqueness of the optimal periodic control D∗ is closely related to the convexity of the problem. The
admissible control set D is convex, as it is defined by linear constraints. To show that J is strictly
convex, consider two distinct controls D1,D2 ∈ D with corresponding states s1 = T (D1), s2 = T (D2).
Let Dλ = λD1 + (1 − λ)D2 for λ ∈ (0, 1) with state sλ = T (Dλ). We need to prove that

J(Dλ) = sλ,av < λs1,av + (1 − λ)s2,av, (4.23)

unless D1 = D2. Define
h(s) = ν(s)(sin − s). (4.24)

Theorem 2.3 in [2] shows that h is strictly increasing on [0, ŝ), with h′(ŝ) = 0; moreover, since
D(t) ≤ ν(ŝ) for all t ∈ [0,T ], then s ∈ [0, ŝ], i.e., it remains in the region where h is increasing.
Now, define

F(s,D) := D(t)(sin − s(t)) − h(s(t)), ∀t ∈ [0,T ]. (4.25)

Since D > 0, we have
∂F
∂s

= −D(t) − h′(s) < 0,

so F is strictly decreasing in s. This implies the map D 7→ s is injective, where each admissible control
yields a unique state trajectory. The term h(s) introduces nonlinearity in the dynamics. Consequently,
for two distinct, admissible controls D1 and D2, the control

Dλ = λD1 + (1 − λ)D2, for some λ ∈ (0, 1), (4.26)

has a corresponding state sλ that satisfies the nonlinear FDE (4.4), and it cannot be expressed as a
convex combination of s1 and s2 by Lemma 2. Thus, the control-to-state map is not affine. Since the
control-to-state map T is nonlinear and injective, that does not preserve convex combinations:

T (λD1 + (1 − λ)D2) , λT (D1) + (1 − λ)T (D2),

for any D1 , D2 and λ ∈ (0, 1). The cost functional J(D) is a linear operator applied to the state and the
composition J(D) = J ◦T (D) is strictly convex over the convex, admissible control setD. The optimal
control analysis conducted in Section 5 reinforces this conclusion by showing that the Hamiltonian
is linear in D and admits no singular arcs—a hallmark of strictly convex problems—and the optimal
periodic control is bang-bang. If the composition J◦T were not strictly convex, the Hamiltonian could
admit non-bang-bang solutions. The exclusive bang-bang behavior thus confirms that the control-to-
state map T enforces “a corner solution”, which is typical of strictly convex optimization problems
with linear controls [34]. Therefore,

J(Dλ) < λJ(D1) + (1 − λ)J(D2),

for any D1 , D2 and λ ∈ (0, 1). Hence, there exists a unique minimizer D∗ with corresponding
unique optimal trajectory s∗. [2, Corollary 2.3] and the equilibrium definition (4.7) confirm that the
state solution s must be constant when the control D is constant, as optimal constant controls trivially
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maintain steady-state conditions. However, the same corollary also shows that s must be nonconstant
when D is nonconstant. By Theorem 2, there may exist nonconstant, admissible solutions that improve
upon the steady-state. However, the variability of the unique optimal periodic pair (s∗,D∗) follows from
the Pontryagin’s maximum principle analysis in Section 5, which rules out singular arcs and ensures
that the optimal control must be bang-bang. �

5. Optimal control analysis

In this section, we derive the optimal control strategy for the RFOCP using the fractional
Pontryagin’s maximum principle for the CFDS. For more information on the fractional Pontryagin’s
maximum principle, readers may consult [35, 36].

To derive the necessary conditions of optimality, consider the Hamiltonian of the RFOCP:

H(s, p,D) =
1
T

s(t) + pϑ1−α[D(t) − ν(s(t))](sin − s(t)),

where p is the co state/adjoint variable. The four Pontryagin’s maximum principle conditions are
as follows

(i) The system dynamics are recovered from the Hamiltonian:

MC
L Dα

t s =
∂H
∂p

= ϑ1−α[D(t) − ν(s(t))](sin − s(t)).

(ii) The co state variable evolves according to

MC
L+ Dα

t p = −
∂H
∂s

= −
1
T

+ p(t)ϑ1−α [
ν′(s(t))(sin − s(t)) + D(t) − ν(s(t))

]
,

where
ν′(s) =

KYµmaxsin

(KY(sin − s) + s)2 .

The use of the right-sided CFDS here reflects the backward-in-time nature of the adjoint system.

(iii) For all t ∈ [0,T ], the optimal control D∗ must minimize the Hamiltonian:

D∗(t) = arg min
D∈[Dmin,Dmax]

H(s(t), p(t),D(t)).

(iv) The transversality condition for the co-state must hold:

p(0) = p(T ).

Notice that the Hamiltonian is linear in D:

H(s, p,D) =
[
p(t)ϑ1−α(sin − s(t))

]
D(t) +

1
T

s(t) − p(t)ϑ1−αν(s(t))(sin − s(t)), (5.1)

so we can define the switching function as follows:

φ(t) = p(t)ϑ1−α(sin − s(t)).
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Since s(t) < sin and ϑ1−α > 0, the Hamiltonian is minimized when

D∗(t) =


Dmax if φ(t) < 0,
Dmin if φ(t) > 0,
undefined if φ(t) = 0.

If φ(t) = 0, then p(t) = 0 (since sin − s(t) > 0). Substituting p(t) = 0 into the co-state equation yields

MC
L+ Dα

t p = −
1
T
,

which gives a contradiction, as the right-sided CFDS of a zero function cannot equal a nonzero
constant. Thus, singular arcs are not possible, and the periodic optimal control D∗ is bang-bang,
switching between Dmin and Dmax. Due to periodicity, the number of switches per period is even. The
switching times are typically computed numerically due to the fractional dynamics.

6. Memory effects on control stability and orbital stability

The fractional order α significantly influences the stability characteristics of the periodic control
scheme. As established in Lemma 3, the decay rate λ in the exponential stability z(t) ∼ e−λt depends on
both α and the memory length L. Lower values of α (stronger memory effects) result in the following

(i) More frequent control adjustments to overcome system inertia, as evidenced by the increased
number of control switches in the optimal periodic solution (demonstrated numerically in
Section 7, Figure 5).

(ii) Improved robustness to high-frequency disturbances due to the smoothing effect of historical
dependence. This robustness stems from the fundamental difference between integer-order and
fractional-order dynamics. In fact, for integer-order dynamics, the derivative depends only on the
instantaneous rate of change with high-frequency noise directly affecting the control decisions;
hence, the system may overreact to temporary fluctuations. On the other hand, a single noisy
measurement in a fractional-order dynamics has a reduced impact because it is averaged with
previous states. The control responds to sustained trends rather than momentary spikes. This
reduced sensitivity to abrupt control changes, as the sliding memory window averages past states,
enables the system to distinguish between true process changes and temporary disturbances.

The above arguments demonstrate that FDs introduce memory effects that contribute to system
stabilization. The damping properties established in Theorem 4 for constant dilution rates provide the
foundation for analyzing orbital stability under bang-bang optimal periodic control. As established
in Section D, the optimal periodic control D∗ is bang-bang, and the piecewise-constant structure
enables stability analysis on each time segment where Theorem 4 ensures local exponential decay
of perturbations.

The orbital stability framework developed in Section D demonstrates that the Poincaré map P
exhibits contraction properties over each control period. Specifically, Theorem 5 establishes that
for sufficiently small initial perturbation δ, the mapping satisfies |P(s∗(0) + δ) − s∗(0)| ≤ ρ‖δ‖ with
contraction factor ρ < 1. This analytical result, combined with the finite number of control switches
and the memory-dependent damping characterized in Lemma 3, provides a theoretical foundation for
the orbital asymptotic stability of the optimal periodic solution s∗.
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6.1. Numerical stability verification

Our comprehensive numerical simulations in Section 7 provide empirical validation of the periodic
control scheme’s stability:

• Figures 1 and 2 demonstrate the consistent convergence to periodic solutions across different
discretization levels.

• The sensitivity analysis in Figures 5–9 shows stable system behavior across wide
parameter ranges.

• The convergence of multiple initial guesses to either the optimal periodic solution or washout
state [2, Figure 2] confirms the existence of stable attractors.

• Figures 11 and 12 demonstrate the current numerical optimization method’s robustness to initial
guess variations, with perturbed initial conditions converging to the same optimal periodic
solution, confirming the reliability of the FG-PS discretization combined with the edge-detection
correction technique.

The small residuals in Figure 10 further validate that the numerical solution accurately satisfies the
system dynamics, indicating numerical stability of the computational approach.

6.2. Practical stability implications for water treatment

The demonstrated stability of the periodic control scheme has important practical implications:

(i) The system maintains stable operation despite inflow variations and measurement noise.

(ii) The bang-bang control strategy remains effective across different microbial
populations (characterized by different α values).

(iii) Stable periodic solutions ensure consistent pollutant removal efficiency over time.

This stability analysis, combined with the local equilibrium stability results in Section C, provides
a comprehensive understanding of the system’s dynamic behavior under the proposed fractional-order
periodic control strategy, ensuring its suitability for real-world water treatment applications.

7. Sensitivity analysis and numerical simulations

This section presents a detailed sensitivity analysis of the RFOCP to elucidate the influence of
its key parameters on system performance. One of the primary objectives is to quantify how the
fractional order α, the dynamic scaling parameter ϑ, and the memory length L affect the optimal
periodic control strategy and the resulting average substrate concentration sav. Understanding these
relationships is crucial for translating the theoretical fractional-order framework into practical, tunable
control strategies for biological water treatment. To this end, we systematically vary one parameter at
a time, holding others constant at their baseline values to isolate its effect on the optimal solution.

