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1. Introduction

Fixed point theory has long been recognized as one of the fundamental pillars of nonlinear analysis,
with deep applications in areas such as differential equations, dynamical systems, optimization,
and iterative methods. Since Banach’s celebrated contraction principle [4], numerous authors have
introduced alternative contraction conditions that extend or generalize the classical setting while
preserving the existence and uniqueness of fixed points as well as the convergence of the associated
Picard iteration. Among the most influential contributions are those of Kannan [5, 6], Chatterjea [7, 8],
Reich [9-12], Sehgal [13], and others who established fixed point theorems under weaker or
structurally different contractive assumptions. Within this rich landscape, Ciri¢’s seminal works [2, 3]
occupy a central position. Ciri¢ introduced two broad and highly flexible classes of contractions—now
known respectively as Cirié-type and generalized Cirié-type mappings—in which the contractive
condition depends not only on the initial distance ©(6, ) but also on mixed distances involving the
images of the points under the mapping. These formulations unify several earlier contractive structures
and offer a powerful framework capable of handling mappings that are not necessarily continuous or
that fail to satisfy the classical Lipschitz condition. Parallel to these developments, Singh [14, 15]
proposed a remarkable iterative framework in his generalization of Kannan-type mappings. Instead
of imposing a contraction on the mapping F itself, Singh required the contraction condition to
hold for a certain iterate F* of the mapping. This innovative perspective preserves the essence of
contractive behavior while significantly enlarging the class of mappings that admit fixed points. Recent
works, including [16], have demonstrated the effectiveness and unifying power of Singh’s approach in
producing fixed point results for various generalized contractions. Beyond its theoretical significance,
fixed point theory plays a crucial role in applied mathematics and engineering. For example, it is
used in Nonlinear analysis: for proving the existence of solutions to integral and differential equations.
Optimization: convergence analysis of iterative algorithms. Dynamic systems: stability analysis and
the study of equilibrium points. The generalizations introduced in this work may therefore contribute
to broadening the scope of these applications, particularly for mappings that are not contractive in the
classical sense but become so under iterates [17-21]. Motivated by Singh’s iterative methodology
and by the structural flexibility of Ciri¢ contractions, the present paper aims to merge these two
powerful frameworks. More precisely, we introduce two new classes of operators—namely, the
p-Ciri¢ contraction and the generalized p-Ciri¢ contraction—in which the contractive inequality is
imposed on the p-th iterate F¥ of the mapping rather than on F itself. These definitions naturally
reduce to the classical Ciri¢ contractions when p = 1, and they retain the intrinsic structure of
both Ciri¢ and Singh-type mappings. Our main results establish comprehensive fixed point theorems
guaranteeing the existence, uniqueness, and global convergence of the Picard iteration for both newly
introduced classes. The proofs rely on defining an auxiliary operator S = F* and showing that S
satisfies the classical (or generalized) Ciri¢ contractive conditions. By invoking Ciri¢’s fixed point
theorems [2, 3], the fixed point of S is obtained and subsequently shown to coincide with the unique
fixed point of 7. This leads to unified and elegant convergence results, subsuming as special cases
the fixed point theorems of Banach [4], Kannan [5, 6], Chatterjea [7, 8], Reich [9-12], Sehgal [13],
and the original Ciri¢ contractions [2, 3], as well as the recent Singh-type results in [16]. To further
illustrate the applicability and sharpness of our approach, we provide concrete examples defined on
compact intervals, explicitly compute their iterates, verify the proposed contractive conditions, and
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demonstrate numerical convergence of the Picard process. These examples demonstrate that the
proposed classes substantially enlarge the family of admissible contractive mappings while preserving
strong convergence properties. The remainder of the paper is organized as follows. Section 2 recalls
the classical definitions of Ciri¢ and generalized Ciri¢ contractions. Section 3 introduces the notions
of p-Ciri¢ and generalized p-Ciri¢ contractions and presents the main fixed point theorems together
with complete proofs. Section 4 provides illustrative examples and numerical simulations. Table 1 and
Table 2 illustrate the convergence of Picard iterations, while Figures 1-9 visually present the behavior
of the mappings and their convergence. Section 5 concludes the paper and outlines perspectives for
further extensions.

2. Preliminaries

In this section, we attempt to present Ciri¢ contractions definitions of contractions in their classical
form.

