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Abstract: Boosting techniques present a popular alternative to conventional methods for estimating
covariate effects in generalized linear mixed models. Additionally to functionality in high-dimensional
data setups, they also offer variable selection. The established framework for boosting in GLMMs tends
to exhibit problematic behavior in the selection process when cluster-constant covariates are present,
which leads to incorrect estimates. We propose an improved algorithm that rectifies this issue by
reworking the updating process of the random effects which already proved successful for linear mixed
models, i.e. normally distributed outcomes, and provide additional insights regarding the computation
of model complexity. We show the improvements in the quality of estimates via various simulations
and data examples.
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1. Overview

Generalized linear mixed models (GLMMs) have become a popular tool for various applications,
most notably longitudinal data obtained from repeated measurements as well as clustered data.
However, especially for high-dimensional data, the conventional methods for parameter estimation of
GLMMs can be problematic in terms of estimation accuracy and computational effort. Consequently,
alternative approaches that can also offer variable selection have been proposed.

One such alternative approach is boosting, which will be shortly outlined in the following with
reference to [24]. The basic idea of boosting is to iteratively apply so-called weak base-learners and to
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combine the results in order to obtain a strong learner that achieves a better prediction. A weak learner
is defined as yielding a classification rate of slightly above 50%, whereas a strong learner should
achieve a nearly perfect classification. The concept behind the algorithm is to weight observations
based on the success of the base-learner in the previous iteration, thus increasing the importance of
observations that are difficult to classify.

Boosting was first introduced in the field of machine learning, most prominently in form of the
AdaBoost algorithm [8, 9], for classification problems. It was then extended to statistical modelling
where it can also be applied to regression problems [4, 10]. The statistical boosting algorithms are
separated into gradient boosting and likelihood-based boosting approaches. The idea behind gradient
boosting is to fit the base-learner to the negative gradient of the loss function of the previous iterations.
Likelihood-based boosting uses base-learners that maximize an overall likelihood in each boosting
iteration. Component-wise likelihood-based boosting, which is the type of boosting we will consider in
all the following, fits a separate candidate model for each covariate x ; of the covariate matrix X in each
iteration and only updates the parameter estimate of the candidate with the largest likelihood. Overall,
model-based boosting routines adapt well-established boosting algorithms from machine learning to
interpretable statistical models by exchanging base procedures like decision trees with an ensemble of
statistical models, e.g. linear effects, splines or random effects.

The advantages of boosting methods include the implicitly performed variable selection as well as
their stability in the case of high dimensional data, which also allows for settings where the number of
covariates exceeds the number of observations. Thus, boosting poses an attractive alternative to the
conventional estimation approaches for GLMMs, which has already been done in several ways in the
statistical boosting literature. For the popular mboost [17], an additional base-learner modelling
random effects was proposed in [18] while likelihood-based boosting routines were transferred to
mixed models by [36]. The bGLMM algorithm as proposed in [35] is an already established
implementation of a component-wise likelihood-based boosting method for generalized linear mixed
models. It is contained in the GMMBoost package [14]. However, [11] discovered that the bGLMM
algorithm can be problematic when applied to data where cluster-constant covariates are present.
They observed that cluster-varying covariates tend to be favored in the selection and updating process
with the random intercept updates partly accounting for the effects actually stemming from
cluster-constant covariates.

One can clearly illustrate this issue by analyzing the CD4 data set [1]. It contains data from a trial
on 467 patients with human immunodeficiency virus (HIV) infection. The data set contains repeated
measurements of the number of CD4 cells per milliliter of blood per patient as the response variable.
Explanatory variables are time, treatment, gender and a certain drug intolerance. It also contains a
variable noAIDS/AIDS, which denotes if the patient fulfills an AIDS-defining condition. The acquired
immunodeficiency syndrome (AIDS) is caused by the human immune deficiency virus attacking CD4
cells and decreasing their number. As such, the number of CD4 cells per milliliter of blood is used
as a diagnostic criterion for AIDS and is an AIDS-defining condition. While this clear dependency
makes the inclusion of the variable in the model somewhat trivial, its estimate should evidently show a
significant effect.

Analyzing the CD4 data set with bGLMM as well as the conventional maximization method glmmPQL
available in the MASS package we obtain the estimates presented in Table 1. One can see that for the
cluster-varying covariate time, the estimates are similar, but for the other, all cluster-constant, covariates
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the estimates differ. The bGLMM algorithm has kept almost all the cluster-constant covariates at or close
to zero and the covariate noAIDS/AIDS is clearly underestimated. Despite its obvious significant effect
on the number of CD4 cells, bGLMM only shows a relatively weak update of the noAIDS/AIDS covariate.
In comparison, glmmPQL estimates a much higher effect.

Table 1. Fixed effects (B) estimation results for a generalized linear mixed model with
random intercepts on the CD4 data set with g1lmmPQL and bGLMM.

time treatment gender AIDS AZT
glmmPQL -0.028 0.127 -0.061 1.163 0.094
bGLMM -0.029 0.000 0.000 0.202 0.010

Looking at the random intercept estimates, one can see that bGLMM instead captures the effects of the
noAIDS/AIDS covariate within the random intercept updates. Figure 1 shows that the random intercept
estimates for subjects with no AIDS-defining condition are visibly raised.

A
b

I I
AIDS noAIDS

Figure 1. Random intercept estimates by bGLMM separated for noAIDS/AIDS.

To solve this issue of the treatment of cluster-constant covariates in the boosting process, [11]
propose various changes and apply them to a basic linear mixed model (LMM) resulting in the
1bbLMM (likelihood-based boosting for linear mixed models) algorithm. The general ideas proposed
are the following:

e Perform the updates for fixed and for random effects separately in order to ensure a fair selection
of the best-performing fixed effect.

e Apply a weak learning rate to the updating scheme of the random effects in order to prevent them
from growing too quickly.

e Introduce a correction matrix in order to filter out possible correlations between random effects
estimates and observed covariates.

According to [11], the proposed changes show a clear improvement of the performance in the
presence of cluster-constant covariates compared to the bGLMM algorithm. Since their implementation
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for LMMs was able to achieve satisfying results, it is sensible to now extend these measures to
GLMMs.

