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Abstract: In this paper, we investigated the chaotic behavior of a Jerk system proposed by Sambas et 

al. (2024), which features symmetrical attractors arising from the interplay of sinusoidal, hyperbolic, 

and absolute nonlinearities. The system’s complex dynamics were analyzed using established 

numerical methods such as phase portraits, stability analysis, bifurcation diagrams, and Lyapunov 

exponents. Furthermore, through amplitude modulation, we showed that the control parameter δ can 

enhance or attenuate signal amplitudes without disrupting the system’s stability or chaotic nature. The 

theoretical findings were further validated through Multisim circuit simulations, with experimental 

attractors closely matching the numerical results. In addition, a Radial Basis Function Neural Network 

(RBFNN) was implemented to approximate the chaotic trajectories of the system. The model was 

trained using simulated data and optimized via the least squares method. Network performance was 
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evaluated using Root Mean Square Error (RMSE) and relative error. The results showed that the 

RBFNN accurately predicts the system’s state variables, achieving MSE values on the order of 10-10–

10-9 and relative error below 1.1 × 10-8. 

Keywords: chaotic system; Jerk circuit; circuit design; RBFNN 

Mathematics Subject Classification: 34C28, 37C10, 37D45, 94C05, 68T07 

 

1. Introduction  

Chaotic behavior arises from the nonlinear interactions among system components [1–3]. Unlike 

linear systems, where input-output relationships follow simple mathematical rules, nonlinear systems 

exhibit complex and often unpredictable behavior [4]. Chaotic systems within electronic circuits are 

those that demonstrate chaotic traits, marked by their sensitivity to initial conditions, non-repeating 

long-term patterns, and deterministic nature [5]. These systems typically employ nonlinear electronic 

elements like diodes, transistors, operational amplifiers, and capacitors for their implementation [6].  

One of the most famous examples of a chaotic electronic circuit is Jerk circuit, a dynamical system 

characterized by the presence of jerk, which is the rate of change of acceleration with respect to time 

[7]. In chaotic jerk systems, the evolution of the system’s state variables exhibits chaotic behavior. The 

equations describing a chaotic jerk system typically involve nonlinearity and may include terms 

representing damping, external forcing, and nonlinear interactions among state variables [8]. The 

inclusion of jerk in the system dynamics introduces additional complexity compared to systems 

described solely by position, velocity, and acceleration [9,10]. 

Numerous publications have focused on the research topic of Jerk circuits for generating chaotic 

attractors. Srisuchinwong & Treetanakorn [11] introduced a novel current-tunable chaotic jerk circuit 

employing a single unity-gain amplifier, exhibiting a homoclinic orbit. Kengne et al. [12] proposed a 

self-driven RC chaotic jerk circuit featuring smoothly adjustable nonlinearity, resulting in symmetric 

double scroll chaos. Chiu et al. [13] developed a jerk circuit implementation using a hybrid analog–

digital system, applied in digital circuits such as microcontrollers and DAC/ADC boards. Chansangiam 

[14] explored the chaotic behavior of a modified jerk circuit incorporating Chua’s diode, with the 

system exhibiting a symmetric piecewise linear voltage-current characteristic. Ding and Feng [15] 

presented a novel chaotic system generating multi-scroll attractors based on a Jerk circuit utilizing a 

special form of a sine function. Li et al. [16] investigated an equilibrium-free piecewise linear jerk 

system employing a signum operation, resulting in hidden attractors. Joshi and Ranjan [17] proposed 

a simple jerk system with sine hyperbolic nonlinearity, yielding hidden attractors, and designed an 

electrical circuit implementation using a single amplifier and few passive elements. Mboupda Pone 

[18] examined an autonomous jerk circuit with quintic nonlinearity, leading to period-doubling route 

to chaos, bistability, and antimonotonicity. Ainamon et al. [19] designed an autonomous three-

dimensional Helmholtz-type oscillator generating Hopf bifurcation, bistable period-2 limit cycles, and 

coexisting attractors. Ahmad & Srisuchinwong [20] introduced 3D dissipative chaotic jerk flows with 

different families of self-excited and hidden attractors, including systems with single all-zero-

eigenvalue non-hyperbolic equilibrium or two symmetrical hyperbolic equilibria. Sambas et al. [21] 

designed a novel jerk chaotic oscillator with symmetric attractors, modeled it using a neural network, 

and applied it to a robust chaos-based image encryption algorithm. Arshad et al. [22] studied the 
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general jerk equation with a scaled sine map, approximating it in terms of a polynomial using Taylor 

series expansion to exhibit chaotic behavior. Xu et al. [23] proposed an asymmetric memristive diode-

bridge with asymmetric volt-ampere characteristic, resulting in asymmetric coexisting bifurcations and 

multi-stability phenomena.  