Definition 2.1 (Ciri¢ generalized contractive condition [1,2]). Let (F, D) be a metric space and let
F Y — Y. There exist nonnegative functions «a, 3,7y, 0 satisfying

sup {a(8, 9) + B, ) + y(6,9) + 266, 9)} < k < 1, (2.1)
0,9e¥Y

such that, for each 6,9 € P,
DFO),F(1)) < a8, D6, ) + B8, 1) D(6,F(0))
+¥(0, H D, F(1)) (2.2)
+6(6,9) [D(, F(9)) + D(I, F(6))].

Definition 2.2 (Generalized Ciri¢ contraction [1, 3D. Let (F, D) be a metric space, and let F : ¥ — V.
There exists a constant w, 0 < w < 1, such that, for each 0,9 € ¥,

D(F(O),F(D)) < wmax {D(G, 1), D(,F(0)), DD, F()), DO, F(13)), DI, F(H))}. (2.3)
3. Main results

In this section, we attempt to expand and generalize Cri¢ contractions, in light of the approach
adopted by Singh in his generalization of Kannan’s contraction, and we follow his approach in [16].

Definition 3.1 (p—éiric’ generalized contractive condition). Let (W, D) be a metric space, and let F :
Y — Y. There exist nonnegative functions a, 3,7y, 6, and an integer p > 1 satisfying (2.1)

sup {a(6, ) + B(6,9) + y(6,9) + 26(0,3)} <k < 1,
0,9e¥Y

such that, for each 6, € P,
DFLO),F () < a(6,)D(O,9) + B(6,9)D(O, F (0))
+¥(6, H D, FP (1)) (3.1)
+0(0, %) [D(O, FP (1)) + DI, FF(9))].
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Theorem 3.1 (Existence and uniqueness of fixed point). Let (\¥, D) be a complete metric space and let
F : ¥ — ¥ be a continuous mapping. If F is a p-Ciri¢ contraction. Then,

F has a unique fixed point u* € V.
For any 6, € V¥, the sequence {6,} defined by 6,,; = F(8,) converges to u*.

Proof. We prove the theorem in several steps.

Step 1. Definition of the auxiliary mapping S
We define the mapping S : ¥ — ¥ by
S(0) = F(0),
where F¥ denotes the p-th iterate of F.
Step 2. Verification that S satisfies the classical Ciri¢ condition
Since F is a p-Ciri¢ contraction, it satisfies inequality (3.1).

DF*(6), F(9)) < a6, DO, D) + B6, DO, F(6))
+y(6, ) D, F(9))
+6(6,9) [D(0, F(9)) + D, FP(O))] .

Substituting S = F¥, we obtain

DS (6), S () < a(6,9)D(6,9) + B8, 9)D(6, S (F))
+ (6, HD(, S (9)) (3.2)
+6(6,9) [D(0, S () + D@, S ()]

This is exactly the classical Ciri¢ contraction condition, Definition 2.1 for the mapping S ..

Step 3. Application of Ciri¢’s theorem to S

Since, (¥, D) is a complete metric space. S satisfies the classical Ciri¢ contraction condition (2.1)

sup {a(6,7) + B(6,F) + y(0,9) +26(0,9)} <k < 1.

0,9€¥Y

Ciri¢’s fixed point theorem guarantees that S has a unique fixed point u* € . For any 6, € ¥, the
sequence S"(6p) converges to u*.
That is

SWy=F (") =u".
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Step 4. Demonstrate that u* is a fixed point of F

We now prove that F(#*) = u*. Observe that

F(u*) = F(F°(u")) since FP(u*) = u*
— Fp+1 (I/l*)
= FP(F(u")) by commutativity of composition
= S(F(u")).

Thus,
S(Fu*) = F(u).

This means that F(u*) is a fixed point of the mapping S. But S has a unique fixed point «*, therefore,
F(u*) =u".

Hence, u* is a fixed point of F.

Step 5. Uniqueness of the fixed point of F

Suppose v* € ¥ is another fixed point of F, i.e.,
FOv') =v".

Then,
FFovH=v" = SK)=v.

Thus, v* is a fixed point of the mapping S. But S has a unique fixed point u*, so,
vV =u.
Therefore, the fixed point of F is unique.