The purpose of this work is to establish a revised boosting approach for GLMMs that achieves
an overall satisfying performance in problematic settings. We therefore use the foundation of the
bGLMM algorithm and equip it with the findings from [11] in order to achieve a reliable and well-
performing boosting algorithm with unbiased parameter estimates. In addition, we investigate how
precisely the information criteria used for tuning the algorithm approximate the model complexity, and
finally explore whether simpler methods might also be favorable options. The remainder of this paper
is structured as follows:

First, we will give an overview of the model class of GLMMs and the relevant methods and
algorithms, including the newly developed 1bbGMM algorithm. Subsequently, the 1bbGMM algorithm is
evaluated with respect to its overall performance and compared to other established methods using
both synthetic and real world data. Finally, we will discuss our findings and their implications as well
as limitations.

2. Methods

2.1. Generalized linear mixed models

First, we will formulate the model specification for the class of generalized linear mixed models
(GLMMs) as first proposed in [20]. The following outline is based on [5] with some adjustments

regarding notation in reference to [35]. We denote y! = (yi1,...,yi) collecting j = 1,...,n
observations y;; in i = 1,...,n clusters. Furthermore, we denote xl’.j = (Xiji,...,Xijp) and
zZ; = (Zij1, - - - Zijs) Tor p fixed effect and s random effect covariates respectively.

The density of y;;, conditional on the linear predictor 7;;, is assumed to belong to an exponential
family
(vij0ij — k(6:)))
fijlxij, zij, bi) = exp {% +cQijs @) ¢ s
where 6;; = 6(u;;) denotes the natural parameter, the function «(;;) corresponds to the type of
exponential family, c(-) is the log normalization constant and ¢ the dispersion parameter.
The means y;; of the observations y;; are related to the linear predictor 7;; through the appropriate
link function g(-).
g(uij) = Po + x;,B + z;;bi = n;j.
With the inverse of the link function A(-) = g~!(-) this can alternatively be written as

Mij = h(Bo + x;jﬁ + Z;jbi) = h(?]l])

Bo denotes the intercept and ' = (B, .. .,8,) the parameter vector for the fixed effects. The random
effects are normally distributed with b; ~ N(0, Q) with covariance matrix Q.
We arrive at a matrix notation by denoting X = [X,...,X,] with X;, = [1,X;] and
X, = (Xi1,..., %) as well as Z = diag(Z,, ..., Z,) with Z} = (zi1, .. ., Zin))
g(w) = XB+Zb,
where the fixed effects vector is denoted as [i" = (Bo,pB’) and the random effects vector as

b’ = (b},...,b)) with covariance matrix Q = diag(Q, ..., Q).
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2.2. Estimation approaches

A popular method for estimating GLMMs is the penalized quasi-likelihood (PQL) approach [3,22].
The marginal log-likelihood function corresponding to the density function for the exponential family
is

l6,7) = Zlog( f fGilo, y)p(bily)db,-),
i=1

where 6" = (By, B, b;’) and ¥’ = (¢, 0’) collects the dispersion parameter and the covariance structure @
of Q. p(b;ly) denotes the density function of the random effects.

An approximation of this function based on the Laplace method [3] arrives at the penalized log-
likelihood function

n 1 n
I@.y) = ) log(frild.y) — 5 ) b/Q b
i=1 i=1

Another popular method is the approach based on posterior modes [6]. This approach arrives at an
equivalent representation of the penalized log-likelihood above.

Generally, the maximization of this log-likelihood is carried out by using iterative methods, such
as Fisher scoring. This is further complicated by the fact that the covariance Q is usually unknown.
As a result, the computational effort of the estimation often restricts the model in terms of the number
of covariates. Additionally, the estimates can become unstable when many predictor variables are
available and no variable selection is performed.

2.3. The bGLMM algorithm

As previously mentioned, in our application at hand for GLMMs we consider boosting based on the
log-likelihood. The boosting algorithm presented in this section is the bGLMM algorithm as proposed
by [35]. It performs component-wise boosting, meaning per each iteration step a model that contains
the intercept and a linear term, which only includes the r-th fixed effect, is fitted. The corresponding
r-th design matrices are denoted by

X.,=[1,x.,],
where x.., with r = 1,..., p denotes the covariate vector for the r-th component and the i-th cluster.
This leads to the corresponding predictor
Nr = X.B, +Zb

with [3,’ = (Bo,Br) and 8. = (By,B,,b’). In the following we will give an overview of the bGLMM
20) L ~
algorithm as outlined by [35]: First, the starting values 8 b(o), Q(O) are computed by fitting a global

intercept model with random effects:

g(ir) = Bo + z;,b;.
For this the glmmPQL function from the MASS package is used. Then, for each iteration ! = 1,2, ..., [
the following is performed: For each fixed effect r = 1,. .., p the penalized score function s?"(§) and

penalized Fisher matrix F7*"(6) are computed. They are then used in a simplified Fisher scoring [23]

80 = (Fren My tgren 37y
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to compute an update for the r-th component. The variance-covariance components are replaced by the
current estimates Q(l_]). From these possible updates the component ¢ that results in the smallest A/ c?
or BIC" is selected. For determining the complexity of the model, the effective degrees of freedom
are calculated by using the trace of the Hat-matrix H. The vector (351))’ = (ﬁg, ﬁf, by) corresponds to
the selected 7-th component. Next, the update is performed as

Ay L S L L
and forr=1,...,pas
0 |BY Jif r#t
Fr= ﬁ§1_1)+v,[5’i ,if r=t

with 0 < v < 1 as the learning rate. The resulting 87 is then used to update the predictor
f]([) = A('S\‘(l), where A = [X,Z].

The estimates Qb are obtained either via a REML-type estimate or by employing an approximate EM-
algorithm using posterior mode estimates and posterior curvatures. After the maximum number of
iterations as specified by /,,,, has been completed, the optimal number of iterations /,,, is determined
by calculating the information criterion for each iteration. The degrees of freedom are again obtained

via the Hat-matrix H. The iteration that leads to the smallest AIC or BIC? is selected as optimal and

oS (lupt) A (lopl) A (lopt)

with it its corresponding ,Q " and f1

2.4. IbbGMM algorithm

Extending the previously outlined measures proposed by [11] from LMMs to GLMMs leads to the
new 1bbGMNM (likelihood-based boosting for generalized linear mixed models) algorithm. It generally
follows the same procedure as the bGLMM algorithm outlined in the previous section, while also
integrating the new changes as introduced by the 1bbLMM algorithm. In the following, we will present
an overview of the 1bbGMM algorithm and discuss some notable aspects in more detail. The algorithm
and all corresponding analyses are conducted using R [29].

