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Abstract: Let K, be the complete graph of order n. Very recently, the number of spanning trees (the
NST for short) and the resistance distances in K,-chain (ring) graphs were determined explicitly. We
generalized the concept to the generalized K,-chain (ring) graph [L}]" ([C;]™). New formulae for the
NST of [L]]" and [C;]" were given by a simple and more physical way with a novel technique of
adding a pair of positive and negative edges, avoiding complicated linear algebraic computations.
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1. Introduction

All graphs or networks discussed here are undirected, without loops, but parallel edges are
permitted. Consider an edge-weighted graph G with the vertex set V(G) and the edge set E(G),
equipped with an edge weight function that w : E(G) — R. This graph can be viewed as a resistor
network where edge e represents a resistor with conductance w(e). Then, the resistance of edge e is
given by r, = ﬁ For a vertex-weighted graph G with (vertex) weight function w : V(G) — R, the
vertex weighting naturally induces an edge weighting where each edge e = uv carries weight w(u)w(v).
Let Rg(u, v) denote the resistance distance between 1 and v in G.

Let #(G) denote the weighted spanning tree enumeration of graph G, defined as

6=, | ] vt

TeT (G) ecE(T)

where 7 (G) represents the set of all spanning trees in G, and w specifies the edge weight assignment.
The weight of an individual spanning tree 7" corresponds to the multiplicative product of its constituent
edge weights. If G is an unweighted graph (formally, w = 1), the enumeration simplifies to #(G) =
|7 (G)|, meaning the NS7 of G.
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Counting spanning trees in graphs and networks constitutes a foundational research domain with
wide-ranging applications across diverse disciplines, including Ising/Potts model [26] and sandpile
dynamics [6] in statistical physics, network reliability [1] in network theory, random walk [7,21] in
probability, as well as a knot invariant named knot determinant in low dimensional topology [3]. This
area has captivated the interest of mathematicians and physicists for over 170 years, as evidenced
by the original works of Kirchhoff [14] and Cayley [4]. Recent advancements in this topic are
fruitful, including Moon-tyle formulas for complete bipartite graphs [8, 9], complete multipartite
graphs [16] and multiple complete split-like graphs [28], counting spanning trees in lattices or complex
networks [18,19,29], line graphs [11], weighted graphs [30], K,,-complement of bipartite graphs [12],
and counting spanning trees with a perfect matching [17].

The graph transformation method, which originated in the field of electrical networks, has emerged
as a potent tool for calculating the NS7 in graphs. This technique traces its origin to the pioneering
work of Kennelly in 1899 [13], who first introduced the triangle-star and star-triangle transformations
in the context of electrical circuits. These transformations, along with their generalizations, the mesh-
star, or star-mesh transformations [25], soon became fundamental tools in the theory of electrical
networks. A significant advancement came in 2010 when Teufl and Wagner [23] demonstrated that
such transformations have profound implications for determining the NS7 in graphs with specific
structures.

Further enriching our understanding of the interconnectedness between different graph theoretical
concepts and electrical network properties, Bollobds [2] explored intricate relationships linking the
NST in graphs to effective resistance in electrical circuits, as well as to the behavior of random
walks on graphs. It highlights the rich tapestry of connections that exist among these seemingly
disparate areas, emphasizing the elegance and utility of graph theory in solving complex problems
across disciplines.

Recently, Kosar et al. [15] derived an elegant formula for the NS7 in a Ks-chain graph denoted by
KZ'. In parallel, Yan, Kosar, Aslam, Zaman, and Ullah [27] computed various graph invariants for Kj-
chain graphs. Furthermore, Sun, Sardar, Yang, and Xu [22] studied K,-chain/ring graphs, determining
both resistance distances and the Kirchhoff index. Additionally, Cheng and Ge [5] counted the NST~
in K,-chain/ring graphs.

The generalized K,,-chain graph, denoted as [L;]" (where n > 2s > 4, s > 1, and m > 1), is a simple
graph consisting of m complete subgraphs K!, K2, ..., K™ (K! is the i-th complete graph of order n for
1 < i < m) such that K and K'*' share exactly s common vertices for 1 < i < m — 1, and each vertex
in [L;]™ belongs to at most two complete subgraphs of order .

