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Abstract: Fractional stochastic differential equations (FSDEs) driven by fractional Brownian
motion (fBm) have attracted growing attention due to their ability to model systems exhibiting non-
Markovian dynamics and long-range dependence, which naturally arise in many real-world phenomena
characterized by hereditary and persistent randomness. In this work, we establish the existence and
uniqueness of mild solutions using the Picard iteration technique for the case where the Hurst parameter
satisfies H ∈

(
1
2 , 1

)
. Moreover, we establish the approximate controllability of the systems under

suitable conditions. To generalize the theoretical framework, we employ the Caputo–Katugampola
fractional derivative (CKFD), thereby extending the analysis to a broader class of fractional stochastic
systems.
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1. Introduction

Unlike classical derivatives, which describe the instantaneous rate of change at a specific point,
fractional derivatives capture the memory and hereditary characteristics of processes, making them
particularly suitable for modeling systems that exhibit long-term memory effects, such as viscoelastic
materials, anomalous diffusion, and various biological phenomena. There are many different kinds
of fractional operators, each with unique characteristics and uses. Examples include the Riemann-
Liouville, Caputo fractional derivative (CFD), Grünwald-Letnikov, Caputo-Fabrizio, conformable,
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CKFD, and Caputo-Hadamard fractional derivative (CHFD) [1–3]. Selecting a suitable type of
fractional derivative depends on the problem’s unique features and the mathematical behavior intended
to be captured.

Among the various fractional operators, the CKFD is particularly notable and is defined as
follows [4]:

Dα,β f (t) =
βα

Γ(1 − α)

∫ t

0

f ′(γ)
(tβ − γβ)α

dγ. (1.1)

When β = 1, the CKFD reduces to the CFD, and when β → 0+, it becomes the CHFD [5]. The
Caputo-Katugampola integral is defined as [6]:

Iα,β f (t) =
β1−α

Γ(α)

∫ t

0

γβ−1 f (γ)
(tβ − γβ)1−αdγ. (1.2)

Remark 1.1. The parameter β plays a fundamental role in the CKFD, as it governs the manner in
which past states influence the present dynamics of the system. In particular, the memory kernel of the
operator depends explicitly on β, allowing a continuous adjustment of memory effects. When β = 1, the
CKFD reduces to the CFD, corresponding to a uniform power-law memory. As β → 0+, the operator
approaches the CHFD, which is associated with logarithmic memory behavior. For values β , 1,
the derivative exhibits intermediate memory effects, lying between the power–law and logarithmic
regimes. This flexibility constitutes a significant advantage of the Caputo–Katugampola framework,
as it enables more accurate modeling of real-world systems whose hereditary properties cannot be
adequately described by a single pure power–law memory kernel.

The CKFD has recently garnered significant attention from researchers. For example, the authors
of [7] developed a novel approach for solving various fractional-order models using the CKFD, which
they applied to obtain approximate solutions and establish well-posedness. Similarly, the authors of [8]
addressed several problems by proposing a practical technique based on this operator. The existence
and uniqueness (Ex-Un) of solutions for fractional models were examined in [9], where the authors also
derived several stability results. Additionally, the authors of [10] introduced a new method for solving
a range of related problems. The foundational work by the authors of [11] provided key inequalities
and concepts for the CKFD. This theoretical framework was subsequently strengthened through proofs
of Ex-Un for solutions to fractional systems [12–14]. The applicability of the CKFD has been further
demonstrated both in solving specific fractional models [15] and in analyzing the asymptotic properties
of stochastic systems [16].

FSDEs driven by fBm offer an effective modeling framework for dynamical systems that exhibit
memory effects and long-range dependence. In contrast to classical Brownian motion, which relies
on independent and stationary increments, fBm is a Gaussian process characterized by the Hurst
parameter H ∈ (0, 1), allowing the representation of persistent behavior when H > 0.5. When FSDEs
incorporate fBm, they can model more realistic dynamics in complex systems where the influence of
past events and temporal correlations cannot be ignored. Such models find extensive applications
in areas including finance (to capture long-memory effects in asset prices), biology (to describe
anomalous diffusion in crowded environments), and physics (to model viscoelastic materials or climate
systems) [17, 18]. The mathematical treatment of FSDEs with fBm is more intricate, requiring
advanced integration techniques such as the pathwise Riemann-Stieltjes integral for (H > 0.5) or
Malliavin calculus for (H < 0.5), due to the non-semimartingale nature of fBm.
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Controllability of FSDEs describes the capability of steering the system state from a given
initial condition to a prescribed target state over a finite time interval, while accounting for
both memory effects arising from fractional derivatives and uncertainty introduced by stochastic
components. Exact controllability denotes the situation in which the system can be driven exactly
to the desired state, whereas approximate controllability means that the system can be guided to
an arbitrarily small neighborhood of the target state. Due to the intrinsic nonlocality of fractional
derivatives and the presence of stochastic perturbations, attaining exact controllability is exceedingly
challenging, particularly in the context of infinite-dimensional fractional stochastic systems. Therefore,
approximate controllability is more commonly studied and practically achievable. The controllability
of FSDEs has vital applications in various fields, such as controlling disease spread in biological
systems, designing robust financial strategies under uncertainty, managing vibrations and noise
in engineering systems, and optimizing decision-making in systems with memory and random
disturbances.

A variety of results on FSDEs have been reported in the existing literature. For example, Kahouli et
al. [19] derived stability conditions for these systems. By employing Picard’s iteration method (PIM),
the authors in [20] proved the existence and uniqueness of solutions for coupled FSDEs. Moreover,
Raheem et al. [21] investigated the existence, uniqueness, and controllability of FSDEs through the
use of sectorial operators. Further key results were established in [22, 23]. The authors of [24]
proved the Ex-Un for FSDEs. The authors of [25] found results on Ex-Un and controllability for
FSDEs concerning the CHFD. Moualkia and Xu [26] investigated the various useful properties of
variable-order FSDEs, including the use of PIM to obtain solutions. The authors [27] investigated
a financial model structured as an FSDE, providing numerical solutions and graphical interpretations
under multiple scenarios. Abouagwa et al. [28] explored Ex-Un for impulsive FSDEs, while the authors
of [29] addressed solution existence, uniqueness, and finite-time stability for a specific category of
FSDEs. The integration of neural networks and nonparametric learning with stochastic processes have
been used for describe degradation processes, where fractional derivatives appear to naturally describe
memory and hereditary effects in degradation processes [30–32].

In this research work, we consider the following FSDEs with fBm:Dα,β f (t) = = f (t) + Ku(t) + η(t, f (t)) + ϕ(t) dwH(t)
dt , t ∈ I = [0, L],

f (0) = f0,
(1.3)

where α ∈
(

1
2 , 1

]
and Dα,β denotes the CKFD. The infinitesimal generator = yields a strongly

continuous semigroup {S t}t≥0 on a real separable Hilbert space X. Furthermore, let wH denote an fBm
defined on another infinite-dimensional real separable Hilbert space Z, with Hurst parameter H ∈

(
1
2 , 1

)
.

Additionally, we introduce the operator K : V2
F(I,Y) → V2(I, X) and define η : I × X → X along with

ϕ : I → V0
J (Z, X). These latter two operators will be specified in greater detail in the following section.