Step 6. Convergence of the Picard sequence

We now prove that the Picard sequence {6,}, defined by 6,,; = F(6,) converges to the unique fixed
point u* for any initial point 8y € Y. From Step 3, we have shown that the auxiliary operator S = F*
satisfies the classical Ciri¢ contractive condition (Definition 2.1), and therefore, possesses a unique
fixed point u*. Moreover, for any 6, € ¥, the sequence {S"(6y)} = {F"(6y)} converges to u*. For any
n € N, we apply the division algorithm to express n uniquely as

n=kp+r, wherekeNandO<r<p.

Consequently,
6, = F'(680) = F™"(6y) = F' (F"(60)) = F' ("(60)) .

By hypothesis, F is continuous on ‘Y. Hence, for each fixed r with 0 < r < p, the mapping F”" (being a
finite composition of continuous functions) is also continuous.
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Now, taking the limit as n — co (which forces k — oo since r remains bounded), and exploiting the
continuity of F”, we obtain

lim 6, = lim 7 (S*(6)) = ( Jim Sk(HO)) .

n—oo

Since limy_,. S*(6y) = u*, it follows that
Fr (lym S"(Qo)) - Fru).

Because u* is a fixed point of F (established in Step 4), we have F(u*) = u*, and consequently F"(u*) =
u* for every r > 0. Therefore,

lim 6, = u".

n—oo

Thus, the Picard iteration converges globally to the unique fixed point u*.

Step 7. Conclusions

We have thus proved
Existence: F has a fixed point u*.
Uniqueness: u* is the unique fixed point of F.
Convergence: The Picard sequence converges to u* for any initial point.
This completes the proof. O

Definition 3.2 (Generalized p-éirié contraction). Let (¥, D) be a metric space and let F : ¥ — Y.
There exists a constant w with 0 < w < 1 and an integer p > 1 such that, for each 6,9 € ¥,

DF(H),F* () < wmax {TD(H, ?), D(O,FP(0)), D(F, F*(9)), D(O, F* (1)), D(Y, FP(H))}. (3.3)

Theorem 3.2 (Existence and uniqueness of fixed point for generalized p-Ciri¢ contraction). Let (¥, D)
be a complete metric space, and let F : ¥ — P be a continuous mapping. If F is a generalized p-Ciri¢
contraction. Then,

F has a unique fixed point u* € V.
For any 6, € ¥, the sequence {6,} defined by 6,,; = F(6,) converges to u".

Proof. We prove the theorem in several steps.

Step 1. Definition of the auxiliary mapping S
We define the mapping S : ¥ — ¥ by

S(6) = F(0),
where ¥ denotes the p-th iterate of F.
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Step 2. Verification that S satisfies the classical generalized Ciri¢ condition

Since F is a generalized p-Ciri¢ contraction, it satisfies inequality (3.3).
DFP(O), FF () < w - max {iD(H, ?), D(O,F°(6)), D(F, F° (1)), D(, F* (1)), D(¥, F"(G))}.
Substituting S = F¥, we obtain
D(S(6),S(P) < w-max {D(G, 3), D6, S (0)), D(F, S (), DO, S (), D(H, S(@))}. (3.4)

This is exactly the classical generalized Ciri¢ contraction condition, Definition 2.2 for the mapping S ..

Step 3. Application of generalized Cirié’s theorem to S

Since, (¥, D) is a complete metric space. S satisfies the classical generalized Ciri¢ contraction
condition. 0 <w < 1.

The generalized Ciri¢ fixed point theorem guarantees that S has a unique fixed point u* € V.
For any 6, € ¥, the sequence S"(6,) converges to u*. That is

SWw)y=pFu")=u"

Step 4. Proof that u* is a fixed point of F
We now prove that F(u*) = u*. Observe that,
F(u*) = F(F°(u*)) since F°(u") = u*
= FP ()
= FP(F(u")) by commutativity of composition
= S(F(u")).

Thus,
S(Fu*) = F(u).

This means that F(u#*) 1s a fixed point of the mapping S.
But S has a unique fixed point u*, therefore,

Fu")=u".

Hence, u* is a fixed point of F.

Step 5. Uniqueness of the fixed point of F
Suppose v* € W is another fixed point of F, i.e.,
F(v') = v

Then,
FFOH=v = SO)=v.
Thus, v* is a fixed point of the mapping S. But S has a unique fixed point u*, so,

vV =U.

Therefore, the fixed point of F is unique.
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Step 6. Convergence of the Picard sequence

We now demonstrate that the Picard sequence {6,} generated by 6, = F(6,) converges to the unique
fixed point u* for any starting point 6, € ‘.

