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Abstract: This paper explores the dynamics of a fractional prey–predator system with a ratio-
dependent functional response with memory and hereditary effects in predator–prey interactions. The
model is developed by the Caputo fractional derivative, and the existence, uniqueness, positivity,
and boundedness of solutions are proven to satisfy biological reality. Stability conditions for local
and global stability of both predator-free and coexistence equilibria are proven through linearization
and Lyapunov function techniques. The fractional order is used as a bifurcation parameter, and
the appearance of Hopf bifurcations is analytically explained with demonstration of the influence
of memory on oscillations. To examine discrete-time dynamics, the piecewise constant argument
is used to derive a discrete counterpart of the fractional model. The discrete model indicates a
wide range of rich complex oscillatory phenomena, including period-doubling and Neimark–Sacker
bifurcations, leading to periodic, quasiperiodic, and chaotic oscillations. Numerical computations,
including bifurcation diagrams, phase portraits, and Lyapunov exponents, verify the analytical results
and describe the routes of transition to chaos. A comparative analysis to compare integer- and
fractional-order cases indicates that memory effects enhance dynamical richness and sensitivity to
parameters. The study provides a unified framework relating continuous fractional dynamics and their
discrete implementations and provides additional insight into how memory and discretization interact
to modify stability and bifurcation in ecological models.
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1. Introduction

predator–prey interactions have long served as a fundamental framework in mathematical biology,
capturing essential aspects of ecological dynamics between two species, one serving as a resource
(prey) and the other as a consumer (predator). Classical models like the Lotka–Volterra system [1, 2]
and its many variants rely on integer-order derivatives, implicitly assuming that the population rate of
change relies exclusively on the current state. This is usually a simplification, ignoring memory and
hereditary effects characteristic of most real-life biological systems.

To introduce memory-dependent dynamics, fractional differential equations have proved to be an
extremely effective generalization of traditional models. By introducing derivatives of non-integer
order, fractional-order models can effectively capture long-term interactions, delayed responses, and
internal feedback mechanisms more accurately than their integer-order counterparts. In this context,
fractional-order prey–predator models have gained increasing attention for their ability to reflect more
realistic and complex ecological behaviors, including oscillations, extinction, and coexistence.

Several studies have demonstrated the importance of fractional derivatives in capturing the complex
dynamics of prey–predator interactions more realistically. Javidi and Nyamoradi [3] investigated a
fractional prey–predator model with harvesting and investigated its local and global stability properties,
supported by numerical examples. Li et al. [4] examined a fractional prey–predator system with refuge,
proving the existence, uniqueness, and boundedness of solutions, and obtained sufficient conditions
for global asymptotic stability of equilibria. Elettreby et al. [5] analyzed a two-prey, one-predator
fractional-order model, showing that certain equilibria that are centers in the integer-order case become
asymptotically stable under fractional dynamics. In another work, Li et al. [6] incorporated prey
refuge and feedback control into a fractional-order model and demonstrated how these mechanisms
could regulate population levels effectively, with stability analyzed via characteristic equations. Sarkar
and Mondal [7] explored a fractional prey–predator model with combined harvesting, establishing
conditions for stability and Hopf bifurcation by treating the fractional-order as a bifurcation parameter,
and emphasized the ecological implications of combined versus selective harvesting strategies. It is
also worth noting that time delays arising from gestation, maturation, or response lags have been
widely studied in predator–prey systems due to their significant impact on stability and oscillatory
behavior [8–11].

Despite their advantages in modeling continuous-time processes, real-world data are often collected
at discrete time intervals, necessitating the study of corresponding discrete-time systems. In
addition, discretization may create new dynamical properties not shared with the continuous model,
including period-doubling (PD), Neimark–Sacker (NS) bifurcations, and chaotic behavior. Of multiple
discretization techniques, the piecewise constant argument method [12–15] offers a mathematically
acceptable and biologically relevant method for discretizing continuous models into discrete-time
counterparts while preserving essential dynamical characteristics.

In this paper, we initially present and study a fractional prey–predator model in terms of the Caputo
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derivative. We study the existence and stability of biologically meaningful equilibria and examine the
local dynamics of the continuous system. We then use the piecewise constant argument technique to
get a discrete-time counterpart of the model. The resulting discrete system is subsequently analyzed
with respect to its stability and bifurcations, showing that the discrete-time model exhibits significantly
more complex dynamics compared to the continuous model. Surprisingly, the discretization provokes
bifurcations and potential paths towards chaos, suggesting the delicate interaction between memory
effects and discrete-time evolution in ecological systems.

Although the continuous-time fractional-order model and its discrete-time counterpart represent two
distinct dynamical systems, they are studied simultaneously in this work for complementary reasons.
The continuous fractional model is biologically motivated and captures memory and hereditary effects
inherent in predator–prey interactions, allowing rigorous analysis of existence, boundedness, and
stability. In contrast, the discrete model arises naturally when population processes are observed at
discrete time intervals or when numerical implementation is required. Studying both formulations
enables us to investigate how memory effects interact with discretization and to understand how
qualitative dynamics may change when continuous ecological processes are represented in discrete
time.

Our research fills the gap between continuous fractional dynamics and their discrete counterparts,
offering qualitative insights into prey–predator systems under the effects of memory and discrete-time
interactions. The theoretical results are supported with numerical examples, illustrating the diverse
range of dynamical behaviors that can arise through fractional modeling and discretization. The main
contributions of this paper are:

• A Caputo fractional prey–predator model is proposed, featuring a ratio-dependent functional
response to capture more realistic interaction dynamics.

• The existence and uniqueness of solutions are established for the fractional model and show
positivity and uniform boundedness of biologically relevant solutions.

• We derive local stability conditions for boundary and interior equilibria in the fractional model
and provide sufficient conditions for global stability using appropriate Lyapunov functions.

• The Hopf bifurcation of the fractional model is examined with the fractional order taken as the
bifurcation parameter.

• By applying the piecewise constant argument technique, the fractional system is transformed into
its discrete counterpart; we derive the discrete map, classify the fixed points, and identify the
parameter intervals associated with PD and NS bifurcations.

• We validate analytical findings with numerical simulations (time series, phase portraits,
bifurcation diagrams, and maximum Lyapunov exponent computations) and provide practical
guidance on parameter regimes that produce complex behavior (periodic/chaotic) in the discrete
map.

We emphasize here that the model studied in this manuscript is mainly theoretical and is not
calibrated by using any specific empirical data set. The formulation relies on well-established
ecological assumptions such as ratio-dependent predation and memory effects modeled via fractional-
order derivatives, which have been used in a wide sense in the literature to model realistic predator–
prey interactions. The main goal of the present study is thus to understand the nature of qualitative
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dynamical behavior induced by memory and discretization, such as stability, bifurcations, and chaos,
rather than to give any data-driven prediction for a particular ecosystem. Nevertheless, the modeling
framework is general enough and can be fitted with empirical data in future studies once appropriate
ecological observations are available.

The rest of the manuscript is structured as follows. Section 2 presents the model formulation of
the fractional prey–predator model with ratio-dependent functional response. Section 3 offers some
mathematical preliminaries and basic results of fractional calculus. The existence and uniqueness of
solutions are established in Section 4, and an analysis of positivity and boundedness of biologically
meaningful solutions is provided in Section 5. Section 6 deals with the equilibrium points and
analyzes their local stability, whereas Section 7 addresses global stability with appropriate Lyapunov
functions. The emergence of Hopf bifurcation with change in fractional order is analyzed in Section 8,
and corresponding numerical examples supporting the analytical findings are given in Section 9.
Discretization of the fractional model by using the piecewise constant argument technique is presented
in Section 10, and Sections 11–13 are concerned with the stability classification, bifurcation study, and
numerical investigation of the discrete system. The conclusion of the study is given in Section 14.

2. Model formulation

Consider a prey–predator system incorporating a ratio-dependent functional response, which can be
expressed as  du

dt = pu
(
1 − u

q

)
− ruv

sv+u ,
dv
dt = v

(
r1u

sv+u − d
)
,

(2.1)

where u(t) and v(t) represent the population densities of prey and predator, respectively, at time t ≥ 0.
p represents the rate of growth of prey, and q is the environmental carrying capacity of prey. r is the
parameter that represents the predation rate, or fraction of prey caught per predator per unit time, and
s is the handling time, that is the average time taken by a predator to catch and digest one prey. The
constant r1 represents the conversion efficiency, and d is the natural death rate of the predator. The
term ru

sv+u is a Michaelis–Menten-type ratio-dependent functional response, which reflects that the per
capita predation rate relies on the prey-to-predator ratio rather than on the prey density alone. Such a
formulation is biologically realistic when predator interference or limited searching ability is present.

The ratio-dependent functional response is used biologically to represent predator interference and
competition effects commonly observed in real ecosystems. This formulation, as compared with
the classical Holling Type I functional response based on prey density alone and thus increasing
linearly without saturation, describes the premise of decreased efficiency due to high predator-to-
prey densities. This situation arises naturally in predators that compete for limited prey, experience
mutual interference, or have restricted searching and handling capacities. Such effects are particularly
relevant in ecosystems where predators interact actively with one another or where there are significant
fluctuations in prey availability. Thus, the ratio-dependent functional response has, in many biological
contexts, an ecologically more realistic description than that of the Holling Type I response.
Mathematically, a ratio-dependent functional response increases nonlinearity due to rational terms
involving both prey and predator populations, unlike the simpler polynomial form of the Holling Type
I response. This adds analytical challenges, particularly in proving boundedness and stability, but these
can be addressed under realistic biological assumptions like population positivity. The ratio-dependent
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structure also supports the construction of Lyapunov functions and offers a more balanced predator–
prey model. As shown later, the system still allows for positive invariant regions and rigorous local and
global stability results despite the added complexity.

To minimize the number of parameters and simplify the analysis, we introduce the following
nondimensional variables and parameters:

x =
u
q
, y =

sv
q
, t = pt, a =

r
sp
, b =

r1

p
, c =

d
r1
.

Substituting these transformations into (2.1) yields the nondimensional form dx
dt = x(1 − x) − axy

x+y ,
dy
dt = by

(
x

x+y − c
)
.