If we identify K™*! with K! in [L$]™*!' and also insure the properties above, then the resulting
structure forms the generalized K,-ring graph, denoted by [C;]" (where n > 4, s > 1, and m > 3).
For instance, when n = 8 and s = 3, Figure 1(a) represents the generalized Ks-chain graph [L3]", and
Figure 1(b) represents the generalized Kg-ring graph [C;]".

In this paper, we employ the equivalence transformation along with the principles of elimination
and substitution to derive novel formulae for calculating the NS7 in the generalized K,-chain/ring
graph [L;]™ and [C)]™.
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Figure 1. (a). the generalized Kg-chain graph [Lg]’"; (b). the generalized Kg-ring graph
(31,

2. Preliminaries

Now we provide some key notations and lemmas that are essential for understanding our approach.

Definition 1. Define N, and N, as two graphs with a common vertex subset S (S € V(N;) N V(V,)).
We consider N; and N, to be S -electrically equivalent if for each pair u, v in S, the resistance distance
Ry, (u,v) = Ry, (u, v).

Principle of substitution Let H be a subgraph of G, and suppose that H is V(H)-electrically
equivalent to H*. Then, the resistance distance R;(u, V) is equal to Rs-(u, v) for any pair of vertices
{u,v} in V(G), with G* being the network created by replacing H in G with H*.

By applying linear algebra and principles from electrical network theory, a robust graph
transformation technique for enumerating spanning trees was established by Teufl and Wagner [24].

Lemma 2.1 ( [24]). Let G be an edge-weighted connected graph that can be divided into two edge-
disjoint subgraphs X and H (where H is connected), with each inheriting weights naturally. These
subgraphs satisfy V(G) = VIX)UV(H) and V(X)NV(H) = §S. Let H' be an edge-weighted graph such
that EX)NEH') =0 and V(X) N V(H") = S. Furthermore, suppose that H and H' are electrically
equivalent with respect to S. Define G' = X U H'. Then, we have

nG') _ «(H')

(G)  «(H)

As a special case, we introduce the following mesh-star transformation for spanning tree

enumeration which is important in proving our main results.

Lemma 2.2 ( [24]). Let K,, be a complete subgraph of the edge-weighted graph G, where each edge
in K, has weight w. Define G’ as the graph formed via substitution of the subgraph K, in G with its
electrically equivalent star graph K ,, where the weight of each edge is nw. Then, the NST in G’ is
given by:

1
HG) = %t(G’).
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A split graph is a graph that the vertex set can be partitioned into a clique and an independent set. In
the complete split graph S ,,,, the vertex set V(S ,,,) is divided into X U Y, where X = {u;, us, ..., u,} is
aclique and Y = {v{,v,,...,v,} is an independent set, and each vertex in X is connected to each vertex
in Y by a single edge.

Recently, Ge, Liao, and Zhang [10] derived the Moon-type formula for vertex-weighted complete
split graphs. As a direct corollary of the main result in [10], the NS7 in vertex-weighted S, , is
determined as follows.

Figure 2. The edge-weighted complete split graph induced by the vertex-weighted S, .

Theorem 2.1 ( [10]). Let S, be the vertex-weighted complete split graph with vertex set partitioned
into X and Y, where X = {uy,u,,...,u,} forms a complete subgraph (clique) and Y = {vy,v,,...,v,}
forms an independent set. A vertex in X is assigned a weight x;, and a vertex in Y is assigned a weight
vi. This vertex weighting results in edge weights w(uu;) = x;x; for uj,u; € X and w(u;v;) = x;y; for
u; € Xandvj €Y, as illustrated in Figure 2.

Define x = 3,2 w(u;), and 'y = 3., w(v;). Then the NST of S, is

m n

t(Sf,’w) = 'x+ y)’"_1 l_[ X; l_[ Vj.
j=1

i=1
3. Main results

We start to prove our main results.

