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Abstract: Since some viruses share transmission routes, coinfection can occur. While most models
assume one target cell, many viruses infect and replicate in multiple cell types. The purpose of this
study is to develop and analyze a model describing coinfection by two viruses that grow and compete
within two distinct target-cell populations. We prove that the proposed model is mathematically
well-defined and admits unique, biologically meaningful solutions. Using the next-generation matrix
method, we derive expressions for the basic reproduction numbers corresponding to virus type 1 single
infection (R1), virus type 2 single infection (R2), and two-virus coinfection (R0). The model usually
admits an infection-free equilibrium. The existence conditions for the virus type 1 single-infection,
virus type 2 single-infection, and two-virus coexistence equilibria are also established. Applying the
Lyapunov direct method, we demonstrate the global stability of all steady states. The obtained results
reveal new insights into the factors that allow two viruses to coexist in a stable state, thereby enabling
the possibility of chronic coinfections. The model is further extended to examine the influence of two
reverse transcriptase (RT) inhibitors and to explore the role of a second target-cell population in two-
virus codynamics. We find that neglecting the second target-cell population leads to underestimation
of R1 and R2; consequently, drug levels determined from a one-target-cell model may be insufficient
to clear the viruses. The model is extended to incorporate antiviral drug therapy and to determine the
minimum drug efficacies required to eliminate viral coinfection. The results provide deeper insight
into the dynamics of dual infections involving viruses that compete for distinct target-cell populations.
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1. Introduction

In recent decades, numerous human viruses have been identified, causing widespread illness and,
in some cases, millions of deaths. Some of these viruses lead to chronic infections and are costly to
treat, particularly those transmitted through bodily fluids, such as HIV-1, human T-cell lymphotropic
virus type 1 (HTLV-1), hepatitis B/C virus (HBV/HCV). Other viruses are transmitted by mosquitoes
and cause febrile illnesses, including Zika virus (ZIKV), dengue virus (DENV), and chikungunya virus
(CHIKV). Respiratory viruses include influenza A virus (IAV) and the recently emerged SARS-CoV-2,
the causative agent of coronavirus disease 2019 (COVID-19).

When a person is infected with two or more viruses, the condition is referred to as a viral
coinfection. Some viruses share common transmission routes, such as HIV-1/HTLV-1 and HBV/HCV.
Other examples include respiratory viruses and vector-borne viruses. Viral coinfections may also
involve different strains of the same virus, such as SARS-CoV-2 (e.g., Delta and Omicron) [1], distinct
HIV strains (e.g., HIV-1, and HIV-2) [2], DENV serotypes (DENV 1–4) [3] or multiple influenza
virus strains. Because different viral infections can produce similar clinical symptoms, double viral
infections are often difficult to diagnose and may increase disease severity. Accurate identification of
such coinfections is therefore essential for effective clinical management and treatment.

Coinfection with HIV and HTLV-1 frequently occurs in regions where both viruses are endemic,
particularly among populations exposed to high-risk behaviors such as unprotected sexual activity and
needle sharing. These practices facilitate the exchange of infected bodily fluids, thereby increasing the
likelihood of simultaneous transmission of the two viruses [4]. Injection drug use, unsafe healthcare
procedures such as the reuse of contaminated needles, and unprotected sexual contact represent shared
risk factors for both HCV and HBV infections, thereby raising the probability of coinfection [5]. HBV
infection is frequently observed among individuals living with HIV, as both viruses share common
routes of transmission, including blood transfusion, unprotected sexual contact, needle sharing, and
mother-to-child transmission [6]. DENV, CHIKV, and ZIKV are transmitted to humans through the
bites of infected female mosquitoes, primarily Aedes aegypti and Aedes albopictus [7]. IAV and SARS-
CoV-2 spread among humans mainly through respiratory droplets [8].

1.1. Mathematical modeling context

Within-host viral dynamics can be effectively examined using mathematical modeling, which helps
clarify how viruses interact with their susceptible host cells. An early and influential model in
this field was proposed in [9], focusing on a single viral population such as HIV-1 that infects and
reproduces within a single class of target cells, specifically CD4+ T cells. The framework assumes that
infection occurs when uninfected cells encounter free virus particles, a pathway known as virus-to-cell
transmission.

In addition to infection mediated by free virus particles, many viruses are capable of spreading
through direct cell-to-cell interactions, a pathway that has been shown to be considerably more
effective than virus-to-cell transmission [10–12]. Viral infectivity may be further amplified through
cytokine-enhanced mechanisms, which have been documented in HIV-1 infection. In cases where
infection fails to complete, caspase-1-dependent pyroptosis is triggered, leading to inflammatory cell
death accompanied by the release of proinflammatory cytokines [13]. The resulting inflammatory
response recruits additional CD4+ T cells to the affected tissue, thereby increasing susceptibility
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to infection and subsequent pyroptosis, ultimately sustaining a self-reinforcing pathogenic cycle.
Mathematical frameworks that incorporate cytokine-enhanced infection mechanisms have attracted
increasing attention in recent years (see, for example, [14–16]). The original framework proposed in [9]
has been generalized in numerous studies through the inclusion of additional biological mechanisms,
such as intracellular time delays, delayed immune responses, and spatial diffusion effects (see, for
instance, [17–19]).

Competition between two viruses for a shared target-cell population can be represented by the model
proposed by [20]:

ẋ =

recruitment of uninfected cells︷︸︸︷
λ −

death︷︸︸︷
dx −

infection driven by virus type 1︷︸︸︷
β1xv1 −

infection driven by virus type 2︷︸︸︷
β2xv2 , (1.1)

ẏ1 =

formation of virus-1-infected cells︷︸︸︷
β1xv1 −

death︷︸︸︷
a1y1 , (1.2)

ẏ2 =

formation of virus-2-infected cells︷︸︸︷
β2xv2 −

death︷︸︸︷
a2y2 , (1.3)

v̇1 =

release of virus type 1︷︸︸︷
k1a1y1 −

loss of free virus︷︸︸︷
c1v1 , (1.4)

v̇2 =

release of virus type 2︷︸︸︷
k2a2y2 −

loss of free virus︷︸︸︷
c2v2 . (1.5)

Here, x = x(t), yi = y(t), and vi = vi(t) represent the time-dependent concentrations of uninfected
cells, infected cells, and free viruses, respectively, with i = 1, 2 denoting virus types 1 and 2. For
SARS-CoV-2 coinfection with other respiratory viruses, including IAV, RSV, hRV, PIV, or hMPV, a
target cell-limited model is typically used. The uninfected target-cell dynamics are described by [21]:

ẋ = −β1xv1 − β2xv2.

Model (1.1)–(1.5) exhibits three equilibria: the infection-free equilibrium, a virus-1 single-infection
equilibrium, and a virus-2 single-infection equilibrium. Notably, the model does not permit
a coexistence equilibrium. Extensions can produce coexistence states under specific biological
conditions, such as:

(i) Superinfection, when one virus can invade cells already infected by another [22];
(ii) Immune interactions, where cytotoxic T lymphocytes (CTLs) or antibodies introduce regulatory

feedback allowing both viruses to persist [23, 24];
(iii) Viral saturation effects, where nonlinear infection dynamics mitigate competition [25, 26]; and
(iv) Overlapping and distinct target cells, where one virus infects both shared and unique cell

types [27, 28].

1.2. Examples of two-virus coinfection models

• SARS-CoV-2 and IAV: Dual infection models assume both viruses target the same cell type
(epithelial cells) [21]. Elaiw et al. [29] examined antibody-mediated immune interactions, while
Khumaeroh et al. [30] analyzed CTL-based immune dynamics.
• HIV-1 and HTLV-1: Several models [23, 31] describe coinfection within CD4+ T cells (x1), with

HIV-1 also infecting macrophages (x2). Other works introduced stochastic [32] and fractional-
order [24] frameworks or saturated incidence dynamics [33].
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• HIV-1 and HBV: Nampala et al. [27] modeled coinfection by assuming HBV infects hepatocytes
(x1) and that HIV-1 infects both hepatocytes (x1) and CD4+ T cells (x2).
• HCV and HBV: Models with saturation and immune terms were developed in [25, 26], where

both viruses target hepatocytes.
• Two viral strains: Coexistence of wild-type and mutant strains has been studied for HIV-1 and

SARS-CoV-2 [34, 35]. Double-strain models for HCV [36] and HIV-1 [37–39] explore drug
resistance and competition on shared targets (CD4+ T cells). In these HIV-1 models, it is assumed
that both drug-sensitive virus and drug-resistant virus are competing for the same target, CD4+ T
cells. Shi et al. [28] formulated a two-strain HIV-1 model by considering that both drug-sensitive
virus and drug-resistant virus infect the same target, CD4+ T cells; moreover, drug-sensitive have
another target, macrophages.

Therefore, simultaneous competition of two viruses across multiple target-cell populations remains
largely unexplored.

1.3. Target-cell diversity

There are documented cases where viruses replicate within multiple target-cell populations. For
HIV-1 and HTLV-1, HIV-1 infects CD4+ T cells, dendritic cells, and macrophages [40, 41]. HTLV-1
mainly targets CD4+ T cells, but can also infect CD8+ T cells, dendritic cells, and monocytes [42].
Regarding vector-borne viruses, several studies [43–45] have shown that DENV infects a variety of
cell types, including monocytes, hepatocytes, macrophages, dendritic cells, and mast cells. CHIKV is
transmitted through bites of infected mosquitoes and replicates in skeletal muscle satelliteOne major
limitation of this study is the difficulty in accurately cells, fibroblasts, macrophages, monocytes, and
skin cells [46, 47]. In addition, monocytes and dendritic cells are known to serve as major targets
for ZIKV infection [48]. For hepatotropic viruses, both HBV and HCV infect hepatocytes but have
also been found in peripheral blood mononuclear cells (PBMCs). These PBMCs are composed of
lymphocytes (T cells, B cells, and natural killer cells) and monocytes, indicating possible extrahepatic
replication [49–51].

Although many viruses preferentially infect a specific class of host cells, they may also invade
and replicate within additional cell types. When multiple viruses are present in the host at the same
time, overlapping cellular tropism can give rise to intricate coinfection dynamics, in which different
viral agents compete across two or more populations of susceptible cells. Such interactions have
been reported in several settings, including HIV-1/HTLV-1 coinfection, hepatitis virus coinfections,
HIV-hepatitis combinations, mosquito-borne viral infections, and respiratory viruses. Despite this
biological complexity, most existing coinfection models simplify the interaction by assuming a single
shared target-cell population for both viruses. Under this assumption, the resulting dynamics primarily
reflect viral competition rather than true coinfection. Genuine coinfection may instead arise through
mechanisms such as cellular superinfection, evasion of adaptive immune responses, or limitations
imposed by infection saturation.

The transmission potential and within-host dynamics of coinfecting viruses are influenced by
several key factors. These include the abundance and diversity of target-cell populations, the efficiency
of viral spread through both free virus and direct cell-to-cell pathways, immune-mediated regulation,
and the extent to which viruses share or occupy distinct cell types. Accounting for these factors
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provides a biological foundation for the model, shaping viral coexistence, competition outcomes, and
the course and severity of infection. Explicit consideration of these elements enhances the relevance
of the framework for understanding viral coinfections and guiding treatment strategies.

