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Abstract: Let Kn be the complete graph of order n. Very recently, the number of spanning trees (the
NST for short) and the resistance distances in Kn-chain (ring) graphs were determined explicitly. We
generalized the concept to the generalized Kn-chain (ring) graph [Ls

n]m ([C s
n]m). New formulae for the

NST of [Ls
n]m and [C s

n]m were given by a simple and more physical way with a novel technique of
adding a pair of positive and negative edges, avoiding complicated linear algebraic computations.
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1. Introduction

All graphs or networks discussed here are undirected, without loops, but parallel edges are
permitted. Consider an edge-weighted graph G with the vertex set V(G) and the edge set E(G),
equipped with an edge weight function that ω : E(G) → R. This graph can be viewed as a resistor
network where edge e represents a resistor with conductance ω(e). Then, the resistance of edge e is
given by re =

1
ω(e) . For a vertex-weighted graph G with (vertex) weight function ω : V(G) → R, the

vertex weighting naturally induces an edge weighting where each edge e = uv carries weight ω(u)ω(v).
Let RG(u, v) denote the resistance distance between u and v in G.

Let t(G) denote the weighted spanning tree enumeration of graph G, defined as

t(G) =
∑

T∈T (G)

∏
e∈E(T )

ω(e),

where T (G) represents the set of all spanning trees in G, and ω specifies the edge weight assignment.
The weight of an individual spanning tree T corresponds to the multiplicative product of its constituent
edge weights. If G is an unweighted graph (formally, ω ≡ 1), the enumeration simplifies to t(G) =
|T (G)|, meaning the NST of G.
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Counting spanning trees in graphs and networks constitutes a foundational research domain with
wide-ranging applications across diverse disciplines, including Ising/Potts model [26] and sandpile
dynamics [6] in statistical physics, network reliability [1] in network theory, random walk [7, 21] in
probability, as well as a knot invariant named knot determinant in low dimensional topology [3]. This
area has captivated the interest of mathematicians and physicists for over 170 years, as evidenced
by the original works of Kirchhoff [14] and Cayley [4]. Recent advancements in this topic are
fruitful, including Moon-tyle formulas for complete bipartite graphs [8, 9], complete multipartite
graphs [16] and multiple complete split-like graphs [28], counting spanning trees in lattices or complex
networks [18, 19, 29], line graphs [11], weighted graphs [30], Kn-complement of bipartite graphs [12],
and counting spanning trees with a perfect matching [17].

The graph transformation method, which originated in the field of electrical networks, has emerged
as a potent tool for calculating the NST in graphs. This technique traces its origin to the pioneering
work of Kennelly in 1899 [13], who first introduced the triangle-star and star-triangle transformations
in the context of electrical circuits. These transformations, along with their generalizations, the mesh-
star, or star-mesh transformations [25], soon became fundamental tools in the theory of electrical
networks. A significant advancement came in 2010 when Teufl and Wagner [23] demonstrated that
such transformations have profound implications for determining the NST in graphs with specific
structures.

Further enriching our understanding of the interconnectedness between different graph theoretical
concepts and electrical network properties, Bollobás [2] explored intricate relationships linking the
NST in graphs to effective resistance in electrical circuits, as well as to the behavior of random
walks on graphs. It highlights the rich tapestry of connections that exist among these seemingly
disparate areas, emphasizing the elegance and utility of graph theory in solving complex problems
across disciplines.

Recently, Kosar et al. [15] derived an elegant formula for theNST in a K5-chain graph denoted by
Km

5 . In parallel, Yan, Kosar, Aslam, Zaman, and Ullah [27] computed various graph invariants for K4-
chain graphs. Furthermore, Sun, Sardar, Yang, and Xu [22] studied Kn-chain/ring graphs, determining
both resistance distances and the Kirchhoff index. Additionally, Cheng and Ge [5] counted the NST
in Kn-chain/ring graphs.