To support our findings in this work, consider the test case of the RFOCP with the key parameters
summarized in Table 1. Pseudospectral methods have been widely applied to solve FOCPs, offering
adaptability to noninteger dynamics [37–39]. The FG-PS method used here is particularly suited for
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periodic problems with sliding memory, as it uses Fourier expansions for global approximation while
handling discontinuities via edge-detection corrections.

Table 1. Parameter values used in the numerical test problem.

Parameter Value Description
sin 8 mg/L Input substrate concentration
Dmin 0.02 h−1 Minimum dilution rate
Dmax 1.95 h−1 Maximum dilution rate
µmax 2 h−1 Maximum growth rate
K 5 Saturation constant
Y 1 Yield coefficient
D̄ 0.5 h−1 Average dilution rate
T 15 Control period
α 0.85 Fractional order
L 5 Sliding memory length
ϑ 0.25h Dynamic scaling parameter

We shall use this test case as a benchmark for analyzing the influence of CFDS memory effects
on the performance of fractional-order periodic control strategies in biological water treatment. This
test problem is particularly challenging due to the bang-bang nature of the optimal control, which
introduces discontinuities and requires specialized edge-detection techniques for accurate resolution.

All numerical simulations were carried out using MATLAB R2023b, installed on a personal laptop
equipped with an AMD Ryzen 7 4800H processor (2.9 GHz, 8 cores/16 threads), 16 GB of RAM,
and running Windows 11. The numerical optimization was performed over the full admissible control
spaceD. No a priori assumption was made about the bang-bang structure of the control. Nevertheless,
the optimized solutions consistently exhibited bang-bang behavior in all simulations, in alignment with
the theoretical results derived from the Pontryagin’s maximum principle analysis in Section 5. This
numerical observation further validates the Hamiltonian-based conclusion that singular arcs cannot
exist for the RFOCP, and the optimal control must switch between its extremal values. All numerical
simulations were performed assuming the periodic boundary condition s(0) = s(T ) = s̄ holds. This
constraint ensures that the substrate concentration (i.e., the pollutant level in wastewater treatment)
at the start and end of each periodic cycle matches the steady-state concentration s̄. Biologically,
it implies that the microbial environment resets to a baseline state where the substrate-dependent
specific growth rate satisfies ν(s̄) = D̄, thereby balancing microbial growth and washout. This setup
allows periodic variations in the dilution rate D to exploit dynamic microbial responses for improved
performance, particularly in terms of average pollutant level reduction.

The parameter values in Table 1 are selected based on the Contois chemostat model for wastewater
treatment [1], with adjustments for numerical demonstration and to satisfy theoretical requirements.
For example, the given K and Y values in the table ensures KY > 1, which guarantees strict convexity
of ν in Theorems 2 and 3. The condition D̄ < µmax ensures the existence of a non-washout equilibrium,
as required for positive biomass persistence in Contois models [2]. Meanwhile, sin = 8 mg/L represents
a feasible inlet concentration in lab-scale studies with synthetic wastewater [40]. The dilution rate
bounds Dmin = 0.02 h−1 and Dmax = 1.95 h−1 span operational ranges feasible in laboratory bioreactors,
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with Dmax chosen specifically to satisfy D̄ < µmax while approaching the maximum growth rate.
The Contois saturation constant K = 5 (dimensionless) introduces a significant biomass inhibition
effect, making the specific growth rate µ dependent on the biomass concentration x. This effectively
models the crowding, diffusion limitations, and intensified competition for resources that occur in high-
density microbial systems, providing a more realistic representation than noninhibitory models like
Monod kinetics. The period T = 15 h corresponds to typical hydraulic retention cycles in lab-scale
bioreactors and permits observation of multiple control switches within one cycle under bang-bang
strategies [1, 40].

The fractional order α = 0.85 is selected to reflect moderate microbial memory, consistent with
empirical studies that interpret α as a quantitative index of memory strength in biological systems.
Specifically, Du et al. [11] (2013) showed that the fractional order α can be estimated from time-
series data via least-squares fitting and serves as an index of memory: In their framework, α → 0
corresponds to weak or short–term memory, whereas α → 1 reflects strong, persistent memory [11].
In contrast, under the CFDS operator adopted here, the effective direction of this index is reversed:
α → 0 corresponds to stronger persistent memory (greater dynamical inertia), while α → 1 marks
a transition toward memoryless classical behavior. In microbial growth modeling with fractional
memory, empirical estimates of the memory parameter vary widely by organism and modeling
framework. Amirian et al. [22] (2022) estimated memory parameters in the range α ∈ [0.046, 0.440]
for phytoplankton species under nitrogen starvation, where lower α reflects stronger memory due to
internal resource storage dynamics [22]. In contrast, Khalighi et al. [21] (2022) model ecological
memory in gut microbial communities using fractional orders close to unity (e.g., α = 0.90–0.96),
interpreting memory strength as 1 − α, so that weak memory corresponds to α ≈ 1 [21]. Our
choice of α = 0.85 falls within a biologically plausible regime that balances numerical tractability
with moderate memory effects, consistent with systems exhibiting non-negligible but not extreme
historical dependence.

The memory length L = 5 h is chosen to reflect short-term microbial adaptation processes that
unfold over minutes to several hours. Classic enzyme-induction experiments in E. coli [25] show rapid
induction within minutes and population-level adjustment over about 3 h, while the anticipatory stress-
response experiments of [27] demonstrate protective physiological states that persist across multi hour
ecological transitions. Together with the fact that lab-scale bioreactors typically operate with hydraulic
retention times of a few hours [24, 40], these observations justify selecting a memory window on
the order of several hours. This finite window reflects the biological reality that microbial memory
is local and finite, not infinite—an assumption explicitly supported by experimental microbiology
and engineered bioprocess design [19, 31]. Motivated by the capability of fractional calculus to
represent history-dependent processes and power-law decays in biological systems [11, 21, 22], this
value of L ensures the model captures ecologically relevant temporal dynamics without overextending
the memory horizon.

The scaling parameter ϑ = 0.25 h ensures dimensional homogeneity in the fractional
equations (balancing the unit of the CFDS) while modulating the system’s dynamic response
amplitude [2]. These parameter choices guarantee the existence of positive, bounded solutions (see
Corollary 1) and enable the demonstration of up to 40% improvement in pollutant removal efficiency
compared to steady-state operation, as we show later in this section.

We solved the RFOCP using the FG-PS method developed by [13, 14] for discretization, followed
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by the application of MATLAB’s fmincon solver to handle the resulting constrained nonlinear
programming problem. The predicted optimal state and control values at a set of N equally spaced
collocation points were subsequently corrected by incorporating an advanced edge-detection technique
to refine the optimal control profile, based on the methodologies presented in [3, 41]. Finally, the
corrected data were interpolated at another set of M equally spaced nodes within the interval [0,T ].
Comprehensive technical details about the employed numerical methods are available in their original
introductory papers [3, 13, 14, 41], and a brief description of our numerical approach for solving
the problem is provided in Section G. The complete numerical solution process is systematically
outlined in Section H, which details the step-by-step methodology from system discretization through
optimization to final numerical solution construction.

Figure 1 illustrates the detailed time evolution of the optimal dilution rate D∗ and the corresponding
substrate and biomass concentrations, s∗ and x∗, respectively, over a full control period under the
proposed fractional-order periodic strategy. At the onset of the cycle, D∗ follows a bang-bang control
pattern with abrupt switches between its extremal values occurring near t = 3.131 h and t = 14.41 h,
rounded to four significant digits. This switching behavior induces strong fluctuations in s∗ and x∗.
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Figure 1. Time evolution (in hours) of (a) the periodic substrate concentration s∗, (b) the
optimal periodic control D∗, and (c) the corresponding biomass concentration x∗ of the
RFOCP. The symbols show the predicted solution values obtained at N = 300 equally-
spaced collocation points from the numerical optimization, while the corrected solution (solid
lines) is computed using a reconstructed bang-bang control law with M = 400 interpolation
points. Dashed lines indicate the average substrate concentration s̄ and average dilution
rate D̄, respectively.

Initially, the high dilution rate rapidly introduces fresh substrate, causing s∗ to rise. However, x∗

decreases sharply because the specific growth rate under Contois kinetics, given by Eq (3.2), becomes
temporarily too small to compensate for the elevated outflow rate. To elaborate further, despite
Dmax = 1.95 h−1 < 2 h−1 = µmax, the effective growth rate µ(s∗, x∗) depends on the biomass
concentration. For instance, at t = 0, where x∗(0) = 3 mg/L and s∗(0) = 5 mg/L, we find that
Kx∗ + s∗ = 20, yielding µ ≈ 0.5 h−1

� Dmax. This mismatch causes the biomass to decline despite a
theoretically sufficient maximum growth capacity.

As the control progresses, the dilution rate sharply decreases, limiting substrate inflow and enabling
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microbial consumption to reduce s∗ to nearly 1 mg/L, indicating substantial substrate depletion. This
phase supports efficient pollutant degradation while avoiding substrate overload. Toward the end of
the cycle, the control switches back to Dmax, which helps reintroduce substrate and drives x∗ down
from its earlier peak of nearly 7 mg/L to its initial value of 3 mg/L, thereby satisfying the periodic
boundary condition.