To our knowledge, no mathematical framework currently describes within-host dynamics in which
two competing viruses (or strains) simultaneously infect two distinct target-cell populations. Motivated
by these biological observations, we develop a model that allows each virus to infect both cell classes
with different efficiencies. This structure permits coexistence driven solely by target-cell heterogeneity,
without invoking superinfection, immune regulation, or saturation effects.

In this study, we formulate a within-host model for two competing viruses interacting across
two target-cell populations. Explicit formulas for the basic reproduction numbers for single and
dual infections are derived, and the global asymptotic stability of all equilibria is established using
Lyapunov functions. The impact of secondary target-cell populations on long-term infection outcomes
is examined, and numerical simulations are provided to support the analytical results and explore
treatment effects. The proposed framework is applicable to a broad range of viral coinfections,
including HIV-1/HTLV-1, hepatitis viruses, vector-borne infections, and respiratory pathogens.

2. Viral coinfection model

This section presents the formulation of a within-host coinfection system with two types of viruses,
v1 and v2, interacting with two types of target cells, x1 and x2. Both viruses can infect either cell type,
producing infected populations y1, y2 from x1 and z1, z2 from x2. Viruses are generated by infected cells,
while natural cell turnover and viral clearance shape the dynamics. The viruses do not directly block
each other but compete indirectly for the available uninfected target cells, affecting their replication
within the host.

ẋ1 = λ1 − d1x1 − β1x1v1 − β2x1v2, (2.1)
ẏ1 = β1x1v1 − a1y1, (2.2)
ẏ2 = β2x1v2 − a2y2, (2.3)
ẋ2 = λ2 − d2x2 − β3x2v1 − β4x2v2, (2.4)
ż1 = β3x2v1 − a3z1, (2.5)
ż2 = β4x2v2 − a4z2, (2.6)
v̇1 = k1a1y1 + k3a3z1 − c1v1, (2.7)
v̇2 = k2a2y2 + k4a4z2 − c2v2. (2.8)

A description of all variables and parameters in the two-virus coinfection model is provided in Table 1.
All model parameters are assumed to have positive values. The within-host infection pathways of
the two viruses are depicted in Figure 1. The model is initialized with nonnegative starting values as
follows:

x1(0) > 0, y1(0) ≥ 0, y2(0) ≥ 0, x2(0) > 0, z1(0) ≥ 0, z2(0) ≥ 0, v1(0) ≥ 0, v2(0) ≥ 0. (2.9)
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Table 1. Variables and parameters description of system (2.1)–(2.8).

Variable Description
x1 Target cells type 1
y1 v1-infected cells type 1
y2 v2-infected cells type 1
x2 Target cells type 2
z1 v1-infected cells type 2
z2 v2-infected cells type 2
v1 Virus particles type 1
v2 Virus particles type 2
Parameter Description
λ1 Generation rate of target cells type 1, x1

λ2 Generation rate of target cells type 2, x2

β1 Incidence rate between virus particles type 1 and target cells type 1 (v1 and x1)
β2 Incidence rate between virus particles type 2 and target cells type 1 (v2 and x1)
β3 Incidence rate between virus particles type 1 and target cells type 2 (v1 and x2)
β4 Incidence rate between virus particles type 2 and target cells type 2 (v2 and x2)
d1 Mortality rate of target cells type 1
d2 Mortality rate of target cells type 2
a1 Mortality rate of v1-infected cells type 1
a2 Mortality rate of v2-infected cells type 1
a3 Mortality rate of v1-infected cells type 2
a4 Mortality rate of v2-infected cells type 2
c1 Destruction rate of virus particles type 1
c2 Destruction rate of virus particles type 2
ki, i = 1, 2, 3, 4 The average quantity of viral particles produced per infected cell during its lifespan

Figure 1. Diagrammatic representation of the within-host coinfection dynamics involving
two viruses.
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3. Well-posedness of solutions

The right-hand side of system (2.1)–(2.8) is continuous and satisfies the Lipschitz condition
on the interval [0, δ], where δ > 0. From the basic results of differential equation
theory, the system (2.1)–(2.8) with nonnegative initial data (2.9) has a unique local solution
(x1(t), y1(t), y2(t), x2(t), z1(t), z2(t), v1(t), v2(t)) for t ∈ [0, t∗], where 0 < t∗ < ∞.

System (2.1)–(2.8) tracks cell and virus levels, which must stay nonnegative and finite. This is
ensured by the lemma below.

Lemma 1. The solutions of system (2.1)–(2.8) remain nonnegative and bounded.

Proof. We find that

ẋ1 |x1=0= λ1 > 0,
ẏ1 |y1=0= β1x1v1 ≥ 0, for all x1, v1 ≥ 0,
ẏ2 |y2=0= β2x1v2 ≥ 0, for all x1, v2 ≥ 0,
ẋ2 |x2=0= λ2 > 0,
ż1 |z1=0= β3x2v1 ≥ 0, for all x2, v1 ≥ 0,
ż2 |z2=0= β4x2v2 ≥ 0, for all x2, v2 ≥ 0,
v̇1 |v1=0= k1a1y1 + k3a3z1 ≥ 0, for all y1, z1 ≥ 0,
v̇2 |v2=0= k2a2y2 + k4a4z2 ≥ 0, for all y2, z2 ≥ 0.

Hence, by Proposition B.7 in [52], the solution (x1(t), y1(t), y2(t), x2(t), z1(t), z2(t), v1(t), v2(t)) remains in
R8
≥0 for all t ≥ 0, provided that the initial conditions (x1(0), y1(0), y2(0), x2(0), z1(0), z2(0), v1(0), v2(0))

belong to R8
≥0. Let us define Γ = x1 + y1 + y2 + x2 + z1 + z2. Then, we get

Γ̇ = λ1 − d1x1 − a1y1 − a2y2 + λ2 − d2x2 − a3z1 − a4z2

≤ λ1 + λ2 − σ(x1 + y1 + y2 + x2 + z1 + z2) = λ1 + λ2 − σΓ,

where σ = min{d1, d2, a1, a2, a3, a4}. Hence, 0 ≤ Γ(t) ≤ λ1+λ2
σ

for all t ≥ 0 if Γ(0) ≤ λ1+λ2
σ

. This implies
that 0 ≤ x1(t), y1(t), y2(t), x2(t), z1(t), z2(t) ≤ L1 if 0 ≤ x1(0) + y1(0) + y2(0) + x2(0) + z1(0) + z2(0) ≤ L1,
where L1 = λ1+λ2

σ
. Moreover, From Eqs (2.7) and (2.8) we obtain

v̇1 = k1a1y1 + k3a3z1 − c1v1 ≤ k1a1L1 + k3a3L1 − c1v1,

v̇2 = k2a2y2 + k4a4z2 − c2v2 ≤ k2a2L1 + k4a4L1 − c2v2.

It follows that 0 ≤ v1(t) ≤ L2 if 0 ≤ v1(0) ≤ L2, and 0 ≤ v2(t) ≤ L3 if 0 ≤ v2(0) ≤ L3, where
L2 = 1

c1
(k1a1L1 + k3a3L1) and L3 = 1

c2
(k2a2L1 + k4a4L1). The compact set ∆ defined by

∆ =
{
(x1, y1, y2, x2, z1, z2, v1, v2) ∈ R8

≥0 : 0 ≤ x1, y1, y2, x2, z1, z2 ≤ L1, 0 ≤ v1 ≤ L2, , 0 ≤ v2 ≤ L3

}
is positively invariant for system (2.1)–(2.8). �
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4. Steady states analysis

Here, the model’s steady states are explored and the corresponding existence criteria are derived.
Any steady state S S i = (x1, y1, y2, x2, z1, z2, v1, v2) satisfies

0 = λ1 − d1x1 − β1x1v1 − β2x1v2, (4.1)
0 = β1x1v1 − a1y1, (4.2)
0 = β2x1v2 − a2y2, (4.3)
0 = λ2 − d2x2 − β3x2v1 − β4x2v2, (4.4)
0 = β3x2v1 − a3z1, (4.5)
0 = β4x2v2 − a4z2, (4.6)
0 = k1a1y1 + k3a3z1 − c1v1, (4.7)
0 = k2a2y2 + k4a4z2 − c2v2. (4.8)

Substituting Eqs (4.2), (4.3), (4.5), and (4.6) into Eqs (4.7) and (4.8), we obtain

(k1β1x1 + k3β3x2 − c1) v1 = 0, (4.9)
(k2β2x1 + k4β4x2 − c2) v2 = 0. (4.10)

Equations (4.9) and (4.10) provide the following cases:

Case 4.1. v1 = 0 and v2 = 0:

From Eqs (4.1)–(4.6), we get the infection-free steady state S S 0 =
(
x0

1, 0, 0, x
0
2, 0, 0, 0, 0

)
, where

x0
1 = λ1

d1
and x0

2 = λ2
d2

.
By applying the next-generation matrix approach (see Appendix), we obtain

R1 = R11 + R12 =
k1β1λ1

c1d1
+

k3β3λ2

c1d2
,

R2 = R21 + R22 =
k2β2λ1

c2d1
+

k4β4λ2

c2d2
,

R0 = max{R1,R2}.

Here, R1, R2, and R0 denote the basic reproduction numbers associated with infection by v1 alone, v2

alone, and their coinfection, respectively.

Case 4.2. v1 , 0 and v2 = 0:

From Eqs (4.1) and (4.4), we have

x1 =
λ1

d1 + β1v1
, x2 =

λ2

d2 + β3v1
. (4.11)

Substituting in Eq (4.9) we obtain

k1β1λ1

d1 + β1v1
+

k3β3λ2

d2 + β3v1
− c1 = 0,

AIMS Mathematics Volume 11, Issue 1, 1489–1526.



1497

which gives
Āv2

1 + B̄v1 + C̄ = 0, (4.12)

where

Ā = c1β1β3,

B̄ = c1d2β1 + c1d1β3 − k1β1β3λ1 − k3β1β3λ2,

C̄ = c1d1d2 − d2k1β1λ1 − d1k3β3λ2 = −c1d1d2

(
k1β1λ1

c1d1
+

k3β3λ2

c1d2
− 1

)
= −c1d1d2 (R1 − 1) .

We have Ā > 0, and if R1 > 1 then C̄ < 0 and Eq (4.12) has a unique positive root given by

v̄1 =
−B̄ +

√
B̄2 − 4ĀC̄

2Ā
.

From Eqs (4.2), (4.5), and (4.11) we get

x̄1 =
λ1

d1 + β1v̄1
> 0, x̄2 =

λ2

d2 + β3v̄1
> 0, ȳ1 =

β1 x̄1v̄1

a1
> 0, z̄1 =

β3 x̄2v̄1

a3
> 0.

Therefore, an infected v1-mono-infection steady state S S 1 = (x̄1, ȳ1, 0, x̄2, z̄1, 0, v̄1, 0) exists when R1>1.

Case 4.3. v1 = 0 and v2 , 0:

From Eqs (4.1) and (4.4), we have

x1 =
λ1

d1 + β2v2
, x2 =

λ2

d2 + β4v2
. (4.13)

Substituting in Eq (4.10), we obtain

k2β2λ1

d1 + β2v2
+

k4β4λ2

d2 + β4v2
− c2 = 0,

which gives
A∗v2

2 + B∗v2 + C∗ = 0, (4.14)

where

A∗ = c2β2β4,

B∗ = c2d2β2 + c2d1β4 − k2β2β4λ1 − k4β2β4λ2,

C∗ = c2d1d2 − d2k2β2λ1 − d1k4β4λ2 = −c2d1d2

(
k2β2λ1

c2d1
+

k4β4λ2

c2d2
− 1

)
= −c2d1d2 (R2 − 1) .