From Step 3, the auxiliary operator S = F* satisfies the generalized Ciri¢ contraction condition
(Definition 2.3) and thus admits a unique fixed point u* € Y. Furthermore, for any 6, € ¥, the
sequence {S"(6y)} = {F"(6y)} converges to u*. Given any n € N, we write n uniquely as

n=ko+r, keN,0<r<p.

Then,
0, = F"(80) = F***(8y) = F" (F*(60)) = F" (S*(6y)).

The continuity of F (assumed in the theorem) implies that each iterate F" (for 0 < r < p) is
continuous, as it is a finite composition of continuous mappings. As n — oo, we have k — oo (since r
is bounded). Using the continuity of /", we may therefore interchange the limit and the mapping

lim 6, = lim 7 (S*(6)) = F ( Jim Sk(eo)).

n—oo

Because lim;_,., S¥(6y) = u*, we obtain
Fr (gim S"(Qo)) = Fru).

Recall from Step 4 that u* is a fixed point of F, i.e., F(u*) = u*. Consequently, F"(«*) = u* for all » > 0.
Hence,
lim 6, = u".

n—oo

Therefore, the Picard iteration converges globally to the unique fixed point u".

Step 7. Conclusions

We have thus proved
Existence: F has a fixed point u*.
Uniqueness: u* is the unique fixed point of F.
Convergence: The Picard sequence converges to u* for any initial point.
This completes the proof. O

4. Illustrative examples

In this section, we present practical examples showing how certain non-contractive mappings can
become contractive when their higher iterates are considered. These examples the validity of the
theoretical results and underscore the strength of the iterative approach adopted.

Example 4.1. Let us consider the complete metric space (¥, D) = ([0, 1],]| - |) and the mapping F :
Y — Y defined by

(4.1)

0.4, if0<6<0.5;
F6) =
0.80-02, if0.5<@<1.
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Verification of Definition 3.1 with p = 2
Application of the simplified proof

Define the auxiliary mapping S(f) = F?(6). The given functions a, 8,7y, show that S satisfies
the classical Ciri¢ contraction condition. By the classical Ciri¢ Theorem, S has a unique fixed point
u* = 0.4, which is also a fixed point of F.
Computation of F?(6)

e For0<6<0.5
FO =04 = F2(0) = F0.4)=04.
e For0.5<6<1
F6)=080-02 = FZ(G) = F(0.86 —0.2).
If0.80-0.2<0.5(0.e., 0<0.875
F?(6) = 0.4.
If0.80—-0.2 >0.5(.e., 8 >0.875)

F?(6) = 0.8(0.86 — 0.2) — 0.2 = 0.646 — 0.36.

Definition of functions «,f,y, ¢
Let us define constant functions

a0,9)=03, p6,9) =02, y6,9)=0.2, 06,9 =0.1.

Verification of the sum condition

sup {a(6,9) + B(6,9) + v(0,7) +26(60,9)} =03 +0.2+0.2+2(0.1) =09 < 1.

0,9e¥Y

Comprehensive verification of Inequality (3.1) for all cases
We analyze all possible cases for 6, € [0, 1].

1) 6,9 €[0,0.5]
o FX(0) = FA(®) = 0.4,
o DFB),F(H) = 0.
2) 6€[0,05],9 € (0.5,1]
o FX(9) = 0.4,
o F2(®) = 0.4 if ¥ < 0.875, or 0.649 — 0.36 if & > 0.875,
o DFB),F(9)) < 0.24,

The right-hand side.
a(0, M) DB, 9) + 6, 9)D(O, F*(6))
+ (O, DO, FA()) + 66, 9) [ DO, F () + D, F(0))]
> 0.30 — 9] + 0.26 — 0.4] + 0.2]9 — F*()| + 0.1 [l@ —F2@)| + |9 - O.4|] .
Since, [ — ¥ = 0.5 — 0 = 0.5, the first term > 0.15, which suffices to cover 0.24 when combined

with other positive terms.
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3) 6 (0.5,1],9 €[0,0.5]
Symmetric to Case 2.
4) For 6,9 € (0.5,1]

e If both < 0.875: F*(0) = F?(19) = 0.4, inequality holds
e If one < 0.875 and the other > 0.875.

DFA(H), FA (1)) = 0.4 — (0.649 — 0.36)| = [0.76 — 0.649| < 0.24 .