Importantly, the optimal periodic control strategy results in a lower average substrate concentration
of sav ≈ 3.622 mg/L, compared to the steady-state value s̄ = 5 mg/L, achieving a 27.56% improvement
in pollutant removal efficiency. The incorporation of memory effects through fractional-order dynamics
improves the system responsiveness by accounting for past states in the evolution of substrate and
biomass concentrations. This nonlocal behavior leads to more robust control outcomes, improving
stability and performance over time.

Figure 2 shows the trajectories of the approximate optimal periodic solutions obtained at N = 400
and M = 500. The plots appear visually indistinguishable from Figure 1, which were generated at
N = 300 and M = 400. This strong agreement between solutions at different resolutions indicates that
the numerical method has converged and is accurately resolving the system dynamics, including the
sharp switching behavior of the bang-bang control.
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Figure 2. Time evolution (in hours) of (a) the periodic substrate concentration s∗, (b) the
optimal periodic control D∗, and (c) the biomass concentration x∗ of the RFOCP. The symbols
show the predicted solution values obtained at N = 400 equally-spaced collocation points
from the numerical optimization, while the corrected solution (solid lines) is computed using
a reconstructed bang-bang control law with M = 500 interpolation points. Dashed lines
indicate the average substrate concentration s̄ and average dilution rate D̄, respectively.

To further validate the numerical convergence of the FG-PS method, we solved the RFOCP for
several values of the collocation parameter N ∈ {100, 200, 300, 400}. The primary objective of this
analysis was to examine the convergence behavior of the periodic substrate concentration s∗, the
optimal periodic control D∗, and the corresponding optimal objective function value J(D∗). For
each value of N, the corrected numerical solutions were interpolated onto a common finer grid of
M = 500 equispaced points to facilitate consistent comparison against a reference solution computed
using N = 400. Figures 3 and 4 illustrate the convergence and accuracy characteristics of the
method. Specifically, Figure 3 demonstrates the algebraic convergence of the periodic substrate
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concentration s∗, as reflected by the decay in the L2-error norm with increasing N. Figure 4
presents the convergence behavior of the optimal objective function value J(D∗), with the absolute
error steadily decreasing as N increases. Remarkably, the switching times agree to full machine
precision at about t = 3.131 h and t = 14.41 h, rounded to four significant digits, across
all discretization levels (N = 100, 200, 300, 400), demonstrating perfect numerical reproduction of
the control structure’s temporal features, despite its discontinuous, bang-bang nature. These results
confirm that the FG-PS method, equipped with the edge-detection correction technique, produces
robust and accurate approximations of the state and control variables, as well as the associated
performance index, even in the presence of nonsmooth control profiles. Furthermore, Figure 3
demonstrates an algebraic convergence decay in the L2-norm of the errors in s∗ with respect to N.
This behavior aligns with the expected reduction in global spectral convergence rates due to the
discontinuities inherent in the bang-bang control D∗. The consistent reduction in the absolute error of
the average substrate concentration s∗av with increasing N further supports the reliability of the method
in resolving the system dynamics and the sharp switching behavior of the optimal control.
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10
-2

10
-1

Figure 3. Algebraic convergence of the periodic substrate concentration s∗ for the RFOCP.
The plot shows the L2-error norm in s∗ as a function of the number of collocation points N.
The reference solution is computed at N = 400.
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Figure 4. Algebraic convergence of the optimal objective function value J(D∗) for the
RFOCP. The absolute error in the computed objective value is shown as a function of the
number of collocation points N, with the reference value taken at N = 400.
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Figures 5 and 6 offer valuable insights into the behavior of the optimal control structure and its
corresponding performance as the fractional order α varies. Figure 5 illustrates the switching times ξk

of the optimal bang-bang control across different values of α in the fractional-order chemostat model.
Each plotted symbol represents a distinct switching event, revealing how the number and location of
switching points are sensitive to the memory effect introduced by the fractional-order dynamics. A
detailed summary of the number and approximate locations of switches, along with the corresponding
average substrate concentrations s∗av, is provided in Table 2. The results in this table highlight that while
the number of switches remains even, as guaranteed by the Pontryagin’s maximum principle analysis,
their frequency and positions vary nonlinearly with α, reflecting the nonlocal influence of historical
states. A notable trend is observed here where lower values of the fractional order parameter α result
in a higher number of control switches in the bang-bang control strategy. This increased switching
frequency at lower α can be attributed to the stronger memory effect of the CFDS, which necessitates
more frequent adjustments in the dilution rate D∗ to maintain optimal substrate concentration. In other
words, to counterbalance the inertia introduced by strong memory at low α, the optimal periodic control
must respond more frequently, resulting in a higher number of switches to steer the system effectively
within the constraints. Complementarily, Figure 6 depicts the average substrate concentration s∗av
achieved under the optimal control for varying α. Interestingly, s∗av increases from α = 0.1 to α = 0.3,
peaks at α = 0.3, and then shows a monotonic decrease as α increases to 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
This observation indicates that the performance does not decrease uniformly with increasing α, and
intermediate values such as α = 0.3 may yield higher average substrate concentrations than expected.
Moreover, the results manifest that for all tested fractional orders, there exist nonconstant periodic
control strategies that outperform the corresponding steady-state solutions, yielding lower average
substrate concentrations and improving pollutant removal efficiency. These findings confirm that
tuning the fractional order serves as a powerful lever for improving system performance and that the
effectiveness of periodic control relative to steady-state operation depends critically on the degree
of memory in the system. Consequently, selecting microbial species with inherently low memory
effects (i.e., high fractional order α close to 1) can significantly improve water quality, as such species
respond more effectively to time-varying optimal control strategies.
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Figure 5. Switching times ξk (in hours) of the optimal bang-bang control as a function of
the fractional order α in the fractional-order chemostat model, obtained using N = 300 and
M = 400. All other parameter values were taken from Table 1. Each symbol corresponds to
a different switching event, illustrating how the control structure changes with the order of
the FD.
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Table 2. Number and approximate locations of control switches for different values of α.

α
No. of

Switches
Approximate Switching Times (ξk) s∗av

0.1 8 0.0676, 2.380, 4.917, 5.068, 7.380, 9.917, 12.29, 14.92 3.839

0.2 14
0.0375, 0.2177, 1.059, 1.389, 4.917, 5.068, 5.233, 6.059, 6.389,
9.917, 10.23, 11.06, 11.39, 14.83

3.980

0.3 10
0.0225, 0.0826, 2.425, 5.278, 5.773, 9.932, 10.41, 10.86, 10.98,
14.83

4.280

0.4 4 0.0225, 0.4129, 3.671, 14.63 4.237
0.5 4 0.0225, 0.7733, 3.971, 14.56 4.104
0.6 4 0.0225, 0.7883, 3.866, 14.48 4.023
0.7 2 3.101, 14.38 3.798
0.8 2 3.123, 14.39 3.687
0.9 2 3.146, 14.42 3.596
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Figure 6. Sensitivity to fractional order α: Average substrate concentration s∗av as
a function of the fractional order α for the optimal control of the fractional-order
chemostat model, obtained using N = 300 and M = 400. The plot is generated for
α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. All other parameter values were taken from
Table 1. The results are obtained by solving the RFOCP for various values of α using the
specified system and optimization parameters.

In Figure 7, the effect of the sliding memory length L on the average substrate concentration sav

is analyzed in the context of the RFOCP, where L exclusively influences the CFDS. The figure
shows that as L increases from 0.5 to 1.5, sav slightly increases, suggesting a mild degradation
in performance when the memory window is too short to capture sufficient historical dynamics.
Beyond L = 1.5, sav declines consistently with increasing L, indicating improved pollutant removal
efficiency as the CFDS incorporates a richer history of the system’s state evolution. This trend
continues until approximately L = 10, after which the curve flattens, implying that the marginal
benefit of extending the memory window diminishes. In other words, beyond L = 10, the benefits
plateau, suggesting a point of diminishing returns where extending the memory window no longer
yields significant performance gains. Since L directly affects the memory range of the FD, this behavior
highlights the importance of tuning L to balance the cost and accuracy of the approximate FD with the
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benefits of nonlocal memory effects. Under the given data, moderate values of L (like around 10) are
sufficient to exploit the memory structure effectively for optimal control performance.
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Figure 7. Sensitivity to memory length L: Dependence of the average substrate concentration
sav on the sliding memory length L for the RFOCP. The plot is generated for L ∈

{0.5, 1.5, 3, 4.5, 10, 20, 50}. All other parameter values were taken from Table 1.

Figure 8 illustrates the impact of the dynamic scaling parameter ϑ on the average substrate
concentration sav for biological water treatment. The plot shows a monotonic decrease in sav as ϑ
increases, reflecting the scaling effect of ϑ1−α on the right-hand side of the FDE (4.4) governing
the chemostat dynamics. Larger ϑ values amplify the magnitude of the system dynamics, which
improves the responsiveness of microbial activity to control inputs, leading to more effective pollutant
degradation and lower sav. Conversely, smaller ϑ values reduce the dynamic response, resulting
in higher sav due to less effective substrate consumption. This trend highlights the importance of
tuning ϑ to optimize the system’s dynamic response, complementing the role of the fractional order α,
where higher α (weaker memory effects) further improves performance by reducing the influence of
historical states, as shown in Figure 6. Notice that the reduction in the minimum average substrate
concentration at ϑ = 32, where sav ≈ 3.001 mg/L compared to steady-state operation s̄ = 5 mg/L,
is approximately 39.98%. This nearly 40% reduction is substantial and serves as persuasive evidence
that fractional-order control with properly tuned parameters (here ϑ = 32) can significantly outperform
steady-state strategies.