(2.2)

In order to account for memory and hereditary characteristics within population dynamics, we
generalize the integer-order system to a fractional form by substituting the standard time derivative
with the Caputo fractional derivative of order 0 < σ ≤ 1. The resulting fractional-order prey–predator
model is expressed as CDσx = x(1 − x) − axy

x+y ,
CDσy = by

(
x

x+y − c
)
,

(2.3)

where CDσ
t denotes the Caputo fractional derivative. Here, σ is the fractional order that controls the

strength of memory in the system. For σ = 1, (2.3) reduces to the classical integer-order model (2.2).
From a biological perspective, the fractional order σ represents memory and hereditary effects in

predator–prey interactions. In classical integer-order models, the rate of change of populations depends
only on their current state, whereas fractional-order models allow past population levels to influence
the present dynamics. This feature is particularly relevant in ecological systems, where biological
processes such as predator learning, delayed responses to environmental changes, gestation periods,
and the accumulation of stress effects play a significant role. Smaller values ofσ correspond to stronger
memory effects, which tend to damp population oscillations and enhance stability, whileσ = 1 recovers
the classical memoryless model. Therefore, the fractional order σ serves as a biologically meaningful
parameter that controls the strength of memory in the system.

3. Preliminaries

In this section, we recall some basic definitions and useful results from the theory of fractional
calculus that will be used throughout this paper.

Definition 3.1 ([16]). The Caputo fractional derivative of order σ for a function f ∈ Cn([t0,∞),R) is

CDσ
t0 f (t) =

1
Γ(n − σ)

∫ t

t0
(t − τ)n−σ−1 f (n)(τ)dτ, (3.1)

where Γ(n) is the standard Gamma function, t ≥ t0 and n ∈ N satisfying n − 1 < σ < n. Particularly,
when 0 < σ < 1, then

CDσ
t0 f (t) =

1
Γ(1 − σ)

∫ t

t0
(t − τ)−σ f ′(τ)dτ. (3.2)
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The following lemmas describe some important properties of fractional derivatives that are
frequently employed in qualitative analysis, such as monotonicity and boundedness.

Lemma 3.2 ([17]). Let 0 < σ ≤ 1. Assume f ∈ C[a, b] and its Caputo fractional derivative CDσ f (t) ∈
C[a, b].

(1) If CDσ f (t) ≥ 0 ∀t ∈ (a, b), then f is nondecreasing on [a, b].

(2) If CDσ f (t) ≤ 0 ∀t ∈ (a, b), then f is nonincreasing on [a, b].

Lemma 3.3 ([4]). Let u(t) be a continuous function on [t0,∞) satisfying

CDσu(t) ≤ −ξu(t) + ρ, u(t0) = ut0 ,

where 0 < σ ≤ 1 and (ξ, ρ) ∈ R2, ξ 6= 0, and t0 ≥ 0 denotes the starting time. Then, the function u(t)
satisfies the inequality

u(t) ≤
(
ut0 −

ρ

ξ

)
Eσ

[
−ξ(t − t0)σ

]
+
ρ

ξ
,

where Eσ(·) denotes the Mittag-Leffler function.

The following result provides the linear stability criterion for equilibrium points of a fractional
dynamical system.

Theorem 3.4 ([18]). Consider the fractional-order system

CDσ
t0z(t) = f (z), z(0) = z0,

where 0 < σ ≤ 1, z ∈ Rn, and f : Rn → Rn. The equilibrium points are obtained by solving f (z) = 0.
Let J =

∂ f
∂z be the Jacobean matrix determined at an equilibrium point. Then, the equilibrium is locally

asymptotically stable (LAS) if all eigenvalues ωi of J fulfill

|arg(ωi)|>
σπ

2
, i = 1, 2, . . . , n.

4. Existence and uniqueness

In this section, we establish the existence and uniqueness of solutions for the fractional prey–
predator model (2.3). To do so, we first recall a standard lemma concerning the local existence and
uniqueness of solutions for Caputo fractional differential equations.

Lemma 4.1 ([19]). Consider the fractional-order system

CDσ
t0z(t) = f (t, z), t > t0 (4.1)

with the initial value z(t0) = zt0 , where σ ∈ (0, 1]. Assume that f : [t0,∞) × Ω → Rn with Ω ⊂ Rn,
fulfills the locally Lipschitz condition w.r.t. z. Then, (4.1) admits a unique solution on [t0,∞) ×Ω.

Theorem 4.2. For every (x0, y0) ∈ Ω, there exists a unique solution X = (x, y) ∈ Ω of (2.3), where
Ω = { (x, y) : max {|x|, |y|} ≤ M }.

AIMS Mathematics Volume 11, Issue 1, 1412–1448.
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Proof. Consider the fractional prey–predator system defined by

H1(x, y) = x(1 − x) −
axy
x + y

,

H2(x, y) = by
(

x
x + y

− c
)
.

Because x, y > 0 are bounded above by M, we can therefore select ξ > 0 s.t. |x + y|≥ ξ > 0.
Let X = (x, y)T , X̂ = (̂x, ŷ)T . Define

‖H(X) − H(̂X)‖ = |H1(x, y) − H1(̂x, ŷ)|+|H2(x, y) − H2(̂x, ŷ)|

=

∣∣∣∣∣∣x(1 − x) − x̂(1 − x̂) − a
(

xy
x + y

−
x̂̂y

x̂ + ŷ

)∣∣∣∣∣∣ + b

∣∣∣∣∣∣y
(

x
x + y

− c
)
− ŷ

(
x̂

x̂ + ŷ
− c

)∣∣∣∣∣∣
≤ |x − x̂|+|x2 − x̂2|+a

∣∣∣∣∣∣ xy
x + y

−
x̂̂y

x̂ + ŷ

∣∣∣∣∣∣ + bc|y − ŷ|+b

∣∣∣∣∣∣ xy
x + y

−
x̂̂y

x̂ + ŷ

∣∣∣∣∣∣
≤ |x − x̂|+|x + x̂||x − x̂|+a

(
x̂x|y − ŷ|+ŷy|x − x̂|

(x + y)(̂x + ŷ)

)
+ bc|y − ŷ|+b

(
x̂x|y − ŷ|+ŷy|x − x̂|

(x + y)(̂x + ŷ)

)
≤

(
1 + 2M +

(a + b)M2

ξ2

)
|x − x̂|+

(
bc +

(a + b)M2

ξ2

)
|y − ŷ|

≤ L‖X − X̂‖,

where

L = max
{
1 + 2M +

(a + b)M2

ξ2 , bc +
(a + b)M2

ξ2

}
.

Therefore, H(X) fulfills the Lipschitz condition; it follows from Lemma 4.1 that there exists a unique
solution X(t) of (2.3). �

Theorem 4.2 ensures that the fractional prey–predator model (2.3) is well-posed in the sense of
existence and uniqueness of solutions.

5. Nonnegativity and boundedness

Considering the biological relevance of the model, we focus only on solutions that remain
nonnegative and bounded. The next theorem guarantees the nonnegativity and boundedness of the
solutions of (2.3). Define

Ω+ = {(x, y) ∈ Ω : x ∈ R+, y ∈ R+}.

Theorem 5.1. Every solution of (2.3) that begins in Ω+ remains nonnegative and uniformly bounded
∀t ≥ 0.

Proof. We first show that the solutions x(t) originating in Ω+ remain nonnegative. Assume on the
contrary that this is not the case. Then, there exists t1 > 0 s.t.

x(t) > 0, 0 ≤ t < t1, x(t1) = 0, x(t+
1 ) < 0.
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Then, from (2.3), we obtain
CDσx(t)

∣∣∣∣
t=t1

= 0.

Using Lemma 3.2, we obtain x(t+
1 ) = 0. This contradicts the assumption that x(t+

1 ) < 0. Hence,
x(t) ≥ 0 for all t ≥ 0. By applying similar reasoning, it follows that y(t) ≥ 0 for all t ≥ 0.

We now demonstrate that all solutions of (2.3) originating in R+
2 are uniformly bounded. Define

V(t) = x(t) + a
by(t), then

CDσV(t) + bcV(t) = −x2 + bcx = −
(
x −

1 + bc
2

)2
+

(1 + bc
2

)2
≤

(1 + bc
2

)2
.

Using Lemma 3.3, we have

V(t) ≤
(
V(t0) −

(1 + bc)2

4bc

)
+ Eσ[ − bc(t − t0)σ] +

(1 + bc)2

4bc
−→

(1 + bc)2

4bc
, t → ∞.

Therefore, all the solutions of (2.3) starting in Ω+ are confined to the region S, where

S =
{
(x, y) ∈ R2

+ : x +
a
b

y ≤
(1 + bc)2

4bc
+ ε, ε > 0

}
.

This completes the proof. �

6. Equilibrium points and local stability

In this section, we find all equilibrium points of (2.3) and analyze their local stability properties by
applying the linearization method for fractional-order systems.

The equilibrium points of (2.3) are obtained by solving the following equations:x(1 − x) − axy
x+y = 0,

by
(

x
x+y − c

)
= 0.

(6.1)

There are two equilibrium points:

(i) The boundary equilibrium point is E1 = (1, 0).

(ii) The positive equilibrium point E∗ =
(
1 − a(1 − c), [1−a(1−c)](1−c)

c

)
. E∗ exists only if a−1

a < c < 1.

The Jacobian matrix J of (2.3) is

J(x, y) =

 1 − ay
x+y + x

(
ay

(x+y)2 − 2
)

− ax2

(x+y)2

by2

(x+y)2 b
(

x2

(x+y)2 − c
)  . (6.2)

Proposition 6.1. The equilibrium point E1 = (1, 0) is

(1) LAS if c > 1,

(2) a saddle point if c < 1.

AIMS Mathematics Volume 11, Issue 1, 1412–1448.



1420

Proof. We obtain

J(E1) =

[
−1 −a
0 b(1 − c)

]
. (6.3)

The eigenvalues of J(E1) are ω1 = −1 and ω2 = b(1 − c). If c > 1, then ω2 < 0. Consequently, we get
|arg(ω1,2)|= π > σπ

2 . If c < 1, then ω2 > 0. Consequently, we get |arg(ω1)|= π but |arg(ω2)|= 0. �

Next, we investigate the positive stationary point E∗. The Jacobian matrix is

J(E∗) =

[
−1 + a − ac2 −ac2

b(−1 + c)2 b(−1 + c)c

]
.