2.4.1. Algorithm outline

Algorithm 1bbGMM

o Initialize é(()), Z(O), Q(O) with starting values and apply the correction matrix (see 2.4.2) to the
random effects vector.

e for /=1 to [, do
Fixed effects update:

— Calculate the penalized score function and Fisher matrix for the r-th fixed effect with
corresponding B, = @g_]), B(rl_]))’ as

aIrer
B,

aleen ]

S (B,) = —

and FP'(B,) = —E[
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— Use Fisher scoring to obtain p possible updates
n — FPren N -1 oren
ur ( r (ﬁr)) sr (ﬁr)'

— Select the best performing component as the one minimizing the A/ c or BICY.
— Perform the update of the fixed effect coefficients and the intercept based on the selection
result & = (@), i):

(1) (- 1) NG
0 )

20 - B Jif r#
BV v if r=«

— Calculate the penalized score function and Fisher matrix for the r-th fixed effect with
corresponding B, = (,8(1 D ﬂil_l))’ as

oI
B,

— Use Fisher scoring to obtain p possible updates

ﬁg) — (Ffen(Br))—lsfen(ﬁr).

aleen ]

s B,) = BB

and FI'(B,) = —E[

— Select the best performing component as the one minimizing the A/ c or BICY.
— Perform the update of the fixed effect coefficients and the intercept based on the selection
result ' = (A(” AU))

(l) - 1) ~ (D)
0 )

50— {B”‘” Jif

Random effects update:

— Calculate the penalized score function and Fisher matrix for the random effects as

[pen
Spen(b) — a

ran

ran

and F?(b) = -E|——— a2lpen
obob’

— Perform a simultaneous weak update of the random coefficients by applying a learning rate
0 < v, < 1 and the correction matrix C (see 2.4.2) to the Fisher scoring:

& ()
b

~(-1)

£(1=1)
=b

+ v CFPnh ™))L sren Yy,

ran ran

Variance-covariance-components update:

— Update the variance-covariance components Q.
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— Compute the model error used for obtaining £

end for

e Tune the algorithm after /,,, total iterations by determining the optimal number of iterations [,

A (lopt)

. . . o Allopt) 4 Uopr) .
via some pre-chosen information criteria and return 8", b, Q""" as final estimates.

2.4.2. Computational details
In this subsection, single aspects of the 1bbGMM algorithm proposed in Section 2.4.1 are highlighted
in more detail. o
Starting values. We initialize 8 , 5, Q(O) by estimating a global intercept model with random
effects via the MASS package
g(uij) = Po + z;b;.
For the random effects the correction matrix C is additionally applied, so that

b = ch.
Fixed effects boosting process. The fixed and random effects updates are decoupled from one
another, with the fixed effect update being performed first. The penalized score function and Fisher
matrix for the r-th fixed effect with corresponding B, = (ﬁg_l), [5’51_1))' are calculated as follows [6]:

arer
pen —
sr (ﬂr) 6ﬂr
=X, DX (y - )
and
aleen
Fpen = _-E
)= 2| |
=X WX, ,

. oy . . Oh(n,)
with W = DX™" D" where D = diag(D,,...,D,) with D; =
¥, = diag(6?).

Using Fisher scoring this results in p possible updates, where the best performing component is
decided as the one minimizing an information criterion such as Akaike’s information criterion
(AIC) [2] or the Bayesian information criterion (BIC) [30]. For our purposes they are given by:

,and X = diag(X,,...,X,) with

AICY = =2 3 log(f(yili)) + 2df,
i=1

BICY = -2 ) log(f(y|)) + log(m)df!.
i=1

AIMS Mathematics Volume 11, Issue 1, 1675-1700.



1683

Where for the case of Poisson data log(f(y; |/J(l))) takes the form of

log(f i) = " vy log(lh) - A%

J=1

and for binary responses

log(f(lilh) = )" yijlog(@) + (1 = yi) log(1 = ).

=

C. Griesbach et al. [11] obtained the respective degrees of freedom (df) by using an approximation
consisting of the sum of the variance-covariance parameters and the non-zero components of . The
alternate approach of using the trace of the Hat-matrix H to obtain the df, similarly to the bGLMM

algorithm, is outlined in detail later on.
~(D)

Based on the selection result we obtain &) = (ity’, 2"y and perform the update of the fixed effect
coeflicients and the intercept:
A(l D :
B0 = B 1y, B = Af 7
0 +vigs BY = o
By v, if r=x

Random Effects Update. Following this, the process for updating the random effects is performed.
We calculate the penalized score function and Fisher matrix for the random effects as follows:

lpen
Stn(B) = == = Z'DX™\(y —p) = @y "'b
and
FPe'(p E g ZWZ -1
ran( )__ [W]_ +Qb .

By applying a learning rate 0 < v, < 1 to the Fisher scoring, we then arrive at a simultaneous weak
update of the random coefficients. In this step, we also apply the aforementioned correction matrix C
that was proposed by [11] and is discussed in more detail in the next section.

Correction Matrix. The derivation of the correction matrix C does not require any changes to
extend from LMMs to GLMMs. Therefore, we will provide an overview of its original derivation as
presented by [11]. For the s-th random effect b= (bs1,...,bg) with s = 1,...,¢q its correction matrix
C, is constructed as

Cs = Xoo(X, X)X,

For random intercepts, the matrix X, contains p, columns and n rows with p; referring to the number
of cluster-constant covariates. The n rows represent one observation of each cluster. For random slopes,
the matrix contains a column of ones. By using distinct matrices, the random intercepts or slopes are
corrected independently from one another with (I, — C)b, taking out any correlations between the
random effect and the covariates contained in X.,. To obtain a single correction matrix that corrects
every random effect simultaneously, the matrix C is defined as

c=pr'U,-0OP
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with block diagonal matrix
C = diag(Cy,...,C,)

and permutation matrix P so that

Ph=b=(b,,....b,)

holds.

