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1. Introduction

Graph theory has broad applications across various disciplines, including electrical engineering,
chemistry, and computer science. In chemistry, graph theory is utilized to address molecular
problems, where molecular structures are represented as graphs, with atoms as vertices and bonds
between atoms as edges. Numerous applications of graph theory and group theory in chemistry have
been identified, one of which is the use of topological indices that assign numerical values to
represent chemical structures. These topological indices are instrumental in predicting the chemical
and physical properties of molecular structures.

One of the earliest indices introduced is the Wiener index [1], which is defined as the sum of
distances between all pairs of carbon atoms in a molecular graph. This index was subsequently used
to estimate the boiling points of alkane compounds. Later, Hosoya [2] introduced a new index defined
as the number of matchings in a graph, and found that the boiling points of several saturated
hydrocarbon compounds show a strong correlation with this index. In 1975, Randić [3] introduced the
Randić connectivity index, which is based on vertex degrees. Subsequently, Schultz et al. [4]
introduced another index based on the adjacency matrix, valence matrix, and distance matrix of
alkane molecular graphs. They also computed the values of Schultz index for several alkanes and
compared them with their boiling points as well as with the Randić connectivity index. The
correlation between the Schultz index and the boiling points of these compounds yielded a coefficient
of determination of 0.887. Meanwhile, the Randić connectivity index produced a higher coefficient of
determination, namely 0.976. Later, Li and Zheng [5] generalized this index into the general
zeroth-order Randić index. Another index is the eccentric connectivity index, which is defined based
on the eccentricity and degree of vertices in a graph [6]. They investigated the relationship between
the eccentric connectivity index, the Wiener index, and several physical properties of various
compounds. The results showed correlation coefficients ranging from 95% to 99% for different
datasets related to diverse physical properties. These correlation values are higher than those obtained
using the Wiener index, which only range around 92% to 97% [6].

In addition to the aforementioned applications of graphs, graphs are also employed to represent
various mathematical systems such as groups, rings, and modules. Examples of graph that can
represent a group include coprime graphs, non-coprime graphs, commuting graphs, non-commuting
graphs, intersection graphs, and power graphs. For representing rings, relevant graphs include prime
ideal graphs, prime graphs, and Jacobson graphs. In each of these graph types, the set of vertices and
edges is determined by the specific definitions associated with the graph.

Motivated by this, the authors seek to investigate the properties of graphs that represent commutative
rings, with particular emphasis on zero divisors. The graph being developed is known as the zero
divisor graph, where the vertices correspond to all elements of a commutative ring, and two distinct
vertices are adjacent if their product is the zero element of the ring.

The zero divisor graph was initially introduced by Beck in 1988 [7] in the context of ring theory.
Beck defined this graph for a commutative ring with identity, where the vertices represent the non-zero
elements of the ring, and an edge connects two distinct vertices if their product is zero element of
the ring. This approach was initially designed to investigate the algebraic properties of rings through
graph concepts. Over the subsequent decades, the notion of a zero-divisor graph has been refined
and extended in many directions. In 1999, Anderson and Livingston modified Beck’s construction by
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restricting the vertex set to the nonzero zero divisors and introduced the now standard zero-divisor
graph Γ(R), proving that it is always connected with a diameter at most three and small girth [8]. In
the early 2000s, DeMeyer and Schneider and Mulay studied automorphisms, cycles, and girth of zero-
divisor graphs, while Redmond extended the concept both to non-commutative rings and to ideal-based
zero-divisor graphs ΓI(R), relating their structure to that of Γ(R/I) [9–12]. Axtell and co-authors then
considered polynomial and power-series rings and direct products of commutative rings, determining
the diameter and girth of the associated zero-divisor graphs [13, 14]. For the specific case R = Zn and
related rings, Phillips, Cordova et al. and Aponte et al. obtained explicit formulas for the number of
vertices and edges, vertex degrees, connectivity, planarity, and Eulerian and Hamiltonian properties of
Γ(Zn) and its line graph [15–17]. More recently, Birch et al., Koam et al. and Akg”uneş and Nacaroğlu
studied zero-divisor graphs of finite direct product rings such as Γ(Zn), Γ(Zp1 p2) × Γ(Zq2), and Γ(Zp ×

Zq×Zr), focusing on edge counts, eccentricity-based indices, and other distance parameters [18–20]. A
comprehensive overview of these developments and further results on spectral and topological indices,
including the Wiener index and energy, is provided in the survey of Singh and Bhat [21].

In 2024, Maulana et al. [22] explored the zero divisor graph based on Beck’s definition and obtained
six topological indices over integers modulo ring prime powers and their direct product. A year earlier,
Ismail et al. also studied the zero divisor graph from integers modulo ring pn, but using the definition
from Anderson and Livingston and two different studies were produced, the first one focused on the
first Zagreb index [23] and another focused on the general zeroth-order Randić index [24]. In the
following year, the research focused on the same topic but involved some commutative rings [25, 26].

This research investigates several properties of zero divisor graphs (Anderson and Livingston’s
definition) of commutative rings, such as vertex degree, diameter (which represents distances within
the graph), and topological indices. The topological indices to be examined are closely related to vertex
degree and distance, including the general zeroth-order Randić index, the eccentric connectivity index,
and the Schultz index.

2. Preliminaries and known results

Before going to the main results of this study, several necessary definitions are provided.

Definition 2.1. [7] The zero divisor graph of a commutative ring R, denoted by Γ0(R), is a simple
graph with vertex set is R with two distinct vertices x and y are joined by an edge if

xy = 0R.

Definition 2.2. [27] Consider R as a ring, 0R is the zero element of R, then x ∈ R\ {0R} is a zero divisor
if there exists y ∈ R \ {0R} such that

xy = 0R.