Verification of Theorem 3.1
Step 1. Showing F* is contraction-like

Take 6 = 0.6, A = F?(0.6) = 0.4
a="D0,A)=106-04 =02, b=DA,F(A)=1[04-04 =0.

Verification of inequality,

a(f,A) +B(O,A) +6(0,A) _

b <
1—y6.A) -606,4) ©

0.3+0.2+0.1 0.6
<——-02=—-02=0.171.
- 1-02-0.1 0.7
Step 2. Existence of fixed point for F*
The sequence {x,} defined by x, = F*'(6,) is Cauchy and converges to the fixed point.
Fixed point
u* = 0.4 satisfies

F(u') = F(0.4) =04 =u*, F*u)=F*04)=04=u".

Numerical simulation. The fixed pointis #* = 0.4. Table 1 shows the Picard iterates, confirming rapid
convergence. Figure 1 plots F(6), Figure 2 shows F*(6), Figure 3 displays convergence, and Figure 4
gives the error decay.

Table 1. Convergence of Picard iteration for Example 4.1.

n 0, F(6,) F*(6,) |6, — 0.4]
0 0.900000 0.520000 0.400000 0.500000
1 0.520000 0.400000 0.400000 0.120000
2 0.400000 0.400000 0.400000 0.000000
3 0.400000 0.400000 0.400000 0.000000
4 0.400000 0.400000 0.400000 0.000000
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Figure 1. Function F(6) for Example 4.1.

Function F?(0) for Example 4.1

0.0 02 0.4 0.6 0.8

— F2(6)
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@® Fixed point
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Figure 2. Function F?(#) for Example 4.1.

Convergence for Example 4.1

0.0 0.2 0.4 0.6 0.8

- 6,
- [6,-04]
——- Fixed point 0.4

o 1 2 3 4
Iteration n

Figure 3. Convergence for Example 4.1.
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Logarithmic Error Convergence: Example 4.1

=@- Example 4.1 Error

log(|6, —u" )

o 1 2 3 4 5
Iteration n

Figure 4. Logarithmic error convergence for Example 4.1.

Example 4.2. Consider the complete metric space (¥, D) = ([0,2],| - |) and the mapping F : ¥ — ¥
defined by

4.2)

12-¢, ifl<g<2.

05+%4 if0o<o<1,;
F() = { ¢
Verification of Definition 3.2 with p = 2
Application of the simplified proof
Define S (#) = F?(6). The contraction condition with w = 0.7 shows that S is a classical generalized

Ciri¢ contraction. Therefore, S has a unique fixed point u* = %, which is also the unique fixed point of
F

Computation of F*(6)
e For0<0<1 p
FO) =05+ 7 € 10.5,0.75],
0 05+ 9 0
2 _ 2= 47 _ _
F(H)—F(0.5+4) 0.5+ — 0.625+ .
eForl<6<?2

F@O)=12- g € [0.8,1.0],

0

(12-9 0
o) _ I _ 5
F=(6) —F(I.Z 5) =12-—

=096+ —.
25
Comprehensive verification of Inequality (3.3) with w = 0.7

Contraction property of F*

e For [0, 1]. F?() = 0.625 + /16, derivative = 1/16 = 0.0625,
e For (1,2] F%(#) = 0.96 + 6/25, derivative = 1/25 = 0.04.
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Thus, |F*(0) — F2(19)| < 0.0625]|9 — 9|. Now, we prove Inequality (3.3) for all cases.

1) max = D(6,9)
IF2(0) — F2(9)| < 0.0625|6 — 9| < 0.7]6 — 9.

2) max = D(6, F*(0))
We need 0.0625 |6 — 9| < 0.7 10 — F2(8)|.
For 6 € [0,1] |6 — F?(8)| = |6 — (0.625 + 6/16)] = |150/16 — 0.625| > 0.3125 (minimum at
boundaries).
For 6 € (1,2] 160 — F(0)| = |6 — (0.96 + 6/25)| = |246/25 — 0.96| > 0.96.
Since |§ — 9 <2 0.0625 x2 = 0.125 < 0.7 x 0.3125 =~ 0.21875.
3) max = D6, F*())
We need 0.0625|0 — 9| < 0.7]0 — F*(9)|.
Using triangle inequality |0 — F2()| > |6 — 9] — | — F2(9)|.
From previous case | — F2(})] < 1.04 (for 6 = 2: |2 — (0.96 + 0.08)| = 0.96).
Thus, |6 — F2())| > |6 — 9| — 1.04.
The inequality becomes 0.0625|60 — | < 0.7(|60 — 9| — 1.04).
This holds when, |6 — 9| > 1.04 x 0.7/(0.7 — 0.0625) ~ 1.14.
For |6 — | < 1.14, other terms in the maximum suffice to satisfy the inequality.