The generalized Kn-chain graph, denoted as [Ls
n]m (where n ≥ 2s ≥ 4, s ≥ 1, and m ≥ 1), is a simple

graph consisting of m complete subgraphs K1
n ,K

2
n , . . . ,K

m
n (Ki

n is the i-th complete graph of order n for
1 ≤ i ≤ m) such that Ki

n and Ki+1
n share exactly s common vertices for 1 ≤ i ≤ m − 1, and each vertex

in [Ls
n]m belongs to at most two complete subgraphs of order n.

If we identify Km+1
n with K1

n in [Ls
n]m+1 and also insure the properties above, then the resulting

structure forms the generalized Kn-ring graph, denoted by [C s
n]m (where n ≥ 4, s ≥ 1, and m ≥ 3).

For instance, when n = 8 and s = 3, Figure 1(a) represents the generalized K8-chain graph [L3
8]m, and

Figure 1(b) represents the generalized K8-ring graph [C3
8]m.

In this paper, we employ the equivalence transformation along with the principles of elimination
and substitution to derive novel formulae for calculating the NST in the generalized Kn-chain/ring
graph [Ls

n]m and [C s
n]m.
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Figure 1. (a). the generalized K8-chain graph [L3
8]m; (b). the generalized K8-ring graph

[C3
8]m.

2. Preliminaries

Now we provide some key notations and lemmas that are essential for understanding our approach.

Definition 1. Define N1 and N2 as two graphs with a common vertex subset S (S ⊆ V(N1) ∩ V(N2)).
We consider N1 and N2 to be S -electrically equivalent if for each pair u, v in S , the resistance distance
RN1(u, v) = RN2(u, v).

Principle of substitution Let H be a subgraph of G, and suppose that H is V(H)-electrically
equivalent to H∗. Then, the resistance distance RG(u, v) is equal to RG∗(u, v) for any pair of vertices
{u, v} in V(G), with G∗ being the network created by replacing H in G with H∗.

By applying linear algebra and principles from electrical network theory, a robust graph
transformation technique for enumerating spanning trees was established by Teufl and Wagner [24].

Lemma 2.1 ( [24]). Let G be an edge-weighted connected graph that can be divided into two edge-
disjoint subgraphs X and H (where H is connected), with each inheriting weights naturally. These
subgraphs satisfy V(G) = V(X)∪V(H) and V(X)∩V(H) = S . Let H′ be an edge-weighted graph such
that E(X) ∩ E(H′) = ∅ and V(X) ∩ V(H′) = S . Furthermore, suppose that H and H′ are electrically
equivalent with respect to S . Define G′ = X ∪ H′. Then, we have

t(G′)
t(G)

=
t(H′)
t(H)
.

As a special case, we introduce the following mesh-star transformation for spanning tree
enumeration which is important in proving our main results.

Lemma 2.2 ( [24]). Let Kn be a complete subgraph of the edge-weighted graph G, where each edge
in Kn has weight ω. Define G′ as the graph formed via substitution of the subgraph Kn in G with its
electrically equivalent star graph K1,n, where the weight of each edge is nω. Then, the NST in G′ is
given by:

t(G) =
1

n2ω
t(G′).
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1704

A split graph is a graph that the vertex set can be partitioned into a clique and an independent set. In
the complete split graph S m,n, the vertex set V(S m,n) is divided into X ∪Y , where X = {u1, u2, . . . , um} is
a clique and Y = {v1, v2, . . . , vn} is an independent set, and each vertex in X is connected to each vertex
in Y by a single edge.

Recently, Ge, Liao, and Zhang [10] derived the Moon-type formula for vertex-weighted complete
split graphs. As a direct corollary of the main result in [10], the NST in vertex-weighted S ωm,n is
determined as follows.

Figure 2. The edge-weighted complete split graph induced by the vertex-weighted S ωm,n.

Theorem 2.1 ( [10]). Let S ωm,n be the vertex-weighted complete split graph with vertex set partitioned
into X and Y, where X = {u1, u2, . . . , um} forms a complete subgraph (clique) and Y = {v1, v2, . . . , vn}

forms an independent set. A vertex in X is assigned a weight xi, and a vertex in Y is assigned a weight
yi. This vertex weighting results in edge weights ω(uiu j) = xix j for ui, u j ∈ X and ω(uiv j) = xiy j for
ui ∈ X and v j ∈ Y, as illustrated in Figure 2.