Anderson and Livingston provided a new definition for the zero divisor graph by limiting its vertex
set only to the set of zero divisors of the ring R. The formal definition is given as follows.

Definition 2.3. [8] The zero divisor graph of a commutative ring R, denoted as Γ(R), is a simple graph
where the vertex set is the collection the zero divisors of R and two distinct vertices are adjacent if their
product is 0R.
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The zero divisor graph discussed in this study is the zero divisor graph according to Definition 2.3.

Definition 2.4. [28] In a graph G, the number of its vertices is called the order of G, denoted by |G|,
while the number of edges is denoted by ∥G∥.

Definition 2.5. [28] Let
G = (V, E)

be a graph. The number of u ∈ V that is adjacent to v ∈ V is the degree of v, denoted by deg(v).
Furthermore, N(v) is the collection of neighbors of v.

If we sum up all the vertex degrees in G, we count every edge exactly twice: once from each of its
ends. Thus,

|E| =
1
2

∑
deg(v).

This property is commonly known as the handshaking lemma.

Definition 2.6. [28] Let
G = (V, E)

be a graph. The distance d(u, v) in G between two vertices u and v is the length of the shortest path in
G; if no such path exists, set

d(u, v) := ∞.

The greatest distance between any two vertices in G is the diameter of G, denoted by diam(G).

Definition 2.7. [8] Consider
G = (V, E)

as a connected graph. The eccentricity of v ∈ V , denoted as e(v), is the distance between v and a vertex
farthest from v in G.

Definition 2.8. [28] Let
G = (V, E)

be a graph, X ⊆ V is a separator for G if G − X is a disconnected graph.

Definition 2.9. [28] Graph
G = (V, E)

is called k-connected (for some k ∈ N) if |G| > k and G − X is a connected graph for every X ⊆ V with
|X| ≤ k.The greatest integer k such that G is a k-connected graph is the connectivity κ(G) of G.

Definition 2.10. [5] Consider
G = (V, E)

be a graph. For any α ∈ R, the general zeroth-order Randić index of G, denoted by R0
α(G), is defined as

R0
α(G) =

∑
v∈V

(deg(v))α.
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Definition 2.11. [4] The Schultz index of graph

G = (V, E)

is defined as
S c(G) =

1
2

∑
u,v∈V,u,v

(deg(u) + deg(v))d(u, v).

Definition 2.12. [6] The eccentric connectivity index of graph

G = (V, E),

denoted by ξC(G), can be defined as the sum of the product of eccentricity and degree of each vertex
in G.

Theorem 2.13. [29] If
n =

∏
pk

for some prime number p and k ∈ N, then

φ(n) = n
∏
p|n

(
1 −

1
p

)
,

where φ(n) is the number of positive integers up to n that are relatively prime to n.

The following are a few more theorems regarding to zero divisor graphs of some commutative rings
that are essential for this research.

Theorem 2.14. [30] Let R be a commutative ring and then diam(Γ(R)) ≤ 3.

Theorem 2.15. [22] If p, q primes, m, n natural numbers,

(a, b) ∈ Zpm × Zqn , gcd(a, pm) = pi, and gcd(b, qn) = q j,

then deg((a, b)) in Γ0(Zpm × Zqn) is

deg(a, b) =

piq j − 1, i > ⌊m−1
2 ⌋, j > ⌊ n−1

2 ⌋,

piq j, otherwise.

Theorem 2.16. [22] If p, q primes, m, n natural numbers then∥∥∥Γ0(Zpm × Zqn)
∥∥∥ = 1

2

(
mn(pm− pm−1)(qn−qn−1)+m(pm− pm−1)qn+n(qn−qn−1)pm+ pmqn− p⌈

m−1
2 ⌉q⌈

n−1
2 ⌉

)
.

3. Results and discussion

This research specifically discusses the zero-divisor graph of the commutative ring Zpm × Zqn with
p, q primes (either p = q or p , q) and m, n natural numbers. The first part of this section examines
the properties of this graph, such as its order, size, degree, and other characteristics. Furthermore, the
properties obtained in the first part are used to determine its topological indices in the second part.
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3.1. Properties of Γ(Zpm × Zqn)

Let Γ(Z23 × Z32) be the zero divisor graph of Z23 × Z32 . By Definition 2.1,

V(Γ(Z23 × Z32)) = Z∗(Z23 × Z32)) = Z23 × Z32 \ A

with

A = {(0, 0), (1, 1), (1, 2), (1, 4), (1, 5), (1, 7), (1, 8), (3, 1), (3, 2), (3, 4), (3, 5), (3, 7), (3, 8), (5, 1),

(5, 2), (5, 4), (5, 5), (5, 7), (5, 8), (7, 1), (7, 2), (7, 4), (7, 5), (7, 7), (7, 8)}.

Hence,
|Γ(Z23 × Z32)| = |Z23 × Z32 | − |A| = 72 − 25 = 47.

Generalizing this result to any primes p and q and natural numbers m and n yields the following
theorem.

Theorem 3.1. If p, q are primes and m, n ∈ N, then,

|Γ(Zpm × Zqn)| = pm−1qn−1(p + q − 1) − 1.

Proof. The vertex set of the graph Γ(Zpm × Zqn) is given by

V
(
Γ(Zpm × Zqn)

)
=

{
(a, b) ∈ Zpm × Zqn

∣∣∣ gcd(a, pm) , 1 or gcd(b, qn) , 1
}
.

Define the sets

A = { a ∈ Zpm | gcd(a, pm) = 1 } and B = { b ∈ Zqn | gcd(b, qn) = 1 }.

By Theorem 2.13,

|A| = φ(pm) = pm

(
1 −

1
p

)
= pm−1(p − 1)

and

|B| = φ(qn) = qn

(
1 −

1
q

)
= q n−1(q − 1).