We have A∗ > 0, and if R2 > 1 then C∗ < 0 and Eq (4.14) has a unique positive root given by

v∗2 =
−B∗ +

√
B∗2 − 4A∗C∗

2A∗
.

From Eqs (4.3), (4.6), and (4.13), we get

x∗1 =
λ1

d1 + β2v∗2
> 0, x∗2 =

λ2

d2 + β4v∗2
> 0, y∗2 =

β2x∗1v∗2
a2

> 0, z∗2 =
β4x∗2v∗2

a4
> 0.

Therefore, an infected v2-mono-infection steady state S S 2 =
(
x∗1, 0, y

∗
2, x

∗
2, 0, z

∗
2, 0, v

∗
2

)
exists when R2>1.
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Case 4.4. v1 , 0 and v2 , 0:

In this case, we get a two-virus coexistence steady state S S 3 = (x̃1, ỹ1, ỹ2, x̃2, z̃1, z̃2, ṽ1, ṽ2):

x̃1 =
c1

(
R12
R22
− 1

)
k1β1

(
R21R12
R22R11

− 1
) , x̃2 =

c2

(
R21
R11
− 1

)
k4β4

(
R21R12
R22R11

− 1
) ,

ỹ1 =
β1 x̃1ṽ1

a1
, ỹ2 =

β2 x̃1ṽ2

a2
, z̃1 =

β3 x̃2ṽ1

a3
, z̃2 =

β4 x̃2ṽ2

a4
,

ṽ1 =
d1

β1

γR11

(
R21R12
R22R11

− 1
)

+
(

R12
R22
− 1

)
γ
(

R12
R22
− 1

)
(R3 − 1)


(

R12
R22
− 1

) {
R22

(
R21R12
R22R11

− 1
)

+ γ
(

R21
R11
− 1

)}(
R21
R11
− 1

) {
γR11

(
R21R12
R22R11

− 1
)

+
(

R12
R22
− 1

)} − 1

 ,
ṽ2 =

d2

β4

R22

(
R21R12
R22R11

− 1
)

+ γR3

(
R21
R11
− 1

)(
R21
R11
− 1

)
(R3 − 1)


(

R21
R11
− 1

) {(
R12
R22
− 1

)
+ γR11R3

(
R21R12
R22R11

− 1
)}(

R12
R22
− 1

) {
R22

(
R21R12
R22R11

− 1
)

+ γR3

(
R21
R11
− 1

)} − 1

 ,
where γ =

d1β4
d2β2

. The threshold R3 =
β2β3
β1β4

compares the cross-infection strengths of the two viruses
across the two target-cell populations. Then S S 3 exists when the following conditions are satisfied:

R12

R22
> 1,

R21

R11
> 1, R3 > 1, (C1)(

R12
R22
− 1

) {
R22

(
R21R12
R22R11

− 1
)

+ γ
(

R21
R11
− 1

)}(
R21
R11
− 1

) {
γR11

(
R21R12
R22R11

− 1
)

+
(

R12
R22
− 1

)} > 1, (C2)

(
R21
R11
− 1

) {(
R12
R22
− 1

)
+ γR11R3

(
R21R12
R22R11

− 1
)}(

R12
R22
− 1

) {
R22

(
R21R12
R22R11

− 1
)

+ γR3

(
R21
R11
− 1

)} > 1. (C3)

From condition (C1) we have the following:

k2β2

c2
>

k1β1

c1
,

k3β3

c1
>

k4β4

c2
, and

β2β3

β1β4
> 1.

The condition k2β2
c2

> k1β1
c1

indicates that virus type 2 replicates more efficiently than virus type 1
in the first target-cell population (x1), producing a larger number of viable virions per unit time and
gaining a competitive advantage that promotes its persistence and dominance in this niche. Similarly,
k3β3
c1

> k4β4
c2

shows that virus type 1 is more efficient in the second target-cell population (x2), generating
more surviving virions and allowing it to dominate this population, which acts as a refuge for virus
type 1 even when virus type 2 is present elsewhere. The condition β2β3

β1β4
> 1 reflects a complementary

structure in which virus type 2 dominates x1 (large β2 relative to β1) and virus type 1 dominates
x2 (large β3 relative to β4), representing niche partitioning. When these requirements are satisfied
simultaneously, the intensity of direct competition is reduced, and each virus exhibits a preferential
replication advantage in one target-cell population while remaining less effective in the other. This
asymmetric replication pattern inhibits competitive exclusion and supports the stable persistence of
both viral populations.

We note that although conditions (C2) and (C3) are necessary to ensure the coexistence of the two
viral strains, their underlying biological interpretation is more nuanced.

The following lemma consolidates these findings:
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Lemma 2. The steady states of system (2.1)–(2.8) are characterized as follows:

• The infection-free steady state always exists, namely,

S S 0 = (x0
1, 0, 0, x

0
2, 0, 0, 0, 0).

• If R1 > 1, then an infected v1-mono-infection steady state arises,

S S 1 = (x̄1, ȳ1, 0, x̄2, z̄1, 0, v̄1, 0) ,

in addition to S S 0.
• If R2 > 1, then an infected v2-mono-infection steady state appears,

S S 2 =
(
x∗1, 0, y

∗
2, x

∗
2, 0, z

∗
2, 0, v

∗
2
)
,

in addition to S S 0.
• If conditions (C1)–(C3) hold, then a two-virus coexistence steady state is present,

S S 3 = (x̃1, ỹ1, ỹ2, x̃2, z̃1, z̃2, ṽ1, ṽ2) ,

together with S S 0, S S 1, and S S 2.

5. Global asymptotic stability

We employ a Lyapunov approach to analyze the global stability of the four steady states. Following
the strategy used by [18, 53], we construct appropriate Lyapunov functions. For each j = 0, 1, 2, 3, let
Θ j(x1, y1, y2, x2, z1, z2, v1, v2) be a Lyapunov candidate, and define the set as

Ξ j =

{
(x1, y1, y2, x2, z1, z2, v1, v2) :

dΘ j

dt
= 0

}
.

Denote by Ξ′j the largest invariant subset of Ξ j. The following arithmetic–geometric mean inequality
will be repeatedly used:

m

√√ m∏
j=1

s j ≤
1
m

m∑
j=1

s j, s j ≥ 0, j = 1, 2, ... (5.1)

To simplify the global stability analysis, we assume k13 = k1 = k3 (and similarly k24 = k2 = k4).
Biologically, this corresponds to the scenario in which each virus produces a similar number of virions
per infected cell, regardless of whether the infection occurs in the primary or secondary target-cell
population. This assumption does not affect the qualitative dynamics but allows for the derivation of
analytical Lyapunov functions and the establishment of global stability results.

Theorem 1. If R0 = max{R1,R2} ≤ 1, then S S 0 = (x0
1, 0, 0, x

0
2, 0, 0, 0, 0) is globally asymptotically

stable (G.A.S), otherwise it is unstable.
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Proof. Formulate a Lyapunov function Θ0 as:

Θ0 = x0
1

(
x1

x0
1

− 1 − ln
x1

x0
1

)
+ y1 + y2 + x0

2

(
x2

x0
2

− 1 − ln
x2

x0
2

)
+ z1 + z2 +

1
k13

v1 +
1

k24
v2.

Calculate dΘ0
dt along the solutions of model (2.1)–(2.8) as:

dΘ0

dt
=

(
1 −

x0
1

x1

)
(λ1 − d1x1 − β1x1v1 − β2x1v2) + β1x1v1 − a1y1

+ β2x1v2 − a2y2 +

(
1 −

x0
2

x2

)
(λ2 − d2x2 − β3x2v1 − β4x2v2) + β3x2v1 − a3z1

+ β4x2v2 − a4z2 +
1

k13
(k13a1y1 + k13a3z1 − c1v1)

+
1

k24
(k24a2y2 + k24a4z2 − c2v2)

=

(
1 −

x0
1

x1

)
(λ1 − d1x1) +

(
1 −

x0
2

x2

)
(λ2 − d2x2) + β1x0

1v1 + β2x0
1v2

+ β3x0
2v1 + β4x0

2v2 −
c1

k13
v1 −

c2

k24
v2.

Substituting λ1 = d1x0
1 and λ2 = d2x0

2, we obtain

dΘ0

dt
= −d1

(x1 − x0
1)2

x1
− d2

(x2 − x0
2)2

x2
+

c1

k13
(R1 − 1)v1 +

c2

k24
(R2 − 1)v2.

Therefore, for all x1, y1, y2, x2, z1, z2, v1, v2 > 0 we have dΘ0
dt ≤ 0. Moreover, dΘ0

dt = 0 when x1 = x0
1, x2 =

x0
2, and v1 = v2 = 0. The solutions of system (2.1)–(2.8) tend to Ξ′0, which contains elements that

satisfy x1(t) = x0
1, x2(t) = x0

2, and v1(t) = v2(t) = 0 [54]. Hence, v̇1(t) = v̇2(t) = 0, and from Eqs (2.7)
and (2.8), we have

0 = k1a1y1(t) + k3a3z1(t),
0 = k2a2y2(t) + k4a4z2(t),

which leads to y1(t) = y2(t) = z1(t) = z2(t) = 0 for all t, and hence Ξ′0 = {S S 0}. LaSalle’s invariance
principle (L.I.P.) reveals that S S 0 is G.A.S [55].

To prove that S S 0 is unstable when R0 > 1, the Jacobian matrix J = J(x1, y1, y2, x2, z1, z2, v1, v2) of
model (2.1)–(2.8) is calculated as:

J =



−(d1 + β1v1 + β2v2) 0 0 0 0 0 −β1x1 −β2x1

β1v1 −a1 0 0 0 0 β1x1 0
β2v2 0 −a2 0 0 0 0 β2x1

0 0 0 −(d2 + β3v1 + β4v2) 0 0 −β3x2 −β4x2

0 0 0 β3v1 −a3 0 β3x2 0
0 0 0 β4v2 0 −a4 0 β4x2

0 k13a1 0 0 k13a3 0 −c1 0
0 0 k24a2 0 0 k24a4 0 −c2


. (5.2)
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We calculate the characteristic equation at the equilibrium S S 0 as:

(ξ + d1)(ξ + d2)
(
ξ3 + A2ξ

2 + A1ξ + A0

) (
ξ3 + B2ξ

2 + B1ξ + B0

)
= 0, (5.3)

where ξ is the eigenvalue and

A2 = a1 + a3 + c1,

A1 = a1a3 + a1c1 + a3c1 −
a1k13β1λ1

d1
−

a3k13β3λ2

d2
,

A0 = a1a3c1 (1 − R1) ,
B2 = a2 + a4 + c2,

B1 = a2a4 + a2c2 + a4c2 −
a2k24β2λ1

d1
−

a4k24β4λ2

d2
,

B0 = a2a4c2 (1 − R2) .

Clearly, if R1 > 1 and/or R2 > 1, then A0 < 0 and/or B0 < 0; Therefore Eq (5.3) has a positive root, and
hence S S 0 is unstable. �

When both reproduction numbers satisfy R1,R2 ≤ 1, the infections are predicted to disappear over
time, regardless of the initial infection levels or disease state. Under these conditions, neither virus can
persist within the host, leading to complete clearance and recovery of the target-cell populations.