Define x =
∑m

i=1 ω(ui), and y =
∑n

i=1 ω(vi). Then the NST of S ωm,n is

t(S ωm,n) = xn−1(x + y)m−1
m∏

i=1

xi

n∏
j=1

y j.

3. Main results

We start to prove our main results.

Theorem 3.1. The number of spanning trees in the generalized Kn-chain graph [Ls
n]m, where n ≥ 4,

1 ≤ s ≤ ⌊n
2⌋, and m ≥ 1, is given by

t
(
[Ls

n]m)
= sm−1 · nm(n−2s)+2s−2 · (2n − s)(m−1)(s−1).

Proof. In the network [Ls
n]m, Ki

n and Ki+1
n share exactly s vertices, forming a complete subgraph denoted

by Ki
s. Denote the vertex set of [Ls

n]m by

V([Ls
n]m) =

m−1⋃
i=1

V(Ki
s)

⋃ m⋃
i=1

V i

 ,
where V(Ki

s) = {vi1, vi2, . . . , vis} and

V i = V(Ki
n) \ (V(Ki−1

s ) ∪ V(Ki
s)),

AIMS Mathematics Volume 11, Issue 1, 1701–1711.
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with V(K0
s ) = V(Km

s ) = ∅ for 1 ≤ i ≤ m and s ≥ 1. By replacing each edge e = vikvil (where
1 ≤ i ≤ m − 1 and 1 ≤ k , l ≤ s) in Ki

s with two edges of unit weight and one edge of weight
−1 (as shown in Figure 3), we obtain a new graph [̂Ls

n]m. This transformation does not alter the
Laplacian matrix, hence the NST remains the same. Indeed, the triple of edges (two positive and
one negative) between vik and vil has total weight 1 + 1 − 1 = 1, which is the same as the original
edge weight. Consequently, the effective resistance between vik and vil remains unchanged, making
the subgraph electrically equivalent to the original edge. According to Definition 1 and Lemma 2.1,
such an electrically equivalent substitution preserves the number of spanning trees of the whole graph.
Thus,

t([Ls
n]m) = t([̂Ls

n]m).

According to Lemma 2.2, replacing each Ki
n (for 1 ≤ i ≤ m) in [̂Ls

n]m with a star graph K1,n (where
each edge receives weight n and the center vertex is Oi) results in a new graph [Ls

n]m (as depicted in
Figure 4), which is V([Ls

n]m)-equivalent to [̂Ls
n]m.

Figure 3. Operation on [Ls
n]m.

Figure 4. The graph [Ls
n]m.

Figure 5. (a) The induced subgraph Ni of [Ls
n]m. (b) −Ni.

Denote by Ni the induced subgraph with vertex set {Oi,Oi+1, vi1, vi2, . . . , vis} and edge set E(Ni) =
{Oivik | 1 ≤ i ≤ m − 1, 1 ≤ k ≤ s, vik ∈ V(−Ki

s)} ∪ {Oi+1vil | 1 ≤ i ≤ m − 1, 1 ≤ l ≤ s, vil ∈

V(−Ki
s)} ∪ E(−Ki

s), where V(Ki
s) = {vi1, vi2, . . . , vis} and −Ki

s denotes the weighted graph obtained by
taking the negative of each edge weight in Ki

s, as depicted in Figure 5 (a). It is evident that Ni is an
edge-weighted complete split graph, and −Ni (see Figure 5 (b)) is an edge-weighted complete split
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graph naturally induced by the vertex-weighted complete split graph, where the vertex weights satisfy
ω(Oi) = ω(Oi+1) = −n and ω(vik) = 1 for 1 ≤ i ≤ m − 1 and 1 ≤ k ≤ s. By Theorem 2.1, we have

t(−Ni) = (s − 2n)s−1 · s2−1 · 1s · (−n)2 = sn2(s − 2n)s−1.