In this study, notable results are obtained for FSDEs within the framework of CKFD. The following
are some significant elements that our study contributes:

(1) In many existing works on approximate controllability of fractional stochastic systems, the
nonlinear term is assumed to be uniformly bounded. This assumption implies that the magnitude
of the nonlinear term remains bounded independently of the size of the state variable.
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This hypothesis has been widely adopted in the literature mainly for technical convenience. First,
it significantly simplifies the analysis of Ex-Un of mild solutions for FSDEs. Second, it ensures
that the nonlinear term does not dominate the control input or the linear dynamics, which makes
the controllability analysis more tractable. Finally, it allows the approximate controllability of the
nonlinear system to be treated as a small perturbation of the corresponding linear system.

However, the uniform boundedness assumption is highly restrictive and limits the applicability of
the results. In many realistic models arising in physics, engineering, and biology, nonlinearities
naturally depend on the state and typically exhibit growth with respect to x. Examples
include polynomial-type nonlinearities, saturation effects, and other state-dependent feedback
mechanisms. Such nonlinear terms are not uniformly bounded, and therefore cannot be covered
under this assumption.

In the present paper, this restrictive hypothesis is removed. Instead, we assume a linear
growth condition which allows the nonlinearity to grow with the state variable while remaining
mathematically manageable. This condition is standard in the theory of stochastic and fractional
differential equations and is sufficient to guarantee the Ex-Un of mild solutions. More importantly,
it enables us to establish approximate controllability results for systems with unbounded
nonlinearities, thereby significantly broadening the class of admissible models compared to earlier
works.

(2) In many existing works, it is assumed that the fractional linear system obtained by setting η = 0
is already approximately controllable. This hypothesis allows the controllability of the nonlinear
system to be deduced directly as a perturbation of a controllable linear system.

However, this assumption is rather restrictive. Approximate controllability of fractional linear
systems in infinite-dimensional spaces is itself difficult to verify and depends strongly on the
fractional order, the semigroup generated by =, and the structure of the control operator K. As
a result, requiring this property a priori significantly limits the applicability of the results.

In this paper, we remove this constraint and do not assume approximate controllability of the
linear system. Instead, we establish it through an operator-theoretic approach, which enables us to
prove approximate controllability of the nonlinear fractional stochastic system under substantially
assumptions.

(3) Using the PIM, we establish the Ex-Un of mild solutions.

(4) We generalize the results on Ex-Un and approximate controllability in the context of fractional
derivatives by establishing them within the framework of the CKFD.

Section 2 presents the fundamental results that form the foundation of the findings established in
this research work. In Sections 3 and 4, we then provide our main findings about FSDEs in the CKFD
framework. In Section 5, an example shows how these theoretical findings can be applied. In Section 6,
the paper ends with a summary.

2. Preliminaries

In this section, we present results that serve as the foundation for the findings established in this
research work.
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Suppose X,Y , and Z are real separable Hilbert spaces. We work on a complete probability space
(Ω, F, P), furnished with a normal filtration {Ft}t∈[0,L] that adheres to the standard assumptions, and note
that FL = F.

Consider a control function u in V2
F(I,Y). This space is defined as the closed subspace of V2(I×Ω,Y)

containing all Ft-adapted processes that take values in Y . We also define, for the entirety of this work,
$ = supt∈[0,+∞) |S (t)| < ∞.

We now define the following Banach spaces. First, let V(Z, X) represent the space of all bounded
linear operators from the Hilbert space Z into X, endowed with the conventional operator norm,
expressed as

V(Z, X) :=
{
T : Z → X

∣∣∣ T is a bounded linear operator
}
.

Next, consider the set V2(Ω, X), which comprises all X-valued random variables f on Ω that are
F-measurable and possess finite second moment. Formally, this space is defined as

V2(Ω, X) :=
{
f : Ω→ X

∣∣∣ f is F-measurable and E‖ f ‖2 < ∞
}

and is endowed with its canonical square norm.

Furthermore, we define ϑ(I,V2(Ω, X)) as the collection of all functions f : I → V2(Ω, X) satisfying
the following conditions:

(1) For every t ∈ I, f (t) is adapted to the filtration Ft.

(2) The mapping f is continuous in t.

(3) The supremum supt∈I E‖ f (t)‖2 is finite.

Denoting A = ϑ(I,V2(Ω, X)), we equip this space with the norm

‖ f ‖A =

(
sup
t∈I

E‖ f (t)‖2
)1/2

,

under which it becomes a Banach space.

Definition 2.1. [33] For a Hurst parameter H ∈ (0, 1), a one-dimensional fBm is a family of Gaussian
processes WH = {WH(t), t ∈ I} with mean zero and continuous sample paths. Its covariance structure
is specified by:

RH(t, γ) = E[WH(t)WH(γ)] =
1
2

(t2H + γ2H − |t − γ|2H), for t, γ ∈ I.

In the subsequent analysis, we restrict our attention to the case H ∈
(

1
2 , 1

)
. For such H, the process

WH can be represented in integral form as

WH(t) =

∫ t

0
BH(t, γ)dW(γ),
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where W = {W(t), t ∈ I} is a standard one-dimensional Brownian motion, and the kernel BH is given
by

BH(t, γ) = ΦHγ
1
2−H

∫ t

γ

(e − γ)H− 3
2 eH− 1

2 de, t > γ, (2.1)

with the constant

ΦH =

√
H(2H − 1)

Be(2 − 2H, H − 1
2 )
.

Now, for a deterministic function G ∈ V2(I), the following equality holds:∫ L

0
G(γ)dWH(γ) =

∫ L

0
(B∗LG)(γ)dW(γ),

where the adjoint operator B∗p acts on G as

(B∗pG)(γ) =

∫ u

γ

G(a)
∂BH(a, γ)

∂a
dz, a ∈ [0, L].

We now introduce the definition of fBm within an infinite-dimensional framework, together with its
corresponding stochastic integral. Let J ∈ V(Z,Z) be a self-adjoint, nonnegative trace-class operator
satisfying

Jz j = υ jz j,

where {z j}
∞
j=1 forms a complete orthonormal system in the Hilbert space Z, and the corresponding

eigenvalues {υ j}
∞
j=1 ⊆ [0,∞) fulfill

tr(J) =

∞∑
j=1

υ j < ∞.

A Z-valued J-cylindrical fBm on the probability space (Ω, F, P), having covariance operator J, is then
defined by the series

wH(t) =

∞∑
j=1

J
1
2 G WH

j (t) =

∞∑
j=1

√
υ jG jWH

j (t),

in which each WH
j denotes an independent one-dimensional fBm.

Consider the space V0
J (Z, X) of J-Hilbert-Schmidt operators. An operator Ψ ∈ V(Z, X) is called a

J-Hilbert-Schmidt operator if it satisfies

‖Ψ‖2V0
J (Z,X) =

∞∑
j

‖
√
υ jΨG j‖

2 < ∞.
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Definition 2.2. [34] Let ψ : I → V0
J (Z, X) be a mapping representing a random operator-valued

function defined on I and taking values in the space of J-Hilbert-Schmidt operators between the real
separable Hilbert spaces Z and X. If ψ fulfills

∞∑
j=1

‖B∗L(ψJ
1
2 )G ‖V2(I,X) < ∞, (2.2)

then the stochastic integral of ψ(γ) with respect to the cylindrical fBm wH(γ) is defined by the expression∫ t

0
ψ(γ)dwH(γ) =

∞∑
j=1

∫ t

0
ψ(γ)J

1
2 G jdWH

j (γ)

=

∞∑
j=1

∫ t

0
(B∗L(ψJ

1
2 G j))(γ)dW(γ), for all t ∈ I.