The corresponding characteristic polynomial is

ω2 − Tω + D = 0, (6.4)

where T = −1 + a + b(−1 + c)c − ac2 and D = −b(1 + a(−1 + c))(−1 + c)c. The eigenvalues of J(E∗)

are ω1,2 = T±
√

T 2 − 4D
2 . Therefore, we get the next result:

Theorem 6.2. For the fractional model (2.3), the interior equilibrium point E∗ is LAS if either of the
subsequent conditions is satisfied:

(1) T < 0 and T 2 − 4D ≥ 0,

(2) T 2 − 4D < 0 and
√
|T 2 − 4D|

T > tan(σπ2 ).

Proof. (1) Because T < 0 and T 2 − 4D ≥ 0, therefore ω1,2 < 0 and arg(ω1,2) = π > σπ
2 . Therefore,

E∗ is LAS.

(2) Because T 2 − 4D < 0, therefore J(E∗) has complex eigenvalues ω and ω̄. We have that

|
ω − ω̄

ω + ω̄
|= |

Im(ω)
Re(ω)

|= arg(ω) =

√
|T 2 − 4D|

T
.

Therefore, E∗ is LAS if
√
|T 2 − 4D|

T > tan(σπ2 ).
�

7. Global stability analysis

In this section, we analyze the global stability of the equilibrium points of the fractional model (2.3).
To establish the results, we construct appropriate Lyapunov functions and utilize a relevant fractional
inequality.

Lemma 7.1 ( [20]). Consider a continuous and differentiable function z(t) ∈ R+. Then, for all t ≥ t0,
we obtain

CDσ
t0

[
z(t) − z∗ − z∗ ln(

z(t)
z∗

)
]
≤

(
1 −

z∗

z(t)

)
CDσ

t0z(t), z∗ ∈ R+,∀σ ∈ (0, 1).
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The above inequality is a fractional-order analogue of the classical derivative property used in
Lyapunov analysis and will be applied to establish global asymptotic stability.

Theorem 7.2. If c ≥ 1, the predator-free equilibrium point E1 = (1, 0) of (2.3) is globally
asymptotically stable.

Proof. Define
V(x, y) = x − 1 − ln(x) +

a
b

y.

Evaluating the σ-order derivative of V(x, y) along the solution trajectories of system (2.3) and invoking
Lemma 7.1, gives

CDσ
t0V ≤

( x − 1
x

)
CDσ

t0 x(t) +
a
b

CDσ
t0y(t)

= (x − 1)
(
− (x − 1) −

ay
x + y

)
+ ay

( x
x + y

− c
)

= −(x − 1)2 +
( 1

x + y
− c

)
ay

≤ −(x − 1)2 + (1 − c)ay.

Thus, for c ≥ 1, we have CDσ
t0V ≤ 0 for all (x, y) ∈ R2

+. Moreover, CDσ
t0V = 0 at E1. It follows that

E1 = (1, 0) attains global asymptotic stability whenever c ≥ 1. �

Theorem 7.3. The equilibrium point E∗ = (̂x, ŷ) of (2.3) is globally asymptotically stable in
{
(x, y) :

y
ŷ
> x
x̂
> 1

}
.

Proof. We introduce the Lyapunov function

V(x, y) =

(
x − x̂ − x̂ ln

x
x̂

)
+

a
b

(
y − ŷ − ŷ ln

y
ŷ

)
.

Evaluating the σ-order derivative of V(x, y) along the solution trajectories of system (2.3) and invoking
Lemma 7.1, gives

CDσ
t0V ≤

( x − x̂
x

)
CDσ

t0 x(t) +
a
b

(y − ŷ
y

)
CDσ

t0y(t)

= (x − x̂)
(
1 − x −

ay
x + y

)
+ a(y − ŷ)

( x
x + y

− c
)

= (x − x̂)
(
1 − x −

ay
x + y

− (1 − x̂) +
ây
x̂ + ŷ

)
+ a(y − ŷ)

( x
x + y

−
x̂

x̂ + ŷ

)
= −(x − x̂)2 + a(x − x̂)

( ŷ
x̂ + ŷ

−
y

x + y

)
+ a(y − ŷ)

( x
x + y

−
x̂

x̂ + ŷ

)
= −(x − x̂)2 +

a(x̂y − x̂y)
(x + y)(̂x + ŷ)

(
(x − x̂) + (y − ŷ)

)
.

Hence, CDσ
t0V ≤ 0 in the set

{
(x, y) : y

ŷ
> x
x̂
> 1

}
. Moreover, CDσ

t0V = 0 at E∗. �

The above theorems confirm that both equilibria of (2.3) possess global stability under appropriate
parameter conditions.
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8. Hopf bifurcation

Hopf bifurcation occurs when two complex conjugate eigenvalues of the Jacobian cross the
imaginary axis as a parameter changes, resulting in the emergence of periodic oscillations from a
stable focus. In the context of fractional-order systems, this transition is influenced not only by system
parameters but also by the fractional order σ, which can serve as a bifurcation parameter controlling
the onset of oscillatory behavior.

Lemma 8.1 ([21–23]). Assume that the following conditions are fulfilled:

(1) the Jacobian matrix J(E∗) of (2.3) has a pair of complex conjugate eigenvalues with positive real
part

(2) p(σ0) = σ0π
2 −min1≤i≤2|arg(ωi)|= 0,

(3) dp(σ)
dσ |σ=σ0 6= 0;

then, (2.3) experiences a Hopf bifurcation at E∗ when the bifurcation parameter σ crosses σ0.

Theorem 8.2. If T 2 − 4D < 0 and T > 0, then a Hopf bifurcation of (2.3) will appear around E∗ when
σ crosses the critical value

σ0 =
2
π

tan−1
( √
|T 2 − 4D|

T

)
.

Proof. Denote ν = T
2 and φ =

√
|T 2 − 4D|

2 . Clearly, ν > 0. Because T 2 − 4D < 0, the eigenvalues of
J(E∗) are a pair of complex conjugates ω1,2 = ν + iφ. Next,

p(σ0) =
σ0π

2
− min

1≤i≤2
|arg(ωi)|

=
σ0π

2
− arg

(φ
ν

)
= arg

(φ
ν

)
− arg

(φ
ν

)
= 0.

Finally,
dp(σ)

dσ
|σ=σ0=

π

2
6= 0.

Using Lemma 8.1, we can infer that a Hopf bifurcation will occur at E∗ when σ crosses

σ0 =
2
π

tan−1
( √
|T 2 − 4D|

T

)
.

The proof is completed. �

Remark 8.3. The theorem above emphasizes the important role played by the fractional order σ
in determining system behavior. In contrast to the traditional integer-order scenario, where Hopf
bifurcation is solely dependent upon model parameters, in the fractional-order scenario, σ is another
bifurcation parameter. A smaller σ tends to increase system memory and damping, retarding or even
eliminating oscillatory behavior.
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9. Numerical examples for the continuous model (2.3)

Here we present numerical examples to confirm the analytical results obtained for the fractional
prey–predator model with ratio-dependent response. Numerical simulations are carried out by utilizing
the Adams-type predictor-corrector method [24, 25], which is a robust and popular numerical scheme
for solving fractional-order equations. Namely, we use the PECE (Predict, Evaluate, Correct, Evaluate)
algorithm of the Caputo derivative with a constant step size h = 2−6.

Our computational study examines the local and global dynamic properties of the system, that is,
convergence to equilibria, oscillatory dynamics, and initial condition dependence. All simulations are
run under biologically realistic parameter sets that guarantee positivity and boundedness of solutions,
as established previously.

9.1. Transition from oscillations to stability as σ decreases

We set a = 1.55, b = 0.92, c = 0.45, with initial populations x0 = 0.5, y0 = 0.2. These values
satisfy the conditions required for local asymptotic stability of the interior equilibrium E∗ as discussed
in Theorem 6.2.

We simulate the system for different values of σ ∈ {1, 0.95, 0.90} and present the corresponding
phase portraits and time series in Figure 1:

• For σ = 1, the solution exhibits sustained oscillations, indicating a limit cycle about E∗.

• When σ = 0.99 and σ = 0.98, the amplitude of oscillations diminishes, and the system slowly
converges to E∗, highlighting the damping effect introduced by fractional-order memory.

• Further reduction to σ = 0.90 results in faster convergence without noticeable oscillations,
confirming enhanced asymptotic stability due to the fractional dynamics.

These observations illustrate how decreasing the fractional order improves stability and suppresses
oscillations, even when the integer-order system may exhibit cyclic behavior.

9.2. Global attractivity of the interior equilibrium

We assess the sensitivity of the system to different initial values by fixing a = 1.55, b = 0.92, c =

0.45, σ = 0.95. Four distinct initial population pairs are tested:

• (x0, y0) = (0.1, 0.2);

• (x0, y0) = (0.6, 0.2);

• (x0, y0) = (0.4, 0.1);

• (x0, y0) = (0.2, 0.2).

As depicted in Figure 2, regardless of the initial condition, the system converges to the same interior
equilibrium E∗ = (0.404975, 0.384431). This behavior is consistent and verifies the global attractivity
of the coexistence equilibrium, complementing the results of global stability proven in Theorem 7.3. It
indicates the system’s resilience and insensitivity to initial population oscillations.
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Figure 1. Time series and phase portraits for (2.3) with a = 1.55, b = 0.92, c = 0.45, and
x(0) = 0.5, y(0) = 0.2, showing the effect of decreasing σ.
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Figure 2. Time series plots for (2.3) with a = 1.55, b = 0.92, c = 0.45, σ = 0.95, and
different initial values, showing convergence to E∗.

10. Discretized model

To study the discrete-time dynamics of the corresponding continuous fractional-order system (2.3),
we use the piecewise constant approximation method. This method transforms the continuous system
into a discrete map by approximating the state variables as constant on small subintervals of fixed
duration θ > 0. This kind of discretization captures the qualitative properties of the original system but
permits the application of discrete dynamical tools to study stability and bifurcations. We emphasize
that the discrete-time system derived via the piecewise constant argument method is not intended to
be a simple numerical approximation of the continuous fractional model, but rather a mathematically
consistent discrete analogue. While both models share the same equilibrium points, their dynamical
behaviors may differ significantly due to the effects of discretization. In particular, discrete-time
systems are known to exhibit richer dynamics, including PD cascades and NS bifurcations, even when
the corresponding continuous system remains stable.