We now compute the order of the graph. Since

|Zpm × Zqn | = pmqn,

and the vertices excluded from Γ(Zpm × Zqn) are precisely the identity element together with all pairs
(a, b) such that a ∈ A and b ∈ B, we obtain∣∣∣Γ(Zpm × Zqn)

∣∣∣ = pmqn − 1 − |A||B|
= pmqn − 1 − pm−1(p − 1)qn−1(q − 1)
= pm−1qn−1(p + q − 1) − 1.

This completes the proof. □
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The subsequent analysis concerns the degrees of vertices and the size of Γ(Zpm × Zqn).Because
Γ(Zpm × Zqn) is an induced subgraph of Γ0(Zpm × Zqn), both the degrees of its vertices and its size may
be determined by applying Theorems 2.15 and 2.16.

For instance, we present the graphs Γ0(Z2 × Z3) and Γ(Z2 × Z3) (see Figures 1 and 2).

Figure 1. Γ0(Z2 × Z3).

Figure 2. Γ(Z2 × Z3).

It can be observed that each vertex in Γ(Z2 ×Z3) has a degree that is one less than its corresponding
degree in Γ0(Z2 × Z3).

The corresponding results are stated below.

Theorem 3.2. Let p, q be primes, m, n be natural numbers, and (a, b) ∈ V(Γ(Zpm × Zqn)). If

gcd(a, pm) = pi

and
gcd(b, qn) = q j,

then

deg(a, b) =

piq j − 2, i > ⌊m−1
2 ⌋, j > ⌊ n−1

2 ⌋,

piq j − 1, otherwise.
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Proof. Partition the vertex set V(Γ0(Zpm × Zqn)) into the subsets

A = {(0, 0)}, B = Z∗(Zpm × Zqn) = V(Γ(Zpm × Zqn)) and C.

For any (a1, a2) ∈ A, (b1, b2) ∈ B, and (c1, c2) ∈ C, we have

(a1, a2).(b1, b2) = (0, 0) and (b1, b2).(c1, c2) , (0, 0).

Consequently, the degree of each vertex in Γ(Zpm × Zqn) is one less than its degree in Γ0(Zpm × Zqn).
Applying Theorem 2.15 completes the proof. □

Theorem 3.3. If p, q are primes, m, n ∈ N then∥∥∥Γ(Zpm × Zqn)
∥∥∥ = 1

2

(
mn(pm − pm−1)(qn − qn−1) + m(pm − pm−1)qn

+ n(qn − qn−1)pm + pmqn − p⌈
m−1

2 ⌉q⌈
n−1

2 ⌉
)
− pmqn + 1.

Proof. Let p, q be primes and m, n ∈ N. Since Γ(Zpm × Zqn) is an induced subgraph of Γ0(Zpm × Zqn),
Γ(Zpm × Zqn) can be obtained by removing all vertices of Γ0(Zpm × Zqn) that are not a zero divisor. Let
(a, b) be any non-zero divisor of Zpm × Zqn . In Γ0(Zpm × Zqn), (a, b) is only adjacent to (0, 0). This
means that to obtain Γ(Zpm × Zqn) we remove as many as degree of (0, 0) (in Γ0(Zpm × Zqn)) edges of
Γ0(Zpm × Zqn). Therefore,

∥∥∥Γ(Zpm × Zqn)
∥∥∥ can be formulated as follows:∥∥∥Γ(Zpm × Zqn)

∥∥∥ = ∥∥∥Γ0(Zpm × Zqn)
∥∥∥ − deg(0, 0)

=
1
2

(
mn(pm − pm−1)(qn − qn−1) + m(pm − pm−1)qn

+ n(qn − qn−1)pm + pmqn − p⌈
m−1

2 ⌉q⌈
n−1

2 ⌉
)
− pmqn + 1.

This completes the proof. □

An example that adheres to Theorem 3.3 is given below for illustration.

Example 3.1. Based on Theorem 3.3:

∥Γ(Z3 × Z23)∥ =
1
2

(
3(3 − 30)(23 − 22) + (3 − 30)23

+ 3(23 − 22)3 + 3.23 − 3⌈
1−1

2 ⌉2⌈
3−1

2 ⌉
)
− 3.23 + 1

=
1
2

(
3.2.4 + 2.8 + 3.4.3 + 3.8 − 2

)
− 24 + 1

=
1
2

(
24 + 16 + 36 + 24 − 2

)
− 24 + 1

= 26.

By Definition 2.1,
∥Γ(Z3 × Z23)∥ = 26
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as shown in Figure 3.

Figure 3. Γ(Z3 × Z23).

The same result can be obtained whether applying the theorem or definition.

Furthermore, to facilitate the research process, define partitions of V(Γ(Zpm × Zqn)) so that two
distinct vertices in the same partition have similar properties including degree and eccentricity. Define

Vi, j = {(a, b) ∈ V : gcd(a, pm) = pi, gcd(b, qn) = q j},

where i = 0, 1, 2, · · · ,m − 1 and j = 0, 1, 2, · · · , n − 1. Note that

V0,0 = {(c, d) : gcd(c, pm) = p0 = 1, gcd(d, qn) = q0 = 1}

and
Vm,n = {(0, 0)}

are not the subset of the vertex set because its elements are not the zero divisor of Zpm × Zqn . As a
result, V(Γ(Zpm × Zqn)) can be partitioned into mn + m + n − 1 sets.