Controlling nonlinear and chaotic systems presents significant challenges, primarily due to their 

sensitive dependence on initial conditions and strong nonlinearity [24]. These systems often exhibit 

unpredictable behavior that changes drastically over time. Even small variations in the initial state can 

cause the system to diverge rapidly. This sensitivity makes precise and reliable control extremely 

difficult to achieve [25]. Traditional control strategies, such as PID or linear state feedback controllers, 

are often inadequate for maintaining desired performance in such environments. They assume 

predictable system responses, which is rarely the case in chaotic dynamics [26]. Consequently, 

researchers have explored more adaptive and flexible control frameworks. Among these, intelligent 

control techniques have emerged as powerful alternatives for handling chaos. 

Over the past decades, RBFNN have gained considerable attention due to their powerful 

approximation capabilities and simplicity of architecture. Researchers have successfully applied 

RBFNN in various domains such as direct torque control for PMSM [27], detection of Parkinson’s 

disease [28], predicting a photovoltaic fed electric vehicle charging station [29], controlling a 3-DOF 

helicopter system [30], controlling a doubly fed induction generator [31], controlling a lower limb 

exoskeleton robot [32], predicting of suspender frequency and tension on arch bridge [33], and 

controlling coaxial hybrid aerial–underwater vehicles [34]. Most researchers looking at chaotic jerk 

systems have focused on system modeling, bifurcation analysis, and analog circuit implementation. 

However, limited attention has been given to intelligent modeling approaches that can learn and predict 

chaotic trajectories accurately. To date, the integration of RBFNN for precise approximation and 

control of chaotic jerk dynamics remains underexplored. 

The main contribution and novelty of this work is as follows:  

a. We show that the control parameter δ can enhance or attenuate signal amplitudes without 

disrupting the system’s stability or chaotic nature 

b. We implement a complete analog circuit validation using Multisim and experimental 

verification with high accuracy. 

c. We introduce the RBFNN framework to model and predict the chaotic system’s behavior, 

achieving high precision with MSE values on the order of 10-10-10-9 and relative error below 

1.1 × 10-8. 

The structure of the paper is outlined as follows: In Section 2, we focus on the modeling process 

of the jerk circuit and examine the stability of the equilibrium points. In Section 3, we note that the 

control parameter δ can amplify or diminish the system’s signals without compromising stability or 

chaotic behavior. The experimental investigation of the oscillator is conducted in Section 4. Laboratory 

experimental measurements demonstrate a high degree of agreement with the theoretical analyses. In 

Section 5, we introduce the application of RBFNN to model and approximate the chaotic trajectories 

of the proposed jerk system, validating the system’s behavior through machine learning techniques. 

Finally, in Section 6, we present concluding remarks, emphasizing the accuracy of RBFNN in 

capturing the system dynamics and suggesting its potential for future intelligent control applications. 
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2. System description 

In this study, we employ the Jerk circuit initially introduced by Sambas et al. in 2024 [21], which 

is a 3D autonomous nonlinear system. The system is governed by the following set of ordinary 

differential equations: 

| | sinh( )
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where  

• (𝑥, 𝑦, 𝑧) are the state variables representing position, velocity, and jerk, respectively. 

• a > 0, b > 0, and c > 0 are system parameters controlling damping, feedback strength, and 

nonlinear gain. 

• sinh(𝑥) provides unbounded hyperbolic growth and introduces stronger symmetry.  

• | |x introduces piecewise linear behavior enhancing slope-based nonlinearity. 

We assume that 𝑋  denotes the state (𝑥, 𝑦, 𝑧)  and 𝑎 = 0.4, 𝑏 = 0.72, 𝑐 = 0.48  are positive 

constants.  