Let the initial conditions of (2.3) be x(0) = x0 and y(0) = y0. Then, by applying the piecewise
constant approximation, the fractional model (2.3) can be written as

CDσx(t) = x
(
[ t
θ
]θ

)(
1 − x

(
[ t
θ
]θ

))
−

ax
(
[ t
θ ]θ

)
y
(
[ t
θ ]θ

)
x
(
[ t
θ ]θ

)
+y

(
[ t
θ ]θ

) ,

CDσy(t) = by
(
[ t
θ
]θ

)  x
(
[ t
θ ]θ

)
x
(
[ t
θ ]θ

)
+y

(
[ t
θ ]θ

) − c

 .
(10.1)

Consider t ∈ [0, θ), thus t
θ
∈ [0, 1). Therefore, we obtain thatCDσx1(t) = x0

(
1 − x0

)
−

ax0y0
x0+y0

,
CDσy1(t) = by0

(
x0

x0+y0
− c

)
.

(10.2)

AIMS Mathematics Volume 11, Issue 1, 1412–1448.



1426

The solution to Eq (10.2) is given by:x1(t) = x0 + tσ
Γ(σ+1)

(
x0

(
1 − x0

)
−

ax0y0
x0+y0

)
,

y1(t) = y0 + tσ
Γ(σ+1)

(
by0

(
x0

x0+y0
− c

) )
.

(10.3)

Next, for t ∈ [θ, 2θ), and taking t
θ
∈ [1, 2), one hasCDσx2(t) = x1

(
1 − x1

)
−

ax1y1
x1+y1

,
CDσy2(t) = by1

(
x1

x1+y1
− c

)
.

(10.4)

The solution to Eq (10.4) is given by:x2(t) = x1 +
(t−θ)σ

Γ(σ+1)

(
x1

(
1 − x1

)
−

ax1y1
x1+y1

)
,

y2(t) = y1 +
(t−θ)σ

Γ(σ+1)

(
by1

(
x1

x1+y1
− c

) )
.

(10.5)

Upon iterating the discretization proccess n-times, we getxn+1(t) = xn(nθ) +
(t−θ)σ

Γ(σ+1)

(
xn(nθ)

(
1 − xn(nθ)

)
−

axn(nθ)yn(nθ)
xn(nθ)+yn(nθ)

)
,

yn+1(t) = yn(nθ) +
(t−θ)σ

Γ(σ+1)

(
byn(nθ)

(
xn(nθ)

xn(nθ)+yn(nθ) − c
) )
,

(10.6)

where t ∈ [nθ, (n + 1)θ). For t → (n + 1)θ, we obtain the following from (10.6):xn+1 = xn + M
(
xn(1 − xn) − axnyn

xn+yn

)
,

yn+1 = yn + M
(
byn( xn

xn+yn
− c)

)
.

(10.7)

Here, M = θσ

Γ(σ+1) > 0 is the effective sampling step that embeds both the sampling rate θ and fractional-
order parameter σ. The resulting discrete-time system (10.7) retains the major nonlinear interactions
of the original continuous model and provides a basis for stability, bifurcations, and possible chaotic
behavior to be analyzed in the discrete-time setting. It is important to note that the discrete-time model
obtained in this work depends on the chosen discretization scheme. Different discretization methods
may lead to discrete systems with different dynamics.

Remark 10.1. The parameter M = θσ

Γ(σ+1) plays a crucial role in the discrete-time system (10.7), as it
naturally combines the sampling step size θ and the fractional order σ. From a dynamical viewpoint,
M governs the intensity of discrete updating and determines the extent to which past states influence
the current evolution of the system. For a fixed σ, increasing the step size θ leads to a larger value of
M, which may destabilize fixed points and give rise to PD and NS bifurcations. Conversely, when θ is
fixed, decreasing the fractional order σ reduces M, indicating stronger memory effects and enhanced
damping in the discrete dynamics. Consequently, M serves as an effective control parameter that
integrates the effects of discretization intensity and memory in the discrete fractional-order predator–
prey model. Although the discrete system does not explicitly preserve the nonlocal memory structure
of the continuous fractional model, the memory effect is implicitly embedded through the dependence
of M on the fractional order σ.
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11. Topological classification of fixed points of the discrete model

In this section, we examine the local dynamics of (10.7) by analyzing the nature of its fixed points.
The goal is to classify these equilibria according to their topological type (sink, source, saddle, or
non-hyperbolic) using the eigenvalues of the Jacobian matrix.

To determine the fixed points (x, y) of (10.7), we solvex = x + M
(
x(1 − x) − axy

x+y

)
,

y = y + M
(
by( x

x+y − c)
)
.

(11.1)

One can see that the fixed points of (10.7) are the same as for (2.3), which are

E1 = (1, 0) and E∗ =

(
1 − a(1 − c),

[1 − a(1 − c)](1 − c)
c

)
.

The Jacobian matrix of (10.7) at (x, y) is

J(x, y) =


1 + M − aMy

x+y + Mx(−2 +
ay

(x+y)2 ) − aMx2

(x+y)2

bMy2

(x+y)2 1 + bM(−c + x2

(x+y)2 )

 . (11.2)

Let ω1 and ω2 be the eigenvalues of J(x, y). The fixed points of (10.7) can be characterized based on
the modulus of these eigenvalues:

Definition 11.1. A fixed point (x, y) of the system is categorized as follows:

(1) a sink, if both eigenvalues ω1,2 satisfy |ω1,2|< 1,

(2) a source, if both eigenvalues satisfy |ω1,2|> 1,

(3) a saddle, if max{|ω1|, |ω2|} > 1 and min{|ω1|, |ω2|} < 1,

(4) non-hyperbolic, if at least one of the eigenvalues fulfills |ωi|= 1 for i = 1, 2.

We obtain

J(E1) =

1 − M −aM

0 1 + bM − bcM

 . (11.3)

The eigenvalues of J(E1) are ω1 = 1 − M and ω2 = 1 + bM − bcM. Thus, we get the next result:

Theorem 11.2. E1 = (1, 0) is

(1) a sink if c > 1, 0 < M < 2 and 0 < b < 2
M(c−1) ;

(2) a source if any one of the subsequent is met:

i. M > 2 and 0 < c < 1,

ii. M > 2, c > 1 and b > 2
M(c−1) ;

AIMS Mathematics Volume 11, Issue 1, 1412–1448.



1428

(3) a saddle if one of the subsequent is fulfilled:

i. 0 < M < 2 and 0 < c < 1,

ii. 0 < M < 2, c > 1 and b > 2
M(c−1) ,

iii. M > 2, c > 1 and 0 < b < 2
M(c−1) ;

(4) non-hyperbolic if any of the subsequent is fulfilled:

i. M = 2,

ii. c = 1,

iii. c > 1 and b = 2
M(c−1) .

To categorize E∗, we use the following result:

Lemma 11.3 ([26]). Let ∆(ω) = ω2 + K1ω + K0. Suppose that ∆(1) > 0. If ω1 and ω2 are solutions of
∆(ω) = 0, then

(1) |ω1|< 1 together with |ω2|< 1 if ∆(−1) > 0 ∧ K0 < 1,

(2) |ω1|< 1 ∧ |ω2|> 1 (or |ω1|> 1 ∧ |ω2|< 1) if ∆(−1) < 0,

(3) |ω1,2|> 1 if ∆(−1) > 0 ∧ K0 > 1,

(4) |ω2|6= 1 and ω1 = −1 if ∆(−1) = 0 and K1 6= 0, 2,

(5) ω1, ω2 ∈ C along with |ω1,2|= 1 if K2
1 − 4K0 < 0 ∧ K0 = 1.

One can check that

J(E∗) =

1 + (−1 + a − ac2)M −ac2M

b(−1 + c)2M 1 + b(−1 + c)cM

 . (11.4)

The corresponding characteristic polynomial is ∆(ω) = ω2 + K1ω + K0, where

K1 = −2 + M − b(−1 + c)cM + a(−1 + c2)M,

K0 = 1 + M(−1 + bc(−1 + c + M − cM) − a(−1 + c)(1 + c + b(−1 + c)cM)).

It can be obtained through calculations that:

∆(0) = 1 + M(−1 + bc(−1 + c + M − cM) − a(−1 + c)(1 + c + b(−1 + c)cM)),
∆(−1) = 4 + 2(−1 + a + b(−1 + c)c − ac2)M − bcM2(1 − a + ac)(−1 + c),

∆(1) = b(1 − a(1 − c))(1 − c)cM2.

Clearly, ∆(1) > 0. By applying Lemma 11.3, we obtain the following result:

Theorem 11.4. E∗ =
(
1 − a(1 − c), [1−a(1−c)](1−c)

c

)
is

(1) a sink if a(1−c)(c+1+b(−1+c)cM) < 1+bc(1−c−M+cM) and a(2M−2c2M−b(−1+c)2cM2) >
−4 + 2M + 2b(1 − c)cM − b(1 − c)cM2,
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(2) a source if a(1−c)(c+1+b(−1+c)cM) > 1+bc(1−c−M+cM) and a(2M−2c2M−b(−1+c)2cM2) >
−4 + 2M + 2b(1 − c)cM − b(1 − c)cM2,

(3) a saddle if a(2M − 2c2M − b(−1 + c)2cM2) < −4 + 2M + 2b(1 − c)cM − b(1 − c)cM2,

(4) non-hyperbolic, and (10.7) experiences a PD bifurcation at E3 when −2 + M − b(−1 + c)cM +

a(−1 + c2)M 6= 0, 2 and a(2M − 2c2M − b(−1 + c)2cM2) = −4 + 2M + 2b(1− c)cM − b(1− c)cM2,

(5) non-hyperbolic, and (10.7) undergoes an NS bifurcation at E3 when 0 < M − b(−1 + c)cM +

a(−1 + c2)M < 4 and a(1 − c)(c + 1 + b(−1 + c)cM) = 1 + bc(1 − c − M + cM).