Updating Variance-Covariance-Components. After the separate updates of fixed and random
effects, the variance-covariance components @ are updated by employing an approximate
EM-algorithm using the posterior curvatures F;“" of the random effects model

n (@ + biby).

i=1

Q:

S | =

The model error for obtaining £ is computed as
(61 = Var(dev")

with dev') referring to the deviance residuals of the current model iteration. The deviance residuals for
the three distributions of consideration are calculated as follows (compare [26]):

(1) Gaussian:

devg) =y—a".

(2) Poisson:

. N Yy N
dev') = sign(y — i'") \/2 (y log (ﬂ) —(y —y(l))).

(3) Bernoulli:

. ~ 1 —
dev;)l) = sign(y _”(1)) \/2 (y log (/%) +( -y) log(l _/;:l) ))

Tuning. The main tuning parameter of model-based boosting routines is usually given via the
number of total boosting iterations [25]. The optimal number of iterations /,,, is determined as the one
that minimizes the AIC" or BIC". Corresponding to [, the other optimal parameter estimates are
determined as well. Please note that we rely solely on information criteria as surrogate to
computationally more burdensome routines like cross validation or bootstrapping. Considering the
AIC is, however, asymptotically equivalent to cross validation which also holds in the case of
mixed-effects models [7]. For obtaining the effective degrees of freedom necessary for the
computation of said information criteria, we employ the trace of the Hat-matrix as detailed in the
following.

Hat matrix. The bGLMM algorithm uses the trace of the Hat-matrix H to infer the effective degrees
of freedom and consequently the complexity of the model. This is a standard tactic in linear
modelling [31] that has been employed in various applications such as smoothing [37] and
generalized additive models [S]. Here, it is employed for both the update selection process as well as
the determination of /,,,. In the following section we will present a concise intuition for the derivation
of the Hat-matrix. For a more detailed version compare [34,36].
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By employing Taylor approximation of first order, one can write

A -1 ) ~(l-1
IJ.. NIJ( )+M()(y ( ))

with MY = (llng(l)E(l)l/ ? where Sﬁl) denotes the usual generalized ridge regression hat-matrix.

This can be expressed as a recursive process
A(l A(l-1 [ A(l-2 -1 A2
/,t() ~ a4+ M()[(y il ) — M( )(y )]

with base case ¥ ~ M©y.
This recursive process can be used to obtain the Hat-matrix H 51), for which the approximation

~() . o
i) ~ HYy

holds.

Since in our application the update selection process is limited to the fixed effects, the construction
of the Hat-matrix differs from the one outlined by [35]. Thus, in the following we will derive the
appropriate Hat-matrix for our purposes, corresponding to the /-th iteration step and the r-th fixed
effect component.

The Hat-matrix for the global intercept model used in the initialization of the parameters is
computed as

MO =1y - Iy - M)y - M)

with

MO =ZC(Z'WZ +Q,")'Z’W
and

M<°> XX'WX)'x'w

where X =1y and W = DX7'D’.
As described above, the Hat-matrix of each r-th fixed effect is derived in a recursive manner as

HY = Iy~ (Iy - M)y = M;")Iy = M) . (Iy = M),

where
M =1Iy—y-vS))

and

0 _ 1/2 12% (v v/ \-1¥ 1/25-1/2
SO =TPWIPR (X, W X)X, W s

with X, = [1, X,].
The M ;l A corresponds to the selected fixed effect ¢ of the respective previous iteration with interval
h=1,2,... and is computed as

rand

M{™ = Iy ~ Iy = vS§) Uy = vS(")
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with

G- _ y1/2 pyif2
£t

(-h) (l—h)Xt(XtW(l—h)X;)_lX,Wl/z xo12

(I-h)=(-h)

and

S(lfh) — 21/2 W1/2

, 1 L2 v—1/2
rand enWinZCZWinZ + Q) Z'W &

(I-h)=(-h)*

In order to obtain the degrees of freedom in the selection of the optimal iteration, the Hat-matrix is
computed in a similar manner as

H" =Iy-Iy-M)Iy- M)y - M) Iy - M?).

The M ﬁl_h) with i =0, 1,... corresponds to the best performing fixed effect for the current iteration as
well as for the respective previous iterations. The computation is the same as noted above.

Standard errors. Following [34], approximate standard errors can be computed for each iteration /
based on the global hat matrix H® which also serves for tuning. Let C” denote the matrix that achieves
the final coeflicient estimate for component ﬁﬁ”, i.e. Bﬁ” ~C 51) y. See [13, p. 40] for a detailed derivation
of C. With cov(y) = X,

cov(Cﬁl)y) = Cﬁl)cov(y)(C(rl))T

yields approximate standard errors for BY. However, this procedure neglects any uncertainties arising
from the variable selection process and, thus, may lead to biased estimates. An alternative approach
relies on empirical bootstrapping, where data is resampled B times with the cluster-structure preserved.
Standard errors can be derived as empirical estimates from the B sample-estimates. We apply this
procedure for the data examples in Section 4 with B € {100, 1000}.

3. Simulation study

In the following section we evaluate the performance of the 1bbGMM algorithm on simulated data
sets. We compare its performance regarding the estimation of the fixed effects as well as the
estimation of the covariance of the random effects to the bGLMM algorithm. Furthermore, we evaluate
its performance regarding variable selection. We look at various scenarios in which cluster-constant
covariates are present and also consider the results of the glmmPQL function from the MASS package as
a type of benchmark performance representing conventional estimation approaches. The glmmPQL
function iteratively calls on the the 1me function from the nlme package [27].

The simulation settings are predominantly based on the simulation studies that were conducted
by [35] as well as [11, 12]. As effect selection alongside the estimation of random components is
of high interest in this contribution, we consider varying values for the number of noise variables p
as well as for the random effects variance 0'227 and look at Poisson and Bernoulli data, as those are
the distributions implemented in both the bGLMM and 1bbGMM algorithm. Furthermore, we are mostly
focusing on random structures consisting of random intercepts only. This is sensible since random
intercept models are the most prevalent in practical applications.