Then, for Ni, we have
t(Ni) = (−1)s+1t(−Ni) = sn2(2n − s)s−1. (3.1)

[Ls
n]m has m − 1 induced Ni and mn − 2ms + 2s pendant edges (the weight of which is n). Each Oi

in [Ls
n]m is a cut vertex. Thus,

t([Ls
n]m) = nmn−2ms+2s[sn2(2n − s)s−1]m−1. (3.2)

By Lemma 2.2 and Eq (3.2), we have

t([Ls
n]m) =

(
1
n2

)m

nmn−2ms+2s[sn2(2n − s)s−1]m−1

= sm−1nm(n−2s)+2s−2(2n − s)(m−1)(s−1).

□

Remark 1. For the case s = 2, we have t([L2
n]m) = 4m−1nm(n−4)+2(n− 1)m−1, which is consistent with the

one derived in [5].

We now prove the formula of the NST in the generalized Kn-ring graph [C s
n]m.

Theorem 3.2. The number of spanning trees in the generalized Kn-ring graph [C s
n]m, where n ≥ 4,

m ≥ 3, and 1 ≤ s ≤ ⌊n
2⌋, is given by

t
(
[C s

n]m)
= 2m · sm−1 · nm(n−2s)−1 · (2n − s)m(s−1).

Proof. In the network [C s
n]m, Ki

n and Ki+1
n share exactly s vertices, forming a complete subgraph denoted

by Ki
s. Denote the vertex set of [C s

n]m by

V([C s
n]m) =

 m⋃
i=1

V(Ki
s)

⋃ m⋃
i=1

V i

 ,
where V(Ki

s) = {vi1, vi2, . . . , vis}, V(Km+1
s ) = V(K1

s ), and V i = V(Ki
n) \ (V(Ki

s) ∪ V(Ki+1
s )) for 1 ≤ i ≤ m

and s ≥ 1.
Similarly, by substituting each edge in Ki

s with two positive edges (of unit weight) and one negative
edge (of weight −1), and applying the mesh-star transformation to the m copies of Kn, we derive a new
graph [C s

n]m (Figure 6). By Lemma 2.2,

t([C s
n]m) =

(
1
n2

)m

t
(
[C s

n]m
)
. (3.3)

The graph [C s
n]m consists of m induced subgraphs Ni (Figure 5(a)) arranged in a cycle, together

with (n − 2s)m pendant edges, each of weight n. Therefore, a spanning tree in [C s
n]m consists of three

AIMS Mathematics Volume 11, Issue 1, 1701–1711.
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kinds of substructures: a spanning 2-forest (a spanning 2-forest of a connected graph G is an acyclic
spanning subgraph of G with exactly two connected components) of Ni separating Oi and Oi+1; m − 1
spanning trees of N1, . . . ,Ni−1,Ni+1, . . . ,Nm; and all (n − 2s)m pendant edges (each of weight n).

Figure 6. The graph [C s
n]m.

Now, [C s
n]m can be viewed as a 2-separable graph in the sense of Li and Yan [20]. Specifically, the

base graph G is a cycle Cm with vertices O1,O2, . . . ,Om and edges ei = (Oi,Oi+1) for i = 1, . . . ,m (with
Om+1 = O1). For each edge ei, the corresponding replacement graph is Ni with root vertices Oi and
Oi+1. The graphs Ni are connected and share only the root vertices with the base graph and with each
other.

By Theorem 1.1 of Li and Yan [20], the weighted spanning tree enumeration of a 2-separable graph
is given by

t
(
[C s

n]m
)
= n(n−2s)m

∑
T∈T (G)

 ∏
ei∈E(T )

t(Ni)


 ∏

e j∈E(G)\E(T )

t(N j/(O j,O j+1))

 , (3.4)

where t(Ni/(Oi,Oi+1)) denotes the weighted spanning tree number of Ni after contracting Oi and Oi+1

into a single vertex.
Since G is a cycle Cm, its spanning trees are obtained by deleting exactly one edge. Let Tk be the

spanning tree of G obtained by deleting edge ek. Then, Eq (3.4) simplifies to

t
(
[C s

n]m
)
= n(n−2s)m

m∑
k=1

t(Nk/(Ok,Ok+1)) ·
∏
i,k

t(Ni)