12. Bifurcation analysis

This section provides a thorough analysis of bifurcation, including PD and NS bifurcations, in (10.7)
at the positive fixed point E2. For a detailed theoretical background on bifurcation theory, readers are
referred to [27–30]. Bifurcations are pivotal in understanding the qualitative behavior of dynamical
systems, as even small parameter variations can lead to significant changes in system dynamics,
particularly in prey–predator interactions. Comprehension of PD and NS bifurcations gives a deeper
understanding of the dynamics of ecosystems and gives important insights for formulating efficient,
sustainable management methods that provide for the continued coexistence of predator and prey
populations. The study starts with the examination of the PD bifurcation at E∗ under condition (4)
given in Theorem 11.4. By introducing a small perturbation ξ to the bifurcation parameter a near its
critical value

a =
−4 + 2M + 2b(1 − c)cM − b(1 − c)cM2

2M − 2c2M − b(−1 + c)2cM2 ,

model (10.7) takes the following form,xn+1 = xn + M
(
xn(1 − xn) − (a+ξ)xnyn

xn+yn

)
,

yn+1 = yn + M
(
byn( xn

xn+yn
− c)

)
.

(12.1)

We translate E∗ to the origin by using

un = xn − 1 − (a + ξ)(1 − c), vn = yn −
[1 − (a + ξ)(1 − c)](1 − c)

c
.

Consequently, (12.1) can be rewritten asun+1

vn+1

 =


−2+c(−2+b(−1+c)(−1+c(−2+M))M)

2+c(2+b(−1+c)M)
c2(−2+M)(2+b(−1+c)cM)
−2+c(2c+b(−1+c)2 M)

b(−1 + c)2M 1 + b(−1 + c)cM


un

vn

 +

F1(un, vn, ξ)

F2(un, vn, ξ)

 , (12.2)

where

F1(un, vn, ξ) = a1u2
n + a2v2

n + a3unvn + a4unξ + a5vnξ + a6u3
n + a7v3

n + a8u2
nvn

+ a9u2
nξ + a10unv2

n + a11v2
nξ + a12unvnξ + O((|un|+|vn|+|ξ|)4),

F2(un, vn, ξ) = b1u2
n + b2v2

n + b3unvn + b4u3
n + b5v3

n + b6u2
nvn + b7u2

nξ + b8unv2
n

+ b9v2
nξ + b10unvnξ + O((|un|+|vn|+|ξ|)4).
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Appendix A provides the values of the coefficients ai and b j. To diagonalize (12.2), we introduce
the following transformation:un

vn

 =

−
2−bcM+bc2 M

b(−1+c)2 M − 2c2−c2 M
(−1+c)(2+2c−bcM+bc2 M)

1 1


en

fn

 . (12.3)

Under the mapping (12.3), (12.2) is transformed as follows:en+1

fn+1

 =

−1 0

0 ω


en

fn

 +

G1(en, fn, ξ)

G2(en, fn, ξ)

 , (12.4)

where

ω =
2 + c(2 + b(−1 + c)M(3 + (1 − b + bc))cM))

2 + c(2 + bM(−1 + c))
,

G1(en, fn, ξ) = c1e2
n + c2 f 2

n + c3en fn + c4enξ + c5 fnξ + c6e3
n + c7 f 3

n + c8e2
n fn + c9e2

nξ + c10en f 2
n

+ c11 f 2
n ξ + c12en fnξ + O((|en|+| fn|+|ξ|)4),

G2(en, fn, ξ) = d1e2
n + d2 f 2

n + d3en fn + d4enξ + d5 fnξ + d6e3
n + d7 f 3

n + d8e2
n fn + d9e2

nξ + d10en f 2
n

+ d11 f 2
n ξ + d12en fnξ + O((|en|+| fn|+|ξ|)4).

Appendix B provides the values of the coefficients ci and d j. Now, suppose that Σ denotes the center
manifold of (12.4), defined near the origin for ξ close to zero. Its approximate form is given by

Σ =
{
(en, fn, ξ) ∈ R3

+

∣∣∣∣ fn = p1e2
n + p2enξ + p3ξ

2 + O((|en|+|ξ|)3)
}
.

By calculations, we obtain p1 = d1
1−ω , p2 = − d4

1+ω
, p3 = 0. Thus, (12.4) limited to Σ can be written as

follows:

Υ := en+1 = −en + c1e2
n + c4enξ +

(
c6 +

c3d1

1 − ω

)
e3

n +
(
c9 +

c5d1

1 − ω
−

c3d4

1 + ω

)
e2

nξ

−
( c5d4

1 + ω

)
enξ

2 + O
(
(|en|+|ξ|)4

)
. (12.5)

For the mapping (12.5) to exhibit a PD bifurcation, it is required that the values l1 and l2 are non-zero,
where

l1 = ΥξΥenen + 2Υenξ

∣∣∣∣
(0,0)

= 2c4, (12.6)

l2 =
1
2

(Υenen)
2 +

1
3

Υenenen

∣∣∣∣
(0,0)

= 2
(
c2

1 + c6 +
c3d1

1 − ω

)
. (12.7)

Thus, we get the subsequent result:

Theorem 12.1. Suppose that condition (4) of Theorem 11.4 is satisfied. Then (10.7) experiences PD
bifurcation at E∗ if l1, l2 listed in (12.6) and (12.7) are non-zero and a differs in a small neighborhood
of

a =
−4 + 2M + 2b(1 − c)cM − b(1 − c)cM2

2M − 2c2M − b(−1 + c)2cM2 .

Furthermore, if l2 > 0 (l2 < 0), a period-2 orbit of (10.7) bifurcates from E∗, which is stable (unstable).
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Now, we investigate the occurrence of the NS bifurcation at the equilibrium point E∗ based on
condition (5) of Theorem 11.4. By introducing a minor disturbance ξ into bifurcation parameter a near
its critical value

a =
1 + bc(1 − c − M + cM)

(c + 1 + b(−1 + c)cM)(1 − c)
,

model (10.7) is transformed toxn+1 = xn + M
(
xn(1 − xn) − (a+ξ)xnyn

xn+yn

)
,

yn+1 = yn + M
(
byn( xn

xn+yn
− c)

)
.

(12.8)

We shift E∗ to (0, 0) by using

un = xn − 1 − (a + ξ)(1 − c), vn = yn −
[1 − (a + ξ)(1 − c)](1 − c)

c
.

Consequently, (12.8) can be rewritten asun+1

vn+1

 =

 j11 −
c2 M(−1+(−1+c2)ξ+b(−1+c)c(1+M(−1+(−1+c)ξ)))

(−1+c)(1+c−bcM+bc2 M)

b(−1 + c)2M 1 + b(−1 + c)cM


un

vn

 +

F(un, vn)

G(un, vn)

 , (12.9)

where

j11 =
1 + c2M(b + bM(−1 + ξ) − ξ) + Mξ − bc4M2ξ + c(1 + Mξ − bM2ξ) + c3M(−ξ + b(−1 + M + Mξ))

1 + c − bcM + bc2M
,

F(un, vn) = a1u2
n + a2v2

n + a3unvn + a4u3
n + a5v3

n + a6u2
nvn + a7unv2

n + O((|un|+|vn|)4),
G(un, vn) = b1u2

n + b2v2
n + b3unvn + b4u3

n + b5v3
n + b6u2

nvn + b7unv2
n + O((|un|+|vn|)4).

Appendix C provides the values of the coefficients ai and b j. Evaluating the Jacobian matrix
of (12.9) at (0, 0), we obtain the following characteristic equation:

ω2 − p(ξ)ω + q(ξ) = 0, (12.10)

where

p(ξ) = −
1

1 + c − bcM + bc2M

(
− 2 − Mξ + bc4M2(−b + ξ) + c(−1 + bM)(2 + Mξ)

+ c3M(2b2M + ξ − bM(1 + ξ)) + c2M(−b2M + ξ + b(−2 + M − Mξ))
)
,

q(ξ) = 1 − b(−1 + c)2cM2ξ + M(ξ − c2ξ).

The solutions of (12.10) are

ω1,2 =
p(ξ)

2
±

i
2

√
4q(ξ) − p2(ξ). (12.11)

We then obtain |ω1,2|=
√

q(ξ). Furthermore,(
d|ω1|

dξ

)
ξ=0

=

(
d|ω2|

dξ

)
ξ=0

= −
1
2

(−1 + c)M(1 + c − bcM + bc2M) 6= 0.
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Additionally, it is required that ωi
1,2 6= 1 when ξ = 0 for i = 1, 2, 3, 4, corresponds to p(0) 6= −2, 0, 1, 2.

We obtain that

p(0) =
2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM)

1 + c − bcM + bc2M
6= ±2.

Thus, we only require that

2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM)
1 + c − bcM + bc2M

6= 0, 1. (12.12)

To obtain the canonical form of (12.9) as ξ = 0, we useun

vn

 =


c2(1+b(−1+c)c(−1+M))M
(−1+c)(1+c−bcM+bc2 M) 0

b(−1+c)cM(2+bc2 M−c(−2+M+bM))
2(1+c−bcM+bc2 M) c22


en

fn

 , (12.13)

where

c22 = −
1
2

√
4 −

(2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM))2

(1 + c − bcM + bc2M)2 .

Thus, we obtain en+1

fn+1

 =

 k11 c22

−c22 k11


en

fn

 +

χ(en, fn)

Υ(en, fn)

 , (12.14)

where

k11 =
2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM)

2(1 + c − bcM + bc2M)
,

χ(en, fn) = c1e2
n + c2 f 2

n + c3en fn + c4e3
n + c5 f 3

n + c6e2
n fn + c7en f 2

n + O((|en|+| fn|)4),
Υ(en, fn) = d1e2

n + d2 f 2
n + d3en fn + d4e3

n + d5 f 3
n + d6e2

n fn + d7en f 2
n + O((|en|+| fn|)4).

Appendix D provides the values of ci and d j. To analyze the direction and nature of the NS
bifurcation, the first Lyapunov exponent is evaluated as follows:

L =

([
−Re

(
(1 − 2ω1)ω2

2

1 − ω1
τ20τ11

)
−

1
2
|τ11|

2−|τ02|
2+Re(ω2τ21)

])
ξ=0

, (12.15)

where

τ20 =
1
8

[
χenen − χ fn fn + 2Υen fn + i(Υenen − Υ fn fn − 2χen fn)

]
,

τ11 =
1
4

[
χenen + χ fn fn + i(Υenen + Υ fn fn)

]
,

τ02 =
1
8

[
χenen − χ fn fn − 2Υen fn + i(Υenen − Υ fn fn + 2χen fn)

]
,

τ21 =
1

16

[
χenenen + χen fn fn + Υenen fn + Υ fn fn fn + i(Υenenen + Υen fn fn − χenen fn − χ fn fn fn)

]
.