Theorem 2. If R1 > 1 and R2 ≤ 1, then S S 1 = (x̄1, ȳ1, 0, x̄2, z̄1, 0, v̄1, 0) is G.A.S.

Proof. Consider a function:

Θ1 =x̄1

(
x1

x̄1
− 1 − ln

x1

x̄1

)
+ ȳ1

(
y1

ȳ1
− 1 − ln

y1

ȳ1

)
+ y2 + x̄2

(
x2

x̄2
− 1 − ln

x2

x̄2

)
+ z̄1

(
z1

z̄1
− 1 − ln

z1

z̄1

)
+ z2 +

v̄1

k13

(
v1

v̄1
− 1 − ln

v1

v̄1

)
+

1
k24

v2.

Calculate dΘ1
dt as:

dΘ1

dt
=

(
1 −

x̄1

x1

)
(λ1 − d1x1 − β1x1v1 − β2x1v2) +

(
1 −

ȳ1

y1

)
(β1x1v1 − a1y1)

+ β2x1v2 − a2y2 +

(
1 −

x̄2

x2

)
(λ2 − d2x2 − β3x2v1 − β4x2v2)

+

(
1 −

z̄1

z1

)
(β3x2v1 − a3z1) + β4x2v2 − a4z2

+
1

k13

(
1 −

v̄1

v1

)
(k13a1y1 + k13a3z1 − c1v1) +

1
k24

(k24a2y2 + k24a4z2 − c2v2)

=

(
1 −

x̄1

x1

)
(λ1 − d1x1) + β1 x̄1v1 + β2 x̄1v2 −

β1x1v1ȳ1

y1
+ a1ȳ1

+

(
1 −

x̄2

x2

)
(λ2 − d2x2) + β3 x̄2v1 + β4 x̄2v2 −

β3x2v1z̄1

z1
+ a3z̄1

AIMS Mathematics Volume 11, Issue 1, 1489–1526.



1502

−
c1

k13
v1 − a1

y1v̄1

v1
− a3

z1v̄1

v1
+

c1

k13
v̄1 −

c2

k24
v2.

Use the steady state conditions for S S 1:

λ1 = d1 x̄1 + β1 x̄1v̄1, λ2 = d2 x̄2 + β3 x̄2v̄1,

a1ȳ1 = β1 x̄1v̄1, a3z̄1 = β3 x̄2v̄1,

c1v̄1 = k13 (a1ȳ1 + a3z̄1) .

Then, we have

dΘ1

dt
=

(
1 −

x̄1

x1

)
(d1 x̄1 + a1ȳ1 − d1x1) − a1ȳ1

x1v1ȳ1

x̄1v̄1y1
+ 2a1ȳ1 +

(
1 −

x̄2

x2

)
(d2 x̄2 + a3z̄1 − d2x2)

− a3z̄1
x2v1z̄1

x̄2v̄1z1
+ 2a3z̄1 − a1ȳ1

y1v̄1

ȳ1v1
− a3z̄1

z1v̄1

z̄1v1
+

(
β2 x̄1 + β4 x̄2 −

c2

k24

)
v2

= − d1
(x1 − x̄1)2

x1
− d2

(x2 − x̄2)2

x2
+ a1ȳ1

(
3 −

x̄1

x1
−

x1v1ȳ1

x̄1v̄1y1
−

y1v̄1

ȳ1v1

)
+ a3z̄1

(
3 −

x̄2

x2
−

x2v1z̄1

x̄2v̄1z1
−

z1v̄1

z̄1v1

)
+

(
β2λ1

d1 + β1v̄1
+

β4λ2

d2 + β3v̄1
−

c2

k24

)
v2. (5.4)

Since v̄1 > 0, then we have(
β2λ1

d1+β1v̄1
+

β4λ2

d2+β3v̄1
−

c2

k24

)
v2≤

(
β2λ1

d1
+
β4λ2

d2
−

c2

k24

)
v2 =

c2

k24

(
β2k24λ1

c2d1
+
β4k24λ2

c2d2
−1

)
v2 =

c2

k24
(R2−1) v2.

Therefore, Eq (5.4) takes the following form:

dΘ1

dt
≤ − d1

(x1 − x̄1)2

x1
− d2

(x2 − x̄2)2

x2
+ a1ȳ1

(
3 −

x̄1

x1
−

x1v1ȳ1

x̄1v̄1y1
−

y1v̄1

ȳ1v1

)
+ a3z̄1

(
3 −

x̄2

x2
−

x2v1z̄1

x̄2v̄1z1
−

z1v̄1

z̄1v1

)
+

c2

k24
(R2 − 1) v2.

If R2 ≤ 1, then using inequality (5.1), we obtain dΘ1
dt ≤ 0 for all x1, y1, y2, x2, z1, z2, v1, v2 > 0. Moreover,

dΘ1
dt = 0 occurs at x1 = x̄1, x2 = x̄2, y1 = ȳ1, z1 = z̄1, v1 = v̄1, and v2 = 0. The solutions of the system

tend to Ξ′1, which contains elements that satisfy x1(t) = x̄1, x2(t) = x̄2, y1(t) = ȳ1, z1(t) = z̄1, v1(t) = v̄1,
and v2(t) = 0. Hence v̇2(t) = 0, and from Eq (2.8), we have

0 = v̇2(t) = k2a2y2(t) + k4a4z2(t),

which leads to y2(t) = z2(t) = 0 for all t, and hence Ξ′1 = {S S 1}. LaSalle’s invariance principle (L.I.P.)
reveals that S S 1 is G.A.S. �

Theorem 3. If R2 > 1 and R1 ≤ 1, then S S 2 =
(
x∗1, 0, y

∗
2, x

∗
2, 0, z

∗
2, 0, v

∗
2

)
is G.A.S.

Proof. Let us formulate a function Θ1 as:

Θ2 =x∗1

(
x1

x∗1
− 1 − ln

x1

x∗1

)
+ y1 + y∗2

(
y2

y∗2
− 1 − ln

y2

y∗2

)
+ x∗2

(
x2

x∗2
− 1 − ln

x2

x∗2

)
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+ z1 + z∗2

(
z2

z∗2
− 1 − ln

z2

z∗2

)
+

1
k13

v1 +
v∗2
k24

(
v2

v∗2
− 1 − ln

v2

v∗2

)
.

Calculate dΘ2
dt along the solutions of model (2.1)–(2.8) as:

dΘ2

dt
=

(
1 −

x∗1
x1

)
(λ1 − d1x1 − β1x1v1 − β2x1v2) + β1x1v1 − a1y1

+

(
1 −

y∗2
y2

)
(β2x1v2 − a2y2) +

(
1 −

x∗2
x2

)
(λ2 − d2x2 − β3x2v1 − β4x2v2)

+ β3x2v1 − a3z1 +

(
1 −

z∗2
z2

)
(β4x2v2 − a4z2)

+
1

k13
(k13a1y1 + k13a3z1 − c1v1) +

1
k24

(
1 −

v∗2
v2

)
(k24a2y2 + k24a4z2 − c2v2)

=

(
1 −

x∗1
x1

)
(λ1 − d1x1) + β1x∗1v1 + β2x∗1v2 −

β2x1v2y∗2
y2

+ a2y∗2

+

(
1 −

x∗2
x2

)
(λ2 − d2x2) + β3x∗2v1 + β4x∗2v2 −

β4x2v2z∗2
z2

+ a4z∗2

−
c1

k13
v1 −

c2

k24
v2 − a2

y2v∗2
v2
− a4

z2v∗2
v2

+
c2

k24
v∗2.

Utilize the following conditions for S S 2:

λ1 = d1x∗1 + β2x∗1v∗2, λ2 = d2x∗2 + β4x∗2v∗2,

a2y∗2 = β2x∗1v∗2, a4z∗2 = β4x∗2v∗2,

c2v∗2 = k24
(
a2y∗2 + a4z∗2

)
.

Then, we get

dΘ2

dt
=

(
1 −

x∗1
x1

)
(d1x∗1 + a2y∗2 − d1x1) − a2y∗2

x1v2y∗2
x∗1v∗2y2

+ 2a2y∗2 +

(
1 −

x∗2
x2

)
(d2x∗2 + a4z∗2 − d2x2)

− a4z∗2
x2v2z∗2
x∗2v∗2z2

+ 2a4z∗2 − a2y∗2
y2v∗2
y∗2v2

− a4z∗2
z2v∗2
z∗2v2

+ (β1x∗1 + β3x∗2 −
c1

k13
)v1

= − d1
(x1 − x∗1)2

x1
− d2

(x2 − x∗2)2

x2
+ a2y∗2

(
3 −

x∗1
x1
−

x1v2y∗2
x∗1v∗2y2

−
y2v∗2
y∗2v2

)
+ a4z∗2

(
3 −

x∗2
x2
−

x2v2z∗2
x∗2v∗2z2

−
z2v∗2
z∗2v2

)
+ (

β1λ1

d1 + β2v∗2
+

β3λ2

d2 + β4v∗2
−

c1

k13
)v1.

Since v∗2 > 0, then(
β1λ1

d1+β2v∗2
+

β3λ2

d2+β4v∗2
−

c1

k13

)
v1≤

(
β1λ1

d1
+
β3λ2

d2
−

c1

k13

)
v1 =

c1

k13

(
β1k13λ1

d1c1
+
λ2k13β3

d2c1
−1

)
v1 =

c1

k13
(R1−1) v1.

Therefore, we obtain

dΘ2

dt
≤ − d1

(x1 − x∗1)2

x1
− d2

(x2 − x∗2)2

x2
+ a2y∗2

(
3 −

x∗1
x1
−

x1v2y∗2
x∗1v∗2y2

−
y2v∗2
y∗2v2

)
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+ a4z∗2

(
3 −

x∗2
x2
−

x2v2z∗2
x∗2v∗2z2

−
z2v∗2
z∗2v2

)
+

c1

k13
(R1 − 1) v1.

If R1 ≤ 1, then using inequality (5.1) we get dΘ2
dt ≤ 0 for all x1, y1, y2, x2, z1, z2, v1, v2 > 0 and dΘ2

dt = 0
when x1 = x∗1, y2 = y∗2, x2 = x∗2, z2 = z∗2, v2 = v∗2 and v1 = 0. The solutions of the system tend to
Ξ′2, which contains elements that satisfy x1(t) = x∗1, y2(t) = y∗2, x2(t) = x∗2, z2(t) = z∗2, v2(t) = v∗2, and
v1(t) = 0. Then, from Eq (2.7), we get

0 = v̇1(t) = k1a1y1(t) + k3a3z1(t),

which gives y1(t) = z1(t) = 0 for all t. Hence, Ξ′2 = {S S 2}, and then L.I.P. implies that S S 2 is G.A.S. �

If one virus has a reproduction number above 1 while the other remains below 1, the virus with
the higher Ri establishes a stable infection, and the other virus is eliminated, regardless of the initial
infection levels or disease state. These equilibria reflect competitive exclusion, where the surviving
virus determines the infection dynamics.

Theorem 4. Suppose that conditions (C1)–(C3) are satisfied, then S S 3 = (x̃1, ỹ1, ỹ2, x̃2, z̃1, z̃2, ṽ1, ṽ2) is
G.A.S.