Lemma 2.3. [35] Assume that ψ : I → V0
J (Z, X) satisfies the condition

∞∑
j=1

‖ψJ
1
2 G j‖V

1
H (I,X)

< ∞. (2.3)

Then, for any 0 ≤ γ < t ≤ L, the following inequality holds:

E
∥∥∥∥∥ ∫ t

γ

ψ(p)dwH(p)
∥∥∥∥∥2

X
≤ ΦH(t − γ)2H−1

∞∑
j=1

∫ t

γ

‖ψ(p)J
1
2 G j‖

2
Xdp,

where the positive constant ΦH depends solely on the Hurst parameter H.

Moreover, if the series
∑∞

=1 ‖ψ(t)J
1
2 z j‖X converges, then

E
∥∥∥∥∥ ∫ t

γ

ψ(p)dwH(p)
∥∥∥∥∥2

X
≤ ΦH(t − γ)2H−1

∫ t

γ

‖ψ(p)‖V0
J (Z,X)dp. (2.4)

Definition 2.4. [36] We define the stochastic process { f (t)}t∈I to be a mild solution of system (1.3) if,
for any admissible control u ∈ V2

F(I,Y), it fulfills the following integral equation:

f (t) = S α,β(t) f0 +

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, f (γ)) + Ku(γ)]

dγ
γ1−β

+

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β , t ∈ I, (2.5)

where S α,β(t) =
∫ ∞

0
Ψα(λ)S

(
( tβ
β

)αλ
)
dλ, Yα,β(t) = α

∫ ∞
0
λΨα(λ)S

(( tβ−γβ

β

)α
λ
)
dλ, and

Ψα(λ) =
1
α
λ−(1+ 1

α )ωα(λ−
1
α ), ωα(λ) =

∞∑
j=1

(−1) j−1λ− jα−1 Γ( jα + 1)
π j!

sin( jπα), λ ∈ (0,∞),

we recall that Ψα is a probability density function that satisfies

Ψα(λ) ≥ 0, λ ∈ (0,∞) and
∫ ∞

0
Ψα(λ)dλ = 1.
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Remark 2.5. We provide a concise overview of the procedure necessary to acquire this mild solution,
as referenced in [36]. We begin by applying the Laplace transform to system (1.3), which changes it
into an algebraic system. We then use resolvent operator theory to get the state variable in the modified
equation. This shows the basic solution structure through the operators S α,β(t) and Yα,β(t) with t ≥ 0.
Finally, we use the inverse Laplace transform to go back to the time-domain outcome.

Lemma 2.6. [38] The families of operators {S α,β(t)}t≥0 and {Yα,β(t)}t≥0 have the following properties.

(1) For all t ≥ 0, S α,β(t) and Yα,β(t) are bounded linear operators, that is

‖S α,β(t) f ‖ ≤ $‖ f ‖, f ∈ X and ‖Yα,β(t) f ‖ ≤
α$

Γ(α + 1)
‖ f ‖, for all f ∈ X.

(2) The families of operators {S α,β(t), t ≥ 0} and {Yα,β(t), t ≥ 0} are strongly continuous semigroups of
operators, see [37].

(3) If S (t) is compact for every t > 0, it follows that S α,β(t) and Yα,β(t) are compact operators as well
for all t > 0.

Definition 2.7. The collection of all attainable states at the terminal time L is called the reachable set
of system (1.3). Formally, it is defined as

BL(η) = { f (L) : f (L) is the mild solution of (1.3) at time L

corresponding to some admissible control u} .

In the particular case η = 0, system (1.3) simplifies to the associated linear control system:Dα,β f (t) = = f (t) + Ku(t) + ϕ(t)
dwH(t)

dt
, t ∈ I = [0, L],

f (0) = f0.
(2.6)

The corresponding set of reachable states is denoted by BL(0).

Definition 2.8. System (1.3) is said to be approximately controllable on the interval I if the closure of
its reachable set coincides with the entire state space; that is, if

BL(η) = V2(Ω, X).

This means that for any desired final state Ψ ∈ V2(Ω, X) and any tolerance ε > 0, one can find a
control u ∈ V2

F(I,Y) such that
E‖ f (L) − Ψ‖2 < ε,

where f (L) is the terminal state generated by u. Analogously, system (2.6) is approximately
controllable if BL(0) = V2(Ω, X).
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3. Existence and uniqueness

In this section, we present Ex-Un results.
We make the following assumptions.

(H1): The function η : I × X → X is measurable and there is Φ1 > 0 such that for each f ∈ X and any
t ∈ I,

‖η(t, f )‖2 ≤ Φ1(1 + ‖ f ‖2).

(H2): There exists a constant Φ2 > 0 such that for all f1, f2 ∈ X, t ∈ I,

‖η(t, f1) − η(t, f2)‖2 ≤ Φ2‖ f1 − f2‖
2.

(H3): The mapping ϕ : I → V0
J (Z, X) is assumed to be Lebesgue measurable, with a constant Φ3 > 0

such that

(1) sup0≤γ≤L ‖ϕ(γ)‖2
V0

J (Z,X)
≤ Φ3,

(2)
∑∞

=1 ‖ϕJ
1
2 e ‖V 1

H (I,X)
< ∞,

(3)
∑∞

=1 ‖ϕ(t)J
1
2 e ‖X is uniformly convergent for t ∈ I.

(H4): For all t > 0, the operator S (t) is compact.

Remark 3.1. Assumption (H4) is introduced mainly for technical reasons to facilitate the use of
compactness arguments in the analysis. While standard in the study of fractional evolution equations,
relaxing this assumption would require alternative mathematical techniques and is left for future
investigation.

We introduce an operator U on A, U : A→ A,

(U f )(t) =S α,β(t) f0 +

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, f (γ)) + Ku(γ)]

dγ
γ1−β

+

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β . (3.1)

Lemma 3.2. Assume that (H1), (H3), and (H4) hold. Then, for each f ∈ A, the mapping t 7→ (U f )(t)
is continuous on I with respect to the V2(Ω, X)-norm.

Proof. For every f ∈ A and all 0 ≤ t1 < t2 ≤ L, it holds that

E‖(U f )(t2) − (U f )(t1)‖2 ≤ 4E‖S α,β(t2) f0 − S α,β(t1) f0‖
2

+ 4E
∥∥∥∥∥ ∫ t2

0

( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
η(γ, f (γ))

dγ
γ1−β −

∫ t1

0

( tβ1 − γ
β

β

)α−1

Yα,β

( tβ1 − γ
β

β

)
η(γ, f (γ))

dγ
γ1−β

∥∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ t2

0

( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
Ku(γ)

dγ
γ1−β −

∫ t1

0

( tβ1 − γ
β

β

)α−1

Yα,β

( tβ1 − γ
β

β

)
Ku(γ)

dγ
γ1−β

∥∥∥∥∥2
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+ 4E
∥∥∥∥∥ ∫ t2

0

( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
ϕ(γ)

dwH(γ)
γ1−β −

∫ t1

0

( tβ1 − γ
β

β

)α−1

Yα,β

( tβ1 − γ
β

β

)
ϕ(γ)

dwH(γ)
γ1−β

∥∥∥∥∥2

= Υ1 + Υ2 + Υ3 + Υ4. (3.2)

Due to the strong continuity of S α,β(t), it follows that

lim
t2→t1
‖S α,β(t2) f0 − S α,β(t1) f0‖ = 0. (3.3)

By Lemma 2.6,
‖S α,β(t2) f0 − S α,β(t1) f0‖ ≤ 2$‖ f0‖ for f0 ∈ V2(Ω,R+). (3.4)

Through the Lebesgue dominated convergence theorem,

lim
t2→t1

Υ1 = 0.