Both bGLMM and 1bbGMM are employing the BIC as the selection criterion across the whole study.
For the bGLMM algorithm, we set v = 1 as suggested by [35] to decrease the computational effort without
any significant loss of power. We set the maximum number of iterations for both to /,,,, = 500.
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For the evaluation of the estimation accuracy we look at the mean squared errors (mse) for 8 and

op respectively:

mseg = ||B —ﬁllz, mseq, = (0p — é'b)z.

We also evaluate the performance of variable selection for the two boosting algorithms. The false
positive (f.p.) rate reports how many of the noise variables were selected as informative. The false
negative (f.n.) rate displays how many of the actually informative covariates were kept at zero and
discarded as noise. False negatives are of special interest, as the wrongly identified random effects may
result in actual informative effects not being selected due to the biased random effects estimates. Since
the g1lmmPQL function estimates all covariates, it is not capable of variable selection and consequently
disregarded for this part of the evaluation.

All presented results are averaged over 100 independent simulations from each single scenario, i.e.
each combination of p and 0'[%. This is a popular choice in the model-based boosting literature and a
good balance between meaningfulness and manageable computational burden. Variability of the results
is in general low, as can be traced in [35] or [11] which is expected to hold in the present study as well.
However, an additional investigation regarding varying monte carlo errors for different numbers of
independent simulation runs is presented in Section 3.5.

While the predictive performance on new data is also of high interest, this evaluation is omitted in
the present contribution as the wrongly identified random effects lead to biased effect estimates but not
necessarily to wrong model fits. This is the case since the biases of random and fixed effects cancel
each other out and only the direct interpretation of the effects tends to be faulty, which can be seen
in the data example discussed in the introduction. However, as the algorithm is tuned according to
information criteria and in addition overcomes the problematic behaviour by bGLMM with respect to the
identification of fixed and random effects, it is expected that the method will also perform decent on
test data.

3.1. Poisson data

First, we simulate data using a random intercept Poisson model:

nij = Xiji3: + bi.

p
t=1
Here, the link function relating the linear predictor and the distribution parameter is the log link
function, so that
Elyi;] = exp(mij) = Aij,  yij ~ Pois(4;)).

We have a balanced design of i = 1,...,40 subjects with respective j = 1,...,10 observations per
subject. For the number of fixed effects we consider the different settings of p € {5, 10,20, 50}.
Throughout all settings, the respective fixed effects are 1 = —4,8, = —=6,63 = 10,5, = Sand 5, = 0
fort =35, ... p. We also construct two of the covariates as cluster-constant, so that for # = 2,4 we have
Xjy = Xy = --- = Xjor- The vectors xl’j = (Xjji, ..., Xjj50) follow a Uniform distribution so that
x; i~ U[-0.14,0.14]. The random intercepts are constructed as b; ~ N(0, ai). For (712, we consider the
different settings of o, € (0.4,0.8,1.2). Overall, this results in twelve different simulation scenarios
for the evaluation of the performance of our three approaches. Per each distinct setting, we simulate
and evaluate 100 independent data sets.

AIMS Mathematics Volume 11, Issue 1, 1675-1700.



1688

The results for the estimation of # are summarized in Table 2. One can see that 1bbGMM clearly
outperforms bGLMM throughout all scenarios with respect to mseg. In comparison to the estimation
via glmmPQL the 1bbGMNM algorithm achieves a mostly similar performance, with a generally superior
showing for the higher-dimensional cases, especially for p = 50.

Table 2. Results for mseg, mse,, and variable selection properties with glmmPQL, bGLMM and
1bbGMM approaches on simulated Poisson data; bold values indicate scenarios where 1bbGMM
outperforms bGLMM.

glmmPQL bGLMM 1bbGMM
op D | mseg mse,, mseg  mse,, f.p. fin. | mseg mse,, fp. f.n.
04 5 978 0.006 | 4950 0.273 0.55 033 | 867 0.003 0.16 0.02

04 10| 743 0.006 | 5392 0311 0.15 034 | 698 0.004 0.17 0.02
04 20| 2071 0.006 | 53.84 0.244 0.07 035 | 1347 0.004 0.15 0.03
04 50| 3125 0.014 | 5628 0.289 0.05 038 | 1291 0.004 0.12 0.03
0.8 5 [2394 0.014 | 11942 0.216 0.66 0.28 | 19.55 0.013 0.16 0.04
0.8 10 | 2446 0.015 | 5581 0.214 0.18 033 | 21.83 0.013 0.14 0.02
0.8 20| 1742 0.015 | 5509 0.198 0.09 033 | 1342 0.015 0.12 0.03
0.8 50 | 2485 0.015 | 5748 0.232 0.07 036 | 13.19 0.012 0.12 0.03
1.2 5 [ 2736 0.033 | 62.18 0.146 0.69 0.23 | 25.72 0.033 0.09 0.03
1.2 10 | 5871 0.032 | 59.28 0.156 0.21 0.24 | 41.99 0.037 0.19 0.03
1.2 20 | 3757 0.066 | 5698 0.136 0.11 0.25 | 28.79 0.044 0.14 0.03
1.2 50 (9179 0.031 | 111.65 0.119 0.07 0.28 | 68.06 0.041 0.11 0.03

Table 2 additionally depicts variable selection properties where 1bbGMM consistently shows a false
positive rate of around 10-20%. This is a slightly worse showing compared to bGLMM in the
higher-dimensional settings, but still overall effective. With respect to false negatives 1bbGMM
generally achieves rates of 1-3% which is a clear improvement compared to bGLMM. While the false
positives still tend to be quite high in lower dimensional settings, this is a known issue for
model-based gradient boosting as the greedy nature of the fitting algorithm tends to expose higher
selection rates of noise variables in cases with small numbers of overall features. This is discussed
broadly in the statistical boosting literature and several efforts have been made in the past years to
further reduce the amount of falsely selected noise variables. These approaches vary from
probing [15], where the algorithm is stopped as soon as an artificially constructed shadow-variable
without any information gets selected, over deselection [33], where selected variables with
sufficiently small impact on the overall reduction of predictive risk get selected out of the model
again, to subspace boosting [32], which combines several variables in badges and, thus, is able to
decrease the false positives rate. Further approaches are also developed, e.g. stability selection [16] or
modified selection criteria [28].