Proof. Define

Θ3 =x̃1

(
x1

x̃1
− 1 − ln

x1

x̃1

)
+ ỹ1

(
y1

ỹ1
− 1 − ln

y1

ỹ1

)
+ ỹ2

(
y2

ỹ2
− 1 − ln

y2

ỹ2

)
+ x̃2

(
x2

x̃2
− 1 − ln

x2

x̃2

)
+ z̃1

(
z1

z̃1
− 1 − ln

z1

z̃1

)
+ z̃2

(
z2

z̃2
− 1 − ln

z2

z̃2

)
+

ṽ1

k13

(
v1

ṽ1
− 1 − ln

v1

ṽ1

)
+

ṽ2

k24

(
v2

ṽ2
− 1 − ln

v2

ṽ2

)
.

Calculate dΘ3
dt as:

dΘ3

dt
=

(
1 −

x̃1

x1

)
(λ1 − d1x1 − β1x1v1 − β2x1v2) +

(
1 −

ỹ1

y1

)
(β1x1v1 − a1y1)

+

(
1 −

ỹ2

y2

)
(β2x1v2 − a2y2) +

(
1 −

x̃2

x2

)
(λ2 − d2x2 − β3x2v1 − β4x2v2)

+

(
1 −

z̃1

z1

)
(β3x2v1 − a3z1) +

(
1 −

z̃2

z2

)
(β4x2v2 − a4z2)

+
1

k13

(
1 −

ṽ1

v1

)
(k13a1y1 + k13a3z1 − c1v1) +

1
k24

(
1 −

ṽ2

v2

)
(k24a2y2 + k24a4z2 − c2v2)

=

(
1 −

x̃1

x1

)
(λ1 − d1x1) + β1 x̃1v1 + β2 x̃1v2 −

β1x1v1ỹ1

y1
+ a1ỹ1

−
β2x1v2ỹ2

y2
+ a2ỹ2 +

(
1 −

x̃2

x2

)
(λ2 − d2x2) + β3 x̃2v1 + β4 x̃2v2

−
β3x2v1z̃1

z1
+ a3z̃1 −

β4x2v2z̃2

z2
+ a4z̃2 −

c1

k13
v1 − a1

y1ṽ1

v1
− a3

z1ṽ1

v1

+
c1

k13
ṽ1 −

c2

k24
v2 − a2

y2ṽ2

v2
− a4

z2ṽ2

v2
+

c2

k24
ṽ2.
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Use the steady state conditions for S S 3:

λ1 = d1 x̃1 + β1 x̃1ṽ1 + β2 x̃1ṽ2, λ2 = d2 x̃2 + β3 x̃2ṽ1 + β4 x̃2ṽ2,
a1ỹ1 = β1 x̃1ṽ1, a2ỹ2 = β2 x̃1ṽ2, a3z̃1 = β3 x̃2ṽ1, a4z̃2 = β4 x̃2ṽ2,

c1ṽ1 = k13 (a1ỹ1 + a3z̃1) , c1ṽ2 = k24 (a2ỹ2 + a4z̃2) .

Then, we get

dΘ3

dt
=

(
1 −

x̃1

x1

)
(d1 x̃1 + a1ỹ1 + a2ỹ2 − d1x1) − a1ỹ1

x1v1ỹ1

x̃1ṽ1y1
+ 2a1ỹ1 − a2ỹ2

x1v2ỹ2

x̃1ṽ2y2

+ 2a2ỹ2 +

(
1 −

x̃2

x2

)
(d2 x̃2 + a3z̃1 + a4z̃2 − d2x2) − a3z̃1

x2v1z̃1

x̃2ṽ1z1
+ 2a3z̃1

− a4z̃2
x2v2z̃2

x̃2ṽ2z2
+ 2a4z̃2 − a1ỹ1

y1ṽ1

ỹ1v1
− a3z̃1

z1ṽ1

z̃1v1
− a2ỹ2

y2ṽ2

ỹ2v2
− a4z̃2

z2ṽ2

z̃2v2

= − d1
(x1 − x̃1)2

x1
− d2

(x2 − x̃2)2

x2
+ a1ỹ1

(
3 −

x̃1

x1
−

x1v1ỹ1

x̃1ṽ1y1
−

y1ṽ1

ỹ1v1

)
+ a2ỹ2

(
3 −

x̃1

x1
−

x1v2ỹ2

x̃1ṽ2y2
−

y2ṽ2

ỹ2v2

)
+ a3z̃1

(
3 −

x̃2

x2
−

x2v1z̃1

x̃2ṽ1z1
−

z1ṽ1

z̃1v1

)
+ a4z̃2

(
3 −

x̃2

x2
−

x2v2z̃2

x̃2ṽ2z2
−

z2ṽ2

z̃2v2

)
.

Clearly dΘ2
dt ≤ 0 for all x1, y1, y2, x2, z1, z2, v1, v2 > 0 and dΘ2

dt = 0 at the steady state S S 3. The solutions
of the system tend to Ξ′2 = {S S 3}. Then L.I.P. implies that S S 3 is G.A.S. �

Under specific biological conditions, both viruses can persist at stable levels simultaneously,
regardless of the initial infection levels or disease state. Coexistence occurs when viruses exploit shared
or distinct target-cell populations or when immune feedback allows both to survive. This outcome
illustrates the potential for multi-virus infections to maintain long-term persistence within a host.

Remark 1. Examining memory effects in the proposed model through the use of fractional differential
equations (FDEs) represents a valuable direction for future research. Fractional-order formulations
are well suited to describe systems with nonlocal interactions and hereditary behavior, which frequently
arise in biological and epidemiological processes. In recent years, Lyapunov-based methods have
been increasingly employed to establish global stability in fractional-order within-host biological
models [56–58] as well as in fractional-order epidemiological models [59–61]. In this context, the
Lyapunov functions developed in the present study offer a solid analytical basis for extending the
model to a fractional-order formulation and for investigating the long-term dynamics of coinfection
systems.

6. Impact of a second target-cell population on two-virus codynamics

This section examines how adding a second target-cell group affects the progression of two viruses.
A modified system is considered by including two reverse transcriptase (RT) inhibitors that block fresh
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infections. The resulting equations are

ẋ1 = λ1 − d1x1 − (1 − ε1)β1x1v1 − (1 − ε2)β2x1v2,

ẏ1 = (1 − ε1)β1x1v1 − a1y1,

ẏ2 = (1 − ε2)β2x1v2 − a2y2,

ẋ2 = λ2 − d2x2 − (1 − f1ε1)β3x2v1 − (1 − f2ε2)β4x2v2,

ż1 = (1 − f1ε1)β3x2v1 − a3z1,

ż2 = (1 − f2ε2)β4x2v2 − a4z2,

v̇1 = k1a1y1 + k3a3z1 − c1v1,

v̇2 = k2a2y2 + k4a4z2 − c2v2.

(G1)

The coefficients εi ∈ [0, 1], i = 1, 2, measure the blocking strength of the two RT inhibitors. Their
effect is assumed to be higher in (x1, y1, y2) and reduced in (x2, z1, z2), where the diminished action is
written as fiεi, with fi ∈ [0, 1], i = 1, 2 [62].

The reproduction numbers for system (G1) are given as:

Rtwo-target
1 (ε1) =

(1 − ε1)k1β1λ1

c1d1
+

(1 − f1ε1)k3β3λ2

c1d2
= (1 − ε1)R11 + (1 − f1ε1)R12,

Rtwo-target
2 (ε2) =

(1 − ε2)k2β2λ1

c2d1
+

(1 − f2ε2)k4β4λ2

c2d2
= (1 − ε2)R21 + (1 − f2ε2)R22. (6.1)

In the following corollary, we establish the conditions under which at most one virus can persist
chronically.

Corollary 1. For system (G1) and the threshold parameters given in (6.1), the following statements
hold:

• If ε1 ≥ ε
two-target
1,min and ε2 ≥ ε

two-target
2,min , then Rtwo-target

1 (ε1) ≤ 1 and Rtwo-target
2 (ε2) ≤ 1. In this case, the

infection-free steady state, S S 0, is G.A.S.
• If ε1 < ε

two-target
1,min and ε2 ≥ ε

two-target
2,min , then Rtwo-target

1 (ε1) > 1 and Rtwo-target
2 (ε2) ≤ 1. In this case, the

infected v1-mono-infection steady state, S S 1, is G.A.S.
• If ε1 ≥ ε

two-target
1,min and ε2 < ε

two-target
2,min , then Rtwo-target

1 (ε1) ≤ 1 and Rtwo-target
2 (ε2) > 1. In this case, the

infected v2-mono-infection steady state, S S 2, is G.A.S.

We next present the coinfection system with a single target-cell class under the action of two RT
inhibitors: 

ẋ1 = λ1 − d1x1 − (1 − ε1)β1x1v1 − (1 − ε2)β2x1v2,

ẏ1 = (1 − ε1)β1x1v1 − a1y1,

ẏ2 = (1 − ε2)β2x1v2 − a2y2,

v̇1 = k1a1y1 − c1v1,

v̇2 = k2a2y2 − c2v2,

(G2)

which has three steady states:

S S one-target
0 =

(
x0

1, 0, 0, 0, 0
)
,

S S one-target
1 =

 x0
1

Rone-target
1 (ε1)

,
c1d1

(1 − ε1)a1k1β1
(Rone-target

1 (ε1) − 1), 0,
d1

(1 − ε1)β1
(Rone-target

1 (ε1) − 1), 0
 ,
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S S one-target
2 =

 x0
1

Rone-target
2 (ε2)

, 0,
c2d1

(1 − ε2)a2k2β2
(Rone-target

2 (ε2) − 1), 0,
d1

(1 − ε2)β2
(Rone-target

2 (ε2) − 1)
 ,

where

Rone-target
1 (ε1) = (1 − ε1)R11,

Rone-target
2 (ε2) = (1 − ε2)R21.

It is clear that Rone-target
i (εi) < Rtwo-target

i (εi), i = 1, 2. Therefore, ignoring the second target-cell population
results in an underestimation of the basic reproduction numbers.

The RT inhibitors in systems (G1) and (G2) are designed to block viral entry. We define the
minimum drug efficacies εone-target

i,min and ε two-target
i,min , i = 1, 2, as the smallest values ensuring:

Rone-target
i (εi) ≤ 1, for all εone-target

i,min ≤ εi ≤ 1,

Rtwo-target
i (εi) ≤ 1, for all ε two-target

i,min ≤ εi ≤ 1, i = 1, 2.

Let Ri1 > 1, i = 1, 2, then

ε
one-target
i,min = 1 −

1
Ri1

,

ε
two-target
i,min =

Ri1 + Ri2 − 1
Ri1 + fiRi2

, i = 1, 2.

Since fi ∈ [0, 1], i = 1, 2, then

ε
two-target
i,min =

Ri1 + Ri2 − 1
Ri1 + fiRi2

≥
Ri1 + Ri2 − 1

Ri1 + Ri2
= 1 −

1
Ri1 + Ri2

> 1 −
1

Ri1
= ε

one-target
i,min , i = 1, 2.