Theorem 3.1. The number of spanning trees in the generalized K,-chain graph [L}]", where n > 4,
1 <s <[5, andm =1, is given by

t([LS]m) — sm—l . nm(n—25)+2s—2 . (21’1 _ S)(m—l)(s—l)'
Proof. In the network [L:]™, K and K'*! share exactly s vertices, forming a complete subgraph denoted
by K'. Denote the vertex set of [L]" by

m—

1 m
vaL™ = [ V<K;'>] g ( vi],
i=1

i=1

where V(K}) = {vi1,vi2, ..., v;s} and

Vi= V(KD \ (VK™Y U V(KD),
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with V(K?) = V(KY) O for1l <i < mands > 1. By replacing each edge e = vyv; (where

l<i<m-1land1l <k # [ < s)in K' with two edges of unit weight and one edge of weight
—1 (as shown in Figure 3), we obtain a new graph [f,gT" This transformation does not alter the
Laplacian matrix, hence the NS7 remains the same. Indeed, the triple of edges (two positive and
one negative) between v; and v; has total weight 1 + 1 — 1 = 1, which is the same as the original
edge weight. Consequently, the effective resistance between v; and v; remains unchanged, making
the subgraph electrically equivalent to the original edge. According to Definition 1 and Lemma 2.1,
such an electrically equivalent substitution preserves the number of spanning trees of the whole graph.
Thus,

(LY = ([T,

According to Lemma 2.2, replacing each K! (for 1 < i < m) in [f;?" with a star graph K, (where
each edge receives weight n and the center vertex is O;) results in a new graph [L:]™ (as depicted in

_

Figure 4), which is V([L}]™)-equivalent to [L5]™.

Figure 5. (a) The induced subgraph N; of [L:]™. (b) —N;.

Denote by N; the induced subgraph with vertex set {O;, Oj;1, Vi1, Vi, - - . , Vis} and edge set E(N;) =
Ovap |1 <i<m-1,1 <k <s,vp € VEK)U{Ogvy |1 <i<m-1,1 <1< s,v €
V(-K)} U E(-K?!), where V(K') = {v;1,vi2, ..., v;s} and =K' denotes the weighted graph obtained by
taking the negative of each edge weight in K', as depicted in Figure 5 (a). It is evident that N; is an
edge-weighted complete split graph, and —N; (see Figure 5 (b)) is an edge-weighted complete split
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graph naturally induced by the vertex-weighted complete split graph, where the vertex weights satisfy
w(0;) = w(0y1) = —nand w(vy) = 1forl1 <i<m-1and 1 <k < s. By Theorem 2.1, we have

1(=N) = (s =201 7115 (=n)? = sn*(s — 2n)* L.

Then, for N;, we have
1(N;) = (=1)*'4(=N;) = sn’2n - 5)*L. (3.1)

[Ls]™ has m — 1 induced N; and mn — 2ms + 2s pendant edges (the weight of which is n). Each O;
in [L$]™ 1s a cut vertex. Thus,

t([Lfl]m) — nmn—2m5+25[sn2(2n _ S)S_l]m_l. (32)

By Lemma 2.2 and Eq (3.2), we have

' 1 m ‘ '
t([L;;] (n_) mn—2ma+ZS[sn2(2n _ s)s—l]m—l
= M

1 m(n 25)+2s— 2(21’1 s)(m—l)(s—l)

O

Remark 1. For the case s = 2, we have #([L2]™) = 4" 1n™=9+2(n — 1)~ which is consistent with the
one derived in [5].

We now prove the formula of the NS7™ in the generalized K,-ring graph [C;]™.

Theorem 3.2. The number of spanning trees in the generalized K,-ring graph [C,]", where n > 4,
m >3, and 1 < s <|7], is given by

t([cz]m) =2m - sm—l . nm(n—Zs)—l . (27’1 _ S)m(s—l).

Proof. In the network [C#]™, K! and K™ share exactly s vertices, forming a complete subgraph denoted
by K'. Denote the vertex set of [CS]™ by

VacIm = [U V(K;’)] U (U vf),
i=1 i=1
where V(KY) = {vi1, via, . . ., vis}, V(K™ = V(KD), and VI = V(K)) \ (V(K)) U V(K )) for 1 <i < m
and s > 1.
Similarly, by substituting each edge in K’ with two positive edges (of unit weight) and one negative
edge (of weight —1), and applying the mesh-star transformation to the m copies of K,,, we derive a new
graph [C:]™ (Figure 6). By Lemma 2.2,

(ADE (%) ((IC17). (33)

The graph [C:]™ consists of m induced subgraphs N; (Figure 5(a)) arranged in a cycle, together
with (n — 2s)m pendant edges, each of weight n. Therefore, a spanning tree in [C$]™ consists of three
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kinds of substructures: a spanning 2-forest (a spanning 2-forest of a connected graph G is an acyclic
spanning subgraph of G with exactly two connected components) of N; separating O; and O;,1; m — 1
spanning trees of Ny,...,N;_1, Nit1, ..., Ny; and all (n — 2s)m pendant edges (each of weight n).

