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Abstract: Magnetogasdynamics (MGD) is an interdisciplinary area of study that investigates the
properties and behavior of electrically conductive gases, including plasmas and ionized fluids, when
subjected to magnetic and electric fields. MGD is essential for simulating how electromagnetic fields
affect electrically conducting gases, especially in flow regimes with high temperatures and speeds. This
article examines a one-dimensional non-ideal isentropic magnetogasdynamic. We offer a modified
version of finite volume (MVFV) method for the numerical analysis of this model. This approach
represents an improved iteration of the Rusanov scheme, a widely utilized finite volume method for
the numerical resolution of hyperbolic systems of conservation laws, particularly in the fields of MGD
and fluid dynamics. The MVFV method is structured into two distinct phases: the predictor phase
and the corrector phase. The predictor relies on the control parameter, which is responsible for the
numerical diffusion of this method. The second phase reinstates the balance conservation equation.
The MVFV technique’s results are compared to the exact solution and the Harten–Lax–van Leer
(HLL) approach in the numerical simulation. The findings validate the reliability of MGD models
in effectively representing critical nonlinear phenomena and establish a foundation for forthcoming
numerical simulations and experimental verification.
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1. Introduction

Hyperbolic systems of conservation laws represent a category of partial differential equations
(PDEs) that illustrate the temporal evolution of physical quantities, including mass, momentum, and
energy, while ensuring their conservation [1, 2]. They are found in many branches of research and
engineering, particularly in the fields of elasticity, magnetogasdynamics, fluid dynamics, traffic flow,
and plasma physics, among others. Many flow fields, including wave phenomena, are regulated by
quasilinear hyperbolics of three coupled nonlinear equations. It is challenging to provide analytical
solutions for nonlinear systems, especially with complex initial/boundary conditions. So, for analytic
investigation, we must rely on certain analytical or numerical methodologies that may be effective in
constructing the prospect and giving important information for our knowledge of the physical events
involved [3, 4]. A numerical study of hyperbolic systems of conservation laws emphasizes the
creation and assessment of computational techniques aimed at effectively solving these equations,
which are commonly used to represent phenomena such as wave propagation, discontinuities, shocks,
and rarefactions.

Magnetogasdynamics (MGD) is a specialized field within fluid mechanics that integrates the
concepts of gas dynamics and electromagnetism. It focuses on analyzing the behavior of electrically
conductive fluids, including plasmas, nuclear fusion, ionized gases, and liquid metals, when subjected
to magnetic fields. In recent years, the study of MGD has garnered significant attention from both
mathematical and physical perspectives, owing to its diverse applications across various fields,
including astrophysics, nuclear science, industrial processing, electromagnetic propulsion, and plasma
physics [5–7]. It is fundamentally the gas-dynamic equivalent of Magnetohydrodynamics (MHD),
particularly relevant to compressible flows in high-temperature settings, including aerospace reentry
vehicles, fusion reactors, and astrophysical jets. The precise resolution of the Riemann issue in
relativistic MHD was examined by Glacomazzo and Rezzolla [8]. Singh et al. examined self-similar
solutions pertaining to exponential shock waves within the context of non-ideal MGD [9]. The issue
of shock waves traveling through a non-ideal gas has been addressed using similarity solutions [10].
The outcomes of MGD flow are not as favorable as those of traditional gas dynamics. This is due to
the highly nonlinear and complex nature of the complete governing system for MGD. Therefore, it is
essential to explore various simplified models. Assuming that the velocity and magnetic fields are
orthogonal everywhere in the flow field, one of the basic important models is produced. Under this
assumption, the one-dimensional MGD flow system resembles the gas dynamics system [11]. Hu and
Sheng investigated the Riemann issue for one-dimensional magnetogasdynamics in Lagrangian
coordinates using the characteristic analysis approach [12]. Kuila and Raja Sekhar investigated the
Riemann problem for the one-dimensional non-ideal isentropic magnetogasdynamics with a
transverse magnetic field [6].