Comprehensive verification of the generalized p-éirié contraction condition
By Definition 3.2 and according to inequality (3.3).

DFF(O),F (1)) < wmax {D(Q, ?), DO, FF(0)), DI, FP (1)), DO, F (1)), D(, F”(G))},
We need to verify that for all 8, ¢ € [0, 2].
IF*(8) — F*(9)| < 0.7 - M(8, ),

where
M(6,9) = max {D(Q, D), D, FP(0)), D, FP (1)), DO, F(19)), D(, FP(H))},

1.e.,

M(6,9) = max {|9 _ 91, 10 = FA0). 19 — FA®). 10 - FX9). [& F2(9)|}.

Initial bounds
Lipschitz constant for F>
Since F? is piecewise linear with maximum slope 0.0625, we have

IF2(6) — F2(9)] < 0.0625 |0 — 9| for all 6,9 € [0, 2].

Maximum distance The diameter of [0, 2] is 2, so,

IF2(0) — F*(9)] < 0.0625 x 2 = 0.125 for all 6, 9.

Lower bounds for self-distances
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Define g(0) = |0 — F*(0)|. Then,

©) = [156/16 — 0.625|, if 0<6<1;
~|1246/25-096], if 1<@<2.

Computing the minimum

(}?elsnl g(0) = g(1) = 0.5625, 1219122 g(0) = g(1) = 0.96.

Thus,
|6 —F2(0)] > 0.5625 and |9 - F*(#)| > 0.5625 for all 6, 9.

Bound for cross-distances
When |0 — F2(13)| or |} — F?(#)| is the maximum term, we have in particular

10— F2(9)] > 160 — F*(0)| > 0.5625,
|9 — F2(0)| > |9 — F*(9)| = 0.5625.

Maximum self-distance
The maximum possible value of | — F*()| = ¢ = 2.

19— F2()| < |2 — FA2)| = |2 — 1.04| = 0.96.

Case-by-case verification
Case 1.
We have
M=10-9, and |F*0)-F*®)| <0.06256 -9 <0.7|0 - 9.

Hence, the inequality holds for all 6, ¥J.

Case 2.
We have
M =10-F*@), and |F*©O) -F*¥)<0.125 < 0.7 x 0.5625 < 0.76 — F*(0)|.
Case 3.

We take M = | — F?(19)| as symmetric to Case 2 using the same bounds.
Case 4.

We take M = |0 — F%($9)|, and we consider two subcases based on the distance |6 — .
Subcase 4 (1). |6 — 9| > 1.142

Using the triangle inequality, we get

10— F>(9)] > 160 — 9| — |9 — F2(3)| = |6 — 9| — 0.96.

Thus,
0.7|10 — F2(9)| > 0.7(16 — 9| — 0.96) = 0.7|6 — 9| — 0.672.
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We have |F2(6) — F?(19)| < 0.0625|6 — 19|. We need to verify
0.0625|0 — 9| < 0.718 — I — 0.672.

This simplifies to |6 — 9| > 0.672/(0.7 — 0.0625) ~ 1.054, which is satisfied since |6 — ¥} > 1.142.
Subcase 4 (2). |6 — 9] < 1.142
When |6 — F?(1%)| is the maximum, it dominates |§ — F2(8)|, so using

16 — F2(9)] > 160 — F*(0)| > 0.5625.

Then,
0.716 — F*(9)| > 0.7 x 0.5625 = 0.39375.
Since,
IF2(0) — F*(9)] < 0.125.
Case 5.

We have M = [ — F?(0)|, which is symmetric to Case 4 by exchanging 6 and ¥).
Verification of Theorem 3.2
Step 1. Showing F* is contraction

Take § = 1.5, A = F*(1.5) = 0.96 + % =1.02,

a=D90,A)=11.5-1.02| =048,

b= D(A,F*(A)) = [1.02 — F*(1.02)|.
Since 1.02 > 1 F3(1.02) = 0.96 + L2 = 1.0008,
b = [1.02 — 1.0008| = 0.0192.
Verification of inequality
b < w-max{a,b,a + b},
0.0192 < 0.7 - max{0.48,0.0192, 0.4992} = 0.7 - 0.48 = 0.336.