The foregoing discussion leads to the following conclusion:
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Theorem 12.2. Suppose that condition (5) of Theorem 11.4 is fulfilled. If condition (12.12) is fulfilled
and L, defined in (12.15), is nonzero, then (10.7) experiences an NS bifurcation at E∗ when the
parameter a differs in a small neighborhood of

a =
1 + bc(1 − c − M + cM)

(1 − c)(1 + c + b(−1 + c)cM)
.

Additionally, if L < 0 (respectively, L > 0), the NS bifurcation at E∗ is supercritical (respectively,
subcritical), and a unique invariant closed curve emanates from E∗, the curve is attracting in the
former case and repelling in the latter.

13. Numerical simulations for discrete model (10.7)

In this section, we present numerical examples to support the analytical findings of the discrete
fractional prey–predator model (10.7). The simulations illustrate how variations in system parameters
lead to qualitative variations in the population dynamics, including the onset of periodic and chaotic
behaviors via PD and NS bifurcations. The bifurcation diagrams, phase portraits, time series plots, and
maximum Lyapunov exponents (MLEs) are used to characterize these transitions.

In the numerical simulations of the discrete model (10.7), two different settings are considered.
First, in simulations where the effective discretization parameter is fixed, we choose M = 3.5, which
is obtained by taking the fractional order σ = 0.95 and the sampling step size θ ≈ 3.66. In this case,
the values of θ and σ are kept constant throughout the simulations. Second, in simulations where M is
varied as a bifurcation parameter, we fix the fractional order σ = 0.95 and vary the sampling step size
θ accordingly so that M = θσ

Γ(σ+1) changes continuously.

13.1. PD bifurcation analysis

We fix M = 3.5, b = 0.5, and c = 0.95. The corresponding PD bifurcation value is a ≈ 4.30466.
At this bifurcation point, the interior fixed point is E∗ ≈ (0.784767, 0.041304), where the prey and
predator populations coexist at stable levels. The eigenvalues of J(E∗) are ω1 = −1, ω2 = 0.885841.
The emergence of the −1 eigenvalue verifies the existence of a PD bifurcation at this value. This
implies a qualitative change in the dynamics of the system whereby the fixed point, which is stable
initially, becomes unstable and bifurcates to a stable period of two orbits as the parameter a increases.

To visualize this transition, we generate bifurcation diagrams in Figure 3(a),3(b), showing the
asymptotic behavior of the prey and predator populations as a varies over [2.8, 4.8]. The initial
conditions are fixed at x0 = 0.75, y0 = 0.05. These plots show the successive PD behavior, with
increasingly complicated oscillations and ultimately chaotic dynamics as a goes down. Additionally,
the corresponding MLE is plotted in Figure 3(c). Negative values for the MLE establish that the system
has stable or periodic behavior in the early regime. As a goes down and crosses the bifurcation point,
the MLE turns positive, which shows the onset of chaotic behavior. This verifies that the system takes
the classical PD path towards chaos.
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(a) (b)

(c)

Figure 3. Bifurcation and MLE graphs of (10.7) varying a ∈ [2.8, 4.8] and fixing M =

3.5, b = 0.5, c = 0.95 with x0 = 0.75, y0 = 0.05.

To illustrate further the dynamic changes in the prey–predator model, we provide time series plots
and phase portraits for certain values of a, using M = 3.5, b = 0.5, c = 0.95. These are Figures 4 and 5,
and they show how the system transforms from stability to chaos via a cascade of PD bifurcations.
Plots Figure 4(a)–4(c) is for values of a slightly lower than the critical bifurcation point a ≈ 4.30466,
when the system is stable, and the population levels of both predator and prey settle into a steady
equilibrium. Below this value of a, the fixed point becomes unstable, and a PD bifurcation sets in for
the system. This switch is reflected in Figure 4(d)–4(f), in which the model follows a 2-period cycle,
reflecting alternating population values over time. With further reduction in the parameter a, the model
continues to bifurcate, yielding higher-order periodic orbits. Figure 4(g)–4(i),4(j)–4(l) reflects the
appearance of 4-period and 8-period cycles, respectively, representing further steps in the PD cascade.
Ultimately, the system reveals chaotic behavior as depicted in Figure 5(a)–5(f). In this regime, both the
prey and predator populations vary irregularly, with no apparent periodicity, and phase portraits reveal
a complex, aperiodic structure. These simulations clearly demonstrate the classical PD route to chaos.
Instability at the fixed point resulting from a flip bifurcation triggers a series of bifurcations that give
way to increasingly complicated dynamics and eventually to chaos. This sequence shows sensitivity to
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the parameter values in the system and reaffirms the intricacy of the dynamical behavior of the model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Time series plots and phase portraits of (10.7) using (a–c) a = 4.31, (d–f) a = 4.30,
(g–i) a = 3.40, (j–l) a = 3.25 and fixing M = 3.5, b = 0.5, c = 0.95, with x0 = 0.75, y0 =

0.05.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Time series plots and phase portraits of (10.7) using (a–c) a = 3.15, (d–f) a = 2.8
and fixing M = 3.5, b = 0.5, c = 0.95 with x0 = 0.75, y0 = 0.05.

In order to gain a more profound insight into the dynamics of the system when varying the different
parameters, we study the bifurcation structure on the (a,M) parameter plane. Figure 6(a) presents
the two-parameter bifurcation diagram, which shows several dynamical behaviors such as stable fixed
points, periodic orbits, and chaotic areas. The associated two-dimensional MLE plot in Figure 6(b)
indicates the transition from negative to positive values, representing a change from stability to chaos.

(a) (b)

Figure 6. 2D Bifurcation and 2D MLE plots of (10.7) varying at a ∈ [2.8, 4.8] and M ∈

[3.2, 3.8] and fixing b = 0.5, c = 0.95 with x0 = 0.75, y0 = 0.05.
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13.2. NS bifurcation analysis

To investigate the presence of an NS bifurcation in the prey–predator model (10.7), we fix M =

3.5, b = 0.92, and c = 0.45. The corresponding NS bifurcation value is a ≈ 1.19927. At this bifurcation
point, the interior fixed point is E∗ ≈ (0.340403, 0.416048). The eigenvalues of J(E∗) are ω1,2 =

0.525253 ± 0.850946i, with modulus |ω1,2|= 1. This confirms the appearance of an NS bifurcation at
E∗.

To capture this behavior, we draw bifurcation diagrams varying at a ∈ [1.05, 1.30], as shown in
Figure 7(a),7(b), using initial conditions x0 = 0.35, y0 = 0.40. The diagrams illustrate how the
dynamics transition from stable, fixed-point behavior to quasiperiodic oscillations as a crosses the
bifurcation threshold. Further evidence is provided by the MLE plot in Figure 7(c). The negative
values of MLE are showing stability or quasiperiodic behavior, and the absence of positive values
showing NS bifurcation is not leading to chaos in our case.

(a) (b)

(c)

Figure 7. Bifurcation and MLE plots of (10.7) varying a ∈ [1.05, 1.30]. Fixed values are
M = 3.5, b = 0.92, c = 0.45, and initial values are x0 = 0.35, y0 = 0.40.
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Figure 8 illustrates phase portraits of (10.7) for several values of a, capturing the evolution of
dynamics near the NS bifurcation point. In Figure 8(a), for values of a slightly below the critical
threshold a ≈ 1.19927, the positive fixed point E∗ behaves as a stable sink, with nearby trajectories
spiraling toward it. As the parameter a increases and crosses the bifurcation value, the fixed point
becomes unstable, and an invariant closed curve is born through an NS bifurcation. This emergence is
clearly observed in Figure 8(b)–8(d), where trajectories no longer converge to a point but instead settle
onto a smooth closed orbit, indicating quasiperiodic behavior. Figure 8(g) presents a 3D visualization
of these phase portraits, demonstrating the manner in which the radius of the invariant curve is
expanding as the parameter a increases further from the bifurcation threshold. This expansion of the
orbit indicates that the amplitude of the oscillations of prey and predator populations increases with
growing a. For a = 1.27, the smooth invariant curve destabilizes and splits into a period-7 periodic
orbit, as presented in Figure 8(e). This is an indication of a secondary bifurcation, showing greater
complication in the system’s oscillatory behavior. Noticeably, as a is increased further, the closed
invariant curve returns, as illustrated in Figure 8(f), indicating a quasiperiodic regime to follow the
intermittent periodic regime.

To investigate the global dynamical behavior associated with the NS bifurcation, we examine the
system by varying the important parameters simultaneously. The two-parameter bifurcation diagram
in the (a,M) plane, shown in Figure 9(a), identifies different dynamic regions for stable fixed points,
closed invariant curves, and quasiperiodic behavior. Figure 9(b) shows the respective two-dimensional
MLE plot, which illustrates a transition from negative to positive values and marks the onset of
quasiperiodic and chaotic dynamics. These plots combined confirm the presence of NS bifurcations
and assist in explaining how changes in system parameters result in intricate dynamical patterns.

The numerical computations establish that the discrete prey–predator model has two main pathways
to complexity: the PD and NS bifurcations. For different values of a, the system evolves from
coexistence to periodic, quasiperiodic, and finally chaotic behavior. The bifurcation diagrams,
Lyapunov exponents, and phase portraits together illustrate how the dynamics between predation
pressure, conversion effectiveness, and memory terms (M and σ) influence long-term population
oscillations. These results emphasize that even modest alterations in rates of ecological interactions
can produce large qualitative changes in system behavior, a demonstration of the inherent richness and
sensitivity of discrete-time ecological dynamics.

13.3. A comparison of fractional-order and integer-order models

To demonstrate the impact of fractional dynamics on system behavior, we compare the discretized
fractional prey–predator model (10.7) with its classical integer-order counterpart, which is obtained by
taking σ = 1. The parameters are set to b = 0.92, c = 0.45, and θ = 1. The respective bifurcation plots
are given in Figure 10.

On these plots, we can observe that the integer-order model has a wider region of stability than its
fractional-order analogue. For the integer-order model, bifurcation happens at a greater critical value
of a, and the model has steady coexistence over a larger range of parameters. The fractional-order
model, in contrast, has a much earlier emergence of oscillations and bifurcations and exhibits more
irregular and complex dynamics.