This article employs the modified version of finite volume (MVFV) method to address the 1D
isentropic magnetohydrodynamics (MGD) problem. This method consists of both predictor and
corrector phases [13–15]. In the predictor step, a numerical diffusion control parameter is governed
by Riemann invariants and limiters theory. The second step yields the equation for balance
conservation. The stability analysis revealed that, depending on the control parameter, the MVFV
technique can be of order 1 or 2 [13]. The numerical outcomes of the Hartman–Lax–van Leer (HLL)
scheme have also been executed for the purposes of validation and comparison. The
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Courant-Friedrich-Lewy stability requirements, which state that no gas beam may physically cross
more than one cell gap in a single time step, define the time step size. A variety of test cases have
been conducted, demonstrating that the MVFV technique is highly effective and powerful.
Applications include space weather prediction, electromagnetic flow management in aerospace
engineering, and plasma confinement, providing context for the findings. Our results validate the
reliability of MGD models in accurately representing key nonlinear phenomena and establish a
foundation for forthcoming numerical simulations and experimental verification.

This is the structure of the work presented. Section 2 presents the essential concepts related to one-
dimensional isentropic MGD. In Section 3, the MVFV approach for addressing the one-dimensional
non-ideal isentropic MGD is summarized. Section 4 presents the numerical test cases, comprising
the numerical simulations and comparison between the HLL scheme and the exact solution. We also
provide additional evidence for the numerical results obtained. We present our conclusions based on
the current findings in Section 5.

2. The 1D non-ideal isentropic MGD model

Here, we consider the one-dimensional isentropic and ideally conductive dusty gas flow with a
transversal magnetic field given as follows:

∂ρ

∂t
+
∂(ρu)
∂x

= 0,

∂ρu

∂t
+
∂
(
ρu2 + p + B2

2µ

)
∂x

= 0,

∂B

∂t
+
∂ (Bu)
∂x

= 0,

(2.1)

where B, µ > 0, u and ρ denote the transverse magnetic induction, magnetic permeability, velocity, and
density. In this case, a is the van der Waals excluded volume, and p = k( ρ

1−aρ
)γ. Observably, the ideal

gas in MGD is represented by the case a = 0. In actuality, the above system (2.1) can be expressed
conservatively as the following:

∂W

∂t
+
∂F (W)
∂x

= 0, (2.2)

where

W =


ρ

ρu

B

 , and

F (W) =


ρu

ρu2 + p + B2

2
Bu


for µ = 1 in (2.1). For a smooth solution, we can rewrite the system (2.2) as follows:

Ut + A(U)Ux = 0, (2.3)
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where

U =


ρ

u

B

 , and

A(U) =


u ρ 0

kγρ(γ−2)
(1−aρ)(γ+1) u B

ρ

0 B u

 .
Hence, the matrix A(U)’s eigenvalues can be expressed as follows:

λ1 = u − c, λ2 = u and λ3 = u + c, (2.4)

c =

√
B2

ρ
+

γp
ρ(1−aρ) . Because c > 0 , A(U)’s eigenvalues are distinct and real.

3. MVFV method

Here, we describe the MVFV method in brief. Integrate Eq (2.2) in the domain
[tn, tn+1] × [xi− 1

2
, xi+ 1

2
], and derive the finite volume scheme, which can be expressed as the

following:

Wn+1
i = Wni −

∆t

∆x

(
F
(
Wn
i+ 1

2

)
− F

(
Wn
i− 1

2

))
, (3.1)

where F(Wn
i± 1

2

) represents the numerical flux at the place x = xi± 1
2

in time tn.
Generally, Riemann’s solution at the cell interface xi± 1

2
is necessary for designing the numerical

functions F
(
Wn
i± 1

2

)
in the finite volume the discretization process (3.1). Equation (2.2)’s self-similar

solution to Riemann’s problem is assumed to have the following initial condition:

W(x, 0) =


WL, if x < 0,

WR, if x > 0,
(3.2)

is
W(t, x) = Rs

(
x

t
, WL, WR

)
,

and Rs represents the Riemann solution and it must be computed exactly or approximately. Thus, Wn
i± 1

2

is the intermediate state in Eq (3.1) at the cell interface x = xi± 1
2

and can be written as follows:

Wn
i+ 1

2

= Rs
(
0, Wni, W

n
i+1

)
. (3.3)