Similar results are revealed regarding the estimation of o, as also shown in Table 2. Again, we
can observe that the 1bbGMM algorithm clearly outperforms bGLMM in terms of mse,, and generally
achieves similar results to glmmPQL.

Figure 2 illustrates the boosting process of the 1bbGMM algorithm. It displays the coefficient paths
for an example simulated data set where o, = 0.8 and p = 5 with one noise variable. One can see that
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there does not appear to be any systematic difference in the selection process between the coeflicients
of the cluster-varying and the cluster-constant variables. The coefficient with the biggest absolute value
in the simulation setting (V3) is updated first. The coefficient with the second highest absolute value
(V2), which belongs to a cluster-constant variable, is updated next. Overall, the coefficient paths are
stable and converge. The coeflicient belonging to the noise variable stays at zero and does not receive
an update.

Iteration

Figure 2. Example for 1bbGMM Boosting Process on Poisson Data (o, = 0.8).

Figure 3 displays this plot for the same data set when employing the bGLMM algorithm. Here, one
can observe that the coefficients belonging to the cluster-varying covariates are favored in the updating
process with the updates for the coefficients belonging to cluster-constant covariates receiving fewer
and weaker updates resulting in them staying close to zero.

m - B - BE- B« 0 -

-5

Iteration

Figure 3. Example for bGLMM Boosting Process on Poisson Data (o = 0.8).

Table 3 shows a comparison between the mseg for the cluster-constant (V2,V4) and cluster-varying
(V1,V3) covariates for all three methods for o, = 0.8 and p = 5. One can see that for bGLMM the cluster-
constant covariates V2 and V4 show a much higher mseg than the cluster-varying covariates. This
difference - while still present - is not as pronounced with the other two methods. Table 3 additionally
reveals the apparent cause of the increased mseg for bGLMM. The cluster-constant variables show an
extremely high percentage of false negatives as a result of having been neglected in the selection
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process. Again, one can see that for 1bbGMM this issue is largely resolved by achieving much lower
false negatives rates.

Table 3. mseg and share of false negatives separated for each covariate with Poisson data
where 0, = 0.8 and p = 5.

glmmPQL bGLMM 1bbGMM
msepg, msepg, f.n. msepg, f.n.
Vi 0.26 0.35 0.00 0.53 0.00
V2 17.96 92.87 0.57 13.28 0.08
V3 0.41 0.44 0.00 0.47 0.00
V4 4.97 25.16 0.53 5.16 0.06
V5 0.23 0.17 - 0.02 -

3.2. Bernoulli data

We also simulate data using a random intercept Bernoulli model:

nij = X;jBr + b,

p
t=1

where we apply the appropriate link function so that

exp(7;;)
Ely;] = ——————— =m;, yi; ~ B(1,7;)).
[ij] T+ exp(n) mijs - yij ~ B(1,7j)
We again consider a balanced design of i = 1,...,40 subjects with respective j = 1,...,10

observations per subject. For the number of fixed effects we consider the different settings of
p € (5,10,20,50). The respective fixed effects are g, = —=5,8, = —10,8; = 15,8, = 8 and 5, = O for

t =35,...p. We again construct two of the covariates as cluster-constant, so that x;;;, = x5, = -+ = x50/
for t = 2,4. The vectors x;j = (Xij1»- - ., Xijs0) follow a Uniform distribution so that x;j ~ U[-0.1,0.1].
The random intercepts are again constructed as b; ~ N(O, O'i) with the different settings of

op € (0.4,0.8,1.2). We again arrive at twelve different simulation scenarios for the evaluation of the
performance of our three approaches with 100 simulated data sets per distinct setting.

The results regarding B, 0 and selection properties are summarized in Table 4. Please note that in
the case of Bernoulli data, the 1bbGMM algorithm employs the simpler approximation for obtaining the
df that was also employed by [11] (details in Section 3.3). The overall estimation accuracy has
suffered for all three methods in comparison to the previous simulations of Poisson data. This is owed
to Bernoulli data containing less information within itself. However, bGLMM seems to have
deteriorated less and achieves somewhat consistent results in comparison to the Poisson case. Overall,
the 1bbGMM algorithm is still able to outperform bGLMM in terms of mseg in the settings where
op € (0.4,0.8). Furthermore, 1bbGMM also again greatly outperforms glmmPQL in the cases of
higher-dimensional data. For o, = 1.2 however, the performance of 1bbGMM declines, evidently due
to a surge in the occurrence of false negatives. Across all settings the boosting methods generally
outperform the glmmPQL approach in terms of mseg, most notably in the high-dimensional cases.
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Table 4. Results for mseg, mse;, and variable selection properties with glmmPQL, bGLMM
and 1bbGMM approaches on simulated binomial data; bold values indicate scenarios where
1bbGMM outperforms bGLMM.

glmmPQL bGLMM 1bbGMM
Op P mseg  mse,, | mseg  mse,, f.p. fn. mseg  mse,, f.p. fn.
04 5 88.24 0.056 | 113.40 0.017 0.02 0.17 | 46.63 0.068 0.04 0.09

04 10 | 19891 0.071 | 113.88 0.017 0.01 0.15| 47.66 0.069 0.05 0.10
04 20| 16225 0.077 | 116.07 0.018 0.01 0.17 | 43.83 0.076 0.05 0.09
04 50 | 375.06 0.09 | 112.61 0.020 0.01 0.16 | 7498 0.085 0.05 0.10
08 5 | 6526 0.047 | 117.88 0.048 0.00 0.16 | 6947 0340 0.02 0.13
0.8 10 | 138.01 0.037 | 128.88 0.048 0.01 0.21 | 9095 0.296 0.02 0.22
0.8 20 | 146.02 0.060 | 118.65 0.042 0.01 0.20 | 76.57 0339 0.04 0.17
0.8 50 | 378.98 0.104 | 12442 0.054 0.01 0.18 | 89.59 0384 0.04 0.16
1.2 5 | 97.11 0.067 | 12944 0.195 0.01 0.21 | 177.88 0374 0.01 043
1.2 10 | 498.83 0.064 | 13476 0.196 0.02 0.22 | 17886 0.379 0.01 0.43
1.2 20 | 19321 0.068 | 126.99 0.212 0.02 0.20 | 164.66 0.473 0.01 0.38
1.2 50 | 542.87 0.145 | 136.06 0.211 0.02 0.23 | 176.76 0.471 0.02 0.38

3.3. Contemplation of df approximation

As mentioned, [11] used a simpler method to estimate degrees of freedom for model complexity,
counting the number of non-zero B; # 0 (for j < p) and variance-covariance parameters. While this
method is computationally efficient compared to Hat-matrix approaches, it is less methodologically
rigorous. Table 5 shows estimation results on Poisson data using 1bbGMM with this simpler degrees of
freedom approximation. The results for mseg, mse,, and false negative rates are comparable to those
in Table 2, while the false positive rates are improved.