The jerk system (1) exhibits rotation symmetry with respect to the 𝑧-axis. This means that if the 

system is subjected to a rotation in the (𝑥, 𝑦) plane by any angle θ does not change the structure of the 

vector field. Let a rotation in the (𝑥, 𝑦) plane be defined as: 
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Applying this transformation to system (1), the nonlinear terms sinh(x) and |x| depend only on the 

magnitude of |x|, and not on their orientation in the plane. Therefore, the transformed system satisfies: 
* cos sin ,x x y = −  * sin cos ,y x y = +   (3) 

which shows that the vector field rotates consistently with the variables. Therefore, system (1) is 

invariant under rotation in the (𝑥, 𝑦) plane, confirming rotational symmetry about the 𝑧-axis. 

In our other study [21], we encountered difficulties in experimentally validating the circuit in the 

laboratory, as the oscilloscope failed to display the expected theoretical results. However, after 

modifying the system parameters to 𝑎 = 4, 𝑏 = 0.85 and c = 0.55, we successfully captured the phase 

portraits on the oscilloscope. Remarkably, these experimental results closely matched the theoretical 

phase portraits obtained through MATLAB simulations. 

The Lyapunov exponents for the jerk system (1) for these parameter values and initial values were 

computed using MATLAB as 𝐿1 = 0.0976, 𝐿2 = 0, and 𝐿3=−0.6476. Thus, the jerk system (1) has 

dissipative motion with a chaotic attractor. The chaotic system of the jerk system (1) has the Kaplan 

dimension given by 
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Figure 1 shows the MATLAB signal plots of the jerk system (1) for the parameter values taken 

as 𝑎 = 4, 𝑏 = 0.85, 𝑐 = 0.55 and the initial state 𝑥(0) = 0.1, 𝑦(0) = 0.1, and 𝑧(0) = 0.2. 
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Figure 1. Chaotic attractors of the proposed system (1): (a) 𝑥 − 𝑦 plane, (b) 𝑦 − 𝑧 plane, 

(c), 𝑥 − 𝑧  plane and (d) 3D model for 𝑎 = 4, 𝑏 = 0.85, 𝑐 = 0.55  with the initial state 

𝑥(0) = 0.1, 𝑦(0) = 0.1, and 𝑧(0) = 0.2. 

3. Amplitude control 

In this section, the amplitude of the chaotic signals is amplified and attenuated by rescaling the 

signals with a constant parameter. If we take 𝑥 → 𝛿𝑥 , 𝑦 → 𝛿𝑦 , and 𝑧 → 𝛿𝑧  in the system (1), then 

system (1) becomes to complete amplitude controllable system, where 𝛿  is the total amplitude 

controller. The complete amplitude controllable system is given in Eq (5).  

𝑥̇ = 𝑦
𝑦̇ = 𝑎𝑧

𝑧̇ = 𝑥 − 𝑏𝑦 − 𝑐𝑧 − |𝑥| sinh(𝛿𝑥)
. (5) 

The control parameter 𝛿 amplifies or attenuates all the three signals 𝑥, 𝑦, and 𝑧 without affecting 

the chaotic dynamics of the system (5). The modulation parameter δ in the amplitude-controlled 

formulation serves as a global scaling factor that uniformly adjusts the magnitude of all state variables 

in the Jerk system. This parameter plays an important engineering role because many practical chaotic 

circuits require control over a signal amplitude without altering the intrinsic nonlinear dynamics. In 
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real implementations, such as analog chaotic oscillators, communication circuits, and signal-

conditioning modules, amplitude levels must be tuned to prevent component saturation, ensure 

compatibility with ADC/DAC converters, or match the voltage range of downstream circuitry. This 

property makes δ especially valuable when the chaotic oscillator is integrated into larger engineering 

systems where amplitude tuning is required but dynamical integrity must remain intact. Thus, the 

inclusion of the modulation parameter δ provides a practical degree of control that enhances the utility 

of the proposed chaotic Jerk system for real-world electronic and signal-processing applications. 

 

Figure 2. The complete amplitude-controlled attractors with 𝛿 = 1 (Blue), 𝛿 = 0.7 (Red) 

and 𝛿 = 1.6 (Green) (a) 𝑥 − 𝑦 plane, (b) 𝑥 − 𝑧 plane, (c) 𝑦 − 𝑧 plane, and (d) 3D model. 

 

Figure 3. (a) Bifurcation diagram of system (5) when 𝛿 = 1 (Blue), 𝛿 = 0.7 (Red), and 

𝛿 = 1.6  (Green). (b) Lyapunov exponent spectrum of the system (5) under the control 

parameter 𝛿. 