To create an approximation of Wn
i+ 1

2

, we adjust the MVFV method; see [13, 16]. In order to build
Wn
i+ 1

2

, we integrate Eq (2.2) via the domain [tn, tn + θn
i+ 1

2

] × [x−, x+] that contains xi+ 1
2
. Generally,

taking x− = xi and x+ = xi+1 gives

Wn
i+ 1

2

=

(
Wni + Wni+1

)
2

−

θn
i+ 1

2

∆x

(
F(Wni+1) − F(Wni)

)
, (3.4)
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whereas the approximate average of solution W in [tn, tn + θn
i+ 1

2

] × [xi, xi+1] is denoted by Wn
i+ 1

2

and
written as follows:

Wn
i+ 1

2

=
1

∆x

∫ xi+1

xi

W(x, tn + θn
i+ 1

2

)dx. (3.5)

In order to conclude developing the MVFV method, we have chosen the variable θn
i+1/2 (see [13])

as follows:

θn
i+ 1

2

= αn

i+ 1
2

∆x

2Sn
i+ 1

2

, (3.6)

where the local parameter αn

i+ 1
2

needs to be computed locally, and the local Rusanov velocity, denoted
by Sn

i+ 1
2

, is

Sn
i+ 1

2

= max
j=1,...,J

(max(| λnj,i |, | λ
n
j,i+1 |)). (3.7)

The j-th eigenvalues in (2.2) are represented by λnj,i, so we rewrite Eq (3.4) as

Wn
i+ 1

2

=
(Wni + Wni+1)

2
−

αn

i+ 1
2

2Sn
j+ 1

2

[
F(Wni+1) − F(Wni)

]
. (3.8)

From the previous equation, if we put αn
i+ 1

2
= ∆t

∆xS n
i+ 1

2
the proposed scheme is equivalent to the

Richtmyer scheme [17], and if we put αn
i+ 1

2
=

Sn
i+ 1

2

sn
i+ 1

2

, the suggested finite volume method is first order.

Another option for the slopes αn
i+ 1

2
dependent on the limiter theory can be written

αn

i+ 1
2

=
(
1 − φ(ri+ 1

2
)
) (
αn

i+ 1
2

)
1

+ φ(ri+ 1
2
)
(
αn

i+ 1
2

)
2
, (3.9)

with

(αn

i+ 1
2

)1 =

Sn
i+ 1

2

sn
i+ 1

2

and

(αn

i+ 1
2

)2 =
∆t

∆x
Sn
i+ 1

2

,

with sn
i+ 1

2

= min
j=1,...,J

(max(| λnj,i |, | λ
n
j,i+1 |)) and φi+ 1

2
= φ

(
ri+ 1

2

)
as an appropriate limiter, when a

quantity is subjected to the flux limiter function φ. It computes the upwind changes’ ratio

ri+ 1
2

=
Wi+1−q−Wi−q
Wi+1−Wi

, q = sign
[
F′(Wn

i+ 1
2

)
]
. In conclusion, the MVFV method for Eq (2.2) is expressed

as follows according to the choosing of parameter of control αn

i+ 1
2

:


Wn
i+ 1

2

=
1
2

(Wni + Wni+1) −
αn

i+ 1
2

2Sn
j+ 1

2

[
F(Wni+1) − F(Wni)

]
Wn+1
i = Wni − r

n
[
F

(
Wn
i+ 1

2

)
− F

(
Wn
i− 1

2

)]
.

(3.10)
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Proposition 3.1. [13] Under the condition

αnMrn ≤ 1,

the MVFV scheme is total variation diminishing (TVD); it satisfies the maximum principle and it is L∞

stable with

αn = sup(i∈Z)

S n
i+ 1

2

sn
i+ 1

2

,

M = sup | f ′(w) |, w ∈ G,

and
G = {w ∈ R/ |w| ≤ αmax ‖ w0 ‖L∞(R)}.

Proposition 3.2. The MVFV scheme is second-order under the condition

αn

i+ 1
2

= rniS
n

i+ 1
2

.