If the drug level satisfies εone-target
i,min ≤ εi ≤ ε

two-target
i,min , then Rone-target

i (εi) ≤ 1, which drives system (G2)
to the infection-free steady state S S One-target

0

(
x0

1, 0, 0, 0, 0
)
. However, in the same range, we still have

Rtwo-target
i (εi) > 1, so the steady state S S two-target

0 (x0
1, 0, 0, x

0
2, 0, 0, 0, 0) of system (G1) remains unstable.

Thus, drug levels determined from the one-target-cell model may not be sufficient to clear the viruses.
This highlights the importance of including the second target-cell type in coinfection models to obtain
accurate treatment thresholds. Accounting for the extra cell population provides stricter efficacy
requirements and a more reliable estimate for successful therapy.

Remark 2. System (G1) can be formulated as a controlled dynamical system, where
x1, y1, y2, x2, z1, z2, v1, and v2 are the state variables, and ε1 and ε2 represent intervention controls. A
variety of control approaches have been employed in epidemiology and virology, including feedback-
based methods, adaptive strategies, model predictive control, and optimal control techniques. In
particular, optimal treatment policies are commonly formulated by minimizing disease burden while
simultaneously accounting for medication costs and adverse side effects. Recent studies in virological
modeling, including analyses of HTLV-I dynamics [63] and HIV/HTLV coinfection [24] as well as
epidemiological investigations of HIV/AIDS [64] and HIV/TB coinfection [65, 66], demonstrate the
effectiveness of optimal control approaches in capturing disease dynamics and evaluating intervention
strategies. These contributions highlight the practical value of control-based frameworks and provide
strong motivation for extending system (G1) to an optimal control formulation in order to assess and
design efficient treatment policies.
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7. Numerical simulations

In this section, the qualitative dynamics of system (2.1)–(2.8) are numerically investigated. The
extent to which the simulations confirm the analytical outcomes presented in Theorems 1–4 is assessed
using the parameter values in Table 2. The parameter values presented in the table were assumed
for the purpose of numerical simulations to illustrate that when the stability conditions are satisfied, all
solutions converge to the corresponding equilibrium points. These assumptions are necessary due to the
difficulty in estimating the parameters, as real patient data for dual infections are limited. We note that
if actual patient data become available, some parameters could be estimated more accurately, allowing
for proper validation of the model. System (2.1)–(2.8) is solved using the MATLAB solver ode45.
This solver is designed for non-stiff ordinary differential equations and is based on an explicit Runge–
Kutta (4,5) scheme. Its adaptive step-size control regulates local errors and provides accurate solutions
with moderate computational cost. Owing to its robustness and straightforward implementation within
MATLAB, ode45 is well suited for simulating the dynamics of the proposed model.

Table 2. The values of the parameters of model (2.1)–(2.8).

Parameter Value Parameter Value
λ1 10 cells mm−3 day−1 a2 0.3 day−1

λ2 5 cells mm−3 day−1 a3 0.1 day−1

d1 0.01 day−1 a4 0.2 day−1

d2 0.01 day−1 k1 50 virus cells−1

β1 (Varied) mm3 virus−1 day−1 k2 40 virus cells−1

β2 (Varied) mm3 virus−1 day−1 k3 50 virus cells−1

β3 (Varied) mm3 virus−1 day−1 k4 40 virus cells−1

β4 (Varied) mm3 virus−1 day−1 c1 3 day−1

a1 0.5 day−1 c2 4 day−1

The numerical study is divided into three parts. Subsection 7.1 investigates the stability of all steady
states across four regimes (I)–(IV) by varying the four infection rates and examining the asymptotic
dynamics of system (2.1)–(2.8) in each regime. Subsection 7.2 examines the impact of RT-inhibitor-
based treatment where the reduction in the infection rates is modeled through the parameters for drug
efficacy εi and fiεi. Then, it quantifies the stabilization of the resulting viral dynamics. Subsection 7.3
compares our two-target-cell coinfection model with a published HIV-HBV model. This comparison
is significant since the incorporation of a second target-cell population necessitates stronger antiviral
efficacy thresholds and results in different viral-clearance outcomes compared with the single-target-
cell model.

7.1. Stability of the steady states

We begin by investigating the four regimes produced by varying the infection rates (β1, β2, β3, β4)
while maintaining all other parameters as the given values in Table 2. We select the following family
of initial conditions:
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
x1 (0) = 600 − 30`, y1 (0) = 2 + 1.5`, y2 (0) = 9 + 0.3`,
x2 (0) = 400 − 30`, z1 (0) = 10 + 7`, z2 (0) = 0.2 + 3`,
v1 (0) = 60 + 20`, v2 (0) = 40 + 10`, ` = 1, 2, ..., 12.

(IC1)

The threshold parameters R1, R2, and the coexistence conditions (C1)–(C3) are those stated in
Theorems 1–4. Moreover, we calculate the Jacobian matrix J = J (x1, y1, y2, x2, z1, z2, v1, v2) of system
(2.1)–(2.8) at each steady state and evaluate the signs of the real parts of its corresponding eigenvalues
ηi, i = 1, 2, ..., 8, which serves as a numerical check of the local stability results. Consider the Jacobian
matrix J given in (5.2). Therefore, we have the following four regimes:

7.1.1. Regime I (spontaneous viral clearance)

With the parameter set (β1, β2, β3, β4) = (2 × 10−5, 3 × 10−5, 3 × 10−5, 2 × 10−5), the threshold value
is computed as R0 = max{R1,R2} = max{0.58, 0.40} ≤ 1. Biologically, this regime represents either
strong host immune defenses, low viral infectivity, or effective antiviral intervention, which together
prevent either virus from establishing a lasting infection. For all initial conditions listed in (IC1),
the trajectories of target cells rise monotonically and approach their limiting values (1000, 500),
whereas the infected cells and virus particles of both types decline monotonically and tend to zero
(Figure 2). This result reflects full viral clearance and host recovery, indicating that low infection
rates are insufficient to sustain long-term viral presence. These simulations support Theorem 1, where
system (2.1)–(2.8) always converges to the infection-free steady state S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0).
Hence, S S 0 is G.A.S. Consistently, the Jacobian matrix evaluated at S S 0 exhibits eight eigenvalues
with strictly negative real parts (Table 3, Regime I), thereby confirming the local asymptotic stability
of S S 0.
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Figure 2. Dynamics of system (2.1)–(2.8) showing the asymptotic stability of the infection-
free steady state S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0) for R0 = max{R1,R2} ≤ 1 (Regime I).
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Table 3. Local stability of nonnegative steady states S S i, i = 0, 1, 2, 3.
Regime Steady states (Re(ηi), i = 1, 2, 3, 4) Stability
I S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0) (−4.11,−3.21,−0.33,−0.24,−0.15,−0.06,−0.01,−0.01) stable

II
S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0)
S S 1 = (195.46, 16.09, 0, 69.69, 43.03, 0, 205.81, 0)

(−4.44,−4.11, 1.004,−0.24,−0.16,−0.15,−0.01,−0.01)
(−4.02,−3.38,−0.28,−0.21,−0.2,−0.04,−0.04,−0.06)

unstable
stable

III
S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0)
S S 2 = (230.14, 0, 25.66, 154.79, 0, 17.26, 0, 111.51)

(−4.94,−3.21, 0.66,−0.33,−0.22,−0.06,−0.01,−0.01)
(−4.27,−3.05,−0.46,−0.23,−0.09,−0.02,−0.02,−0.04)

unstable
stable

IV

S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0)
S S 1 = (195.46, 16.09, 0, 69.69, 43.03, 0, 205.81, 0)
S S 2 = (141.6, 0, 28.61, 145.99, 0, 17.7, 0, 121.24)
S S 3 = (163.64, 7.31, 15.7, 90.91, 30.44, 5.23, 111.62, 57.58)

(−5.34,−4.44, 1.06, 1.004,−0.21,−0.16,−0.01,−0.01)
(−4.32,−3.38,−0.21,−0.21,−0.04,−0.04,−0.06, 0.03)
(−4.27,−3.32,−0.31,−0.22,−0.03,−0.03,−0.04, 0.03)
(−4.28,−3.33,−0.26,−0.22,−0.04,−0.04,−0.03,−0.03)

unstable
unstable
unstable
stable

7.1.2. Regime II (virus type 1 dominates)

For the parameter values (β1, β2, β3, β4) = (2× 10−4, 3× 10−5, 3× 10−4, 2× 10−5), the corresponding
thresholds are R1 = 5.83 > 1 and R2 = 0.40 ≤ 1. Biologically, virus type 1 replicates more
efficiently in its preferred target-cell population, allowing it to establish a sustained infection. For
all initial conditions listed in (IC1), system (2.1)–(2.8) evolves toward the infected v1-mono-infection
steady state S S 1 = (195.46, 16.09, 0, 69.69, 43.03, 0, 205.81, 0), as predicted by Theorem 2 (Figure 3).
As expected in this regime, the infection-free steady state S S 0 is numerically unstable due to one
positive eigenvalue, whereas S S 1 is locally asymptotically stable since all eigenvalues corresponding
to the Jacobian at S S 1 exhibit negative real parts (Table 3, Regime II). Furthermore, the long-term
dynamics across all compartments exhibit the characteristic behavior of a v1-dominant mono-infection:
the populations of target cells tend to positive steady levels, the populations of virus particles and
infected cells associated with virus type 1 approach positive steady values, while all virus type 2
associated compartments decline to zero. This pattern illustrates competitive exclusion, in which the
more efficient virus inhibits the other strain and prevents its survival. This consistent convergence from
all initial conditions corroborates the theoretical outcomes established in Theorem 2 and highlights
numerical findings for the global asymptotic stability of the coexistence steady state S S 1.
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Figure 3. Dynamics of system (2.1)–(2.8) showing the asymptotic stability of the infected
v1-mono-infection steady state S S 1 = (195.46, 16.09, 0, 69.69, 43.03, 0, 205.81, 0) for R1 > 1
and R2 ≤ 1 (Regime II).
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7.1.3. Regime III (virus type 2 dominates)

Taking the parameter set (β1, β2, β3, β4) = (2 × 10−5, 3 × 10−4, 3 × 10−5, 2 × 10−4), we obtain
R2 = 4 > 1 and R1 = 0.58 ≤ 1. In this case, virus type 2 has a higher infection or
replication efficiency, which enables it to dominate over virus type 1. Simulations initiated from
all initial conditions in (IC1) converge to the infected v2-mono-infection steady state S S 2 =

(230.14, 0, 25.66, 154.79, 0, 17.26, 0, 111.51), in accordance with Theorem 3 (Figure 4). As in the
previous regime, S S 0 loses its stability due to one positive eigenvalue, whereas S S 2 is locally
asymptotically stable, since the Jacobian at S S 2 possesses eigenvalues with negative real parts (Table 3,
Regime III). Compared with Regime II, the long-term dynamics across all compartments exhibit
the characteristic behavior of a v2-dominant mono-infection: The populations of target cells tend
to positive steady values, the populations of virus particles and infected cells associated with virus
type 2 approach positive steady values, while all virus type 1 associated compartments decline to zero.
This regime demonstrates how differences in infection rates influence which virus maintains a long-
term presence within the host. This consistent convergence from all initial conditions corroborates
the theoretical outcomes established in Theorem 3 and highlights numerical findings for the global
asymptotic stability of the coexistence steady state S S 2.
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Figure 4. Dynamics of system (2.1)–(2.8) showing the asymptotic stability of the infected v2-
mono-infection steady state S S 2 = (230.14, 0, 25.66, 154.79, 0, 17.26, 0, 111.51) for R2 > 1
and R1 ≤ 1 (Regime III).