Table 5. Results for mseg and mse,, with 1bbGMM on simulated Poisson data employing the
simple approximation of df.

1bbGMM
Op p mseg f.p. fn. mse,
0.4 5 9.737 0.02 0.023 0.004
0.4 10 6.621 0.03 0.023 0.004
0.4 20 13.927 0.027 0.03 0.004
0.4 50 12.444 0.024 0.03 0.004
0.8 5 20.641 0.020 0.040 0.012
0.8 10 22.242 0.03 0.028 0.013
0.8 20 12.393 0.017 0.035 0.015
0.8 50 12.923 0.025 0.04 0.012
1.2 5 26.562 0.03 0.035 0.033
1.2 10 45.249 0.037 0.045 0.036
1.2 20 29.271 0.031 0.033 0.044
1.2 50 71.933 0.026 0.038 0.04
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For the simulation study on Bernoulli data, we chose to employ the simple approximation instead
of the approximation via Hat-matrices to arrive at our presented estimation results. This decision was
made due to an issue arising when deriving the Hat-matrices on Bernoulli data. As previously
outlined, for the selection of the optimal iteration in the boosting process the Hat-matrix of each
iteration [ is obtained and the following approximation should hold 4 ~ H”y. Figures 4 and 5 show
an illustration of this approximation along the boosting process for simulations of Gaussian and
Poisson data respectively. The data set at hand is simulated with o, = 0.4 and we look at the
approximation after iterations / € (20, 80, 120, 160). The red line denotes the bisector where both
sides of the formula are equal. One can see that for these two distribution the approximation holds
well across the iterations. Consequently, the employment of the Hat-matrix for obtaining the df
performs adequately as well and the estimation results for Poisson data as presented in Table 2 are

satisfactory.
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Figure 4. Plots of 1 against H"y for Gaussian data with o, = 0.4 and [ € (20, 80, 120, 160).
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Figure 5. Plots of 4" against H”y for Poisson data with o7, = 0.4 and [ € (20, 80, 120, 160).
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In contrast, Figure 6 illustrates the approximation accuracy for the simulated Bernoulli data. Here
it is apparent that the approximation does not hold as well across all iterations and instead shows some
scattering. Consequently, the employment for obtaining the df does not perform well either and is not
preferable over using the simple approximation.
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Figure 6. Plots of g against H”y for Bernoulli data with o, = 04 and [ €
(20, 80, 120, 160).

3.4. Computational effort

We showcase the computational advantages which 1bbGMM holds over bGLMM by conducting a
simulation study with varying numbers of clusters. The setup mimics Section 3.1 using normal data
with p = 5, 0, = 0.8 and numbers of clusters n = 20,40, ...,200. The progression of averaged
computation times (over 10 independent runs) with increasing number of clusters is depicted in
Figure 7.

1200

—— bGLMM
7 — IbbGMM

800 1000
1 1

Average computation time (s)
600
1

200
1

T T T T
50 100 150 200

Number of Clusters

Figure 7. Computation times for 1bbGMM and bGLMM with varying number 7 of clusters.
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While both competitors start fairly equal in cases with a low number of total observations, the
computational effort for bGLMM quickly adapts to exponential increase as the demanding calculations
for model complexity, which bGLMM executes multiple times within every single boosting iteration,
quickly state a large share of the total computational effort. However, 1bbGMM clearly profits from the
disentangled and less complex calculations for model complexity which is revealed by the simulation,
as computation time increases linearly in n.

3.5. Monte Carlo error

To justify the choice of 100 independent repetitions we investigate different amounts of total
simulation runs with respect to the variability of the estimation precision. As proposed in [19], we
focus on a computationally managable scenario with p = 5 covariates overall, similar as in
Section 3.4. The 1bbGMM routine is applied to r independently generated data sets and mseg
computed. Figure 8 depicts the varying interquartile range (IQR) of msez for r = 50, 60,...,150
alongside with the Monte Carlo error (MCE), which is calculated as the empirical standard deviation
of all r mseg values weighted by 1/ +/r.
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Figure 8. Variability in mseg across different choices for r. Numbers above boxes show the
corresponding IQR, red crosses depict the MCE.

As Figure 8 reveals, no drastic change in overall variability of msesz estimates can be observed,
while the MCE slowly decreases with additional independent simulation runs. However, the steady
variability yields no drastic improvement in simulation precision for computationally feasible choices
of r. Since, in addition, the simulation study itself conducts 12 different scenarios with r = 100
repetitions each, the specific choice of r can be stated as robust.

4. Data applications

We showcase the improvements of the 1bbGMM routine by analyzing two medical data sets. Both
analyses are by no means meant to be conclusive but rather intend to show how the newly designed
algorithm manages to overcome the identification issues, which are present in bGLMM. Thus, both of

the applications include significant and cluster-constant covariates which are severely underestimated
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by bGLMM, one of them being the AIDS data [1] which already served as motivational example in the
beginning.

4.1. CD4 data

The CD4 data set introduced in the beginning is analyzed again, this time employing the 1bbGMM
algorithm.
We use the BIC as the information criterion and for the learning rates set

v=v,=0.1.