Moreover,

Υ2 ≤ 12E
∥∥∥∥∥ ∫ t1

0

[( tβ2 − γ
β

β

)α−1

−

( tβ1 − γ
β

β

)α−1]
Yα,β

( tβ2 − γ
β

β

)
η(γ, f (γ))

dγ
γ1−β

∥∥∥∥∥2

+ 12E
∥∥∥∥∥ ∫ t1

0

( tβ1 − γ
β

β

)α−1[
Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)]
η(γ, f (γ))

dγ
γ1−β

∥∥∥∥∥2

+ 12E
∥∥∥∥∥ ∫ t2

t1

( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
η(γ, f (γ))

dγ
γ1−β

∥∥∥∥∥2

= Υ21 + Υ22 + Υ23. (3.5)

By (H1) and Hölder inequality (Höl-In),

Υ21 ≤
12$2

Γ2(α)

( ∫ t1

0

[( tβ1 − γ
β

β

)α−1

−

( tβ2 − γ
β

β

)α−1]2 dγ
γ2−2β

) ∫ t1

0
E‖η(γ, f (γ))‖2dγ

≤
12$2

Γ2(α)

(
sup

0≤γ≤L

(
γβ−1)) ∫ t1

0

[( tβ1 − γ
β

β

)2α−2

−

( tβ2 − γ
β

β

)2α−2] dγ
γ2−2β ×

∫ t1

0
Φ1

(
1 + E‖ f (γ)||2

)
dγ

≤ Q
12$2Φ1t1(1 + supγ∈I E‖ f (γ)‖2)

Γ2(α)(2α − 1)
×

[( tβ1
β

)2α−1

+

( tβ2 − tβ1
β

)2α−1

−

( tβ2
β

)2α−1]
, (3.6)

where Q = sup
0≤γ≤L

(
γβ−1) with β ≥ 1. Then, we have

Υ22 ≤ 12E
( ∫ t1

0

( tβ1 − γ
β

β

)α−1∥∥∥∥∥Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)∥∥∥∥∥‖η(γ, f (γ))‖
dγ
γ1−β

)2

≤ Q
12( tβ1

β
)2α−1Φ1(1 + supγ∈I E‖ f (γ)‖2)

(2α − 1)

(
sup
γ∈[0,t1]

∥∥∥∥∥Yα,β

( tβ2 − γ
β

β

)α−1

− Yα,β

( tβ1 − γ
β

β

)∥∥∥∥∥)2

. (3.7)

Again invoking Lemma 2.6 together with hypothesis (H4), we conclude that the operator Yα,β(t)
is continuous in the uniform operator topology for t > 0. As an immediate consequence, we have
limt2→t1 Υ21 = limt2→t1 Υ22 = 0.
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Further,

Υ23 ≤
12$2

Γ2(α)

( ∫ t2

t1

( tβ2 − γ
β

β

)2α−2 dγ
γ2−2β

)( ∫ t2

t1
E‖η(γ, f (γ))‖2dγ

)

≤ Q
12$2Φ1( tβ2−tβ1

β
)2α−1(t2 − t1)(1 + supγ∈I E‖ f (γ)‖2)

Γ2(α)(2α − 1)
→ 0 as t2 → t1. (3.8)

A similar computation yields that

Υ3 ≤ 12E
∥∥∥∥∥ ∫ t1

0

[( tβ2 − γ
β

β

)α−1

−

( tβ1 − γ
β

β

)α−1]
Yα,β

( tβ2 − γ
β

β

)
Ku(γ)

dγ
γ1−β

∥∥∥∥∥2

+ 12E
∥∥∥∥∥ ∫ t1

0

( tβ1 − γ
β

β

)α−1[
Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)]
Ku(γ)

dγ
γ1−β

∥∥∥∥∥2

+ 12E
∥∥∥∥∥ ∫ t2

t1

( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
Ku(γ)

dγ
γ1−β

∥∥∥∥∥2

= Υ31 + Υ32 + Υ33. (3.9)

Similarly,

Υ31 ≤ Q
12$2‖Ku‖V2(I,X)

[( tβ1
β

)2α−1
+

( tβ2−tβ1
β

)2α−1
−

( tβ2
β

)2α−1]
Γ2(α)(2α − 1)

→ 0 as t2 → t1,

Υ32 ≤ Q
12( tβ1

β
)2α−1‖Ku‖V2(I,X)

2α − 1

(
sup
γ∈[0,t1]

∥∥∥∥∥Yα,β

( tβ2 − γ
β

β

)α−1

− Yα,β

( tβ1 − γ
β

β

)∥∥∥∥∥)2

→ 0 as t2 → t1,

Υ33 ≤ Q
12$2( tβ2−tβ1

β
)2α−1‖Ku‖V2(I,X)

Γ2(α)(2α − 1)
→ 0 as t2 → t1. (3.10)

Along the same lines, one obtains

Υ4 ≤ 12E
∥∥∥∥∥ ∫ t1

0

[( tβ2 − γ
β

β

)α−1

−

( tβ1 − γ
β

β

)α−1]
Yα,β

( tβ2 − γ
β

β

)
ϕ(γ)

dwH(γ)
γ1−β

∥∥∥∥∥2

+ 12E
∥∥∥∥∥ ∫ t1

0

( tβ1 − γ
β

β

)α−1[
Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)]
ϕ(γ)

dwH(γ)
γ1−β

∥∥∥∥∥2

+ 12E
∥∥∥∥∥ ∫ t2

t1

( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
ϕ(γ)

dwH(γ)
γ1−β

∥∥∥∥∥2

= Υ41 + Υ42 + Υ43. (3.11)

Combining Lemma 2.3 and (H3), we have

Υ41 ≤ 12ΦH

( tβ1
β

)2H−1 ∫ t1

0

∥∥∥∥∥[( tβ2 − γ
β

β

)α−1

−

( tβ1 − γ
β

β

)α−1]
Yα,β

( tβ2 − γ
β

β

)
ϕ(γ)
γ1−β

∥∥∥∥∥2

V0
J (Z,X)

dγ
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≤
12ΦH( tβ1

β
)2H−1Φ3$

2

(Γ(α))2

∫ t1

0

[( tβ1 − γ
β

β

)2α−2

−

( tβ2 − γ
β

β

)2α−2] dγ
γ2−2β

≤ Q
12ΦH( tβ1

β
)2H−1Φ3$

2

(2α − 1)(Γ(α))2

[( tβ1
β

)2α−1

+

( tβ2 − tβ1
β

)2α−1

−

( tβ2
β

)2α−1]
→ 0 as t2 → t1, (3.12)