Figure 9 shows how sav varies with T in the range from 1 to 20 hours. We clearly see that sav

decreases as the control period T increases, reflecting improved pollutant removal efficiency in the
bioprocess. This indicates that longer periodic cycles provide microorganisms sufficient time to adapt
to changing environmental conditions and dilution regimes, thus improving substrate uptake. In
contrast, shorter T values may not permit adequate synchronization between the dilution rate and the
slower microbial growth responses governed by Contois kinetics, resulting in suboptimal pollutant
degradation. Therefore, tuning T appropriately improves system responsiveness and biological
efficiency, underscoring the importance of harmonizing periodic control inputs with the intrinsic
adaptation timescales of microbial populations.
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Figure 8. Sensitivity to scaling parameter ϑ: Average substrate concentration sav as a
function of the parameter ϑ. The plot is generated for ϑ ∈ {0.1, 0.3, 0.5, 1, 2, 4, 8, 16, 32}.
All other parameter values were sourced from Table 1.
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Figure 9. Sensitivity to time horizon T (in hours): Average substrate concentration sav as
a function of the time horizon T for L = 4. All other parameter values were sourced from
Table 1.

Figure 10 displays the residuals associated with the FDEs governing the substrate and biomass
concentrations in the 2D fractional-order chemostat system. The figure serves to validate the analytical
expression (4.3) by independently solving the 2D fractional-order chemostat system. The consistently
small residual values across the entire time interval confirm the high accuracy of the numerical
approximations and support the validity of the substrate and biomass dynamics under the optimal
dilution control strategy.

To further validate the robustness of our numerical approach, Figures 11 and 12 present the optimal
periodic solutions obtained when the initial guesses for the state and control variables are perturbed
by 0.1 and 0.2, respectively. Remarkably, both simulations converge to the same optimal solution,
achieving an average substrate concentration of sav ≈ 3.622 mg/L. The resulting periodic substrate
concentration, optimal periodic control, and biomass concentration profiles are visually identical to
those shown earlier in Figure 1, demonstrating the numerical method’s insensitivity to initial guess
variations. This consistency confirms the reliability of the FG-PS discretization combined with the
edge-detection correction technique. The method’s robustness is particularly valuable for practical
applications where precise initial conditions may not be known a priori, ensuring that the optimal
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periodic control strategy can be reliably computed for real-world bioprocess optimization.
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Figure 10. Residuals of the fractional chemostat model equations over time (in hours). Top:
The residuals of the substrate concentration FDE, representing the difference between the
computed CFDS and the model’s right-hand side at collocation points. Bottom: the residuals
of the biomass concentration FDE, computed similarly.
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Figure 11. Time evolution (in hours) of (a) the periodic substrate concentration s∗, (b)
the optimal periodic control D∗, and (c) the corresponding biomass concentration x∗ of the
RFOCP. The symbols show the predicted solution values obtained at N = 300 equally-
spaced collocation points from the numerical optimization, where the initial solution value
guesses have been perturbed by 0.1. The corrected solution (solid lines) is computed using
a reconstructed bang-bang control law with M = 400 interpolation points. Dashed lines
indicate the average substrate concentration s̄ and average dilution rate D̄, respectively.
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Figure 12. Time evolution (in hours) of (a) the periodic substrate concentration s∗, (b)
the optimal periodic control D∗, and (c) the corresponding biomass concentration x∗ of the
RFOCP. The symbols show the predicted solution values obtained at N = 300 equally-
spaced collocation points from the numerical optimization, where the initial solution value
guesses have been perturbed by 0.2. The corrected solution (solid lines) is computed using
a reconstructed bang-bang control law with M = 400 interpolation points. Dashed lines
indicate the average substrate concentration s̄ and average dilution rate D̄, respectively.

8. Discussion

This study has delved into the intricate dynamics of bioprocesses, specifically focusing on the role
of fractional-order calculus in modeling microbial memory and its implications for optimal control
strategies in chemostat systems. Our findings underscore the critical importance of the fractional-
order parameter α, which serves as a quantitative metric for microbial adaptation latency and memory
effects. A lower α signifies a microbial population with sluggish adaptive responses, characterized
by a strong ‘long-term memory’ of past nutrient levels and environmental conditions. This biological
inertia necessitates highly dynamic and frequent adjustments of the optimal dilution rate to maintain
effective pollutant degradation and biomass stability, as evidenced by our numerical simulations in
Section 7. Conversely, a higher α indicates a more agile microbial community that adapts rapidly to
environmental fluctuations, allowing the optimal periodic control scheme to achieve efficient substrate
removal with fewer interventions. This observed inverse relationship between α and the control
switching frequency highlights a fundamental trade-off: A high switching frequency at low α acts as a
compensatory mechanism for inherent biological sluggishness, while fewer switches at high α reflect
a system that is intrinsically more responsive and requires minimal external intervention to sustain
performance. These insights are crucial for designing robust and efficient bioprocesses, suggesting
that systems populated by slow-adapting microorganisms demand more complex and energy-intensive
control strategies. Conversely, the selection or engineering of faster-adapting strains (i.e., those
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exhibiting higher α values) could significantly simplify control demands, leading to more cost-effective
and streamlined system designs. The profound connection between the fractional-order α and control
switching frequency strongly emphasizes the necessity of integrating memory effects into both the
theoretical modeling and practical optimization of real-world bioprocesses.

Complementing the role of the fractional order α, our results reveal that the dynamic scaling
parameter ϑ also plays a pivotal role in optimizing system behavior. Specifically, increasing ϑ

intensifies the system’s sensitivity to control inputs, accelerating pollutant degradation and enabling
sharper, more effective bang-bang control responses. Numerical simulations confirm that properly
tuned ϑ values can lead to reductions in average substrate concentration of up to 40%, far
outperforming steady-state control strategies. Thus, ϑ serves as a critical design parameter in boosting
the effectiveness of fractional-order control schemes.

Complementing these findings, our results indicate that the sliding memory length L plays an
important role in utilizing historical system behavior to improve bioprocess performance. As L
increases, the CFDS incorporates a broader temporal window, capturing persistent microbial dynamics
and adaptation latency with greater accuracy. Numerical experiments show that moderate to
large values of L consistently yield lower average substrate concentrations, improving pollutant
removal efficiency. Careful tuning of L allows engineers to balance memory-driven responsiveness
with practical implementation constraints, making it a key design parameter in fractional-order
control systems.

Compared to existing integer-order methods (e.g., [1]), our fractional-order approach captures
memory effects, leading to up to 40% better pollutant removal by accounting for historical states in
microbial dynamics. Relative to other traditional fractional control schemes, the CFDS preserves
periodicity, reduces computational burden (finite window vs. full history), and enables efficient
pseudospectral discretization for periodic problems, improving accuracy and scalability for real-time
water treatment applications.

While this study focuses on fractional-order deterministic modeling, it is valuable to contextualize
our approach relative to other modern modeling frameworks. (i) Stochastic models: Unlike stochastic
approaches that incorporate random fluctuations in microbial growth or environmental conditions [42],
our fractional-order deterministic framework captures systematic memory effects through the CFDS.
Stochastic models excel at quantifying uncertainty but may require extensive statistical data, whereas
our approach provides a deterministic characterization of memory-driven dynamics that complements
stochastic analysis. (ii) Hybrid systems: Hybrid models combining continuous dynamics with
discrete events (see [43]) may capture operational switches in water treatment plants. Our fractional-
order framework offers an alternative by modeling continuous memory effects without requiring
explicit discrete state transitions, providing a different perspective on the system dynamics. (iii)
Machine learning approaches: Data-driven methods like neural networks or reinforcement learning
may capture complex patterns from operational data [44] but may lack interpretable physical and
biological insights. Our model maintains biological interpretability through established microbial
growth kinetics while sustaining them with fractional calculus, bridging first-principles modeling with
data-informed memory effects. The fractional-order approach presented here particularly excels in
capturing hereditary effects and long-range temporal dependencies, which are challenging to represent
in conventional integer-order models and may require complex memory architectures in machine
learning approaches.
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The key steps and outcomes of the proposed framework are illustrated in the flowchart shown in
Figure 13.

Fractional-order chemostat model with
CFDS capturing finite microbial memory

Reduction of the 2D fractional-order chemostat
system to a 1D FDE for efficient computation

Optimal periodic control derived via the
fractional Pontryagin’s Maximum Principle,

yielding a bang-bang optimal control structure

Sensitivity of optimal periodic solution and
periodic substrate concentration to α, ϑ, and L

Up to 40% reduction in sav

compared to steady-state operation

Figure 13. Compact flowchart summarizing the main conclusions of the study.

8.1. Practical implementation considerations

The bang–bang structure derived from the fractional Pontryagin’s maximum principle should
be understood as an idealized characterization of the optimal operating regimes rather than as a
prescription for instantaneous switching. In full-scale wastewater treatment facilities, dilution and flow
adjustments are executed through variable-speed pumps and flow-control valves that inherently operate
within bounded actuation ranges [45, 46]. Consequently, practical implementations approximate
theoretically optimal profiles using piecewise-constant or smoothly ramped adjustments with limited
switching frequency, consistent with standard supervisory control strategies in activated sludge
systems. Revollar et al. [47] emphasize that open-loop, ON–OFF, and proportional–integral (PI)
control loops are routinely employed in such systems; although these strategies involve discrete
mode transitions, they incorporate actuator ramping and operational constraints. This supports our
interpretation of the bang–bang solution as a structural guideline: It identifies intervals during which
the system should operate near its lower or upper dilution limits, while real facilities implement
smoothed or scheduled transitions rather than instantaneous switching.