Consider the case p = 3, q = 2, m = 1, and n = 3. The vertex set of Γ(Z3 × Z23) can be expressed as

V
(
Γ(Z3 × Z23)

)
= V0,1 ∪ V0,2 ∪ V0,3 ∪ V1,0 ∪ V1,1 ∪ V1,2,

with the partition defined as follows:

V0,1 = {(1, 2), (1, 6), (2, 2), (2, 6)}, V0,2 = {(1, 4), (2, 4)}, V0,3 = {(1, 0), (2, 0)},
V1,0 = {(0, 1), (0, 3), (0, 5), (0, 7)}, V1,1 = {(0, 2), (0, 6)}, V1,2 = {(0, 4)}.

Observe that every vertex in V0,2 is adjacent to all vertices in V1,1.
Below are the properties related to the adjacency of two distinct vertices based on the defined

partitions.
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Theorem 3.4. Let
Vi, j,Vk,l ⊂ V(Γ(Zpm × Zqn)).

Vertices (a, b) ∈ Vi, j and (c, d) ∈ Vk,l are adjacent if only if i + k ≥ m and j + l ≥ n.

Proof. Consider any elements (a, b) ∈ Vi, j and (c, d) ∈ Vk,l. By the definition of the partition, we have

gcd(a, pm) = pi, gcd(c, pm) = pk,

which implies

a = pix, c = pky,

for some integers x and y with
gcd(x, p) = gcd(y, p) = 1.

Similarly, we write

b = q js, d = qlt,

for integers s and t with
gcd(s, q) = gcd(t, q) = 1.

If (a, b) and (c, d) are adjacent, then

ac ≡ 0 (mod pm), bd ≡ 0 (mod qn),

which is equivalent to pm | ac, qn | bd. Since

ac = pix · pky = pi+kxy,

we have

pm | pi+kxy.

Similarly, qn | q j+lst. Because
gcd(x, p) = gcd(y, p) = 1,

it follows that

pm | pi+k =⇒ i + k ≥ m,

and likewise,

j + l ≥ n.

Conversely, if (a, b) ∈ Vi, j and (c, d) ∈ Vk,l satisfy

i + k ≥ m and j + l ≥ n,

then

ac = pi+kxy ≡ 0 (mod pm), bd = q j+lst ≡ 0 (mod qn),

and therefore (a, b) and (c, d) are adjacent. This completes the proof. □
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If the primes p and q in Theorem 3.4 are equal, we obtain the following corollary.

Corollary 3.5. Let
Vi, j,Vk,l ⊂ V(Γ(Zpm × Zqn)).

Two distinct vertices (a, b), (c, d) ∈ Vi, j are adjacent if only if 2i ≥ m and 2 j ≥ n.

The following theorem presents the cardinality of the defined partition Vi, j.

Theorem 3.6. [22] Let

Vi, j = {(a, b) ∈ V : gcd(a, pm) = pi, gcd(b, qn) = q j},

then

|Vi, j| =


(pm−i − pm−(i+1))(qn− j − qn−( j+1)), i = 0, 1, 2, · · · ,m − 1, j = 0, 1, 2, · · · , n − 1,
pm−i − pm−(i+1), i = 0, 1, 2, · · · ,m − 1, j = n,

qn− j − qn−( j+1), i = m, j = 0, 1, 2, · · · , n − 1.

By utilizing the partition properties of the vertex set defined above, we can analyze the connectivity
properties of the graph. Let

G = (V, E)

be a simple graph and let X ⊆ V . The graph G − X is the subgraph of G obtained by deleting the
vertices in X together with all edges incident to those vertices. Furthermore, if G is a connected graph
and G − X is disconnected, then X is called a separator of G.

Theorem 3.7. Both Vm,n−1 and Vm−1,n are a minimal separator of Γ(Zpm × Zqn).

Proof. By Theorem 3.4, for any

(a, b) ∈ V0,1 ⊂ V(Γ(Zpm × Zqn)),

we have
N((a, b)) = Vm,n−1.

Consequently, the graph
Γ(Zpm × Zqn) − Vm,n−1

is a disconnected graph. This implies that Vm,n−1 is a separator of Γ(Zpm × Zqn).
Now let X ⊊ Vm,n−1. Then there exists a vertex (c, d) ∈ Vm,n−1 such that (c, d) < X. Hence,

Γ(Zpm × Zqn) − X

remains connected. In other words, X is not a separator of Γ(Zpm ×Zqn). Therefore, Vm,n−1 is a minimal
separator of Γ(Zpm × Zqn).

Similarly, by examining the neighbors of any vertex in V1,0, Vm−1,n is also a minimal separator of
Γ(Zpm × Zqn). This completes the proof. □

Here is an example of a minimal separator for a graph.
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Example 3.2. Observe Γ(Z3 × Z23) in Figure 3. It is clear that

V1,2 = {(0, 4)} and V0,3 = {(1, 0), (2, 0)}

are a minimal separator for this graph.

From Theorem 3.7, the following connectivity result follows.

Theorem 3.8. Let p and q be primes, and let m, n be natural numbers. Then Γ(Zpm × Zqn) is a k-
connected graph with

k ≤ min{p − 1, q − 1}.

Moreover,
κ
(
Γ(Zpm × Zqn)

)
= min{p − 1, q − 1}.

Proof. Based on Theorem 3.7, the sets Vm,n−1 and Vm−1,n are minimal separators of Γ(Zpm × Zqn). From
Theorem 3.6, it follows that

|Vm,n−1| = q − 1 and |Vm−1,n| = p − 1,

and that the size of each partition is given by one of the following forms:

pm−i−1(p − 1)qn− j−1(q − 1), pm−i−1(p − 1), or qn− j−1(q − 1),

for some 0 ≤ i ≤ m and 0 ≤ j ≤ n. Consequently, the smallest possible size among all such partitions
is min{p − 1, q − 1}.