Figure 2 indicates the attractors of the amplitude controllable system with 𝛿 = 1 (Blue), 𝛿 = 0.7 

(Red) and 𝛿 = 1.6 (Green). The control parameter 𝛿 amplifies the signal when 𝛿 < 1 and attenuates 
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when 𝛿 > 1. Figure 3a shows the bifurcation diagram of the system (1) under parameter 𝑐 with  𝛿 = 1 

(Blue), 𝛿 = 0.7  (Red), and 𝛿 = 1.6  (Green). This indicates that control parameter 𝛿  controls the 

amplitude of the system without modifying its states. Figure 3b shows the Lyapunov exponent 

spectrum of system (5) under control parameter 𝛿. This indicates that Lyapunov exponent values of 

the system (5) are not modified by the control parameter 𝛿. Thus, we can conclude that the control 

parameter 𝛿 amplifies or attenuates the signals of the system (5) without affecting its stability and the 

chaotic behaviors. 

4. Electronic circuit implementation 

Developments have also demonstrated that nonlinear functions commonly used in chaotic 

systems, such as the hyperbolic term sinh(δx) in our model, can be efficiently approximated in the 

digital domain, enabling high-speed, low-power, and numerically stable realizations. For instance, [35] 

and [36] show that trigonometric and hyperbolic nonlinearities can be implemented using polynomial 

or lookup-table based approximations with excellent accuracy for real-time chaotic applications. 

Although analog circuits based on operational amplifiers are widely used for experimental verification, 

they generally require relatively high voltage bias and provide limited frequency response compared 

to digital implementations or CMOS-based realizations.  In this regard, CMOS integrated designs, 

such as those presented in [37] and [38], demonstrate that chaotic oscillators can be implemented with 

much lower power consumption, wider bandwidth, and significantly reduced chip area. These 

developments indicate that the proposed jerk system also holds strong potential for future realization 

using digital or CMOS technology. 

In this section, the implementation of the electronic circuit for the novel oscillator. To achieve 

this, the resistance and capacitance values for the circuit are determined. Following this, the application 

and simulation results are compared. The electronic circuit implementation of the novel jerk oscillator 

in the OrCAD-PSpice simulation program is shown in Figure 4. The control parameter and the initial 

conditions of the system are chosen as a = 4, b = 0.85, c = 0.55, and x (0) = 0.1, y (0) = 0.1, and z (0) 

= 0.2, respectively.  

The designed circuit that emulates Jerk system (1) consists of three capacitors, seventeen resistors, 

four diodes (1N4148), a multiplexer (AD633JN), and eight operational amplifiers (TL081CN). The 

nonlinear part of the 3D Jerk system (1) includes a diode pair (D1 and D2) used to describe the sinh(x) 

function. The current, through each of the antiparallel diodes, is given by [39]: 

2 sinhS

T

v
I I

nV

 
=  

 
  

 

(6) 

where n represents the diode ideality factor, IS is the reverse bias saturation current, v represents the 

voltage across the diodes, and VT denotes the thermal voltage. The equation (6) is derived by applying 

Kirchhoff’s current law and utilizing the well-known Shockley diode equation for the two antiparallel 

diodes. D1 and D2 are used as 1N4148 diodes, with the following specifications: n=1.9,  IS = 26.2 nA, 

and VT = 26mV [40]. Considering Figure 4, the dimensionless equations of the Jerk system (1) are 

described as follows: 
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(7) 

The time scale factor RC is calculated as 0.133ms. DC power supply values are selected as VP = 

-VN = 15V. Figure 5 shows the voltages on the X, Y, and Z terminals plotted against each other.  

To enhance reproducibility, we provide a more detailed description of the parameters and 

component settings used in the Multisim implementation. All simulations were conducted in Multisim 

14.2 using the default SPICE models provided in the component library. The Multisim simulation was 

configured with a maximum timestep of 10 µs, Gear integration mode, and 50 ms total simulation time, 

as these settings produced stable and accurate reproduction of the chaotic attractors. The electronic 

circuit can be seen in Table 1. 

Table 1. Summary of electronic components used in the circuit implementation. 