A similar pattern is observed in aeration control. Amand et al. [48] report that full-scale activated
sludge plants commonly employ intermittent and mode-switching aeration strategies for energy
optimization, including alternating aeration, zone-based on/off control, and supervisory switching
of blowers and valves. These approaches constitute established forms of switching control that are
structurally analogous to the bang–bang profiles predicted by optimal control theory. Vrecko et
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al. [49] further demonstrate the practical use of feedforward–feedback switching controllers that rely
on piecewise-constant control actions rather than continuously varying inputs.

The theoretical foundation for such strategies is well established. Olsson et al. [45] provide a
comprehensive overview of instrumentation, control, and automation in wastewater treatment, noting
that supervisory control layers routinely coordinate multiple operating modes and rely on discrete
transitions between process regimes (e.g., aeration, recirculation, and flow redistribution). The
IWA benchmark simulation models [50, 51] offer a flexible evaluation framework that supports the
implementation and assessment of switching-type strategies–including step-feed, step-recycling, and
supervisory mode-switching controllers. Taken together, these industrial practices and modeling
frameworks demonstrate that switching-type control is both common and operationally feasible.
Thus, the bang–bang solution obtained from the fractional Pontryagin’s maximum principle provides
a practically meaningful structural guideline for identifying optimal dilution regimes, while plant-
friendly implementations can approximate this behavior using smoothed or scheduled transitions with
well-documented precedent in real facilities [52, 53].

9. Conclusions

Beyond these fundamental insights, this work makes several significant contributions to bioprocess
engineering and fractional calculus. (i) By adopting the fractional-order chemostat model with CFDS
from [2] as the dynamical foundation of the RFOCP, we have developed a complete optimal control
formulation for the system (3.1f) and (3.1g) subject to the treatment constraint (3.1b), the periodic
boundary conditions (3.1h)–(3.1j), and the objective J(D) = sav. This formulation integrates the CFDS
dynamics (4.4) with the operational bounds (3.1c)–(3.1e) and extends periodic chemostat optimization
to fractional-order systems, filling a gap in the existing literature. (ii) We have incorporated into the
optimal control analysis the reduction of the 2D fractional system (3.1f) and (3.1g) to the 1D FDE (4.4)
originally established in [2] via the transformation (4.1) and the identity (4.3) and have shown that it
preserves all admissible T -periodic trajectories. This reduction is essential for deriving the fractional
Pontryagin necessary conditions, proving the bang–bang structure of the optimal controls, and enabling
efficient FG–PS discretization, which would be analytically and computationally intractable on the
full 2D system. (iii) We have established the existence of optimal periodic solutions (s∗,D∗) for
the RFOCP by exploiting compactness of the admissible sets, continuity of the control-to-state map,
and Schauder-type fixed-point arguments. We have also provided conditions that ensure uniqueness
under specific parameter regimes (e.g., KY , 1 together with the hypotheses of Theorem 3). These
results strengthen the theoretical foundations of fractional optimal periodic control. (iv) By optimizing
periodic dilution strategies in this fractional-order setting and exploiting the explicit finite-memory
representation induced by MC

L Dα
t (·), this work provides actionable insights for enhancing water-

treatment efficiency. (v) We have conducted a detailed sensitivity analysis demonstrating how the
fractional order α, scaling parameter ϑ, and memory length L govern the structure of the optimal
control and the resulting pollutant removal efficiency (Section 7).

In conclusion, this work represents a significant step towards a more nuanced understanding and
effective control of bioprocesses by integrating the concept of microbial memory through fractional-
order calculus. The theoretical advancements and practical implications presented herein lay a robust
foundation for future research aimed at developing more sustainable and efficient biotechnological
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solutions for environmental and industrial challenges. Future work could explore time-varying upper
bounds on state and control functions to model dynamic constraints in real-world bioprocesses such
as varying inlet concentrations or seasonal environmental factors, as well as extensions to multi-
compartment systems and more general fractional optimal control frameworks. Additionally, chaos
analysis could provide valuable insights into the nonlinear dynamics of fractional-order chemostat
systems under extreme parameter regimes or external disturbances, potentially revealing bifurcation
behaviors and chaotic regimes that may inform operational boundaries for practical implementations.
Furthermore, one may explore time-varying fractional orders α(t) to model adaptive microbial memory
effects, where the fractional order varies based on environmental conditions or operational phases.

Model validation, limitations, and future experimental work

While the proposed fractional-order chemostat model offers substantial theoretical and numerical
advances in representing memory-driven bioprocess dynamics, we fully acknowledge the need for
experimental validation. The present study is intentionally focused on developing the underlying
fractional-order framework and demonstrating its capabilities through high-fidelity simulations. Model
parameters are drawn from realistic ranges reported in the bioprocess and wastewater-engineering
literature [1, 40] and adjusted where necessary to support numerical stability and theoretical analysis.

A natural next step is a companion experimental study in which the fractional-order chemostat
model is evaluated against laboratory or pilot-scale data from an operating wastewater treatment
system. Such a study would involve measuring inlet and outlet substrate concentrations, biomass
density, and time-varying dilution-rate profiles, and comparing these observations with the model’s
predicted periodic trajectories. This empirical validation would provide critical support for the
CFDS-based fractional formulation, particularly its ability to capture long-term memory, finite-horizon
adaptation, and nonlocal microbial responses.

Aligning model predictions with real operational data–especially under periodic dilution regimes–
would significantly strengthen the practical relevance of the proposed fractional optimal control
strategies. Ultimately, experimental confirmation would reinforce the model’s applicability to real
wastewater treatment processes and its potential to guide the design of more efficient, memory-aware
control policies for clean water production and ecosystem protection.
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Appendix

A. Lemma on the integral of the CFDS

Lemma 1. Let s ∈ ACT . Then, for any period T > 0, memory length L > 0, and fractional order
α ∈ (0, 1], the integral of the CFDS over one period vanishes:∫ T

0

MC
L Dα

t s(t) dt = 0. (A.1)

Proof. We consider two cases:

Case 1. α ∈ (0, 1). Since s is T -periodic and absolutely continuous, its derivative s′ exists almost
everywhere, is Lebesgue integrable, and is also T -periodic. The CFDS is given by

MC
L Dα

t s(t) =
1

Γ(1 − α)

∫ t

t−L
(t − τ)−αs′(τ) dτ.

Substitute u = t − τ: ∫ t

t−L
(t − τ)−αs′(τ) dτ =

∫ L

0
u−αs′(t − u) du.

If t − u < 0, we exploit the periodicity of s′: For any u ∈ [0, L], there exists an integer k such that
t − u + kT ∈ [0,T ], and thus s′(t − u) = s′(t − u + kT ). Now, interchange the integrals:∫ T

0

∫ L

0
u−αs′(t − u) du dt =

∫ L

0
u−α

(∫ T

0
s′(t − u) dt

)
du.

The inner integral evaluates to ∫ T

0
s′(t − u) dt = s(T − u) − s(−u) = 0,

where the last equality follows from s being T -periodic. Thus, the original integral vanishes.

Case 2. α = 1. The CFDS reduces to the ordinary derivative:

MC
L D1

t s(t) = s′(t),

and the integral becomes ∫ T

0
s′(t) dt = s(T ) − s(0) = 0,

again by periodicity. This completes the proof. �
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To further verify Lemma 1 numerically, we computed
∫ T

0
MC
L Dα

t s(t) dt numerically for the test
problem studied in Section 7 using N = 300 and the data in Table 1. The approximation was based
on [3, Formula (4.7)]: ∫ T

0

MC
L Dα

t s(t) dt ≈
T
N

N−1∑
i=0

MC
L Dα

ti s(t),

where t0, t1, . . . , tN−1 are the collocation points. The computed value was about 2.055 × 10−16, which
aligns perfectly with Lemma 1, and confirms that the integral of the CFDS over one period vanishes as
theoretically predicted.

Remark 3. The vanishing of the integral of the CFDS over one period for periodic absolutely
continuous functions is analogous to the classical result for standard derivatives, where

∫ T

0
s′(t) dt = 0

for any T-periodic differentiable function s. However, this property does not generally hold for
other FD definitions. For instance, the Riemann-Liouville FD of periodic functions typically does
not satisfy this zero-integral property due to its distinct kernel and nonlocal memory properties, which
differ from those of the CFDS and do not preserve periodicity in the same way. Similarly, the classical
Caputo FD, while sharing the same kernel as the CFDS, differs in its integration domain, using a
fixed initial point rather than the sliding memory window of the CFDS. This difference in integration
domains disrupts the zero-integral property for periodic functions in the classical Caputo case, whereas
the CFDS’s sliding memory aligns with periodicity to maintain this property.

B. Lemma on state convexity

Lemma 2. (Nonconvexity of state trajectories) Let KY , 1, and suppose that s1 and s2 are two distinct
periodic solutions of the FDE (4.4) corresponding to distinct controls D1 and D2 in D, respectively.
Then for any λ ∈ (0, 1), the convex combination sλ = λs1 + (1 − λ)s2 cannot be a solution of (4.4),
corresponding to Dλ = λD1 + (1 − λ)D2.