The maximum number of boosting steps /,,. has been chosen as 500. As mentioned, we expect to
observe a significant estimated effect of the variable noAIDS/AIDS on the response variable Number
of CD4 cells. The estimation results of the 1bbGMM algorithm are presented in Table 6. The optimal
boosting iteration selected by the BIC was [,,, = 271. For easy comparison, the table also contains the
previous estimation results that were presented in Section 1 for the bGLMM and g1mmPQL methods. The
bGLMM algorithm is specified with the same settings as 1bbGMM where v = 0.1 and BIC is employed as
the criterion and /,,,, is set to 500. For bGLMM the optimal iteration is selected as [,,, = 166.

One can see that 1bbGMM achieves a similar result to glmmPQL and estimates a clear effect for the
noAIDS/AIDS covariate, one which bGLMM fails to detect. Additionally, Table 6 shows the p-values for
the g1lmmPQL estimation results for the fixed effects. Here, one can see that in terms of the conventional
understanding of significance the cluster-constant variable noAIDS/AIDS is shown as highly significant
as well.

Furthermore, Figure 9 presents the boxplots for the random intercept estimates of subjects with
categories AIDS and noAIDS. One can see that in the case of 1bbGMM the random intercept estimates do
not compensate for the effect of the cluster-constant variable (compare Figure 1). For this application,
though it may be trivial in terms of meaningfulness, the 1bbGMM algorithm was evidently able to rectify
the issue presented by cluster-constant covariates.

o>

I I
AIDS noAIDS

Figure 9. Boxplots of b estimates for noAIDS/AIDS with 1bbGMM
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Table 6. Estimation results for  on Seizure data set.

glmmPQL (p-value) bGLMM 1bbGMM (sd)

time -0.028 (£0.01) -0.029 -0.016 (0.01)
treatment 0.127 (0.23) 0.000 0.111 (0.10)
gender -0-061 (0.74) 0.000 0.000 (0.19)
noAIDS/AIDS 1.163 (£0.01) 0.202 1.244 (0.12)
intolerance 0.094 (0.48) 0.010 0.089 (0.11)

4.2. Seizure data

For another application we analyze the Seizure data [21], which contains data from a clinical trial
of 59 epileptics. The dependent variable is the number of observed epileptic seizures in four two-weeks
intervals. As explanatory variables we include time, indicator of the fourth visit, treatment, age (log),
and a baseline number of observed seizures (log). The last three variables are cluster-constant. We
again employ the BIC as the information criterion for 1bbGMM as well as bGLMM and the learning rates
are setto v = v, = 0.1. We set [, = 500. Table 7 presents an overview of the estimation results for
the fixed effects when employing g1lmmPQL, bGLMM and 1bbGMM methods. The optimal iteration was
lopr = 294 for 1bbGMM and [,,, = 26 for bGLMM. In the case of 1bbGMM, standard errors were again
computed based on B = 1000 independent resamples according to Section 2.4.2.

Table 7. Estimation results for # on Seizure data set.

glmmPQL (p-value) bGLMM 1bbGMM (sd)

time -0.030 (0.51) -0.005 -0.018 (0.04)
fourth -0.102 (0.39) -0.069 -0.096 (0.11)
treat -0.270 (0.08) -0.119 -0.291 (0.15)
age 0.378 (0.28) -0.045 0.177 (0.26)
base 1.023 (£0.01) 0.174 0.960 (0.10)

Again, one can observe that bGLMM underestimates the cluster-constant covariates, whereas 1bbGMM
delivers estimates that are similar to glmmPQL. Especially for the baseline variable, 1bbGMN is able to
detect a strong effect that is much more in line with the g1lmmPQL results. The p-values for the glmmPQL
estimation reveal the baseline covariate to appear highly significant. Hence, their underestimation by
bGLMM is especially notable.

5. Discussion

The new 1bbGMM algorithm has successfully implemented the measures proposed by [11] to deal
with cluster-constant covariates in GLMMs. The evaluations based on simulations as well as the CD4
data and Seizure data show that 1bbGMM is generally able to solve the problem of the bGLMM algorithm,
where cluster-varying covariates are favored in the boosting process. The changes to the random effects
update process, such as the employment of the correction matrix, appear efficient for rectifying the
issue of the random effects taking over the boosting updates. However, 1bbGMM seems to show the
most promising results when applied to Poisson data and random structures consisting of only random

AIMS Mathematics Volume 11, Issue 1, 1675-1700.



1697

intercepts for now. In the case of Bernoulli data, the employment of 1bbGMM seems only situationally
advantageous in comparison to bGLMM, showing an inferior performance for the settings of o = 1.2
and for the estimation of o itself. Furthermore, 1bbGMM overall retains the advantages of boosting
methods over the conventional estimation approaches and shows high functionality in terms of variable
selection as well as estimation accuracy in high-dimensional data cases.

While the new algorithm is able to extend the usage of the 1bbLMM algorithm [11] from LMMs to
GLMMs by including the new distributions of Poisson and Bernoulli, as of now it is limited to these
distributions. Nevertheless, it should be noted, that the bGLMM algorithm is also limited to them as they
are the most common distributions in practical usage of GLMMs. The implementation of denoting
the model complexity via the usage of Hat-matrices has been overall successful, though it might still
need some reworking for the application on Bernoulli data. While entailing an increased computational
effort, this method for obtaining the degrees of freedom is a more theoretically sound and tested method
rather than the simple approximation and should consequently offer a more general and vast application
potential. This work mostly focused on random intercepts since it is the most common and practical
usage. When including random slopes 1bbGMM shows a superior performance with regard to the fixed
effects estimation in comparison to bGLMM. For the estimation of Q some further reworking is still
required. Overall, most of the self-imposed limitations on the 1bbGMM algorithm are sensible and do
not restrict its practical use for most real-life applications. In terms of performance, for now 1bbGMM
seems to provide the highest benefit for applications on Poisson data when cluster-constant covariates
are present. Some potential extensions arise from the limitations outlined in the previous section. One
of which is including other distributions of the exponential family, such as the Gamma distribution.
Another one is a further revision of the inclusion of random slopes in order to improve on the present
issue of the covariance estimation. This then also opens up the option of additionally implementing a
selection process for the random effects. Another aspect that could be looked at for a further expansion
of 1bbGMM is the incorporation of non-linear predictor functions, such as the estimation of smooth
effects based on P-splines. This was also outlined by [35] and would offer even more flexibility and
potential applications.
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