This comparison emphasizes that the memory effect inherent in fractional-order systems markedly
changes the dynamical response, increasing sensitivity to parameter changes and generating richer
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oscillatory and quasiperiodic dynamics. Such effects reflect the ability of fractional calculus to capture
long-term memory and hereditary characteristics in population interactions, offering a more realistic
description of ecological processes.

(a) a = 1.17 (b) a = 1.1993 (c) a = 1.21

(d) a = 1.25 (e) a = 1.27 (f) a = 1.30

(g) 3D view of phase portraits

Figure 8. Phase portraits of (10.7) for some values of a with M = 3.5, b = 0.92, c = 0.45,
and x0 = 0.35, y0 = 0.40.
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(a) (b)

Figure 9. 2D Bifurcation and 2D MLE graphs of (10.7) varying at a ∈ [0.05, 1.5] and
M ∈ [2.2, 4.8]. Fixing b = 0.92, c = 0.45 and x0 = 0.35, y0 = 0.40.

(a) (b)

Figure 10. Bifurcation diagrams of (10.7) varying a in [1.05, 1.53]. and fixing b = 0.92, c =

0.45, θ = 1, σ = 1, and x0 = 0.35, y0 = 0.40.

14. Conclusions

In this study, we developed and analyzed a fractional prey–predator model with a ratio-
dependent functional response to capture the memory and hereditary effects in population interactions.
The existence, uniqueness, positivity, and boundedness of biologically meaningful solutions were
established, ensuring the well-posedness of the model. The local and global stability analyses
demonstrated that both the predator-free and coexistence equilibria can achieve asymptotic stability
under appropriate parameter conditions. The fractional order σ was shown to play a crucial role in
system dynamics, where smaller values of σ enhance damping effects and suppress oscillations.
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The Hopf bifurcation event was described by taking σ as the bifurcation parameter, which showed
how the memory terms affect the emergence of oscillations. To consider discrete-time dynamics, the
piecewise constant argument method was used to obtain a discrete counterpart of the fractional system.
The discrete model had a much more complex dynamical structure, such as PD and NS bifurcations
toward complex periodic and quasiperiodic oscillations.

Numerical simulations, including bifurcation diagrams, phase portraits, and Lyapunov exponents,
were used to verify the theoretical results and show the routes to chaos. Comparison with the
integer-order model underscored that fractional dynamics cause earlier bifurcations and more intricate
oscillatory behavior, stressing the effect of memory on ecological stability.

The research fills the gap between continuous fractional dynamics and discrete-time evolution,
yielding further understanding of how discretization and memory act together to determine long-
term population dynamics. The findings show that the combination of fractional-order modeling and
discrete-time analysis provides a very effective method for analyzing complex ecological systems.
Further research could explore extensions of the current fractional-order model by including time
delays, stochastic influences, harvesting, or data-informed parameter estimation to strengthen its
ecological relevance.
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Appendix

A. List of coefficients associated with the nonlinear terms of (12.2)

a1 =
M(−4 + c(−4 + 2bM + c(4 + M(−2 + 2b(−2 + c)c − b(−1 + c)2M))))

4 + 2(1 + b(−1 + c))cM
,

a2 = −
c3(−2 + M)M(2 + b(−1 + c)cM)

2(−1 + c)(2 + (1 + b(−1 + c))cM)
,

a3 = −
c2(−2 + M)M(2 + b(−1 + c)cM)

2 + (1 + b(−1 + c))cM
,

a4 = M − c2M, a5 = −c2M,

a6 =
(−1 + c)c2(−2 + M)M2(2 + b(−1 + c)cM)(2 + c(2 + b(−1 + c)M))

4(2 + (1 + b(−1 + c))cM)2 ,

a7 =
c4(−2 + M)M2(2 + b(−1 + c)cM)(2 + c(2 + b(−1 + c)M))

4(−1 + c)(2 + (1 + b(−1 + c))cM)2 ,

a8 =
c2(−1 + 3c)(−2 + M)M2(2 + bcM(c − 1))(2 + c(2 + b(−1 + c)M))

4(2 + (1 + b(−1 + c))cM)2 ,

a9 =
cM3(−2 + c(2c + b(−1 + c)2M))2

4(2 + (1 + b(−1 + c))cM)2 ,

a10 =
c3(−2 + 3c)(−2 + M)M2(2 + bcM(c − 1))(2 + c(2 + b(−1 + c)M))

4(−1 + c)(2 + (1 − b + bc))cM)2 ,

a11 =
c3M3(2 + c(2 + b(−1 + c)M))2

4(2 + (1 + b(−1 + c))cM)2 ,

a12 =
(c − 1)c2M3(2 + c(2 + b(−1 + c)M))2

2(2 + (1 + b(−1 + c))cM)2 ,

b1 = −
b(−1 + c)2cM2(2 + c(2 + b(−1 + c)M))

4 + 2(1 + b(−1 + c))cM
,

b2 = −
bc3M2(2 + c(2 + bM(−1 + c)))

4 + 2(1 + b(−1 + c))cM
,

b3 = −
b(−1 + c)c2M2(2 + c(2 − bM + bcM))

2 + (1 + b(−1 + c))cM
,

b4 =
bc2M3(−2 + c(2c + bM(c − 1)2))2

4(2 + (1 + b(−1 + c))cM)2 ,

b5 =
bc4M3(2 + c(2 − bM + bcM))2

4(2 + (1 + b(−1 + c))cM)2 ,
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b6 =
b(−1 + c)c2(−1 + 3c)M3(2 + c(2 + bM(−1 + c)))2

4(2 + (1 + b(−1 + c))cM)2 ,

b7 =
b(c − 1)3cM3(2 + c(2 + b(−1 + c)M))2

4(2 + (1 + b(−1 + c))cM)2 ,

b8 =
bc3(−2 + 3c)M3(2 + c(2 + b(−1 + c)M))2

4(2 + (1 + b(−1 + c))cM)2 ,

b9 =
b(−1 + c)c3M3(2 + c(2 + b(−1 + c)M))2

4(2 + (1 + b(−1 + c))cM)2 ,

b10 =
bc2M3(−2 + c(2c + b(−1 + c)2M))2

2(2 + (1 + b(−1 + c))cM)2 .

B. List of coefficients associated with the nonlinear terms of (12.4)

c1 =
(
16 + c(32 − 32bM + c(−16c + 8(1 + c + b(−1 + 5c))M + 4b(−1 + c)(1 + 2c + 2b(−3 + c + 2c2))M2

+ 2b2(c − 1)2c(2 + c + b(c − 1)(4 + c))M3 + b3(1 + b(c − 1))(c − 1)3c2M4))
)

/(
b(−1 + c)2(2 + (1 + b(−1 + c))cM)(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))

)
,

c2 = −
bc3(−2 + M)M2(4 + cM(−2c + b(c − 1)(4 + c(−2 + M + b(c − 1)M))))

16 + 2c(16 − 12bM + c(8 + bM(12c + 2(c − 1)(1 + c + b(c − 1)(3 + c))M + b(1 + b(c − 1))(−1 + c)2cM2)))
,

c3 = −
4c3(−2 + M)M

−4 + c(4c + 4b(−1 + c)2M + b(1 + b(−1 + c))(−1 + c)2cM2)
,

c4 = −
(−1 + c)M(2 + c(2 + b(−1 + c)M))2

4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM))
,

c5 =
b(−1 + c)2c2(1 + c + b(−1 + c)c)M3

4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM))
,

c6 = −
c2(−2 + M)(2 + b(c − 1)M)(−2 + bcM)(2 + c(2 + b(−1 + c)M))2

b2(−1 + c)3(2 + (1 − b + bc)cM)2(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))
,

c7 =
bc4(−2 + M)M3(−2 + bcM)(−2 + cM(b(c − 1)2 + c))

32 + 4c(16 − 12bM + c(8 + bM(12c + 2(−1 + c)(1 + c + b(c − 1)(3 + c))M + b(1 + b(c − 1))(c − 1)2cM2)))
,

c8 =
(
c2M(−2 + M)(2 + c(2 + bM(c − 1)))(4 + c(−8 + cM(−6 + b(8 + (2 − 3b)M + c(−6 + M + bM(2

+ c + (1 − b + bc)(−1 + c)M))))))
)

/(
b(−1 + c)2(2 + (1 + b(c − 1))cM)2(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))

)
,

c9 = −
cM2(2 + c(2 + 2bc − bM))(2 + c(2 + b(−1 + c)M))2

b(2 + (1 − b + bc)cM)2(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))
,

c10 = −
((

c3(−2 + M)M2(16 + c(−8 − 12cM + bM(−12 + c(2(10 + M)

+ c(−12 + (1 + b(−1 + c))M(4 + b(−1 + c)M))))))
)

/(
4(−8 + c(8c + 4(c − 1)(c + 1 + b(c − 1)(3 + c))M

+ 6b(1 + b(−1 + c))(−1 + c)2cM2 + b(1 + b(−1 + c))2(−1 + c)2c2M3))
))
,

c11 = −
b(c − 1)2c3M4(2 + c(2 + 2bc − bM))

4(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))
,

c12 =
(−1 + c)c2M3(2 + c(2 + 2bc − bM))(2 + c(2 + b(−1 + c)M))

8 + c(8 + 4M(1 + c) + bM(c − 1)(12 + c(4 + (1 + b(−1 + c))M(6 + (1 + b(−1 + c))cM))))
,
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d1 = −
(2 + bcM(c − 1))(2 + c(2 + b(−1 + c)M))(4 + c(2 + b(−1 + c)M)(4 + (1 − b + bc)cM))

b(−1 + c)2(2 + (1 + b(−1 + c))cM)(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))
,

d2 =
(
bc3M2(−8(2 + c) − 4(−1 + c)(1 + 5bc)M − 2c(c + b(c − 1)(−2 + (5 + 4b(c − 1))c))M2

− b(1 + b(−1 + c))(−1 + c)2c2(1 + bc)M3)
)

/(
16 + 2c(16 − 12bM + c(8 + bM(12c + 2(c − 1)(1 + c + b(c − 1)(3 + c))M

+ b(1 − b + bc)(−1 + c)2cM2)))
)
,

d3 =
2c2M(2 + (1 + b(c − 1))cM)(2 + bcM(c − 1))