7.1.4. Regime IV (coexistence of the two viruses)

Taking the infection rate parameters as (β1, β2, β3, β4) = (2 × 10−4, 5 × 10−4, 3 × 10−4, 2 × 10−4), the
coexistence requirements in (C1)–(C3) are fulfilled. The threshold parameters are calculated as
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R3 = 3.75 > 1,
R12

R22
= 2.5 > 1,

R21

R11
= 1.5 > 1,

along with the composite inequalities in (C2) and (C3), respectively

1.71 > 1 and 1.45 > 1,

ensuring the feasibility of the two-virus coexistence steady state for this parameter regime.
Both viruses are able to persist by primarily exploiting distinct target-cell populations,
which limits direct competition between them. For all initial conditions specified in
(IC1), system (2.1)–(2.8) evolves toward the two-virus coexistence steady state S S 3 =

(163.64, 7.31, 15.7, 90.91, 30.44, 5.23, 111.62, 57.58), in accordance with Theorem 4 (Figure 5). As
presented in Table 3 (Regime IV), the Jacobian spectra demonstrate that S S 0, S S 1, and S S 2 are
unstable in this regime since each of them possesses a positive eigenvalue. In contrast, S S 3 is locally
asymptotically stable, as the Jacobian at S S 3 has eigenvalues with negative real parts. The long-
term dynamics across all compartments exhibit the characteristic behavior of a coinfection scenario
involving two viruses: The populations of target cells settle at positive steady values, the populations
of virus particles and infected cells associated with both types stabilize at positive steady values,
indicating the persistence of both types of viruses. Such coexistence leads to an effective partitioning
of the cellular environment, whereby each virus exhibits maximal replication efficiency in one target
cell population and reduced efficiency in the other. As a consequence, both viruses are able to persist
simultaneously within the same host.
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Figure 5. Dynamics of system (2.1)–(2.8) showing the asymptotic stability of the two-virus
coexistence steady state S S 3 = (163.64, 7.31, 15.7, 90.91, 30.44, 5.23, 111.62, 57.58) under
conditions C1–C3 (Regime IV).

The preceding analysis shows that changes in the infection rate parameters (β1, β2, β3, β4) can shift
the system among four distinct regimes: complete elimination of both viruses, dominance of virus
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type 1, dominance of virus type 2, and stable coexistence of the two viral populations. This illustrates
how sensitive the within-host dynamics are to viral infectivity and the preference for specific target-
cell populations. Likewise, adjusting the drug efficacy parameters ε1 and ε2 reduces the effective
infection rates, showing how treatment can shift the system from persistent infection to suppression
or complete viral elimination. These findings emphasize the role of parameter variation in capturing
realistic disease dynamics and informing treatment strategies.

7.2. Effect of treatments

This subsection discusses the influence of the RT inhibitor-based treatment on the stability
properties of system (G1). In order to quantify the lowest therapeutic strength that is essential to
control each virus, we use Eq (6.1) to calculate the drug efficacy threshold parameters at ε two-target

1,min and
ε

two-target
2,min so that

Rtwo-target
1 (ε1) = 1 and Rtwo-target

2 (ε2) = 1.

Then, we take under consideration the parameter values listed in Regime IV and fix f1 = f2 = 0.9 to
obtain the critical ε two-target

1,min and ε two-target
2,min as follows:

ε
two-target
1,min =

R11 + R12 − 1
R11 + f1R12

= 0.865672,

ε
two-target
2,min =

R21 + R22 − 1
R21 + f2R22

= 0.847458.

To analyze the dynamical behavior of system (G1) under a variety of treatment strengths, we solve
system (G1) under the selected initial conditions:

x1 (0) = 600, y1 (0) = 5, y2 (0) = 10,
x2 (0) = 300, z1 (0) = 20, z2 (0) = 10,
v1 (0) = 60, v2 (0) = 50,

(IC2)

and examine several selections of (ε1, ε2). The numerical simulations illustrated in Figure 6 and the
steady states presented in Table 4 highlight the significant impact of ε1 and ε2 on the dynamics of
system (G1). The outcomes are as follows:

• In the absence of treatment (ε1 = ε2 = 0), both viruses persist and the coinfection becomes
chronic. In this situation all solution trajectories converges to S S 3, and it is G.A.S.
• In the moderate treatment level (such as, ε1 = ε2 = 0.75), both viruses persist and the coinfection

becomes chronic. However, a remarkable reduction in the populations of infected cells and virus
particles is seen, but still, Rtwo-target

i > 1 for i = 1, 2, which guarantees that all solution trajectories
converge to S S 3, and it is G.A.S.
• In the case of asymmetric treatment levels (ε1 > ε1,min while ε2 < ε2,min, ε1 < ε1,min while ε2 >

ε2,min), particular eradication of one virus is noticed while the other persists, in accordance with
virus superiority and Rtwo-target

i > 1 for i = 1, 2. In this situation, the solution trajectories converge
to the mono-infection state (S S 1 or S S 2).
• In the case that both treatments exceed their minimal values (such as, ε1 = ε2 = 0.9 or ε1 =

ε2=1), both viruses vanish, and this leads to the healthy situation. Hence, the solution trajectories
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converge to the infection-free equilibrium S S 0 where Rtwo-target
i ≤ 1 for i = 1, 2. These outcomes

validate the analytical conditions and confirm that total coinfection clearance demands that both
treatment parameters ε1 and ε2 surpass their critical values.
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Figure 6. Dynamics of system (G1) under the effect of RT inhibitor-based treatment.

Table 4. Effect of RT inhibitor-based treatment on the dynamics of system (G1).

Treatment parameters Steady states Rtwo-target
1 (ε1) Rtwo-target

2 (ε2)
ε1 = ε2 = 0 S S 3 = (163.64, 7.31, 15.7, 90.91, 30.44, 5.23, 111.62, 57.58) 5.83 6
ε1 = ε2 = 0.75 S S 3 = (654.55, 4.7, 3.69, 279.72, 19.57, 1.23, 71.76, 13.52) 1.64583 1.575
ε1 = 0.9, ε2 = 0.8 S S 2 = (761.74, 0, 7.94, 425.47, 0, 3.73, 0, 31.28) 0.81 1.28
ε1 = 0.8, ε2 = 0.9 S S 1 = (804.61, 3.91, 0, 331.14, 16.89, 0, 60.71, 0) 1.37 0.69
ε1 = 0.865672, ε2 = 0.847458 S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0) 1 1
ε1 = ε2 = 0.9 S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0) 0.81 0.69
ε1 = ε2 = 1 S S 0 = (1000, 0, 0, 500, 0, 0, 0, 0) 0.25 0.1

7.3. Comparison results

In this subsection, we compare our system (G1) with a previously developed model describing
HIV-HBV coinfection given in [27], where both viruses target hepatocytes, while HIV additionally
infects CD4+ T cells. The dynamics of HIV and HBV under the influence of two reverse transcriptase
inhibitors are formulated as:
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

ẋ1 = λ1 − d1x1 − (1 − ε1)β1x1v1 − (1 − ε2)β2x1v2,

ẏ1 = (1 − ε1)β1x1v1 − a1y1,

ẏ2 = (1 − ε2)β2x1v2 − a2y2,

ẋ2 = λ2 − d2x2 − (1 − f1ε1)β3x2v1,

ż1 = (1 − f1ε1)β3x2v1 − a3z1,

v̇1 = k1a1y1 + k3a3z1 − c1v1,

v̇2 = k2a2y2 − c2v2.

(G3)

Here, x1(t), y1(t), y2(t), x2(t), z1(t), v1(t), and v2(t) represent, respectively, the concentrations of
uninfected hepatocytes, HIV-infected hepatocytes, HBV-infected hepatocytes, uninfected CD4+ T
cells, HIV-infected CD4+ T cells, free HIV particles, and free HBV particles at time t.

The basic reproduction numbers for system (G3) are given by

R∗1(ε1) =
(1 − ε1)k1β1λ1

c1d1
+

(1 − f1ε1)k3β3λ2

c1d2
= (1 − ε1)R11 + (1 − f1ε1)R12,

R∗2(ε2) =
(1 − ε2)k2β2λ1

c2d1
= (1 − ε2)R21.

We define the minimum drug efficacies and ε∗1,min, and ε∗2,min, as the smallest values ensuring:

R∗i (εi) ≤ 1, for all ε∗i,min ≤ εi ≤ 1, i = 1, 2,

where

ε∗1,min =
R11 + R12 − 1
R11 + f1R12

, ε∗2,min =
R21 − 1

R21
.

Using the values of the parameters given in Regime IV and choosing f1 = f2 = 0.9, we get

ε
two-target
1,min =

R11 + R12 − 1
R11 + f1R12

= 0.865672, ε
two-target
2,min =

R21 + R22 − 1
R21 + f2R22

= 0.847458,

ε∗1,min =
R11 + R12 − 1
R11 + f1R12

= 0.865672, ε∗2,min =
R21 − 1

R21
= 0.8.

In Figure 7, we compare the stability characteristics of systems (G1) and (G3). The initial conditions
are chosen as follows: 

x1 (0) = 920, y1 (0) = 1, y2 (0) = 3,
x2 (0) = 470, z1 (0) = 3, z2 (0) = 1,
v1 (0) = 10, v2 (0) = 10.

(IC3)

We set the drug efficacies ε1 = 0.87 and ε2 = 0.82. Under these values, the effective reproduction
numbers become

R∗1(ε1) = 0.98 < 1, R∗2(ε2) = 0.9 < 1,

which ensures that system (G3) remains stable at its infection-free equilibrium. In contrast, applying
the same efficacies to system (G1) yields

Rtwo-target
1 (ε1) = 0.98 < 1, Rtwo-target

2 (ε2) = 1.16 > 1,
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indicating instability of the infection-free state. Therefore, estimating drug thresholds from a simplified
model that ignores the secondary target-cell can lead to insufficient therapy and persistence of at least
one viral infection. This comparison underscores the necessity of incorporating all relevant target cell
populations in coinfection models to derive accurate efficacy thresholds. Including the additional cell
type results in stricter, but more realistic, treatment conditions for viral eradication.
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Figure 7. Solution trajectories for the full two-target infection model (G1) compared with its
restricted one-target setting (G3).

Neglecting the second target-cell population can lead to an underestimation of the basic
reproduction numbers, which may, in turn, influence clinical decision-making and intervention
strategies. To quantify this effect, we evaluate the discrepancy between the two effective reproduction
numbers for virus type 2, namely

Rtwo-target
2 − R∗2(ε2) = 1.16 − 0.9 = 0.26,

which corresponds to an approximate difference of 29%. Consequently, treatment strategies developed
from models that overlook the second target-cell population of virus type 2 may fail to achieve complete
clearance of this virus from the host. Consequently, the treatment efficacy required to eliminate
hepatitis C virus type 2 is underestimated by 0.847458−0.82 = 0.027, corresponding to an approximate
discrepancy of 3.35%. This emphasizes the importance of using a mathematical model that accounts
for both target-cell types of the two viruses when designing treatment schedules.