Υ42 ≤ 12ΦH

( tβ1
β

)2H−1 ∫ t1

0

∥∥∥∥∥( tβ1 − γ
β

β

)α−1[
Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)]
ϕ(γ)
γ1−β

∥∥∥∥∥2

V0
J (Z,X)

dγ

≤ 12ΦH

( tβ1
β

)2H−1

Φ3 sup
γ∈[0,t1]

∥∥∥∥∥Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)∥∥∥∥∥2 ∫ t1

0

( tβ1 − γ
β

β

)2α−2 dγ
γ2−2β

≤ Q
12ΦH( tβ1

β
)2H+2α−2Φ3

(2α − 1)
sup
γ∈[0,t1]

∥∥∥∥∥Yα,β

( tβ2 − γ
β

β

)
− Yα,β

( tβ1 − γ
β

β

)∥∥∥∥∥2

→ 0 as t2 → t1, (3.13)

Υ43 ≤ 12ΦH

( tβ2 − tβ1
β

)2H−1 ∫ t2

t1

∥∥∥∥∥( tβ2 − γ
β

β

)α−1

Yα,β

( tβ2 − γ
β

β

)
ϕ(γ)
γ1−β

∥∥∥∥∥2

V0
J (Z,X)

dγ

≤ Q
12ΦH$

2Φ3
( tβ2−tβ1

β

)2H+2α−2

(2α − 1)(Γ(α))2

→ 0 as t2 → t1, (3.14)

so,
lim
t2→t1
E ‖(U f )(t2) − (U f )(t1)‖2 = 0,

which shows that the mapping t → (U f )(t) is continuous on I in the V2(Ω, X)-sense. �

Lemma 3.3. Assuming (H1), (H3), and (H4) hold, the operator U maps A into itself.

Proof. When f ∈ A,

E‖(U f )(t)‖2

≤ 4E‖S α,β(t) f0‖
2 + 4E

∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
η(γ, f (γ))

dγ
γ1−β

∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
Ku(γ)

dγ
γ1−β

∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β

∥∥∥∥∥2

= r1 + r2 + r3 + r4. (3.15)
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By Lemma 2.6,
r1 ≤ 4$2E‖ f0‖

2. (3.16)

Using (H1) and Höl-In,

r2 ≤
4$2

Γ2(α)
E
( ∫ t

0

( tβ − γβ

β

)α−1

‖η(γ, f (γ))‖
dγ
γ1−β

)2

≤
4$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
E‖η(γ, f (γ))‖2dγ

)
≤ Q

4$2( Lβ
β

)2α−1LΦ1(1 + supγ∈I E‖ f (γ)‖2)

(2α − 1)Γ2(α)
, (3.17)

r3 ≤
4$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
‖Ku(γ)‖2dγ

)
≤ Q

4$2( Lβ
β

)2α−1‖Ku‖V2(I,X)

(2α − 1)Γ2(α)
. (3.18)

Combining Lemma 2.3, (H3) and Höl-In,

r4 ≤ 4ΦH

( tβ

β

)2H−1 ∫ t

0

∥∥∥∥∥( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)
γ1−β

∥∥∥∥∥2

V0
J (Z,X)

dγ

≤
4ΦH$

2( Lβ
β

)2H−1

Γ2(α)

∫ t

0

( tβ − γβ

β

)2α−2

‖ϕ(γ)‖2V0
J (Z,X)

dγ
γ2−2β

≤ Q
4ΦH$

2( Lβ
β

)2H+2α−2Φ3

(2α − 1)Γ2(α)
. (3.19)

Therefore, ‖U f ‖2a = supt∈I E‖(U f )(t)‖2 < ∞. The V2(Ω, X)-continuity of (U f )(t) on I (Lemma 3.2)
ensures that U(A) ⊆ A. �

Theorem 3.4. If the assumptions (H1)–(H4) hold, then system (1.3) admits a unique mild solution
belonging to the space A.

Proof. We employ the PIM to establish the Ex-Un result. For j ≥ 0, we assume

 f j+1(t) = (U f j)(t), j = 0, 1, 2, · · · ,
f0(t) = f0.

(3.20)

By Lemma 3.3, we have f j ∈ A, j = 0, 1, 2, · · · . By Lemma 2.6 and (H2),

E‖ f j+1(t) − f j(t)‖2

= E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, f j(γ)) − η(γ, f j−1(γ))]

dγ
γ1−β

∥∥∥∥∥2
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≤
$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
E‖η(γ, f j(γ)) − η(γ, f j−1(γ))‖2dγ

)
≤ Q

$2Φ2( Lβ
β

)2α−1

(2α − 1)Γ2(α)

∫ t

0
E‖ f j(γ) − f j−1(γ)‖2dγ

≤

($2Φ2( Lβ
β

)2α−1Q

(2α − 1)Γ2(α)

)2 ∫ t

0

∫ γ

0
E‖ f j−1(γ1) − f j−2(γ1)‖2dγ1dγ

≤ . . .

≤

($2Φ2( Lβ
β

)2α−1Q

(2α − 1)Γ2(α)

) j ∫ t

0

∫ γ

0
· · ·

∫ γ j−2

0
E‖ f1(γ j−1) − f0(γ j−1)‖2dγ j−1 . . . dγ1dγ

≤

($2Φ2( Lβ
β

)2α−1Q

(2α − 1)Γ2(α)

) j supγ∈I E‖ f1(γ) − f0(γ)‖2

j!
, (3.21)

which implies that

sup
t∈I

E‖ f j+1(t) − f j(t)‖2 ≤
($2Φ2( Lβ

β
)2α−1Q

(2α − 1)Γ2(α)

) j supγ∈I E‖ f1(γ) − f0(γ)‖2

j!
. (3.22)

Thus, the sequence { f j(t)} j≥0 ⊆ V2(Ω, X) forms a Cauchy sequence. Consequently, there exists a
limit function f ∈ V2(Ω, X) such that

sup
t∈I

E‖ f j(t) − f (t)‖2 → 0 as j→ ∞. (3.23)

Passing to the limit as j→ ∞ in relation (3.20), we conclude that f is a mild solution of the system,
establishing its existence.

To verify uniqueness, suppose that system (1.3) admits two mild solutions.

E‖ f (t) − f ′(t)‖2

= E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, f (γ)) − η(γ, f ′(γ))]

dγ
γ1−β

∥∥∥∥∥2

≤
$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
E‖η(γ, f (γ)) − η(γ, f ′(γ))‖2dγ

)
≤
$2Φ2( Lβ

β
)2α−1Q

(2α − 1)Γ2(α)

∫ t

0
E‖ f (γ) − f ′(γ)‖2dγ. (3.24)

Using Gronwall’s lemma,

sup
t∈I

E‖ f (t) − f ′(t)‖2 = 0. (3.25)

�
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4. Controllability results

In this section, we establish approximate controllability.
Consider % : A→ V2(I, X) as

(% f )(t) = η(t, f (t)), t ∈ I.

The linear operator ~ : V2(I, X)→ X is

~(ℵ) =

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ℵ(γ)

dγ
γ1−β , ℵ ∈ V2(I, X).