Hence, for any subset
X ⊆ V

(
Γ(Zpm × Zqn)

)
satisfying

|X| ≤ min{p − 1, q − 1},

the graph Γ(Zpm × Zqn) − X remains connected. By Definition 2.9, this implies that Γ(Zpm × Zqn) is
k-connected for all

k ≤ min{p − 1, q − 1}.

Furthermore, the vertex-connectivity of the graph satisfies

κ
(
Γ(Zpm × Zqn)

)
= min{p − 1, q − 1}.

This completes the proof. □

Example 3.3. Γ(Z3 × Z23) in Figure 3 is a 1-connected graph and

κ(Γ(Z3 × Z23)) = min{3 − 1, 2 − 1}.
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3.2. Topological Indices of Γ(Zpm × Zqn)

This section focuses on the topological indices of Γ(Zpm × Zqn) related to the degree and distance
between two distinct vertices. The first one is the general zeroth-order Randić index for α = 1, as
detailed in the corollary below.

Corollary 3.9. If p, q are primes, m, n are natural numbers, then

R0
1(Γ(Zpm × Zqn)) =

(
mn(pm − pm−1)(qn − qn−1) + m(pm − pm−1)qn

+ n(qn − qn−1)pm + pmqn − p⌈
m−1

2 ⌉q⌈
n−1

2 ⌉
)
− 2pmqn + 2.

Proof. Apply handshaking lemma and Theorem 3.3. □

The following index is the eccentric connectivity index which is the sum of the product of degree
and eccentricity for each vertex. The discussion is divided into two cases which are ξC(Γ(Zpm × Zqn))
for m = 1 and n = 3 and m, n ≥ 2. For the first case is provided by the theorem below.

Theorem 3.10. If p, q are primes, then

ξC(Γ(Zp × Zq3)) = 15pq3 − 16pq2 − 11q3 + 10q2 − 2q + p + 3.

Proof. Let Γ(Zp × Zq3) denote the zero-divisor graph of the ring Zp × Zq3 , where p and q are primes.
The vertex set can be partitioned as

V(Γ(Zp × Zq3)) = V0,1 ∪ V1,0 ∪ V0,2 ∪ V0,3 ∪ V1,2.

By Theorem 3.6, the cardinalities of these sets are

|V0,1| = (p − 1)(q2 − q), |V1,0| = q3 − q2, |V0,2| = (p − 1)(q − 1),

|V0,3| = p − 1, |V1,2| = q − 1, |V1,1| = q2 − q.

Moreover, by Theorem 3.2, the degrees of the vertices are

deg(v1) = q − 1, deg(v2) = p − 1, deg(v3) = q2 − 1, deg(v4) = q3 − 1,

deg(v5) = pq2 − 2, deg(v6) = pq − 1,

where v1 ∈ V0,1, v2 ∈ V1,0, v3 ∈ V0,2, v4 ∈ V0,3, v5 ∈ V1,2, and v6 ∈ V1,1.
Since all vertices within the same partition have the same degree, the graph can be represented using

partitions as vertices, with loops indicating adjacency between distinct vertices in the same partition
(see Figure 4).
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Figure 4. An illustration of Γ(Zp × Zq3).

From Figure 4, it follows that the eccentricities of the vertices are

e(v1) = e(v2) = e(v3) = 3, e(v4) = e(v5) = e(v6) = 2.

By Definition 2.12, the eccentric connectivity index of Γ(Zp × Zq3) is

ξC(Γ(Zp × Zq3)) =
∑
v∈V

e(v) deg(v)

=
∑

v1∈V0,1

e(v1) deg(v1) +
∑

v2∈V1,0

e(v2) deg(v2) +
∑

v3∈V0,2

e(v3) deg(v3)

+
∑

v4∈V0,3

e(v4) deg(v4) +
∑

v5∈V1,2

e(v5) deg(v5) +
∑

v6∈V1,1

e(v6) deg(v6)

= 3
[
deg(v1)|V0,1| + deg(v2)|V1,0| + deg(v3)|V0,2|

]
+ 2

[
deg(v4)|V0,3| + deg(v5)|V1,2| + deg(v6)|V1,1|

]
= 3

[
(q − 1)(p − 1)(q2 − q) + (p − 1)(q3 − q2) + (q2 − 1)(p − 1)(q − 1)

]
+ 2

[
(q3 − 1)(p − 1) + (pq2)(q − 1) + (pq − 1)(q2 − q)

]
= 15pq3 − 16pq2 − 11q3 + 10q2 − 2q + p + 3.

This completes the proof. □

Note that the values of p and q in the above theorem can be either equal or different. Consequently,
if p = q, the following immediate result is obtained.

Corollary 3.11. If p is prime then

ξC(Γ(Zp × Zp3)) = 15p4 − 27p3 − +10p2 − p + 3.

Example 3.4 is presented to illustrate Theorem 3.10.
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Example 3.4. Consider the zero-divisor graph Γ(Z3 ×Z23) as illustrated in Figure 3. The eccentricities
of the vertices are

e((0, 1)) = e((0, 3)) = e((0, 5)) = e((0, 7)) = e((1, 2)) = e((1, 6))
= e((2, 2)) = e((2, 6)) = e((1, 4)) = e((2, 4)) = 3

and
e((1, 0)) = e((2, 0)) = e((0, 2)) = e((0, 6)) = e((0, 4)) = 2.

By Definition 2.12,

ξC(Γ(Z3 × Z23)) =
∑

v∈Γ(Z3×Z23 )

e(v) deg(v)

= 3(2 + 2 + 2 + 2) + 3(1 + 1 + 1 + 1) + 3(3 + 3) + 2(7 + 7)
+ 2(5 + 5) + 2(10)
= 122.