Proof. We integrate the FDE (4.4) over [0,T ]. By Lemma 1,∫ T

0

MC
L Dα

t s(t) dt = 0,

so ∫ T

0
[D(t) − ν(s(t))](sin − s(t)) dt = 0,

implying the “integral balance equation”:

[D(sin − s)]av = [ν(s)(sin − s)]av . (B.1)

For the steady-state, this simplifies into

D̄(sin − s̄) = ν(s̄)(sin − s̄). (B.2)

Substitute s1 and s2 into the integral identity (B.1):∫ T

0
ν(si(t))(sin − si(t)) dt =

∫ T

0
Di(t)(sin − si(t)) dt, i = 1, 2. (B.3)
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Assume, for contradiction, that sλ(t) = λs1(t) + (1−λ)s2(t) for some λ ∈ (0, 1). From the dynamics and
the convex combination of controls, the following must hold:∫ T

0
ν(sλ(t))(sin − sλ(t)) dt =

∫ T

0
Dλ(t)(sin − sλ(t)) dt

= λ

∫ T

0
D1(t)(sin − sλ(t)) dt + (1 − λ)

∫ T

0
D2(t)(sin − sλ(t)) dt. (B.4)

The condition KY , 1 ensures ν is strictly convex/concave on [0, sin], as

ν′′(s) =
2KYµmaxsin(KY − 1)

[KY(sin − s) + s]3 , 0.

So, by Jensen’s inequality and the assumption that s1(t) , s2(t) on a set of positive measure, we have

ν(sλ(t)) , λν(s1(t)) + (1 − λ)ν(s2(t)) for almost everywhere t.

Multiplying both sides by sin − sλ(t) > 0 and integrating, taking into account identities (B.3), gives∫ T

0
ν(sλ(t))(sin − sλ(t)) dt , λ

∫ T

0
ν(s1(t))(sin − sλ(t)) dt + (1 − λ)

∫ T

0
ν(s2(t))(sin − sλ(t)) dt

= λ

∫ T

0
D1(t)(sin − sλ(t)) dt + (1 − λ)

∫ T

0
D2(t)(sin − sλ(t)) dt

=

∫ T

0
Dλ(t)(sin − sλ(t)) dt,

which contradicts identity (B.4). Hence, sλ cannot be a solution corresponding to Dλ. �

C. Local stability of the equilibrium

Lemma 3. Let α ∈ (0, 1) and L > 0, and consider the following FDE:

MC
L Dα

t z(t) = −kz(t), k > 0.

Then, the solution to this FDE can be expressed in the exponential form z(t) = z(0)e−λt for some λ > 0.

Proof. Substituting z(t) = z(0)e−λt into the definition of the CFDS yields

MC
L Dα

t z(t) =
1

Γ(1 − α)

∫ t

t−L
(t − τ)−α

(
−λz(0)e−λτ

)
dτ.

Changing variables via u = t − τ gives

MC
L Dα

t z(t) = −
λz(0)e−λt

Γ(1 − α)

∫ L

0
u−αeλu du.

Equating this with the right-hand side of the differential equation,

−kz(t) = −kz(0)e−λt,
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yields

λ

∫ L

0
u−αeλu du = k Γ(1 − α). (C.1)

Since k Γ(1 − α) > 0, any solution λ to Eq (C.1) must be strictly positive. Now, it remains to verify
whether Eq (C.1) admits a solution or not. To this end, define

ψ(λ) := λ

∫ L

0
u−αeλudu,

so Eq (C.1) reads as
ψ(λ) = k Γ(1 − α). (C.2)

Notice that ψ is continuous for all λ ∈ R since the integrand is continuous in both u ∈ (0, L] and λ.
When λ > 0 increases, eλu increases, so ψ is strictly increasing on (0,∞). Also,

lim
λ→0+

ψ(λ) = 0, lim
λ→∞

ψ(λ) = ∞,

because eλu dominates the integral. Since ψ is continuous, strictly increasing, and spans the
interval (0,∞), Eq (C.2) has a unique solution λ > 0 for any given k > 0, α ∈ (0, 1), and L > 0
by the intermediate value theorem. �

Theorem 4. Consider the fractional-order chemostat system governed by the FDE (4.4) with D̄ < µmax

being the constant dilution rate. Let s̄ given by (4.7) be the equilibrium satisfying ν(s̄) = D̄. Then the
equilibrium s̄ is locally asymptotically stable, with perturbations z(t) = s(t) − s̄ decaying as z(t) ∼ e−λt

for some λ > 0. Furthermore, for the initial condition s(0) = s−0 < s̄, the solution s approaches s̄
monotonically from below, does not reach s̄ in finite time, and cannot satisfy the periodic boundary
condition (3.1h) for any T > 0. Similarly, for s(0) = s+

0 > s̄, s approaches s̄ monotonically from above,
does not reach s̄ in finite time, and cannot satisfy (3.1h) for any T > 0.

Proof. To analyze the local stability of s̄, we linearize the FDE (4.4) around the equilibrium. Define
the perturbation z(t) = s(t) − s̄. Since s̄ is constant, MC

L Dα
t s(t) = MC

L Dα
t z(t). Define f as

f (s(t)) = [D̄ − ν(s(t))](sin − s(t)).

Expand ν(s(t)) = ν(s̄ + z(t)) around s̄:

ν(s(t)) ≈ ν(s̄) + ν′(s̄)z(t).

Since ν(s̄) = D̄, we have
D̄ − ν(s(t)) ≈ −ν′(s̄)z(t),

so
f (s(t)) ≈ [−ν′(s̄)z(t)][(sin − s̄) − z(t)] ≈ −ν′(s̄)(sin − s̄)z(t),

neglecting higher-order terms. Thus, the linearized FDE is

MC
L Dα

t z(t) = −kz(t), k = ϑ1−αν′(s̄)(sin − s̄) > 0,
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with the solution
z(t) = z(0)e−λt,

for some λ > 0, by Lemma 3. Now, consider the two cases for the initial condition:
Case 1. s(0) = s−0 < s̄. Here, z(0) = s−0 − s̄ < 0, so z(t) < 0, and s(t) = s̄ + z(t) < s̄. Since

ν′(s) =
KYµmaxsin

(KY(sin − s) + s)2 > 0,

then ν is strictly increasing on s([0,T ]). Therefore, ν(s(t)) < ν(s̄) = D̄, so D̄ − ν(s(t)) > 0, implying
MC
L Dα

t s(t) > 0. This shows that s is monotonically increasing toward s̄. The decay |z(t)| ∼ |z(0)|e−λt

ensures z(t) , 0 for finite t, so s(t) , s̄. For periodicity, (3.1h) requires s(T ) = s(0):

s(T ) = s̄ + (s−0 − s̄)e−λt.

Since e−λt ∈ (0, 1) and s−0 − s̄ < 0, |z(T )| = |s−0 − s̄|e−λt < |s−0 − s̄| = |z(0)|, so z(T ) = (s−0 − s̄)e−λt >

s−0 − s̄ = z(0), implying s(T ) > s−0 and violating s(T ) = s(0).
Case 2. s(0) = s+

0 > s̄. Here, z(0) = s+
0 − s̄ > 0, so z(t) > 0, and s(t) = s̄ + z(t) > s̄. Since

ν(s(t)) > ν(s̄) = D̄, then D̄ − ν(s(t)) < 0, so we have MC
L Dα

t s(t) < 0, implying s(t) is monotonically
decreasing toward s̄. The decay z(t) ∼ z(0)e−λt ensures z(t) , 0 for finite t, so s(t) , s̄. For periodicity,

s(T ) = s̄ + (s+
0 − s̄)e−λt.

Since e−λt ∈ (0, 1), s(T ) < s+
0 , violating s(T ) = s(0).

In both cases, |z(t)| → 0 as t → ∞, confirming s̄ is locally asymptotically stable. The exponential
decay e−λt prevents s(t) from reaching s̄ in finite time, and monotonicity prevents periodicity unless
s(0) = s̄, where s(t) ≡ s̄. �

D. Orbital stability of the optimal periodic solution

Although Theorem 4 establishes local asymptotic stability of equilibria under constant dilution
rates, the optimal periodic control D∗ derived in Section 5 is nonconstant and bang-bang, switching
abruptly between Dmin and Dmax at finite times ξk, k = 1, . . . , 2m, for some m ∈ N. This structure
implies that between switching events, the system evolves under constant dilution rate dynamics. On
each interval [ξk, ξk+1), the RFOCP dynamics reduces to

MC
L Dα

t s(t) = ϑ1−α[Di − ν(s(t))](sin − s(t)), Di ∈ {Dmin,Dmax}. (D.1)

Let s̄i satisfy ν(s̄i) = Di. Then, Theorem 4 guarantees that perturbations z(t) = s(t) − s̄i

decay exponentially:
|z(t)| ≤ Ce−λt, λ > 0, (D.2)

on each segment, for some λ depending on α, L, and system parameters.
However, the optimal periodic solution s∗ is not an equilibrium—it is a T -periodic trajectory that

transiently approaches or departs from s̄i in a controlled manner. To analyze stability of s∗(t), consider
a perturbed trajectory s(t; s0) with initial condition s(0) = s∗(0) + δ : |δ| small, evolving under the same
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switching control D∗(t), and define the perturbation z(t) = s(t; s0) − s∗(t). On each constant-control
segment, z satisfies the linearized FDE:

MC
L Dα

t z(t) =
∂F

∂s
(t, s∗(t)) · z(t) + O(|z|2), (D.3)

where
F (t, s) = ϑ1−α[D∗(t) − ν(s)](sin − s). (D.4)

The linear coefficient is negative due to local stability of s̄i and convexity of ν (for KY > 1), ensuring
contraction: |z(t)| decreases on each segment.

Now, define the Poincaré map as

P : s(0) 7→ s(T ; s(0)),

where s(t; s0) is the solution of the RFOCP dynamics:

MC
L Dα

t s(t) = ϑ1−α[D∗(t) − ν(s(t))](sin − s(t)),

with fixed optimal periodic control D∗(t) (bang-bang, T -periodic) and initial condition s(0) = s0. Since
the optimal periodic solution s∗(t) satisfies s∗(t + T ) = s∗(t) for all t, it follows that

s∗(T ) = s∗(0).