The kernel of the operator ~ is denoted by M0(~). One can verify that M0(~) constitutes a closed
subspace of V2(I, X). Its orthogonal complement is written as M⊥

0 (~), leading to the unique orthogonal
decomposition

V2(I, X) = M0(~)
⊕

M⊥
0 (~).

Let Ran(K) represent the range of the operator K. We impose the following additional hypothesis:

(H5): For every ℵ ∈ V2(I, X), there exists a function ζ ∈ Ran(K) such that ~ℵ = ~x.

We also assume that Ran(~) = X.
Now, take an arbitrary ℵ ∈ V2(I, X). By hypothesis (H5), we can select ζ ∈ Ran(K) satisfying

~ℵ = ~ζ .

This equality implies

~(ℵ − ζ) = 0 and consequently ℵ − ζ ∈ M0(~).

Thus, ℵ admits the decomposition
ℵ = (ℵ − ζ) + ζ,

with ℵ − ζ ∈ M0(~) and ζ ∈ Ran(K).
Assuming further that

M0(~) ∩ Ran(K) = {0},

the sum becomes direct. Combined with (H5), this yields the direct sum decomposition

V2(I, X) = M0(~)
⊕

Ran(K).

We now define a linear, continuous operator

ρ : M⊥
0 (~)→ Ran(K) (4.1)

by setting ρs∗ = ζ∗. Here, ζ∗ is the unique element in the intersection {s∗+ M0(~)}∩Ran(K) possessing
the minimal norm; that is,

‖ρs∗‖ = ‖ζ∗‖ = min
{
‖θ‖ : θ ∈ {s∗ + M0(~)} ∩ Ran(K)

}
. (4.2)

By virtue of (H5), the set {s∗+ M0(~)}∩Ran(K) is non-empty for each s∗ ∈ M⊥
0 (~). Moreover, every

element s ∈ V2(I, X) can be expressed uniquely as s = h + h∗ with h ∈ M0(~) and h∗ ∈
M⊥

0 (~). Consequently, the operator ρ is well-defined, and its norm is bounded by some constant τ,
i.e., ‖ρ‖ ≤ τ [39].
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Remark 4.1. Assumption (H5) is restrictive in nature, as it imposes structural compatibility between
the nonlinear dynamics and the control operator. While it is essential for the fixed-point and
controllability arguments, relaxing this condition is an important direction for future research.

Lemma 4.2. [40] For every s ∈ V2(I, X) and its associated component h ∈ M0(~), one can find a
constant K > 0 satisfying the bound

‖h‖V2(I,X) ≤ (1 + K)‖s‖V2(I,X).

Next, we introduce the operator C : V2(I, X)→ V2(I, X) defined by

(Cp)(t) =

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
p(γ)

dγ
γ1−β .

Using this operator, we define the subspace

Θ0 = {b ∈ V2(I, X) : b(t) = (Ch)(t), for some h ∈ M0(~) and all t ∈ I}.

Note that for any b ∈ Θ0, we have b(L) = (Ch)(L) = 0.

Now, let f (·) be a mild solution of system (2.6). We define the operator G f : Θ0 → Θ0 by

(G f b)(t) = (Ch)(t), t ∈ I,

where the element h is uniquely determined via the decomposition

%( f + b) = h + ζ, h ∈ M0(~), ζ ∈ Ran(K).

Theorem 4.3. Assume that conditions (H1)–(H5) hold. Then the linear fractional stochastic
system (2.6) is approximately controllable on I; that is,

BL(0) = V2(Ω, X).

Proof. For every Ψ ∈ V2(Ω, X), the expression

Ψ − S α,β(L) f0 −

∫ L

0

(
Lβ − γβ

β

)α−1

Yα,β

(
Lβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β

belongs to V2(Ω, X). In particular, for almost every u ∈ Ω, the expression

Ψ − S α,β(L) f0 −

∫ L

0

(
Lβ − γβ

β

)α−1

Yα,β

(
Lβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β

defines an element of X. By hypothesis (H5), we can select ℵ ∈ V2(I, X) such that

Ψ−S α,β(L) f0 −

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β

=

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ℵ(γ)

dγ
γ1−β . (4.3)
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A second application of (H5) guarantees the existence of ζ ∈ Ran(K) satisfying∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ℵ(γ)

dγ
γ1−β =

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ζ(γ)

dγ
γ1−β . (4.4)

Consequently, the target state Ψ can be represented as

Ψ = S α,β(L) f0 +

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β

+

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ζ(γ)

dγ
γ1−β . (4.5)

Since ζ ∈ Ran(K), for any ε > 0 there exists a control uε such that

sup
t∈I

E‖Kuε(t) − x(t)‖2 <
Γ2(α)(2α − 1)ε

$2( Lβ
β

)2α−1Q
. (4.6)

Now define the approximating state

Ψε =S α,β(L) f0 +

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β

+

∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
Kuε(γ)

dγ
γ1−β . (4.7)

By construction, Ψε ∈ BL(0). Finally, we estimate the approximation error:

E‖Ψ − Ψε‖
2

= E
∥∥∥∥∥ ∫ L

0

(Lβ − γβ

β

)α−1

Yα,β

(Lβ − γβ

β

)
[Kuε(γ) − ζ(γ)]

dγ
γ1−β

∥∥∥∥∥2

≤
$2

Γ2(α)
E
( ∫ L

0

(Lβ − γβ

β

)α−1

‖Kuε − ζ‖
dγ
γ1−β

)2

≤
$2( Lβ

β
)2α−1LQ

Γ2(α)(2α − 1)
sup
γ∈I

E‖Kuε(γ) − ζ(γ)‖2

< ε. (4.8)

This inequality confirms that system (2.6) is approximately controllable. �

Lemma 4.4. Assume that conditions (H1)–(H4) are satisfied. Then the operator G f possesses a fixed
point b0 ∈ Θ0, provided that

4$2( Lβ
β

)2α−1Q(1 + K)2Φ2

Γ2(α)(2α − 1)
< 1. (4.9)

Proof. For a given ν > 0, define the closed ball ςν = {s ∈ Θ0 : ‖s‖V2(I,X) ≤ ν}. Our next goal is to
establish that G f (ςν) ⊆ ςν. We argue by contradiction. If this containment fails for some ν, then there
must exist an element b ∈ ςν for which ‖G f (b)‖2V2(I,X) > ν. It follows that

ν2 < ‖G f (b)‖2V2(I,X) = ‖Ch‖2V2(I,X). (4.10)
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In fact, by Lemma 4.2, we have

‖(Ch)(t)‖2 =

∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
h(γ)

dγ
γ1−β

∥∥∥∥∥2

≤
$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)α−1

‖h(γ)‖
dγ
γ1−β

)2

≤
$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
‖h(γ)‖2dγ

)
≤

$2( Lβ
β

)2α−1Q

Γ2(α)(2α − 1)
‖h‖2V2(I,X)

≤
$2( Lβ

β
)2α−1Q(K + 1)2

Γ2(α)(2α − 1)
‖%( f + b)‖2V2(I,X)

≤
$2( Lβ

β
)2α−1Q(K + 1)2

Γ2(α)(2α − 1)

( ∫ L

0
‖η(t, ( f + b)(t)) − η(t, 0) + η(t, 0)‖2dt

)
≤

2$2( Lβ
β

)2α−1Q(K + 1)2

Γ2(α)(2α − 1)