Figure 6. The graph [CS]™.

Now, [C3]™ can be viewed as a 2-separable graph in the sense of Li and Yan [20]. Specifically, the
base graph G is a cycle C,, with vertices Oy, O, ..., O,, and edges e¢; = (0;, O;;) fori = 1,...,m (with
O,.+1 = O;). For each edge ¢;, the corresponding replacement graph is N; with root vertices O; and
O;;1. The graphs N; are connected and share only the root vertices with the base graph and with each
other.

By Theorem 1.1 of Li and Yan [20], the weighted spanning tree enumeration of a 2-separable graph
is given by

- 3 (]

TeT(G) [e,-eE(T)
where #(N;/(0O;, O,;1)) denotes the weighted spanning tree number of N; after contracting O; and O;;
into a single vertex.

Since G is a cycle C,,, its spanning trees are obtained by deleting exactly one edge. Let T} be the
spanning tree of G obtained by deleting edge e;. Then, Eq (3.4) simplifies to

[ o 0,-+1>>], (34)

e;€E(G\E(T)

((ICT7) = n2m ) [r(M/(ok, o) [ ] t(N»] : (3.5)

k=1 ik
t(N;/(O;, Oi;1)) is equal to the determinant of the matrix obtained from the Laplacian matrix of N; after
deleting the rows and columns corresponding to the vertices O, and O,,. That is,

t(N:/(O, 0i11)) = det((2n — s)I, + J,) = 2n(2n — 5)*, (3.6)

where /; denotes the identity matrix of order s and J; denotes the all-ones matrix of order s.
Substituting Eqgs (3.1) and (3.6) into Eq (3.5) yields

t(@) = pn2sm Zm: 2n(2n — s)°" - l_l (sn*(2n — s)s_l)]

k=1 i+k

AIMS Mathematics Volume 11, Issue 1, 1701-1711.
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= "2 2nQ2n — 5)* ' - (sn*(2n — s)s_l)m_1

— 2msm—1,qm(n—2s+2)—l(2n _ S)m(s—l).

Finally, using Eq (3.3), we obtain
e =~ m t(IC17)
n
— 2msm—lnm(n—23+2)—l—2m(2n _ S)m(s—l)

— 2msm—1nm(n—2s)—1 (2n _ s)m(s—l).
This completes the proof. O

Remark 2. For the case s = 2, we have #([C2]™) = 4"mn™"~!(n — 1), which is consistent with the
formula derived in [5].

Corollary 3.1.
([CI™) — 2m(2n — 5)s7!
t([L’A;]m) - n2s-1 '

4. Discussion

This paper develops a graph transformation framework for enumerating spanning trees in complex
networks. Central to our approach is an innovative proof technique employing counterbalanced edge
pairs to streamline the proof process. Our results provide explicit formulae for the number of spanning
trees in generalized K,,-chain and ring graphs.

Our method offers a distinct advantage over the classical Kirchhoff’s matrix tree theorem for
these specific graph classes. While Kirchhoff’s theorem requires computing the determinant of a
large Laplacian matrix—computationally expensive for large networks—our transformation technique
reduces the problem to simpler structures such as vertex-weighted complete split graphs, where
explicit formulae are available. This not only simplifies computation but also provides physical
intuition from electrical network theory, bypassing heavy linear algebraic manipulations. The approach
relies on electrical equivalence and graph transformations tailored for graphs with overlapping
complete subgraphs. For more complex overlapping patterns (e.g., non-complete subgraphs or higher-
order overlaps), similar transformations may require additional considerations to ensure electrical
equivalence. Moreover, the introduction of negative edge weights, while mathematically sound, may
lack direct physical interpretation in some contexts.

5. Conclusions

In one of our subsequent works, we calculate the resistance distances in the generalized
K,-chain/ring graphs. Furthermore, the number of spanning trees of a graph emerges as the
thermodynamic limit (g — 0) of the partition function in the g-state Potts model, mathematically
equivalent to specific evaluations of the Tutte polynomial. Calculating the Tutte polynomial is
generally §P-hard. A natural open problem is whether generalized K,-chain/ring graphs admit an
explicit expression for the Tutte polynomial.

AIMS Mathematics Volume 11, Issue 1, 1701-1711.
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