Component type Quantity Specification/Value 

Operational amplifiers 8 TL081CN 

Analog multiplier 1 AD633JN 

Resistors 17 R1 = R6 = 400 kΩ; R2 = 100 kΩ; R3 = 40 kΩ; 

R4 = 471 kΩ; R5 = 727 kΩ; R7–R17 = 10 kΩ 

Capacitors 3 0.33 nF 

Diodes 4 1N4148 (two antiparallel pairs) 

DC power supply 1 ± 15 V 

The FFT results shown in Figure 6 provide additional confirmation of the chaotic nature of the 

proposed jerk system. The spectra exhibit a broadband and irregular distribution of frequency 

components without any dominant peaks, which is a key signature of chaotic oscillations. This 

frequency-domain behavior complements the time-domain phase portraits and reinforces that the 

circuit implementation reproduces the system’s aperiodic dynamics. 

The discrete component electronic circuit of the novel system is constructed on a board for 

comparison with the PSpice simulation results. As can be observed from the oscilloscope images 

shown in Figure 7, the experimental results obtained from the circuit established are quite similar to 

the simulation results in Figure 1. Finally, Figure 8 illustrates the experimental setup of the novel 

system. 
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Figure 4. Electronic circuit schematic of the novel system. 
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Figure 5. Phase portraits of the novel system in PSpice simulation for t=50ms and 

maximum step size=10µs: (a) vx-vy, (b) vx-vz, and (c) vy-vz. 

 

Figure 6. FFT analyses results in the PSpice program: (a) FFT spectrum of the V(x) signal, (b) FFT 

spectrum of the V(y) signal and (c) FFT spectrum of the V(z) signal. 

 

Figure 7. Oscilloscope views: (a) vx (0.5V/div) versus vy (0.5V/div), (b) vx (0.5V/div) 

versus vz (0.2V/div), and (c) vy (0.5V/div) versus vz (0.2V/div). 
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Figure 8. Experimental setup of the novel jerk system with standard components. 

5. RBFNN implementations 

In this section, we utilize the RBFNN for the validation and analysis of the proposed chaotic jerk 

system. RBFNN is the type of neural network that consists of mostly three layers: The first one is an 

input layer, the second one is a hidden layer, and the last is an output layer, as depicted in Figure 9. It 

is usually used for function approximation, image recognition, time series prediction, and for control 

systems. First, we model the proposed system using RBFNN and then train the model using the 

simulated data obtained from the differential equations of the chaotic jerk system in MATLAB. The 

general formula for the RBFNN model is given by: 

y(x) = ∑ wki
m
k=1 hk(t)                            i=1, 2, 3,… n (8) 

In the above equation, w is the weight of the neural network and y represents the output of the 

RBFNN. In the first layer of the neural network, a simple transfer function is used as an activation 

function to transfer the data from the input layer to the hidden layer, but in the case of the hidden layer, 

there is a nonlinear function used as an activation function for the response of neurons.  

 

Figure 9. Architecture of RBF network. 



1627 

AIMS Mathematics  Volume 11, Issue 1, 1616–1636. 

In this study, a radial basis function (Gaussian function) is adopted to compute the responses of 

neurons in the hidden layer of the network. The architecture of the proposed RBFNN model for the 

chaotic Jerk system is visually represented in Figure 10.  

 

Figure 10. RBFNN architecture of a chaotic Jerk system. 

In this research, we introduce a time-varying parametric framework for modeling the behavior 

and dynamics of the jerk system (1). The approach leverages a neural network architecture built upon 

radial basis functions, with the system behavior formulated through a corresponding set of 

mathematical equations:   

𝑥 = RBFNN(t)  +  𝑒1 

𝑦 = RBFNN(t)  + 𝑒2 

𝑧 = RBFNN(t)  +  𝑒3 

(9) 

where the parameters x1, x2, and x3 are derived using RBFNN structured around a single input variable 

t over a defined time interval. The terms e1, e2, and e3 denote the associated computational errors. We 

use the Euclidean distance formula to measure how far the input is from the center point in the hidden 

layer. This is done using the following formula: 

d = ‖x(t) − ci(t)‖ (10) 

Similarly, the output of the hidden layer is calculated using the following formula:  

ℎ𝑗(𝑡) =  𝑒𝑥𝑝 (
‖x(t) − ci(t)‖2

2𝑎𝑗
2

) ,           j= 1, 2, 3… m (11) 

where 𝑎𝑗 represent the width or spread and m is the total number of neurons in the hidden layer. In Eqs 

(10) and (11), and ci denotes the center of the i-th radial basis function in the hidden layer. These 

centers represent fixed points in the input space, typically determined using a clustering method such 

as k-means, and are used to compute the Euclidean distance that governs each neuron’s activation. 