( ∫ L

0
‖η(t, ( f + b)(t)) − η(t, 0)‖2 + ‖η(t, 0)‖2dt

)
≤

2$2( Lβ
β

)2α−1Q(K + 1)2

Γ2(α)(2α − 1)

[ ∫ L

0
(Φ2‖( f + b)(t)‖2 + τ2

η)dt
]

≤
2$2( Lβ

β
)2α−1Q(K + 1)2

Γ2(α)(2α − 1)

[
2Φ2

( ∫ L

0
‖ f (t)‖2dt + ν2

)
+ τ2

ηL
]
, (4.11)

where τη = maxt∈I ‖η(t, 0)‖. Hence,

ν2 <‖G f (b)‖2V2(I,X)

= ‖Cn‖2V2(I,X)

≤
2$2( Lβ

β
)2α−1Q(K + 1)2

Γ2(α)(2α − 1)

[
2Φ2

∫ L

0
‖ f (t)‖2dt + 2Φ2ν

2 + τ2
ηL

]
. (4.12)

Dividing by ν2 on both sides of (4.12) and taking limitation as ν→ ∞, it follows that

4$2( Lβ
β

)2α−1Q(K + 1)2

Γ2(α)(2α − 1)
≥ 1, (4.13)

which contradicts (4.9). Therefore, the operator G f maps ςν into itself.

Hypothesis (H4) together with Lemma 2.6 implies that the operator Yα,β(t) is compact. This
property, in turn, ensures the compactness of the operator G f .

Now, we prove that the operator

G f : Θ0 → Θ0, G f (b) = Ch,

is continuous in V2(I, X).
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Let {bι} ⊂ Θ0 be a sequence such that

bι → b in V2(I, X).

By assumption (H2), the nonlinear mapping is Lipschitz continuous from V2(I, X) into itself.
Consequently,

%( f + bι)→ %( f + b) in V2(I, X).

By assumption (H5), the space V2(I, X) admits the direct sum decomposition

V2(I, X) = M0(~) ⊕ Ran(K).

Hence, for each ι, there exist unique elements hι ∈ M0(~) and ζι ∈ Ran(K) such that

%( f + bι) = hι + ζι,

and similarly,
%( f + b) = h + ζ,

with h ∈ M0(~) and ζ ∈ Ran(K). Moreover, the mapping that assigns to each element of V2(I, X) its
component in M0(~) is linear and bounded. Therefore,

hι → h in V2(I, X).

Since the operator

(Cp)(t) =

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
p(γ)

dγ
γ1−β ,

is linear and bounded on V2(I, X), it follows that

G f (bι) = Chι → Ch = G f (b) in V2(I, X).

Thus, G f is continuous on Θ0. �
Therefore, all the hypotheses of Schauder’s fixed point theorem, namely boundedness, compactness,

and continuity of G f , are satisfied. The proof of Lemma 4.4 is thus complete.
�

Theorem 4.5. Assume that (H1) through (H5) hold and that condition (4.9) is satisfied. Then, the
fractional stochastic system (1.3) is approximately controllable on I.

Proof. The proof is based on transferring approximate controllability from the associated linear
fractional stochastic system to the nonlinear system. More precisely, the argument proceeds as follows.
First, by Theorem 4.3, the linear system is approximately controllable on I, so that any prescribed
terminal state can be approximated arbitrarily well by a suitable control. Next, for a fixed mild solution
of the linear system, Lemma 4.4 is used to construct a correction function b0 ∈ Θ0 as a fixed point of
an auxiliary operator. This correction incorporates the nonlinear term while preserving the initial and
terminal values. Finally, it is shown that the corrected trajectory f ′(·) = x(·) + b0(·) is a mild solution
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of the nonlinear system. Consequently, the approximate controllability of the linear system implies the
approximate controllability of the nonlinear system.

We have

f (t) =S α,β(t) f0 +

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
Ku(γ)

dγ
γ1−β

+

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β . (4.14)

Since we have G f (b0) = Ch0 = b0, it follows that

%( f + b0)(t) = h0(t) + ζ0(t). (4.15)

Applying C yields
C%( f + b0)(t) = Ch0(t) + Cζ0(t) = b0(t) + Cζ0(t). (4.16)

Hence,
f (t) + C%( f + b0)(t) = f (t) + b0(t) + Cζ0(t). (4.17)

Denoting f ′(t) = f (t) + b0(t), then

f (t) + C% f ′(t) = f ′(t) + Cζ0(t). (4.18)

Hence,

f ′(t) = f (t) + C% f ′(t) −Cζ0(t)

= S α,β(t) f0 +

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[Ku(γ) − ζ0(γ)]

dγ
γ1−β

+

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
η(γ, f ′(γ))

dγ
γ1−β +

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β . (4.19)

Consequently, for f ′ = f + b0, we haveDα,β f ′′(t) = A f ′(t) + (Ku − ζ0)(t) + η(t, f ′′(t)) + ϕ(t) dwH(t)
dt , t ∈ [0, L],

f ′(0) = f0.
(4.20)

Recalling that G f (b0) = Ch0 = b0, and using the definitions of C and the fact that h0 ∈ M0(~), we
obtain the boundary conditions b0(0) = b0(L) = 0. Consequently,

f ′(0) = f (0) + b0(0) = f0,

f ′(L) = f (L) + b0(L) = f (L) ∈ CL(0). (4.21)

Our next objective is to prove the set inclusion CL(0) ⊆ CL(η). Given ζ0 ∈ Ran(K), we can choose
a control p ∈ V2

F(I,Y) such that
sup
t∈I

E‖K p − ζ0‖
2 < ε. (4.22)
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Now, define the adjusted control ũ = u − p. Let φ = fũ denote the mild solution corresponding to ũ,
which satisfies the systemDα,βφ(t) = =φ(t) + Kũ(t) + η(t, φ(t)) + ϕ(t)

dwH(t)
dt

, t ∈ [0, L],

φ(0) = f0.
(4.23)

Thus,

fũ(t) =S α,β(t) f0 +

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, fũ(γ)) + Kũ(γ)]

dγ
γ1−β

+

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
ϕ(γ)

dwH(γ)
γ1−β , t ∈ [0, L], (4.24)

and fũ(L) ∈ CL(η).
On the other hand,

E‖ f ′(t) − fũ(t)‖2

= E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[(K p)(γ) − ζ(γ)]

dγ
γ1−β

+

∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, f ′(γ)) − η(γ, fũ(γ))]

dγ
γ1−β

∥∥∥∥∥2

≤ 2E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[(K p)(γ) − ζ(γ)]

dγ
γ1−β

∥∥∥∥∥2

+ 2E
∥∥∥∥∥ ∫ t

0

( tβ − γβ

β

)α−1

Yα,β

( tβ − γβ

β

)
[η(γ, f ′(γ)) − η(γ, fũ(γ))]

dγ
γ1−β

∥∥∥∥∥2

≤
2$2

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
E‖K p − x‖2dγ

)
+

2$2τ2
1

Γ2(α)

( ∫ t

0

( tβ − γβ

β

)2α−2 dγ
γ2−2β

)( ∫ t

0
E‖ f ′(γ) − fũ(γ)‖2dγ

)
≤

2$2( Lβ
β

)2α−1LQε

Γ2(α)(2α − 1)
+

2$2τ2
1( Lβ

β
)2α−1Q

Γ2(α)(2α − 1)