 . (3.5)

t(Ni/(Oi,Oi+1)) is equal to the determinant of the matrix obtained from the Laplacian matrix of Ni after
deleting the rows and columns corresponding to the vertices Oi and Oi+1. That is,

t(Ni/(Oi,Oi+1)) = det
(
(2n − s)Is + Js

)
= 2n(2n − s)s−1, (3.6)

where Is denotes the identity matrix of order s and Js denotes the all-ones matrix of order s.
Substituting Eqs (3.1) and (3.6) into Eq (3.5) yields

t
(
[C s

n]m
)
= n(n−2s)m

m∑
k=1

2n(2n − s)s−1 ·
∏
i,k

(
sn2(2n − s)s−1)

AIMS Mathematics Volume 11, Issue 1, 1701–1711.
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= n(n−2s)m · m · 2n(2n − s)s−1 ·
(
sn2(2n − s)s−1)m−1

= 2msm−1nm(n−2s+2)−1(2n − s)m(s−1).

Finally, using Eq (3.3), we obtain

t([C s
n]m) =

(
1
n2

)m

t
(
[C s

n]m
)

= 2msm−1nm(n−2s+2)−1−2m(2n − s)m(s−1)

= 2msm−1nm(n−2s)−1(2n − s)m(s−1).

This completes the proof. □

Remark 2. For the case s = 2, we have t([C2
n]m) = 4mmnm(n−4)−1(n − 1)m, which is consistent with the

formula derived in [5].

Corollary 3.1.
t([C s

n]m)
t([Ls

n]m)
=

2m(2n − s)s−1

n2s−1 .

4. Discussion

This paper develops a graph transformation framework for enumerating spanning trees in complex
networks. Central to our approach is an innovative proof technique employing counterbalanced edge
pairs to streamline the proof process. Our results provide explicit formulae for the number of spanning
trees in generalized Kn-chain and ring graphs.

Our method offers a distinct advantage over the classical Kirchhoff’s matrix tree theorem for
these specific graph classes. While Kirchhoff’s theorem requires computing the determinant of a
large Laplacian matrix—computationally expensive for large networks—our transformation technique
reduces the problem to simpler structures such as vertex-weighted complete split graphs, where
explicit formulae are available. This not only simplifies computation but also provides physical
intuition from electrical network theory, bypassing heavy linear algebraic manipulations. The approach
relies on electrical equivalence and graph transformations tailored for graphs with overlapping
complete subgraphs. For more complex overlapping patterns (e.g., non-complete subgraphs or higher-
order overlaps), similar transformations may require additional considerations to ensure electrical
equivalence. Moreover, the introduction of negative edge weights, while mathematically sound, may
lack direct physical interpretation in some contexts.

5. Conclusions

In one of our subsequent works, we calculate the resistance distances in the generalized
Kn-chain/ring graphs. Furthermore, the number of spanning trees of a graph emerges as the
thermodynamic limit (q → 0) of the partition function in the q-state Potts model, mathematically
equivalent to specific evaluations of the Tutte polynomial. Calculating the Tutte polynomial is
generally ♯P-hard. A natural open problem is whether generalized Kn-chain/ring graphs admit an
explicit expression for the Tutte polynomial.

AIMS Mathematics Volume 11, Issue 1, 1701–1711.
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hexagonal lattices on the cylinder and Möbius strip, Discrete Appl. Math., 358 (2024), 320–325.
https://doi.org/10.1016/j.dam.2024.07.026

18. S. L. Li, W. G. Yan, T. Tian, Some physical and chemical indices of the Union Jack lattice, J. Stat.
Mech., 2015 (2015), P02014. https://doi.org/10.1088/1742-5468/2015/02/p02014

19. S. L. Li, W. G. Yan, T. Tian, The spectrum and Laplacian Spectrum of the dice lattice, J. Stat.
Phys., 164 (2016), 449–462. https://doi.org/10.1007/s10955-016-1552-6