Based on the two previous propositions, and in order to preserve as many desirable properties as
possible, we define the MVFV scheme in an optimal way, a strategy of local variation of the parameter
αn

i+ 1
2
, based on the theory of limiters, defined as follows:

αn

i+ 1
2

=
(
1 − φ(ri+ 1

2
)
)

(αn

i+ 1
2

)1 + φ(ri+ 1
2
)(αn

i+ 1
2

)2. (3.11)

Remark 3.1. When αn
i+ 1

2
= ∆t

∆xS n
i+ 1

2
, the MVFV scheme is equivalent to the Richtmyer two-step Lax-

Wendroff method [17].

Remark 3.2. When αn
i+ 1

2
=

S n
i+ 1

2
sn

i+ 1
2

, the MVFV scheme is first-order [13]: From studying the truncation

error of the MVFV scheme in the homogeneous linear case (∂u
∂t + a∂u

∂x = 0), we can write the truncation
error as

T E(x, t) =
1
2

ha(µ − α)uxx(x, t) + O(h2) + O(τ2),

then, the MVFV scheme is consistent of order 1 except if α = µ, making the scheme is consistent of
order 2, with µ = ar = rS n

i+ 1
2
.

4. The numerical results

We introduced the MVFV technique to investigate the one-dimensional, non-ideal, isentropic
MGD. The fundamental components required for numerical solutions include rarefaction waves,
contact discontinuities, and shock waves. Implementing the MVFV scheme and the HLL scheme, we
simulate the following test problems to investigate the effectiveness of the MVFV method for
numerical simulation for non-ideal, isentropic MGD of a = 0, 0.035, 0.045, when a = 0 leads to the
ideal gas MGD. In all simulations, the domain of calculation L = [−1, 1] is divided into a 300-grid
mesh. We compare the numerical results obtained using the MVFV method, the HLL scheme, and the
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exact solution. We consider the variables γ = 1.4, k = 1 and µ = 1. The following equation illustrates
the stability condition [13]:

∆t = CFL
∆x

max
i

(∣∣∣∣∣αn

i+ 1
2

Sn
i+ 1

2

∣∣∣∣∣) , (4.1)

where Eq (4.1) is used to vary the time step, and in the all test cases, we take CFL = 0.4.

4.1. Test case 1

We consider the following initial data [6]:

(ρ, u, B) =


(5.99924, 19.5975, 100.894) if x ≤ 0,

(7.99242, −6.19633, 46.0950) if x > 0.
(4.2)

The solution of this test case includes a right shock wave, a contact discontinuity, and a left shock
wave. We simulate this test case using the MVFV method with different values of a = 0, 0.035, 0.045

at the final time t = 0, 03s, see the Figure 1. Also, we compare the numerical results obtained from
MVFV method with those of the HLL scheme and an exact solution with the value of a = 0; see
Figure 2.

Figure 1. For various values of a, the density, velocity, magnetic field solutions at final time
t = 0.03s.
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Figure 2. For value of a = 0, the density, velocity, magnetic field solutions at final time t =

0.03s.

4.2. Test case 2

We consider the following initial conditions [6]:

(ρ, u, B) =


(0.96, 1.0833, 2.8333) if x ≤ 0,

(1.7741, 1.1187, 4.0) if x > 0.
(4.3)

In this case, the solution is constructed from a right rarefaction wave, a contact discontinuity, and a
left shock wave. We run the MVFV method with different values of a = 0, 0.035, 0.045 and final time
t = 0.2s; see Figure 3. We compare the results obtained by the MVFV method with those of the HLL
scheme and exact solution with the value of a = 0; see Figure 4.

Figure 3. For various values of a, the density, velocity, magnetic field solutions at final time
t = 0.2s.
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Figure 4. For value of a = 0, the density, velocity, magnetic field solutions at final time t =

0.2s.

In Table 1, we calculate the L1, L2 errors and experimental order of convergence for the two
schemes. This table shows that increasing the number of gridpoints in the spatial discretization results
in a decrease of L1 and L2 norms, and a slower decrease error in the HLL scheme than in the MVFV
scheme; also, the experimental order of convergence (EOC) of the MVFV scheme is greater than that
of the HLL scheme.

Table 1. The errors of L1 and L2 for the second test.