∫ t

0
E‖ f ′(γ) − fũ(γ)‖2dγ. (4.25)

Define A(t) = E‖ f ′(t) − fũ(t)‖2. Using Gronwall’s inequality,

E‖ f ′(t) − fũ(t)‖2 ≤
2$2( Lβ

β
)2α−1LQε

Γ2(α)(2α − 1)
exp

{2$2τ2
1( Lβ

β
)2α−1LQ

Γ2(α)(2α − 1)

}
. (4.26)

Moreover,

E‖ f ′(L) − fũ(L)‖2 ≤ sup
t∈I

E‖ f ′(t) − fũ(t)‖2

≤
2$2( Lβ

β
)2α−1LQε

Γ2(α)(2α − 1)
exp

{2$2τ2
1( Lβ

β
)2α−1LQ

Γ2(α)(2α − 1)

}
. (4.27)
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Therefore,

E‖ f (L) − fũ(L)‖2 = E‖ f ′(L) − fũ(L)‖2

≤
2$2( Lβ

β
)2α−1LQε

Γ2(α)(2α − 1)
exp

{2$2τ2
1( Lβ

β
)2α−1LQ

Γ2(α)(2α − 1)

}
, (4.28)

which implies that CL(0) ⊆ CL(η). By Theorem 4.3, CL(0) = V2(Ω, X). Therefore, CL(η) = V2(Ω, X).
To complete the proof, it remains to show that the reachable set of the nonlinear system is dense in

V2(Ω, X).
From Theorem 4.3, the corresponding linear system is approximately controllable on I. Hence,

BL(0) = V2(Ω, X).

Let x(·) be the mild solution of the linear system and let b0 be the fixed point of the operator Gx

obtained in Lemma 4.4. Define
f ′(t) = x(t) + b0(t), t ∈ I.

Then f ′(·) is a mild solution of the nonlinear system (1.3) corresponding to a suitably modified control.
Moreover, by the construction of b0, we have

f ′(L) = x(L),

which implies that every terminal state reachable by the linear system is also reachable, or can be
approximated arbitrarily closely, by the nonlinear system. Consequently,

BL(0) ⊂ BL(η).

Since BL(0) = V2(Ω, X), it follows that

BL(η) = V2(Ω, X).

Therefore, for any ξ ∈ L2(Ω,Y) and any ε > 0, there exists a control u ∈ V2
F(I,Y) such that the

corresponding mild solution f ′(t) of system (1.3) satisfies

E‖ f ′(L) − ξ‖2 < ε.

Hence, system (1.3) is approximately controllable on I.
�

5. Examples

We now present an illustrative example to validate the theoretical results established in the preceding
sections.

Consider the fractional stochastic control system governed by the equation
Dα,βs(t, y) = ∂2

∂y2 s(t, y) + η(t, s(t, y)) + Ku(t, y) + ϕ(t)
dwH(t)

dt
, t ∈ [0, 1], y ∈ (0, π),

s(t, 0) = s(t, π) = 0, t ∈ [0, 1],

s(0, y) = s0(y), y ∈ (0, π),

(5.1)
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where Dα,β denotes the CK fractional derivative.

Take the state space X = Z = V2(0, π) and the time interval I = [0, 1]. Introduce the operator
= : N(=) ⊂ X → X defined by =s = ∂2s/∂y2, with domain

N(=) =

{
s ∈ X : s,

∂s
∂y

are absolutely continuous,
∂2s
∂y2 ∈ X, s(0) = s(π) = 0

}
.

For j = 1, 2, . . ., define the functions g j(y) =
√

2/π sin( jy). The family {g j} j≥1 constitutes a complete
orthonormal eigenbasis for =. It is known that = generates a strongly continuous semigroup {S t}t≥0

that is compact, analytic, and self-adjoint [41]. Hence, hypothesis (H4) is satisfied.
Next, construct the control space Y as

Y =

{
u : R→ R : u =

∞∑
j=2

u jg j with
∞∑
j=2

u2
j < ∞

}
.

The norm on Y is given by ‖u‖Y = (
∑∞

j=1 u2
j)

1/2. We define the bounded linear control operator K : Y →
X by

Ku = 2u2g1 +

∞∑
j=2

u jg j, for u =

∞∑
j=2

u jg j ∈ Y.

Choose a sequence of positive real numbers {ξ j}
∞
j=1 and define the covariance operator J : Z → Z

through its action on the basis: Jg j = ξ jg j. We assume that

tr(J) =

∞∑
j=1

√
ξ j < ∞.

The cylindrical fBm process wH is then defined as

wH(t) =

∞∑
j=1

√
ξ jWH

j (t)g j, t ≥ 0,
1
2
< H < 1,

where {WH
j } j∈N is a family of mutually independent one-dimensional fBm.

Finally, we identify the abstract functions corresponding to the system variables:

f (t)(y) = s(t, y), η(t, f (t))(y) = η(t, s(t, y)), u(t)(y) = u(t, y).

Then, (5.1) can be reformulated asDα,β f (t) = = f (t) + Ku(t) + η(t, f (t)) + ϕ(t)dwH(t)
dt , t ∈ [0, 1],

f (0) = f0.
(5.2)

Define η(t, s(t, y)) =
exp−t |s(t,y)|

(1+expt)(1+|s(t,y)|) . Clearly, we have

‖η(t, s(t, y))‖ ≤ |s(t, y)|, (5.3)
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and

‖η(t, s1(t))(y) − η(t, s2(t))(y)‖

=
exp−t ||s1(t, y)| − |s2(t, y)||

(1 + expt)(1 + |s1(t, y)|)(1 + |s2(t, y)|)

≤
exp−t

1 + expt |s1(t, y) − s2(t, y)|

≤
1
2
|s1(t, y) − s2(t, y)|. (5.4)

Therefore, the conditions (H1) and (H2) hold. If (H3), (H5), and Eq (4.9) are also fulfilled, then, by
applying Theorem 4.5, system (5.1) is approximately controllable on the interval [0, 1].

Figure 1 shows the state trajectory of the controlled system 5.1, obtained by solving it using
the Euler–Maruyama method over t ∈ [0, 1]. Under the designed control input, the state is driven
toward the target value 0.5 and enters a small neighborhood around it at the final time, illustrating
the approximate controllability of the system. The reported optimal control value used to achieve this
behavior is u = 5.547.

0.0 0.2 0.4 0.6 0.8 1.0
Time t

4

2

0

2

4

St
at

e 
f(t

)

State Trajectory 
Optimal u=5.547
Target=0.5
-Neighborhood

Figure 1. State trajectory under the optimal control u = 5.547, showing convergence toward
the target state 0.5 and illustrating approximate controllability on [0, 1].
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6. Conclusions

This research examines the controllability of FSDEs defined by the CKFD and driven by fBm.
The PIM is used for investigating the Ex-Un solutions in the context of CKFD. We use the Schauder
fixed-point method to find the appropriate criteria for controllability. To illustrate the efficacy of the
theoretical findings, an example is provided. Consequently, FSDEs incorporating CKFD and fBm offer
a resilient mathematical framework for analyzing the dynamics of intricate systems.
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