7.4. Sensitivity analysis

To assess the influence of each parameter of system (G1) on the threshold quantities defined in (6.1),
the normalized forward sensitivity index is employed, as given below:
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Λα =
α

Rtwo-target
i (εi)

∂Rtwo-target
i (εi)
∂α

, i = 1, 2, (7.1)

where α accounts for any parameter of interest. When Λα takes a positive value, an increase in α

enhances Rtwo-target
i (εi); conversely, a negative value reflects a suppressive impact. Thus, the proportional

impact of parameter α on the threshold quantity is quantified by its magnitude of Λα. We take into
consideration the parameter set used in Regime IV and fix f1 = f2 = 0.9 and ε1 = ε2 = 0.6. Then,
we use Eq (7.1) to compute the normalized sensitivity indices Λα for all parameters associated with
Eq (6.1). Tables 5 and 6 summarize all calculated outcomes describing, respectively, the sensitivity
of Rtwo-target

1 (ε1) and Rtwo-target
2 (ε2) under the chosen parameter values. Figures 8 and 9 present their

corresponding graphical representations.
In the subsequent discussion, we outline the main sensitivity outcomes and highlight the parameters

that have the greatest effect on the infection dynamics.

Table 5. Sensitivity indices of Rtwo-target
1 (ε1) associated with the parameters of system (G1).

Parameter α Λα Parameter α Λα Parameter α Λα

λ1 0.537 β1 0.537 c1 −1
λ2 0.463 β3 0.463 ε1 −1.349
d1 −0.537 k1 0.537 f1 −0.544
d2 −0.463 k3 0.463

Table 6. Sensitivity indices of Rtwo-target
2 (ε2) associated with the parameters of system (G1).

Parameter α Λα Parameter α Λα Parameter α Λα

λ1 0.813 β2 0.813 c2 −1
λ2 0.187 β4 0.187 ε2 −1.439
d1 −0.813 k2 0.813 f2 −0.22
d2 −0.187 k4 0.187

Figure 8. Parameter contribution pattern corresponding to Rtwo-target
1 (ε1) in system (G1).
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Figure 9. Parameter contribution pattern corresponding to Rtwo-target
2 (ε2) in system (G1).

7.4.1. Sensitivity of Rtwo-target
1 (ε1)

As reported in Table 5 and displayed in Figure 8, Rtwo-target
1 (ε1) responds most strongly to the

parameters λ1, β1, k1, and ε1. Positive sensitivity indices for λ1, β1, and k1 suggest that enhancing
their values increases Rtwo-target

1 (ε1), thereby supporting the persistence of virus type 1. On the other
hand, the RT inhibitor efficacy ε1 attains the highest negative sensitivity index. This strong negative
effect is caused by the multiplicative term (1 − ε1) that appears in the infection rate of system (G1),
signifying that even a slight increase in ε1 notably reduces viral replication. Consequently, increasing
treatment efficacy plays a crucial role in controlling virus type 1.

7.4.2. Sensitivity of Rtwo-target
2 (ε2)

A similar observation is found for Rtwo-target
2 (ε2), as reported in Table 6 and illustrated in Figure 9.

Positive sensitivity indices for λ1, β2, and k2 suggest that enhancing their values increases Rtwo-target
2 (ε2),

thereby supporting the persistence of virus type 2. However, the RT inhibitor efficacy ε2 attains the
highest negative sensitivity index. This strong negative effect is caused by the multiplicative term
(1 − ε2) that appears in the infection rate of system (G1), signifying that even a slight increase in ε2

notably reduces viral replication. Consequently, increasing treatment efficacy plays a crucial role in
controlling virus type 2. This sheds light on the importance of including a sufficiently strong inhibitory
response in the second target-cell compartment, thereby suppressing viral coexistence and controlling
the infection.

8. Conclusions

Earlier models of two-virus coinfection often indicated that chronic infection can occur, but usually
for only one virus; stable coexistence of two viruses was rarely predicted. These models commonly
include an infection-free steady state, where both viruses are cleared, and two boundary steady states,
where either virus type 1 suppresses virus type 2 or vice versa. In other approaches, both viruses
share the same target cells, and one of them can also infect another target-cell type. In such cases, a
coexistence steady state may arise, allowing both viruses to persist together. Stable coexistence may
also appear in models that include superinfection, immune control, or saturation effects. These results
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show that the persistence of both viruses depends on the interactions between their target cells and the
host’s internal regulation.

Based on evidence that many viruses can infect several cell types, we developed and analyzed a
two-virus coinfection model in which the viruses infect and compete within two distinct target-cell
populations. The model shows that both viruses can coexist and persist, giving a possible explanation
for chronic coinfection and the factors that allow such coexistence.

The basic reproduction numbers were obtained for virus type 1 (R1), virus type 2 (R2), and the
two-virus case (R0 = max{R1,R2}). The existence of infection-free, single-infection, and coexistence
equilibria was determined, and their stability was established by Lyapunov functions. Biologically, the
steady states can be interpreted as follows:

• S S 0 (Regime I, viral clearance): Both viruses are cleared (R0 ≤ 1), and target cells recover,
reflecting low viral infectivity or effective intervention.
• S S 1 (Regime II, virus type 1 dominance): Virus type 1 persists (R1 > 1 and R2 ≤ 1) while virus

type 2 is cleared. This reflects competitive exclusion, where the more efficient virus suppresses
the other strain, preventing its survival.
• S S 2 (Regime III, virus type 2 dominance): Virus type 2 persists (R2 > 1 and R1 ≤ 1) while

virus type 1 is cleared, illustrating competitive exclusion.
• S S 3 (Regime IV, coexistence): Both viruses persist (Conditions (C1)–(C3) hold) by exploiting

distinct target cells, reflecting niche partitioning and long-term coexistence.

Each of the four steady states of the system has been shown to be globally asymptotically stable
within its corresponding set of conditions.

We further investigated the impact of including the second target-cell population for both viruses
on the system’s dynamic behavior. The results show that the second target is necessary for coexistence
and increases the reproduction numbers:

R1 = R11 + R12 > R11, R2 = R21 + R22 > R21.

Consequently, neglecting the second target-cell population results in underestimated values of R1 and
R2, potentially compromising the design of treatments capable of fully clearing the viruses from the
host.

We examined the impact of antiviral therapy on viral dynamics and observed a marked reduction
in viral load. Additionally, we identified the minimum drug efficacy required to satisfy both R1 ≤ 1
and R2 ≤ 1, thereby stabilizing the uninfected equilibrium and ensuring the elimination of both viruses
from the host. To validate these theoretical results, numerical simulations were conducted, highlighting
the influence of collision rate parameters βi, i = 1, 2, 3, 4 in producing four distinct outcomes: complete
viral clearance, elimination of type 2 virus with persistence of type 1, elimination of type 1 virus with
persistence of type 2, and stable coinfection of both viruses. We also compared the proposed model
with one that ignores the second target cell for type 2 virus and found that relying on the simplified
model may lead to insufficient treatment thresholds. In contrast, our model offers a more accurate and
reliable framework for determining the drug efficacy necessary to achieve the successful eradication
of both viral types. The enhanced model provides insights into the dynamics of coinfection involving
multiple viruses and offers a reliable framework for estimating the therapeutic doses required to achieve
complete viral clearance.
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One major limitation of this study is the difficulty in accurately estimating the model parameters due
to the limited availability of clinical data from patients experiencing dual viral infections. Although
data for single-virus infections are more readily obtainable, gathering reliable information for co-
infected patients continues to be a considerable challenge.

Based on the findings of this study, the following extensions are suggested: (i) reformulating the
model using fractional-order differential equations to capture memory effects in viral codynamics,
(ii) integrating real-world clinical data to refine parameter estimates and enhance predictive accuracy,
(iii) incorporating the host immune response into the model, and (iv) developing optimal treatment
strategies through optimal control theory. These directions offer promising avenues for future research
and may increase the model’s clinical relevance.
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Appendix. Basic reproduction number

The basic reproduction number represents the expected number of secondary infections generated
by a single infected cell during its entire infectious period, assuming that all target cells are initially
uninfected. This quantity is evaluated at the infection-free steady state.

A.1. Calculation of the basic reproduction number for a single-virus model

The subsystem corresponding to infection by virus type 1 is obtained by removing all variables
associated with virus type 2. This is accomplished by assigning v2 = y2 = z2 = 0 in Eqs (2.1)–(2.8),
which leads to the following reduced model:

ẋ1 = λ1 − d1x1 − β1x1v1, (A.1)
ẏ1 = β1x1v1 − a1y1, (A.2)
ẋ2 = λ2 − d2x2 − β3x2v1, (A.3)
ż1 = β3x2v1 − a3z1, (A.4)
v̇1 = k1a1y1 + k3a3z1 − c1v1. (A.5)

The infection-free equilibrium of system (A.1)–(A.5) is

S S 0 = (x0
1, 0, x

0
2, 0, 0).

The basic reproduction number R1 is computed as the dominant eigenvalue of the next-generation
matrix ρ(F1V−1

1 ). The matrix F1 contains the new infection terms, and V1 includes the transition terms
between infected classes, constructed using the method of [67]. The matrices are

F1 =


0 0

β1λ1

d1

0 0
β3λ2

d2
0 0 0

 , V1 =


a1 0 0
0 a3 0
−a1k1 −a3k3 c1

 .
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Accordingly, the basic reproduction number corresponding to a v1-only infection is given by

R1 = ρ(F1V−1
1 ) = R11 + R12,

where
R11 =

k1β1λ1

c1d1
, R12 =

k3β3λ2

c1d2
.

Here, R11 represents the expected number of infections generated by virus type 1 within the x1

target-cell population, whereas R12 captures the contribution of infections occurring in the x2 cell
compartment.

Similarly we define the basic reproduction number corresponding to a v2-only infection:

R2 = R21 + R22, R21 =
k2β2λ1

c2d1
, R22 =

k4β4λ2

c2d2
.

A.2. Deriving the reproduction number for the two-virus coinfection model

We apply the next-generation method to system (2.1)–(2.8). Let F0 collect the new infection terms
and V0 contain the transition and removal terms. The basic reproduction number is R0 = ρ(F0V−1

0 ).
The matrices are

F0 =



0 0 0 0
β1λ1

d1
0

0 0 0 0 0
β2λ1

d1

0 0 0 0
β3λ2

d2
0

0 0 0 0 0
β4λ2

d2
0 0 0 0 0 0
0 0 0 0 0 0


, V0 =



a1 0 0 0 0 0
0 a2 0 0 0 0
0 0 a3 0 0 0
0 0 0 a4 0 0
−a1k1 0 −a3k3 0 c1 0

0 −a2k2 0 −a4k4 0 c2


.

Thus,

R0 = ρ(F0V−1
0 ) = max

{
k1β1λ1

c1d1
+

k3β3λ2

c1d2
,

k2β2λ1

c2d1
+

k4β4λ2

c2d2

}
= max{R1,R2}.

Biological considerations: R0 measures the expected number of secondary infections produced by a
single infected cell in an otherwise uninfected host. Each term reflects contributions from specific
target-cell populations. For virus 1, R1 = R11 + R12, with R11 representing infections in the primary
cells x1 and R12 in the secondary cells x2. Similarly, R2 = R21 + R22 for virus 2. A value of R0 > 1
indicates that the infection can establish and spread, while R0 ≤ 1 implies that the infection will die out.
Breaking R0 into these components highlights which virus or cell population dominates the dynamics
and provides insight into which pathways are critical for viral proliferation, which can guide targeted
interventions or therapies.
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