By Theorem 3.10,

ξC(Γ(Z3 × Z23)) = 15pq3 − 16pq2 − 11q3 + 10q2 − 2q + p + 3
= 15(24) − 16(12) − 11(8) + 10(4) − 4 + 3 + 3
= 360 − 192 − 88 + 40 − 4 + 6
= 122.

Prior to discussing the eccentric connectivity index for the case m, n ≥ 2, the following theorem is
provided, which examines the eccentricity of each vertex in V(Γ(Zpm × Zqn)).

Theorem 3.12. If m, n ≥ 2 and v ∈ V(Γ(Zpm × Zqn)), then:

e(v) =

3, v ∈ Vi,0 ∪ V0, j;
2, otherwise.

Proof. Consider any element v ∈ V(Γ(Zpm × Zqn)). By Theorem 2.14, we have

diam(Γ(Zpm × Zqn)) ≤ 3,

which means that for every pair of vertices u, v ∈ V(Γ(Zpm × Zqn)),

d(u, v) ≤ 3.

Since Γ(Zpm×Zqn) is not a complete graph, for each u ∈ V(Γ(Zpm×Zqn)), there exists u ∈ V(Γ(Zpm×Zqn))
with u , v and d(u, v) , 1.

(1) If v ∈ Vi,0 for some 1 ≤ i ≤ m, then

N(v) = Vm−i,n ∪ Vm−i+1,n ∪ · · · ∪ Vm−1,n.
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For any u ∈ V0,1, we have
N(u) = Vm,n−1.

Hence, d(u, v) , 1, and since
N(u) ∩ N(v) = ∅,

we also have d(u, v) , 2. Therefore,

d(u, v) = 3 = e(v).

(2) If v ∈ V0, j for some 1 ≤ j ≤ n, then

N(v) = Vm,n− j ∪ Vm,n− j+1 ∪ · · · ∪ Vm,n−1.

For any u ∈ V1,0, we have
N(u) = Vm−1,n,

so d(u, v) , 1. Since
N(u) ∩ N(v) = ∅,

it follows that d(u, v) , 2. Hence,
d(u, v) = 3 = e(v).

(3) If v ∈ Vi,n for some 1 ≤ i ≤ m − 1, consider any u ∈ V(Γ(Zpm × Zqn)) with d(u, v) , 1. Examine
the following cases:

• If u ∈ Vk,0 for some 1 ≤ k ≤ m − i, then

Vm−1,n ⊆ N(u) ∩ N(v),

so d(u, v) = 2.
• If u ∈ V0,l with l , 0, then

Vm,n−1 ⊆ N(u) ∩ N(v),

so d(u, v) = 2.
• If u ∈ Vk,l with V0,l , Vk,l , Vk,0 and 1 ≤ k + i ≤ m, then

Vm−1,n−1 ⊆ N(u) ∩ N(v),

so d(u, v) = 2.

Thus, e(v) = 2.

(4) If v ∈ Vm, j for some 1 ≤ j ≤ n − 1, consider any u ∈ V(Γ(Zpm × Zqn)) with d(u, v) , 1. Examine
the following cases:

• If u ∈ Vm, j, then
N(u) = N(v),

but d(u, v) , 1, hence d(u, v) = 2.
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• If u ∈ Vk,0 with k , 0, then
Vm−1,n ⊆ N(u) ∩ N(v),

so d(u, v) = 2.
• If u ∈ V0,l for some 1 ≤ l ≤ m − j, then

Vm,n−1 ⊆ N(u) ∩ N(v),

so d(u, v) = 2.
• If u ∈ Vk,l with

V0,l , Vk,l , Vk,0

and 1 ≤ l + j ≤ n, then
Vm−1,n−1 ⊆ N(u) ∩ N(v),

so d(u, v) = 2.

Therefore, e(v) = 2.

(5) If v ∈ Vi, j for some 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1, consider any u ∈ V(Γ(Zpm × Zqn)) with
d(u, v) , 1. Examine the following possibilities:

• If u ∈ Vi, j, then
N(u) = N(v),

but d(u, v) , 1, so d(u, v) = 2.
• If u ∈ Vk,l with l , 0, then

Vm,n−1 ⊆ N(u) ∩ N(v),

so d(u, v) = 2.
• If u ∈ Vk,0, then

Vm−1,n ⊆ N(u) ∩ N(v),

so d(u, v) = 2.

Hence, e(v) = 2.

This completes the proof. □

The following theorem gives the formula for the eccentric connectivity index of the graph.

Theorem 3.13. If m, n ∈ N and m, n ≥ 2 then

ξC(Γ(Zpm × Zqn)) = (2mn + m + n)(pm − pm−1)(qn − qn−1) + 2m(pm − pm−1)qn

+ 2n(qn − qn−1)pm − 2pmqn − 2p⌈
m−1

2 ⌉q⌈
n−1

2 ⌉ + 4.

Proof. Let
V1 = V1,0 ∪ V2,0 ∪ · · · ∪ Vm,0, V2 = V0,1 ∪ V0,2 ∪ · · · ∪ V0,n

and
V ′ = V1 ∪ V2.
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Applying Theorems 3.6 and 3.12,

∑
v∈V′

deg(v) =
∑
v∈V1

deg(v) +
∑
v∈V2

deg(v)

=

m∑
i=1

|Vi,0| deg(v) +
n∑

j=1

|V0, j| deg(v)

= (qn − qn−1)(qn − 1) +
m−1∑
i=1

(qn − qn−1)(pm−i − pm−i−1)(pi − 1)

+ (pm − pm−1)(pm − 1) +
n−1∑
j=1

(pm − pm−1)(qn− j − qn− j−1)(q j − 1)

= m(pm − pm−1)(qn − qn−1) + n(pm − pm−1)(qn − qn−1)
= (m + n)(pm − pm−1)(qn − qn−1).