The output is found by adding together the weighted values using the formula below:  

yi(t)  =  ∑ wji
m
j=1 hj(t) ,              i= 1, 2, 3… (12) 

The performance of a RBFNN is highly influenced by the selection of appropriate center points 

and function widths. Even minor adjustments to the width can significantly affect each neuron’s output, 

determining whether its response is sharp or broad. The network determines the optimal weights using 

the least squares method. 

We evaluate the accuracy by seeing how close its predictions are to the actual results. To do this, 

we use something called relative error, which tells us how big the difference is between the predicted 

and real values. Here is how it is calculated: 

𝑁𝑒   =  √
∑ [𝑦(𝑡𝑖)  −  𝑓(𝑡𝑖)]2𝑛

𝑖=1

∑ 𝑦(𝑡𝑖)2𝑛
𝑖

 

 

(13) 
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In Eq (13), y denotes the actual value, while f represents the predicted output of the neural network. 

5.1 Evaluating model precision  

RMSE is a widely recognized metric for assessing the accuracy of prediction models, particularly 

in fields such as machine learning and statistical modeling. It reflects the average size of the errors 

between predicted values and actual outcomes, offering a clear measure of how well a model performs. 

RMSE is determined by taking the square root of the average of the squared differences between 

observed and predicted values. Because of its ability to effectively capture prediction error, RMSE is 

often used to evaluate model reliability and guide decision-making. In this study, RMSE is applied to 

assess the performance of a proposed RBFNN in modeling the novel jerk chaotic system. The RMSE 

value is calculated using the following formula:  

RMSE =  √
1

N
∑(yi − ŷi)2

N

i=1

 (14) 

where N represents the total number of sample data. 

5.2. Comprehensive evaluation of experimental results  

We develop and train an intelligent computational model using a RBFNN, implemented in 

MATLAB. Training neural networks can be challenging, particularly for complex and unpredictable 

systems like the novel chaotic Jerk system. To simplify and improve the training process, we use a 

single combined time input instead of multiple separate values, which enhance the model’s learning 

ability, as illustrated in Figure 11. Figure 12 demonstrates the effectiveness of the RBFNN in accurately 

modeling the proposed chaotic Jerk system, closely capturing its dynamic behavior. These results 

confirm the robustness of our approach, even for intricate systems.  

To determine the appropriate number of hidden neurons in the RBFNN, an empirical optimization 

approach is adopted. We begin with a small number of radial basis units and progressively increase the 

network size while monitoring performance metrics such as RMSE and relative error. The optimal 

number of neurons is selected as the minimum value at which the performance metrics stabilize, with 

the MSE reaching the order of 10-10–10-9 and the relative error reaching the order of 10-9–10-8, without 

further improvement when additional units are added. This data-driven selection avoids overfitting 

while ensuring sufficient approximation capability for the chaotic Jerk system. 

Table 2 presents the structural configuration and training dataset used for the RBFNN model 

developed to approximate the dynamics of the Jerk system (1). The network employs a single time-

based input and three output neurons corresponding to the system states (x(t), y(t), and z(t)). A total of 

2,485 Gaussian radial basis neurons is used in the hidden layer, with centers determined through k-

means clustering and a spread parameter of 0.05 to ensure stable generalization. Training data 

consisting of 10,001 samples are generated using MATLAB’s ODE45 solver over a 0–10 s interval 

with a time step of 0.001 s, and split into 80% for training and 20% for testing. The network weights 

are optimized using the least squares method, enabling efficient learning of the complex nonlinear 

patterns inherent in the chaotic system. 
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Table 2. RBFNN structural configuration and training dataset for the Jerk system (1). 