MVFV HLL
N L1 EOC L2 EOC L1 EOC L2 EOC
50 0.0701271 0.0702295 0.0771842 0.075287
100 0.0414846 0.746462 0.0496093 0.49422 0.051940 0.563185 0.058376 0.3617358
200 0.0239638 0.7860062 0.0330033 0.583753 0.033360 0.63413 0.044133 0.400599
400 0.0137076 0.8029744 0.0219620 0.585482 0.0210424 0.662431 0.0330129 0.41732

4.3. Test case 3

We consider the following initial conditions [6]:

(ρ, u, B) =


(6.0, 0, 1) if x ≤ 0,

(1, 0, 0.1) if x > 0.
(4.4)

For this test case, the solution consists of a left rarefaction wave, a contact discontinuity, and a right
shock wave. We apply the MVFV approach using various values of a = 0, 0.035, 0.045 and final time
t = 0.5s; see Figure 5. We then compare the outcomes of the MVFV approach with those of the HLL
scheme and an exact solution with the value of a = 0; see Figure 6.
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Figure 5. For various values of a, the density, velocity, magnetic field solutions at final time
t = 0.5s.

Figure 6. For value of a = 0, density; velocity; magnetic field solutions at final time t = 0.5s.

4.4. Test case 4

We consider the following initial conditions [6]:

(ρ, u, B) =


(1, −0.5, 0.4) if x ≤ 0,

(1, 1.5, 0.4) if x > 0.
(4.5)

In this case, the solution is represented by a left rarefaction wave, a contact discontinuity, and a
right rarefaction wave. We use different values of a = 0, 0.035, 0.045 and final time t = 0.35s for
implementing the MVFV technique; see Figure 7. We compare the numerical results obtained from
the MVFV method with those of the HLL scheme and an exact solution with the value of a = 0; see
Figure 8.
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Figure 7. For various values of a, the density, velocity, magnetic field solutions at final time
t = 0.35s.

Figure 8. For value of a = 0, the density, velocity, magnetic field solutions at final time t =

0.35s.

To demonstrate the order of convergence of the MVFV scheme, we take the following smooth
initial condition, in the domain L = (−2π, 2π) at the final time t = 0.4s:

(ρ, u, B) =
{
(2 + sin(x), 1, 1) if x ∈ [−2π, 2π]. (4.6)

We calculate the error L1 in Table 2. Indeed, Figure 9 depicts the relation between log(dx) and
log(errorL1), which shows that the error curve has a slope of 1.837, whereas the right side of this
figure shows the behavior of the density with the exact solution.
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Table 2. The error L1 for the density.

MVFV
N L1 EOC
50 0.324122
100 0.0996962 1.676373066
200 0.0284791 1.794591867
400 0.0076802 1.883867574
800 0.0019512 1.973217094

Figure 9. The relation between log(dx) and log(errorL1) on the left side and the behavior of
the density with the exact solution on the right side.

4.5. Computational performance

The MVFV scheme has been found to facilitate high-resolution results. As a result, the MVFV
approach allows for the precise and effective numerical treatment of conservation laws. We note that
the suggested MVFV scheme is in good agreement with the analytical solution and more accurate than
the HLL scheme. Ultimately, the codes were developed in FORTRAN 77, and the outcomes were
displayed utilizing MATLAB. These tests were conducted on a 32-bit Windows 7 machine equipped
with an Intel Core i5-2520M CPU operating at 2.5 GHz.

5. Conclusions

This study utilized a modified version of a finite volume (MVFV) scheme to solve a
one-dimensional, non-ideal, isentropic magnetogasdynamic in the presence of a transverse magnetic
field. We also implemented the HLL scheme to compare with the proposed scheme and exact
solution. The numerical findings indicate that the MVFV technique demonstrates effective resolution
of shocks and rarefactions in the smooth region, achieving high accuracy. The results are framed
within the context of various applications, including plasma confinement, modeling of space weather,
fusion energy, and the control of electromagnetic flow in aerospace engineering.
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While the current study focuses on developing and validating a finite volume scheme for numerical
simulations of one-dimensional, non-ideal, isentropic magnetogasdynamic, the authors acknowledge
that one-dimensional formulations have limited applicability in capturing realistic multidimensional
flow structures. Future study will focus on expanding the suggested methodology to two- and three-
dimensional instances, allowing for the investigation of more complex magnetogasdynamic processes
and proving the method’s robustness in higher dimensions.
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