By the definition of the solution flow under D∗(t),

s∗(T ) = s(T ; s∗(0)).

Thus,
P(s∗(0)) = s∗(0),

so s∗(0) is a fixed point of P. We now prove that P is a contraction mapping in a neighborhood of s∗(0),
which implies orbital asymptotic stability of the optimal periodic solution s∗.

Proof of contraction mapping

The optimal control D∗(t) is bang-bang, switching between Dmin and Dmax at finitely many times
0 ≤ ξ1 < ξ2 < · · · < ξ2m < T , with ξ2m+1 := T + ξ1, and D∗ ≡ Dk ∈ {Dmin,Dmax} on each interval
Ik := [ξk, ξk+1), k = 1, . . . , 2m. Let ∆tk := ξk+1 − ξk > 0, so

∑2m
k=1 ∆tk = T . On each Ik, the system

evolves under constant dilution rate Dk, and has the local equilibrium

s̄k ∈ (0, sin) : ν(s̄k) = Dk.

By Theorem 4, perturbations around s̄k decay exponentially:

|z(t)| ≤ Cke−λk(t−ξk), t ∈ Ik,

for any trajectory starting near s̄k, with

λk = λ(α, L, ϑ, ν′(s̄k), sin − s̄k) > 0,

and Ck > 0 (a constant depending only on the system parameters and the segment length). Consider
now the two initial conditions:
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(i) s1(0) = s∗(0), where s1 evolves to s1(T ) = s∗(T ) = s∗(0).

(ii) s2(0) = s∗(0) + δ, where s2 evolves to s2(T ) = P(s∗(0) + δ).

Define the error trajectory:

z(t) := s2(t) − s1(t) = s(t; s∗(0) + δ) − s∗(t) : z(0) = δ.

On Ik, both s1(t) = s∗(t) and s2(t) evolve under the same constant control Dk. The error z(t) satisfies the
linearized FDE (D.3) with F as defined by (D.4). Since s∗(t) ∈ (0, sin) for all t ∈ [0,T ], the periodic
reference trajectory lies strictly inside the open interval (0, sin), and thus its image {s∗(t) : t ∈ [0,T ]}
is contained in the compact interval [0, sin]. Moreover, on each sub-interval Ik, the optimal control is
constant: D∗(t) ≡ Dk. Finally, the kinetic function ν ∈ C2([0, sin]). Under these assumptions, a bound
on ∂F /∂s evaluated along the reference trajectory can be established by the following theorem:

Theorem 5. Let s∗ be a continuous T-periodic solution of the system (4.4) with ν ∈ C2([0, sin]),
α ∈ (0, 1), and ϑ > 0. For each subinterval Ik ⊂ [0,T ] with length ∆tk > 0, let

s̄k :=
1

∆tk

∫
Ik

s∗(t) dt,

be the temporal average of s∗(t) over Ik. Then,∣∣∣∣∣∂F∂s
(t, s∗(t)) + ν′(s̄k)(sin − s̄k)

∣∣∣∣∣ ≤ Mk ‖s∗(t) − s̄k‖∞, ∀t ∈ Ik,

where
Mk := sup

s∈[0,sin]
|ν′′(s)| < ∞,

and
‖s∗ − s̄k‖∞ := sup

t∈Ik

|s∗(t) − s̄k|.

Proof. Evaluating the partial derivative of F with respect to s along the reference trajectory s∗ gives

∂F

∂s
(t, s∗(t)) = −ϑ1−α [

ν′ (s∗(t)) (sin − s∗(t)) + D(t) − ν (s∗(t))
]
.

On each subinterval Ik = [ξk, ξk+1], approximate s∗(t) ≈ s̄k and D(t) ≈ Dk, and define

κk := ν′(s̄k)(sin − s̄k) + Dk − ν(s̄k) > 0,

so that the linearization error is
∂F

∂s
(t, s∗(t)) + ϑ1−ακk. Define the auxiliary function as

h(t, s) := ν′(s)(sin − s) + D(t) − ν(s),

so the error becomes
ϑ1−α (h(t, s̄k) − h (t, s∗(t))) .
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Assume D ∈ C([0,T ]) and ν ∈ C2([0, sin]). Then,

∂h
∂s

(t, s) = ν′′(s) (sin − s) − 2ν′(s).

Thus, ∣∣∣∣∣∂h
∂s

(t, s)
∣∣∣∣∣ ≤ Mk sin + 2 sup

s∈[0,sin]
|ν′(s)| =: Ck < ∞,

uniformly on Ik. By the mean value theorem, for each t ∈ Ik, there exists ξt between s∗(t) and s̄k

such that

h (t, s∗(t)) − h(t, s̄k) =
∂h
∂s

(t, ξt) (s∗(t) − s̄k) .

Thus,
|h (t, s∗(t)) − h(t, s̄k)| ≤ Ck |s∗(t) − s̄k| ≤ Ck ‖s∗ − s̄k‖L∞(Ik).

Therefore, ∣∣∣∣∣∂F∂s
(t, s∗(t)) + ϑ1−ακk

∣∣∣∣∣ ≤ ϑ1−αCk ‖s∗ − s̄k‖L∞(Ik),

where the uniform deviation
‖s∗ − s̄k‖L∞(Ik) := sup

t∈Ik

|s∗(t) − s̄k|

is finite since s∗ is continuous on the compact interval Ik. Over all 2m subintervals,

max
k=1,...,2m

‖s∗ − s̄k‖L∞(Ik)

is bounded by a constant depending only on the reference orbit s∗, independent of perturbations. We
can absorb ϑ1−αCk and this maximum deviation into a new bounded constant Mk (independent of t and
perturbations) to obtain ∣∣∣∣∣∂F∂s

(t, s∗(t)) + ϑ1−ακk

∣∣∣∣∣ ≤ Mk‖z‖L∞(Ik),

for z(t) = s(t) − s∗(t). Thus, for sufficiently small ‖z‖, the nonlinear perturbation is negligible, and

MC
L Dα

t z(t) ≈ −ϑ1−ακkz(t), κk > 0.

By Lemma 3, the solution satisfies

|z(t)| ≤ |z(ξk)|e−λk(t−ξk), t ∈ Ik,

with λk > 0 such that e−λk∆tk < 1. Since |z(0)| = |δ|, we have, after segment I1 (at t = ξ2),

|z(ξ2)| ≤ |z(ξ1)|e−λ1∆t1 ≤ |δ|e−λ1∆t1 .

After segment I2 (at t = ξ3), we have

|z(ξ3)| ≤ |z(ξ2)|e−λ2∆t2 ≤ |δ|e−λ1∆t1−λ2∆t2 .
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After all 2m segments (at t = T ):

|z(T )| ≤ |δ|
2m∏
k=1

e−λk∆tk = ρ |δ|,

where

ρ := exp

− 2m∑
k=1

λk∆tk

 < 1,

since λk,∆tk > 0. Thus,
|P(s∗(0) + δ) − s∗(T )| = |z(T )| ≤ ρ|δ|.

Apply P iteratively, and define the sequence of perturbations (δn)∞n=0, where each δn represents the
deviation from the optimal periodic orbit after n complete periods:

δ0 := δ,

δ1 := P(s∗(0) + δ) − s∗(T ),
...

δn+1 := Pn+1(s∗(0) + δ) − s∗(T ) = P
(
Pn(s∗(0) + δ)

)
− s∗(T ),

for n ≥ 0. Then,
|δn| ≤ ρ

n|δ| → 0, as n→ ∞,

since ρ < 1. This shows that any trajectory starting sufficiently close to the optimal periodic solution
at t = 0 returns closer to the orbit after each period T and converges to the periodic orbit as n → ∞.
This establishes orbital asymptotic stability of the optimal periodic solution s∗. �

For a comprehensive exposition on stability analysis of fractional differential equations, Poincaré
map analysis, and contraction arguments, the reader may consult [54–56].

Remark 4. Numerical observations (Figure 5) suggest that lower α values, corresponding to stronger
memory effects, may be associated with increased damping characteristics that require more frequent
control switching to overcome system inertia. While Lemma 3 guarantees the existence of a positive
damping coefficient λk for each α ∈ (0, 1), the precise functional relationship between α and λk remains
an open analytical question, though our simulations indicate that stronger memory generally improves
system robustness at the cost of requiring more aggressive control intervention.

E. Perturbation analysis

This section analyzes the relationship between νav and the average dilution rate Dav for a T -periodic
solution s of the FDE (4.4) when α ∈ (0, 1) and s(t) ∈ [0, sin). We use a perturbation approach
around the steady-state to show that νav < Dav is only possible for nonconstant solutions with small
perturbations when KY < 1.

Consider the steady-state where D(t) = D̄ = ν(s̄), s(t) = s̄. Perturb the control and state variables as

Dε(t) = D̄ + εv(t) : vav = 0, sε(t) = s̄ + εz(t),
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where ε > 0 is sufficiently small, and both v and z are T -periodic. The FDE becomes

MC
L Dα

t (s̄ + εz(t)) = ϑ1−α[D̄ + εv(t) − ν(s̄ + εz(t))](sin − s̄ − εz(t)).

Since MC
L Dα

t s̄ = 0 and ν(s̄) = D̄, expand ν(s):

ν(s̄ + εz(t)) ≈ ν(s̄) + εν′(s̄)z(t) +
ε2

2
ν′′(s̄)z2(t).