Item Description/Value 

Input variable Time index t 

Output variables (x(t), y(t), z(t)) 

Number of input neurons 1 

Number of output neurons 3 

Number of hidden neurons 2485 

Basis function type Gaussian (RBF) 

Spread/Width parameter (σ) 0.05 

Center selection method k-means clustering 

Weight optimization Least squares method 

Training data length 10,001 points 

Training/Testing split 80% / 20% 

Integration method (data generation) MATLAB ODE45 

Time interval 0–10 s 

Time step 0.001 s 

Table 3 presents the training performance of the RBFNN for the three state variables of the Jerk 

system, demonstrating exceptionally high prediction accuracy across all outputs. The MSE values lie 

within the range of 10⁻¹⁰ to 10⁻⁹, indicating extremely small prediction errors, while the MAE and 

RMSE also remain very low, on the order of 10⁻⁶ and 10⁻⁵, respectively. The relative error values, 

ranging from 10⁻⁹ to 10⁻⁸, confirm that the network’s predicted trajectories closely match the true 

system dynamics with negligible deviation. All variables converge after 2,450 training epochs, 

showing that the RBFNN learns the chaotic patterns efficiently and consistently. 

Table 3. Training results of RBFNN for Jerk system (1). 

Variables No of nodes MSE MAE RMSE Relative error Epochs 

x 2485 1.2 ⨯10-9 6.4 ⨯10-6 3.4 ⨯10-5 8.1⨯ 10-9  2450 

y 2485 9.5 ⨯10-10 5.9 ⨯10-6 3.1 ⨯10-5 7.6 ⨯ 10-9 2450 

z 2485 7.8 ⨯10-9 8.7 ⨯10-6 8.8 ⨯10-5 1.1 ⨯ 10-8 2450 

 

Figure 11. Training performance of RBFNN. 
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(a) 

 

(b) 

 

(c) 

Figure 12. Parametric comparison for the three signals of Jerk system (1): (a) 𝑥(𝑡) signal, 

(b) 𝑦(𝑡) signal, and (c) 𝑧(𝑡) signal. 

The neural networks learn the system well and reach accurate results after 2,450 training steps. 

This shows that the model is trained efficiently and can quickly recognize and predict the complex 

patterns in the chaotic system. The RBFNN model predictions and the exact numerical solutions for 

the novel chaotic Jerk system are compared in Figure 13. The results show that the model accurately 

captures the system’s chaotic behavior, proving it is a good fit for complex problems like this.  



1631 

AIMS Mathematics  Volume 11, Issue 1, 1616–1636. 

 

Figure 13. Exact solution and network prediction in Jerk system. 

In Figure 13, we show a 3D view of the chaotic Jerk system to compare our RBFNN model with 

the exact solution. The red dots show the actual calculated values, while the green lines show what the 

model predicts. This makes it easy to see how closely the model follows the real system. 

Similarly, the 2D comparison is presented in Figure 14 for the x, y, and z signals of the chaotic 

Jerk system, which shows good validation and analysis.   

 

Figure 14. Comparison of exact solution and RBFNN in 2D for chaotic Jerk model: (a) 

𝑥(𝑡) − 𝑦(𝑡) plane and (b) 𝑦(𝑡) − 𝑧(𝑡). 

The error analysis of the RBFNN model for the chaotic Jerk system (1) is presented in Figure 15 

across phase spaces. These figures demonstrate the accuracy of the model and confirm the 

effectiveness of our approach. The error trajectories remain extremely small, with instantaneous error 

values generally on the order of 10-9, highlighting the reliability and precision of the RBFNN in 
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capturing the system’s dynamics. This exceptional accuracy demonstrates the strong capability of the 

model to handle the complex and highly sensitive behavior of the chaotic Jerk system. 

 

Figure 15. Evaluating RBFNN model errors in different phase spaces: (a) Error signal in 

the 𝑥(𝑡), (b) Error signal in the 𝑦(𝑡), and (c) Error signal in the 𝑧 (𝑡). 

6. Conclusions 

We introduce a chaotic Jerk circuit characterized by symmetrical attractors arising from a 

combination of sinusoidal, hyperbolic, and absolute nonlinear elements. We explore the system’s 

behavior using well-established numerical methods, including phase portraits, stability analysis, and 

Lyapunov exponents. Moreover, by adjusting the amplitude, we find that control parameter δ can 

amplify or attenuate system signals while preserving stability and chaotic properties. To validate our 

theoretical findings, we perform circuit simulations using Multisim, and the simulated attractors 

closely match the numerical results. In future work, we will focus on implementing real-time 

FPGA/CMOS realizations and performing a comprehensive comparison of the RBFNN model with 
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other advanced machine-learning approaches to further evaluate and improve prediction accuracy. 
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