Next, it remains to formulate the eccentricity connectivity index.

ξC(Γ(Zpm × Zqn)) =
∑
v∈V′

e(v) deg(v) +
∑

v∈V\V′
e(v) deg(v)

=
∑
v∈V′

3 deg(v) +
∑

v∈V\V′
2 deg(v)

= 3
∑
v∈V′

deg(v) + 2
∑

v∈V\V′
deg(v)

=
∑
v∈V′

deg(v) + 2(
∑
v∈V′

deg(v) +
∑

v∈V\V′
deg(v))

=
∑
v∈V′

deg(v) + 2R0
1

= (m + n)(pm − pm−1)(qn − qn−1)

+ 2
(
mn(pm − pm−1)(qn − qn−1) + m(pm − pm−1)qn + n(qn − qn−1)pm + pmqn

− p⌈
m−1

2 ⌉q⌈
n−1

2 ⌉
)
− 4pmqn + 4

= (2mn + m + n)(pm − pm−1)(qn − qn−1) + 2m(pm − pm−1)qn

+ 2n(qn − qn−1)pm − 2pmqn − 2p⌈
m−1

2 ⌉q⌈
n−1

2 ⌉ + 4.

This completes the proof. □

To illustrate Theorem 3.13, the following example is presented.

Example 3.5. Given Γ(Z22 × Z32) as shown in Figure 5.
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Figure 5. Γ(Z22 × Z32).

Based on this figure, we have

e((1, 3)) = e((1, 6)) = e((3, 3)) = e((3, 6)) = e((1, 0)) = e((3, 0)) = e((2, 1)) = e((2, 2)) = 3,

e((2, 4)) = e((2, 5)) = e((2, 7)) = e((2, 8)) = e((0, 1)) = e((0, 2)) = e((0, 4)) = e((0, 5)) = 3,

e((0, 7)) = e((0, 8)) = 3,

and the eccentricity of all other vertices is 2.
According to Definition 2.12, the connective eccentric index is

ξC(Γ(Z22 × Z32)) =
∑

v∈V(Γ(Z22×Z32 ))

e(v) deg(v)

= 3(2 + 2 + 2 + 2 + 8 + 8 + 1 + 1 + 1 + 1 + 1 + 1 + 3 + 3 + 3 + 3 + 3 + 3)
+ 2(4 + 4 + 16 + 10 + 10)
= 232.

By Theorem 3.13, we can also compute it as

ξC(Γ(Z22 × Z32)) = (8 + 2 + 2)(22 − 2)(32 − 3) + 4(22 − 2)32 + 4(32 − 3)22

+ 2(2232) − 2 · 2⌈
2−1

2 ⌉3⌈
2−1

2 ⌉ − 4(22)(32) + 4
= 144 + 72 + 96 + 72 − 12 − 144 + 4
= 232.

It can be seen that the same result is obtained both with the theorem and the definition.

The final discussion is the Schultz index which is derived from the degree and distance between any
two distinct vertices. Since the Schultz index examined in this paper is limited to particular cases, a
theorem regarding to the upper bound S c(Γ(Zpm × Zqn)) for any natural number m, n is presented.
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Theorem 3.14. If p and q are primes and m, n are natural numbers, then

S c(Γ(Zpm × Zqn)) ≤
3
2

R0
1
(
pm−1qn−1(p + q − 1) − 2

)
.

Proof. According to Theorem 3.1, e(v) ≤ 3 for all v ∈ V(Γ(Zpm × Zqn). By Definition 2.11

S c(Γ(Zpm × Zqn) =
1
2

∑
u,v∈V(Γ(Zpm×Zqn ))

(deg(u) + deg(v))d(u, v)

<
3
2

∑
u,v∈V(Γ(Zpm×Zqn ))

(deg(u) + deg(v))

=
3
2

(|Γ(Zpm × Zqn)| − 1)
∑

u,v∈V(Γ(Zpm×Zqn ))

deg(v)

=
3
2

(|Γ(Zpm × Zqn)| − 1)R1
0

=
3
2

R1
0(pm−1qn−1(p + q − 1) − 2).

This completes the proof. □

In the particular case where m = 2 and n = 1,the Schultz index of Γ(Zpm × Zqn) for m = 1 and n = 2
is given below.

Theorem 3.15. If p and q are primes, then

S c(Γ(Zp × Zq2)) =
1
2

(q − 1)(8pq3 − 20pq2 + 8p2q2 − 2p2q − 8pq − 6q3 + 7q2 + 10q + 4).

Proof. Note that
V(Γ(Zp × Zq2)) = V0,1 ∪ V0,2 ∪ V1,0 ∪ V1,1.

Consider any u, v ∈ V(Γ(Zp × Zq2)) with u , v. When examining the cases in which each partition
contains at least two elements, there are ten possible scenarios as follows:

(1) u, v ∈ V0,2 ∑
u,v∈V0,2

(deg(u) + deg(v))d(u, v) =
∑

u,v∈V0,2

2(2q2 − 2)

=

(
|V0,2|

2

)
(4q2 − 4)

= (p − 1)(p − 2)(2q2 − 2).

(2) u, v ∈ V1,0 ∑
u,v∈V1,0

(deg(u) + deg(v))d(u, v) =
∑

u,v∈V1,0

2(2p − 2)

=

(
|V1,0|

2

)
(2p − 2)

= 2q(p − 1)(q − 1)(q2 − q − 1).
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(3) u, v ∈ V1,1 ∑
u,v∈V1,1

(deg(u) + deg(v))d(u, v) =
∑

u,v∈V1,1

2(pq − 2)

=

(
|V1,1|

2

)
(2pq − 4)

= (q − 1)(q − 2)(pq − 2).