Step 5. Convergence of Picard sequence
The sequence {6,} defined by 6, = F(6,) converges to the fixed point.
Fixed point. u* =  ~ 0.6667 satisfies

2 2/3 1 2
F(g)—0.5+T—O.5+6—§,

2 2/3 1
F?|5]=0.625+ == = 0.625 + — ~ 0.6667.
(3) 0.625 + T 0.6 5+24 0.6667

Numerical simulation. The fixed point is u* ~ 0.6667. Table 2 lists the iterates. Figures 5 and 6
graph F and F2, Figure 7 shows convergence, Figure 8 plots error decay, and Figure 9 compares both
examples.
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Table 2. Convergence of Picard iteration for Example 4.2.

n 0, F(6,) F>(6,) |6, — 0.6667|
0 1.800000 0.840000 0.992000 1.133300
1 0.840000 0.710000 0.677500 0.173300
2 0.710000 0.677500 0.669375 0.043300
3 0.677500 0.669375 0.667344 0.010800
4 0.669375 0.667344 0.666836 0.002675
5 0.667344 0.666836 0.666709 0.000644
6 0.666836 0.666709 0.666677 0.000136

Function F(6) for Example 4.2
7z

F(6)

1.00
e

Figure 5. Function F(6) for Example 4.2.

Function F2(8) for Example 4.2
Z

1.00
2]

Figure 6. Function F*() for Example 4.2.
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Value

log(|6, —u"|)

Error |6,—u"|

Application in R?

Convergence for Example 4.2

-~ 6,
—B- 6, - 0.6667|
——- Fixed point 0.6667

1.25

4 2 4 6 10
Iteration n

Figure 7. Convergence for Example 4.2.

Logarithmic Error Convergence: Example 4.2

=@= Example 4.2 Error

o 2 4 6 8 10
Iteration n

Figure 8. Logarithmic error convergence for Example 4.2.

Comparative Convergence Rates (Logarithmic Scale)

=@= Example 4.1
== Example 4.2

o 2 4 6 8 10
Iteration n

Figure 9. Comparative convergence rates (logarithmic scale).

We now provide two explicit examples in the Euclidean plane (R?, || - ||,) that illustrate the newly
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introduced classes of contractions. In both cases, the mapping F itself fails to satisfy the classical Cirié
conditions (Definitions 2.1 and 2.2), but its second iterate F> does, thereby qualifying F as a p-Cirié
(resp. generalized p-Ciri¢) contraction with p = 2.

Example 4.3. Let ¥ = R? equipped with the Euclidean metric D(0,9) = ||6—9,, and define F : ¥ — ¥

by
0.4, 0.4), if 1|8, 9]l < 0.5,
F@0,9) = (4.3)
(0.860-0.2+¢&06,9), 089 —0.2+¢&6,9), if (6, Pl > 0.5,
where (6, 9l = max{|d], ||} and
(166, Pl — 0.5
0,9 =02 ——=
166, Ml + 0.5

The function € is chosen so that F becomes continuous across the boundary |[|(6, ¥)||., = 0.5. Indeed,
for a point on the boundary, say (0.5, 0.5), both branches give the same value, (0.4,0.4).
Failure of the classical Ciri¢ condition. Take § = (0.6,0.6) and ¢ = (0.5,0.5). Then,

F(6) = (0.28,0.28), F() = (0.4,0.4),

so that
D(F(),F(1¥)) ~ 0.170.
On the other hand,
D6,9) ~0.141, D(,F()) ~ 0424, DI,F(P)) =0,
and

D, F(D)) + DI, F(H)) = 0.566.

For inequality ((2.2)) to hold with @ +8+7y+26 < 1, the right-hand side must dominate the left-hand
side uniformly. A direct computation shows that no choice of nonnegative functions «, 3, y, ¢ satisfying
(2.1) can fulfill the inequality for the pair (6, ¢); hence, F is not a Ciri¢ contraction.