−4 + c(4c + 4b(−1 + c)2M + b(1 − b + bc)(−1 + c)2cM2)
,

d4 =
(−1 + c)M(2 + c(2 + b(−1 + c)M))2

4 + c(4 + bM(c − 1)(4 + (1 + b(−1 + c))cM))
,

d5 = −
b(−1 + c)2c2(1 + c + b(−1 + c)c)M3

4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM))
,

d6 = −
c2(2 + b(c − 1)M)(2 + b(c − 1)cM)(4 + (−1 + c)(1 + bc)M)(2 + c(2 + b(−1 + c)M))2

b2(−1 + c)4(2 + (1 − b + bc)cM)2(4 + c(4 + b(−1 + c)M(4 + (1 + b(c − 1))cM)))
,

d7 =
(
bc4M3(2 + b(−1 + c)cM)(−2 + c(b(−1 + c)2 + c)M)(4 + M(c − 1)(1 + bc))

)
/(

4(−1 + c)(8 + c(16 − 12bM + c(8 + bM(12c + 2(c − 1)(c + 1 + b(−1 + c)(3 + c))M

+ b(1 − b + bc)(−1 + c)2cM2))))
)
,

d8 =
(
c2M(2 + b(−1 + c)cM)(4 + (−1 + c)(1 + bc)M)(2 + c(2 + b(−1 + c)M))(−2 + c(4 + 3cM

+ b(−1 + c)M(1 + c(3 + M + bM(c − 1)))))
)

/(
b(−1 + c)3(2 + (1 + b(−1 + c))cM)2(4 + c(4 + b(−1 + c)M(4 + (1 − b + bc)cM)))

)
,

d9 =
cM(2 + (−1 + c)(1 + bc)M)(2 + cM(2 + b(c − 1)))3

b(−1 + c)(2 + (1 + b(−1 + c))cM)2(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))
,

d10 = −
((

c3M2(2 + b(−1 + c)cM)(4 + (−1 + c)(1 + bc)M)

(−8 + c(4 + 6cM + b(−1 + c)M(−2 + c(6 + M + bM(c − 1)))))
)

/(
4(−1 + c)2(8 + c(8 + 4(1 + c)M + b(−1 + c)M(12 + c(4 + (1 + b(−1 + c))M(6 + (1 + b(−1 + c))cM)))))

))
,

d11 =
b(c − 1)c3M3(2 + (−1 + c)(1 + bc)M)(2 + cM(2 + b(c − 1)))

4(4 + c(4 + b(−1 + c)M(4 + (1 + b(−1 + c))cM)))
,

d12 = −
c2M2(2 + (−1 + c)(1 + bc)M)(2 + c(2 + b(−1 + c)M))2

8 + c(8 + 4(1 + c)M + b(−1 + c)M(12 + c(4 + (1 + b(−1 + c))M(6 + (1 + b(−1 + c))cM))))
.

C. List of coefficients associated with the nonlinear terms of (12.9)

a1 =
M(ξ + cξ − c3ξ + c4ξ − c2(1 + 2ξ) + b(−1 + c)c(−1 − c + cM + Mξ + c3Mξ − c2(−1 + M + 2Mξ)))

c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ)
,

a2 =
c3M(−1 + (−1 + c2)ξ + bc(−1 + c)(1 + M(−1 + (c − 1)ξ)))

(−1 + c)(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))
,

a3 =
2c2M(−1 + (−1 + c2)ξ + bc(−1 + c)(1 + M(−1 + (c − 1)ξ)))

c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ)
,
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a4 = −
(−1 + c)c2M(1 + c − bcM + bc2M)(−1 + (−1 + c2)ξ + b(−1 + c)c(1 + M(−1 + (−1 + c)ξ)))

(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

a5 = −
c4M(1 + c − bcM + bc2M)(−1 + (−1 + c2)ξ + bc(c − 1)(1 + M(−1 + (−1 + c)ξ)))

(−1 + c)(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

a6 = −
c2M(3c − 1)(1 + c − bcM + bc2M)(−1 + (−1 + c2)ξ + bc(c − 1)(1 + M(−1 + (−1 + c)ξ)))

(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

a7 = −
c3M(3c − 2)(1 + c − bcM + bc2M)(−1 + (−1 + c2)ξ + b(−1 + c)c(1 + M(−1 + (c − 1)ξ)))

(−1 + c)(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

b1 = −
b(−1 + c)2cM(1 + c − bcM + bc2M)

c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ)
,

b2 = −
bc3M(1 + c − bcM + bc2M)

c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ)
,

b3 = −
2b(−1 + c)c2M(1 + c − bcM + bc2M)

c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ)
,

b4 =
b(−1 + c)2c2M(1 + c − bcM + bc2M)2

(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

b5 =
bc4M(1 + c − bcM + bc2M)2

(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

b6 =
b(−1 + c)c2(−1 + 3c)M(1 + c − bcM + bc2M)2

(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 ,

b7 =
bc3(−2 + 3c)M(1 + c − bcM + bc2M)2

(c − ξ + bc3Mξ + bc(−1 + Mξ) + c2(b + ξ − 2bMξ))2 .

D. List of coefficients associated with the nonlinear terms of (12.14)

c1 = −
c2M2(4c + b3(−1 + c)4c2M2 + b2(−1 + c)3cM(4 + cM) + 4b(−1 + c)(−1 + c2M))

4(−1 + c)(1 + c − bcM + bc2M)
,

c2 =
b(−1 + c)c2M2(4 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(4 + (−1 + b)M) + c(4 − 4bM))

4(1 + c − bcM + bc2M)
,

c3 =
1
2

cM(2 + b(−1 + c)cM)

√
4 −

(2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM))2

(1 + c − bcM + bc2M)2 ,

c4 =
c3M3(2 + bcM(c − 1))2(2c + b2(−1 + c)3cM + b(−1 + c)(−2 + cM + c2M))

8(−1 + c)(1 + c − bcM + bc2M)
,

c5 = −
c2(1 + c − bcM + bc2M)2(4 − (2+(1−2b)bc3 M2+b2c4 M2+bc2 M(2+(−1+b)M)+c(2−2bM))2

(1+c−bcM+bc2 M)2 )3/2

8(c + b(−1 + c)c)2 ,

c6 = −
((

c2M2(−4 + 12c + 3b3(−1 + c)4c2M2 + 4b(−1 + c)(−3 + c + 3c2M) + b2(−1 + c)2cM(−12 + 3c2M

+ c(8 + M)))

√
4 −

(2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM))2

(1 + c − bcM + bc2M)2

)
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8(1 + b(−1 + c))(−1 + c)

))
,

c7 = −
((

bc3M3(8(−2 + c + 3c2) + 3b4(−1 + c)5c3M3 + 2b3(−1 + c)3c2M2(−9 − 2c(−4 + M) + 3c2M)

+ b2(−1 + c)2cM(−36 + 3c3M2 − 2c(−8 + 7M) + c2(12 + 22M − M2)) + 2b(−1 + c)(−12 + 3c3M(2 + M)

− 2c(2 + 5M) − 2c2(−4 − 8M + M2)))
)/(

8(1 + b(−1 + c))(1 + c − bcM + bc2M)
))
,

d1 =
(
bc3M3(4c2M + b4(−1 + c)4c3(1 + c)M3 + 2b3(−1 + c)3c2M2(3 + 3c + c2M) + b2(−1 + c)2cM(12

− 2c(−8 + M) − c2(−10 + M)M + c3M2) + 4b(−1 + c)(2 − c(−4 + M) + c3M2 + c2(2 + M)))
)

/(
4(1 + c − bcM + bc2M)2

√
4 −

(2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM))2

(1 + c − bcM + bc2M)2

)
,

d2 =

bcM(2 + c2M + bc3M − c(−2 + M + bM))

√
4 −

(2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM))2

(1 + c − bcM + bc2M)2

4 + 4b(−1 + c)
,

d3 = −
bc2M2(2 + bcM(c − 1))(2 + c2M + bc3M − c(−2 + M + bM))

2(1 + c − bcM + bc2M)
,

d4 = −
((

bc4M4(2 + bcM(c − 1))2(2 + c2M + bc3M − c(−2 + M + bM))(2c + b2(−1 + c)3cM

+ b(−1 + c)(−2 + cM + c2M))
)/(

8(−1 + c)(1 + c − bcM + bc2M)2

×

√
4 −

(2 + (1 − 2b)bc3M2 + b2c4M2 + bc2M(2 + (−1 + b)M) + c(2 − 2bM))2

(1 + c − bcM + bc2M)2

))
,

d5 = −
((

b2(−1 + c)c3M3(8 − 2(−1 + b)b2c6M3 + b3c7M3 + bc5M2(b(6 − 4M) + M) − 4c(−4 + M + 3bM)

+ 2c2(4 + b(−2 + M)M + 3b2M2) + 2bc4M(2 − 3(−1 + b)M + (−1 + b + b2)M2) + c3M(4 − 6b2M

− b3M2 + b(12 − 8M + M2)))
)/(

8(1 + b(−1 + c))(1 + c − bcM + bc2M)
))
,

d6 =
(
bc3M3(2 + c2M + bc3M − c(−2 + M + bM))(−4 + 12c + 3b3(−1 + c)4c2M2 + 4b(−1 + c)(−3 + c + 3c2M)

+ b2(−1 + c)2cM(−12 + 3c2M + c(8 + M)))
)/(

8(1 + b(−1 + c))(−1 + c)(1 + c − bcM + bc2M)
)
,

d7 = −
((

bc2M2
(
−

1
(1 + c − bcM + bc2M)2 b(1 + b(−1 + c))(−1 + c)c2M2(4 + (1 − 2b)bc3M2 + b2c4M2

+ bc2M(4 + (−1 + b)M) + c(4 − 4bM))
)1/2

(3b3(−1 + c)4c2(1 + c)M2 + 2(−2 + 3c)(2 − c(−2 + M) + c2M)

+ 2b2(−1 + c)2cM(−6 + c2(5 − 2M) + c(−1 + M) + 3c3M) + b(−1 + c)(−12 − 4c − 4c3(−4 + M)M

+ 3c4M2 + c2(8 − 4M + M2)))
)/(

8(1 + b(−1 + c))2(−1 + c)
))
.
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