(4) u, v ∈ V0,1 ∑
u,v∈V0,1

(deg(u) + deg(v))d(u, v) =
∑

u,v∈V0,1

2(2q − 2)

=

(
|V0,1|

2

)
(2q − 2)

= 2(p − 1)(q − 1)2(pq − p − q).

(5) u ∈ V0,2 and v ∈ V1,0∑
u∈V0,2,v∈V1,0

((deg(u) + deg(v))d(u, v) =
∑

u∈V0,2,v∈V1,0

(q2 − 1 + p − 1)

= |V0,2||V1,0|(p + q2 − 2)
= (p − 1)q(q − 1)(p + q2 − 2).

(6) u ∈ V0,2 and v ∈ V1,1∑
u∈V0,2,v∈V1,1

((deg(u) + deg(v))d(u, v) =
∑

u∈V0,2,v∈V1,1

(q2 − 1 + pq − 2)

= |V0,2||V1,1|(q2 − 1 + pq − 2)
= (p − 1)(q − 1)(pq + q2 − 3).

(7) u ∈ V0,2 and v ∈ V0,1∑
u∈V0,2,v∈V0,1

((deg(u) + deg(v))d(u, v) =
∑

u∈V0,2,v∈V0,1

2(q2 − 1 + pq − 2)

= |V0,2||V0,1|2(q2 − 1 + q − 1)
= 2(p − 1)2(q − 1)(q2 + q − 2).

(8) u ∈ V1,0 and v ∈ V1,1∑
u∈V1,0,v∈V1,1

((deg(u) + deg(v))d(u, v) =
∑

u∈V1,0,v∈V1,1

2(p − 1 + pq − 2)

= |V1,0||V1,1|2(p − 1 + pq − 2)
= 2q(q − 1)2(pq + p − 3).
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(9) u ∈ V1,0 and v ∈ V0,1∑
u∈V1,0,v∈V0,1

(deg(u) + deg(v))d(u, v) =
∑

u∈V1,0,v∈V0,1

3(p − 1 + q − 1)

= |V1,0||V0,1|3(p − 1 + q − 1)
= 3(p − 1)q(q − 1)2(p + q − 2).

(10) u ∈ V1,0 and v ∈ V0,1∑
u∈V1,1,v∈V0,1

(deg(u) + deg(v))d(u, v) =
∑

u∈V1,1,v∈V0,1

(pq + q − 3)

= |V1,1||V0,1|(pq − 2 + q − 1)
= (p − 1)(q − 1)2(pq + q − 3).

When p or q equals 2, some partitions contain only one element, making point 1, point 3, or
point 4 equal to zero. Substituting these values into the formulas still yields zero, so the expressions in
points 1–10 hold in general.

Therefore, the Schultz index can be formulated along these lines.

2S c(Γ(Zp × Zq2)) =
∑

u,v∈V(Γ(Zp×Zq2 )),u,v

(deg(u) + deg(v))d(u, v)

= (p − 1)(p − 2)(2q2 − 2) + 2q(p − 1)(q − 1)(q2 − q − 1) + (q − 1)(q − 2)
(pq − 2) + 2(p − 1)(q − 1)2(pq − p − q) + (p − 1)q(q − 1)(p + q2 − 2)
+ (p − 1)(q − 1)(pq + q2 − 3) + 2(p − 1)2(q − 1)(q2 + q − 2)
+ 2q(q − 1)2(pq + p − 3) + 3(p − 1)q(q − 1)2(p + q − 2)
+ (p − 1)(q − 1)2(pq + q − 3)

= (q − 1)(8pq3 − 20pq2 + 8p2q2 − 2p2q − 8pq − 6q3 + 7q2 + 10q + 4).

Hence,

S c(Γ(Zp × Zq2)) =
1
2

(q − 1)(8pq3 − 20pq2 + 8p2q2 − 2pq − 8pq − 6q3 + 7q2 + 10q + 4).

This completes the proof. □

An example is provided to enhance the understanding of the theorem above.

Example 3.6. Given Γ(Z3 × Z22) for p = 3 and q = 2.
From Figure 6, we have degree and distance between any two distinct vertices.
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Figure 6. Γ(Z3 × Z22).

By Definition 2.11, the Schultz index of Γ(Z3 × Z22) can be computed as follows:

S c(Γ(Z3 × Z22)) =
∑

u,v∈V(Γ(Z3×Z22 )),u,v

(deg(u) + deg(v))d(u, v)

= (2 + 3) + (2 + 4)2 + (2 + 1)3 + (2 + 1)3 + (2 + 3) + (2 + 2)2
+ (3 + 2) + (3 + 3)2 + (3 + 4) + (3 + 1)2 + (3 + 1)2 + (4 + 1)
+ (4 + 1) + (4 + 2)2 + (4 + 3) + (1 + 1)2 + (1 + 2)3 + (1 + 3)2
+ (1 + 2)3 + (1 + 3)2 + (2 + 3)

= 80.

According to Theorem 3.15,

S c(Γ(Z3 × Z22)) =
1
2

(2 − 1)(192 − 240 + 288 − 36 − 48 − 48 + 28 + 20 + 4) = 80.

The same results are obtained whether using the definition or the theorem.

4. Conclusions

In this research, we determined several structural properties of Γ(Zpm × Zqn), including its order,
size, vertex degrees, diameter, minimal separators, and vertex connectivity, showing that

κ(Γ(Zpm × Zqn)) = min{p − 1, q − 1}.

We obtained general formulas for the general zeroth-order Randić index, the eccentric connectivity
index, and the Schultz index of this graph. These topological indices may be applied to predict physical
properties of compounds isomorphic to the given graph, although such isomers are not addressed in
this study.
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