Verification of the p-Ciri¢ condition for p = 2. Define S := F2. A careful case analysis yields

(0.4,0.4), if |6, )|l < 0.875,
S(6,9) =
(0.64 6 —0.36 + (6, 9), 0.64 9 —0.36 + (6, F)), if [|(6, D]l > 0.875,

where 77 is a continuous correction inherited from &. The important feature is that S is Lipschitz with
constant 0.64 outside the square ||(6,9)||. < 0.875, and has a constant value inside it. Choose the
constant coeflicient functions

a=03, =02, yv=02, 6=0.1,

so that,
a+B+y+20=09<1.
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A straightforward verification, mirroring the one-dimensional case in Example 4.1, confirms that
for all 6,9 € R?,

D(S(0). S () < aDE.9) +BD(0.5(O)) +y DI, S @) + 6| D6, S () + D, S(®))).

i.e., inequality (3.1) holds. Consequently, F is a p-Ciri¢ contraction with p = 2.
Fixed point. The unique fixed point of S is u* = (0.4,0.4). Since S (u*) = u*, we have

F(u*) =F(0.4,0.4) =(04,04) = u".

Thus, u* is the unique fixed point of F, and for any initial point, the Picard iterates converge to u*.

Example 4.4. Let ¥ = R? with the Euclidean norm. Define the linear operator

Fo.0 = —3) (e = (-39, 0) (4.4)
o\ oo f\w) AT o '
Geometrically, F rotates vectors by +/2 and contracts the new 6-component by a factor of 3/4.
Failure of the generalized Ciri¢ condition. The operator norm of F equals 1, as ||F(0,1)]| = 1 =

|(0, 1)]|. Taking € = (0, 1) and & = (0, 0) gives
D(FO),F(D) =1 =D(6,D),

so inequality (2.3) cannot hold for any w < 1. Thus, F is not a generalized Ciri¢ contraction.

Iterate and verify. Computing the second iterate,
F?(0,9) = F(=29, 0) = (=36, —39) = -3 (6,9).

Hence, for all 6,9 € R?,
DF*B),FA(®)) = 2 D(6, V).

Since % < 1, inequality (3.3) holds with w = 0.75 and p = 2,
D(F*(O), () < 0.75 max{D(, 9), DG, F(6), DW, F*(#), DO, F* (@), DW, F*(0))}.

Therefore, F is a generalized p-Ciri¢ contraction with p = 2.

Fixed point. The unique fixed point of F? (and hence of F) is u* = (0,0), since F*(u*) = —%u* =
u* implies u* = 0, and F(0,0) = (0,0). The Picard iteration converges globally: for any py, the
subsequence py = (F*)*(po) contracts geometrically to 0, and pa.; = F(py) — 0 as well.

S. Conclusions

In this paper, we introduced two new classes of contractive mappings, namely the p-Cirié
contraction and the generalized p-Ciri€ contraction, by combining the structural flexibility of Ciri¢-type
contractions with the iterative framework pioneered by Singh. By imposing the contractive condition

on the higher iterate F* rather than on the mapping F itself, our approach significantly enlarges the
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family of operators that guarantee the existence, uniqueness, and global convergence of fixed points in
complete metric spaces.

The key idea of defining an auxiliary operator S = F* allowed us to directly apply the classical and
generalized Ciri¢ fixed point theorems, thereby yielding unified results that naturally encompass a wide
range of well-known contraction principles, including those of Banach, Kannan, Chatterjea, Reich,
Sehgal, and Cirié. Our analysis shows that the introduced classes preserve the essential structure of
Cirié-type mappings while providing greater generality through Singh’s iterative methodology.

The illustrative examples and numerical simulations presented in this paper demonstrate the
applicability and sharpness of the obtained results, confirming that the proposed generalizations are
not only theoretically sound but also practically effective. They highlight how the use of iterated
contractive conditions can identify mappings that fail to be contractive in their original form, but
become contractive under higher iterates.

The present work opens several promising avenues for further research. One possible direction is to
investigate p-Cirié-type contractions in more general settings, such as partial metric spaces, b-metric
spaces, or modular function spaces. Another direction is to explore applications to nonlinear integral
and differential equations, where iterative behavior plays a crucial role. Extending the framework to
multi-valued or cyclic mappings also constitutes an interesting and natural continuation.

Overall, this study provides a unified and robust extension of the classical theory of contractive
mappings, demonstrating that Singh’s iterative strategy can be successfully integrated with Ciri¢-type
structures to yield powerful and far-reaching fixed point results.
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