For the linear approximation, neglect O(ε2) terms:

εMC
L Dα

t z(t) ≈ ϑ1−α[εv(t) − εν′(s̄)z(t)](sin − s̄).

Integrate over [0,T ], noting that
∫ T

0
MC
L Dα

t z(t) dt = 0 by Lemma 1:

0 = ϑ1−αε (sin − s̄)
∫ T

0
[v(t) − ν′(s̄)z(t)] dt. (E.1)

Since vav = 0, Eq (E.1) implies

−ν′(s̄)
∫ T

0
z(t) dt = 0 =⇒ zav = 0,

since ν′ > 0. Compute the difference:

Dε(t) − ν(sε(t)) ≈ εv(t) − εν′(s̄)z(t).

Therefore,

Dε,av − [ν(sε)]av =
1
T

∫ T

0
[Dε(t) − ν(sε(t))] dt ≈ εvav − εν

′(s̄)zav = 0.

Thus, to first order, Dε,av ≈ [ν(sε)]av. Include the second-order term:

Dε(t) − ν(sε(t)) ≈ εv(t) − εν′(s̄)z(t) −
ε2

2
ν′′(s̄)z2(t).

Integrate:

Dε,av − [ν(sε)]av ≈ −
ε2

2
ν′′(s̄)

(
z2
)

av
.

If KY < 1, the function ν is strictly concave on the interval s ∈ [0, sin], implying that ν′′(s̄) < 0. For a
nonconstant function z, it follows that

(
z2
)

av
> 0. Consequently,

Dε,av − [ν(sε)]av > 0,

which implies that
[ν(sε)]av < Dε,av = D̄. (E.2)

Conversely, if KY ≥ 1, the function ν is convex on s ∈ [0, sin], such that ν′′(s̄) ≥ 0, with strict inequality
when KY > 1. Therefore,

Dε,av − [ν(sε)]av ≤ 0,
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indicating that
[ν(sε)]av ≥ Dε,av = D̄, (E.3)

with equality holding when KY = 1.
This perturbation analysis demonstrates that, for small, nonconstant perturbations around the steady

state, the average value of ν over one cycle is less than the average dilution rate D̄ if and only if KY < 1.

Remark 5. The above second-order perturbation analysis describes the behavior for small-amplitude
periodic perturbations around the steady state. For large-amplitude periodic solutions—such as
the bang-bang controls typically arising in the optimal solution—higher-order nonlinear effects can
reverse the sign of the improvement, allowing sav < s̄ even when KY > 1, as confirmed by the numerical
results in Section 7.

F. Derivation of the right-sided CFDS

This appendix presents the formulation and justification of the right-sided CFDS of order
0 < α < 1, denoted by MC

L+
Dα

t f , which is particularly useful for modeling forward-looking memory
effects in fractional-order dynamical systems. The right-sided CFDS is the forward-time analog of the
left-sided CFDS MC

L Dα
t f used mainly in this paper.

Let L > 0, and suppose f ∈ W1,1
loc ([t, t + L]). The right-sided CFDS is defined as

MC
L+ Dα

t f := −
1

Γ(1 − α)

∫ t+L

t

f ′(τ)
(τ − t)α

dτ. (F.1)

This operator is well-defined almost everywhere, since the kernel (τ− t)−α ∈ Lq(t, t + L) for all q < 1/α,
and the integrability of f ′ ∈ L1

loc([t, t + L]) ensures the convergence of the integral. This operator
definition is the finite-memory version of the classical right-sided Caputo FD of f on the interval [t, b],
given by

CDα
b− f (t) := −

1
Γ(1 − α)

∫ b

t

f ′(τ)
(τ − t)α

dτ, (F.2)

by replacing the upper limit b with t + L. Notice that as L→ b− t, the sliding memory version recovers
the classical right-sided Caputo FD:

lim
L→b−t

MC
L+ Dα

t f (t) = CDα
t f (t). (F.3)

Moreover, as α→ 1−, we recover the classical first-order derivative with a negative sign:

lim
α→1−

MC
L+ Dα

t f (t) = − f ′(t). (F.4)

G. Numerical optimization techniques for solving the RFOCP

The continuous RFOCP is transformed into a finite-dimensional nonlinear programming problem
through discretization using the FG-PS method [13, 14]. This method is particularly well-suited
for problems with periodic solutions. The time domain [0,T ] is discretized into N equispaced
collocation points t j = jT/N for j = 0, . . . ,N − 1. Collocation points can be chosen from various
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distributions (e.g., Chebyshev, Legendre, or equispaced). Here, equispaced points are selected
due to their compatibility with Fourier expansions in the FG-PS method, enabling efficient fast
Fourier transform-based computations and natural handling of periodic boundary conditions. The
state variables and control inputs are approximated by their values at these collocation points. The
FD term is handled using a FG-PS-based integration matrix, which is precomputed. This matrix
transforms the FDE (4.4) into a system of algebraic equations. The discretized RFOCP is solved as a
constrained nonlinear programming problem. The objective function to be minimized is the average
substrate concentration sav, which is directly computed from the discretized substrate values. The
constraints include the dynamic equations of the system, the average dilution rate constraint, and
the bounds on the state and control variables. The MATLAB fmincon function is employed as the
optimization solver, configured to use the sqp algorithm. This choice is motivated by sqp’s effectiveness
in solving constrained nonlinear optimization problems, particularly when the objective function is
continuous and the formulation includes general nonlinear constraints and bound constraints. In this
context, it provides high accuracy and robust constraint satisfaction, making it well-suited for the
discretized RFOCP.

G.1. Edge-detection control correction

After obtaining a predicted optimal control profile from fmincon, the MATLAB code applies
an edge-detection method to refine the control, particularly for bang-bang type controls which are
characterized by abrupt switches between their minimum and maximum values. This correction is
crucial because numerical optimization methods, especially those based on pseudospectral collocation,
can introduce Gibbs phenomenon artifacts around discontinuities, leading to poor representations of
true bang-bang controls. The method employed here is based on the principles outlined in [3] and
further upgraded in [41].

The core idea of the edge-detection method is to accurately identify the switching points in the
optimal control signal and then reconstruct a bang-bang control based on these detected points. This
approach exploits the fact that the Gibbs phenomenon, while a numerical artifact, provides a strong
indicator of the location of discontinuities through its characteristic overshoots and undershoots. As
stated in [41], quoting [3]:

‘While Gibbs phenomenon is generally considered a demon that needs to be cast out, we
shall demonstrate later that it is rather ‘a blessing’, in view of the current work, that can
be constructively used to set up a robust adaptive algorithm. In particular, the over- and
undershoots developed near a discontinuity in the event of a Gibbs phenomenon provide an
excellent means of detecting one’.

The MATLAB code implements this correction in the following steps:

Step 1. The predicted optimal control, D∗, is used to compute its Fourier coefficients, which capture
the global spectral information of D, including potential jump discontinuities.

Step 2. An edge-detection solver is invoked to estimate the discontinuity locations and reconstruct an
approximate bang-bang control. This function analyzes the Fourier interpolant constructed from
the coefficients and evaluates where significant changes in the pseudospectral profile occur.
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Step 3. Based on the estimated discontinuities and the approximated control, a corrected bang-bang
control D∗ is generated. This reconstruction effectively eliminates Gibbs oscillations and yields a
physically meaningful bang-bang structure.

Step 4. The reconstructed optimal control values at the same collocation set of N equispaced is then
used as inputs to compute the corrected substrate concentration s∗ by solving the discretized
FDE (4.4) using MATLAB’s fsolve solver, with the predicted substrate concentration values
provided as initial guesses, closely following the predictor-corrector framework in [3].

This two-stage approach–predicted pseudospectral optimization followed by edge detection
and reconstruction–yields a robust and accurate method for solving the RFOCP that admits
bang-bang solutions. It addresses the deficiencies of conventional pseudospectral methods in
resolving discontinuities.

Remark 6. Unlike the correction stage in the Fourier-Gegenbauer predictor-corrector method
developed in [3], which requires collocation at shifted Gegenbauer-Gauss points to enable the
use of barycentric shifted Gegenbauer quadratures, the present approach offers greater flexibility.
Specifically, the current correction stage permits collocation at the same equally spaced points used in
the prediction stage, as the FG-PS method can approximate the CFDS at those equispaced collocation
points within the solution domain. In contrast, the use of shifted Gegenbauer quadratures in [3]
confines integration to the solution values at the shifted Gegenbauer–Gauss nodes.

H. Solution algorithm

The following algorithm provides a comprehensive framework for solving the fractional-
order optimal control problem, beginning with the original 2D system and proceeding through
numerical optimization.
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Algorithm 1 Solution algorithm for the fractional-order chemostat system
Require: Original 2D fractional-order chemostat system: eqs (3.1f)–(3.1g) with constraints (3.1b)–

(3.1e), (3.1h)–(3.1j).
Ensure: System parameters satisfy existence conditions (Theorem 1).

Phase 1: System reduction.
1: Apply Transformation (4.1).
2: Derive the 1D FDE (4.2).
3: Obtain the biomass relation (4.3).
4: Reduce to the 1D RFOCP dynamics (4.4).

Phase 2: Numerical solution.
5: Discretize the time domain [0,T ] into N equispaced collocation points.
6: Approximate the CFDS using FG-PS integration matrix.
7: Formulate and solve the constrained nonlinear programming using fmincon with SQP algorithm.

8: Apply edge-detection correction for bang-bang control reconstruction.
9: Interpolate solutions to M points for high-resolution visualization.

10: return Optimal solution (s∗, x∗,D∗) and performance metric J(D∗).
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