20. T. Y. Li, W. G. Yan, Enumeration of spanning trees of 2-separable networks, Physica A, 536 (2019),
120877. https://doi.org/10.1016/j.physa.2019.04.113

21. J. D. Noh, H. Rieger, Random walks on complex networks, Phys. Rev. Lett., 92 (2004), 118701.
https://doi.org/10.1103/PhysRevLett.92.118701

22. W. S. Sun, M. S. Sardar, Y. J. Yang, S.-J. Xu, On the resistance distance and Kirchhoff
index of Kn-chain(ring) network, Circuits Syst. Signal Process., 43 (2024), 4728–4749.
https://doi.org/10.1007/s00034-024-02709-y

23. E. Teufl, S. Wagner, On the number of spanning trees on various lattices, J. Phys. A: Math. Gen.,
43 (2010), 415001. https://doi.org/10.1088/1751-8113/43/41/415001

24. E. Teufl, S. Wagner, Determinant identities for Laplace matrices, Linear Algebra Appl., 432 (2010),
441–457. https://doi.org/10.1016/j.laa.2009.08.028

25. L. Versfeld, Remarks on star-mesh transformation of electrical networks, Electron. Lett., 6 (1970),
597–599. https://doi.org/10.1049/el:19700417

26. F. Y. Wu, The Potts model, Rev. Mod. Phys., 54 (1982), 235–268.
https://doi.org/10.1103/RevModPhys.54.235

27. T. Yan, Z. Kosar, A. Aslam, S. Zaman, A. Ullah, Spectral techniques and mathematical aspects of
K4 chain graph, Phys. Scr., 98 (2023), 045222. https://doi.org/10.1088/1402-4896/acc4f0

AIMS Mathematics Volume 11, Issue 1, 1701–1711.

https://dx.doi.org/https://doi.org/10.1002/jgt.22212 
https://dx.doi.org/https://doi.org/10.1007/s10801-024-01341-y
https://dx.doi.org/https://doi.org/10.1002/andp.18471481202
https://dx.doi.org/https://doi.org/10.1088/1402-4896/ad07b9 
https://dx.doi.org/https://doi.org/10.1002/jgt.22954 
https://dx.doi.org/https://doi.org/10.1016/j.dam.2024.07.026 
https://dx.doi.org/https://doi.org/10.1088/1742-5468/2015/02/p02014 
https://dx.doi.org/https://doi.org/10.1007/s10955-016-1552-6 
https://dx.doi.org/https://doi.org/10.1016/j.physa.2019.04.113 
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.92.118701
https://dx.doi.org/https://doi.org/10.1007/s00034-024-02709-y 
https://dx.doi.org/https://doi.org/10.1088/1751-8113/43/41/415001 
https://dx.doi.org/https://doi.org/10.1016/j.laa.2009.08.028 
https://dx.doi.org/https://doi.org/10.1049/el:19700417 
https://dx.doi.org/https://doi.org/10.1103/RevModPhys.54.235
https://dx.doi.org/https://doi.org/10.1088/1402-4896/acc4f0 


1711

28. C. L. Yang, T. Tian, Counting spanning trees of multiple complete split-like
graph containing a given spanning forest, Discrete Math., 348 (2025), 114300.
https://doi.org/10.1016/j.disc.2024.114300

29. J. Y. Zhang, W. G. Yan, Counting spanning trees of a type of generalized Farey graphs, Physica A,
555 (2020), 124749. https://doi.org/10.1016/j.physa.2020.124749

30. J. Zhou, C. J. Bu, The enumeration of spanning tree of weighted graphs, J. Algebr. Comb., 54
(2021), 75–108. https://doi.org/10.1007/s10801-020-00969-w

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 1701–1711.

https://dx.doi.org/https://doi.org/10.1016/j.disc.2024.114300 
https://dx.doi.org/https://doi.org/10.1016/j.physa.2020.124749 
https://dx.doi.org/https://doi.org/10.1007/s10801-020-00969-w 
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Discussion
	Conclusions

