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Abstract: An odd c-coloring of a graph is a proper c-coloring such that each non-isolated vertex has
at least one color appearing an odd number of times in its neighborhood. The minimum number of
colors in any odd coloring of G, denoted χo(G), is called the odd chromatic number. This concept
was introduced by Petruševski and Škrekovski, who conjectured that every planar graph G is odd
5-colorable and observed that χo(G�H) ≤ χo(G) · χo(H) for connected nontrivial graphs G and H.
In this paper, for specific Cartesian product graphs G�H, such as Pm�Pn, Cm�Pn, and Cm�Cn, we
determine the exact value of χo(G�H), which establishes tighter upper bounds than the multiplicative
bound χo(G) · χo(H). We show that χo(Pm�Pn) ≤ 4 with a complete characterization of all cases;
χo(Cm�Pn) ≤ 5 with a full classification for even and odd m; and χo(Cm�Cn) ≤ 5 with necessary and
sufficient conditions for 3-, 4-, and 5-colorability under parity and divisibility constraints. These results
significantly improve upon the multiplicative upper bound and provide new constructive methods and
theoretical insights for studying odd colorings in Cartesian product graphs. Additionally, we determine
that χo(Km�Pn) = χo(Km�Cn) = m for m = 3 and Cn is an even cycle or m ≥ 4.
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1. Introduction

All graphs in this paper are simple, finite, and undirected. We follow Bondy’s work [1] for any
terminology and notation not defined here. An n-path (n-cycle) is a path (cycle) with n vertices, denoted
by Pn(Cn). An odd c-coloring of a graph is a proper c-coloring such that each nonisolated vertex must
have a color appearing an odd number of times within its neighbors. The odd chromatic number χo(G)
is the minimum integer c for which G admits an odd c-coloring. A graph is odd c-colorable if it has an
odd c-coloring. Let ϕ : V(G) → {1, 2, . . . , c} be an odd coloring of G. Then ϕ(v) denotes the color of
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v, and ϕo(v) denotes an odd color of v; if v has many odd colors, then choose an arbitrary one.
Odd coloring was introduced by Petruševski and Škrekovski [11]. They showed that planar graphs

are odd 9-colorable and proposed the following conjecture.

Conjecture 1.1. [11] Every planar graph G has the odd chromatic number at most 5.

Further studies on the odd chromatic number were conducted by Caro et al. [2], where they showed
that 8 colors are enough for a significant family of planar graphs. Building upon these results, Petr and
Portier [12] improved the upper bound, proving that every planar graph is odd 8-colorable.

Beyond planar graphs, odd colorings have been investigated in more general graph classes.
Metrebian [9] proved the following result about toroidal graphs.

Theorem 1.2. [9] Every toroidal graph is odd 9-colorable.

Cranston et al. [4] demonstrated that every 1-planar graph is odd 23-colorable, a bound later
improved by Niu and Zhang [10] to 16-colorability and subsequently reduced to 13-colorability by
Liu, Wang, and Yu [8]. For odd colorings of k-planar graphs, we refer the reader to [5, 6]. Outerplanar
graphs have also been a subject of investigation. Caro, Petruševski, and Škrekovski [2] proved that
every outerplanar graph is odd 5-colorable, with the bound being tight due to the existence of the
cycle C5, which is not odd 4-colorable. Recently, Kashima and Zhu [7] strengthened this result by
showing that every maximal outerplanar graph is odd 4-colorable. Furthermore, they proved that a
connected outerplanar graph G is odd 4-colorable if and only if G contains a block that is not a copy
of C5. A particular focus has been given to planar graphs with high girth. For each positive integer
c, determine the minimum girth gc such that a planar graph with girth at least gc is odd c-colorable.
Cho et al. [3] showed that 6 ≤ g4 ≤ 11, g5 ≤ 7, g7 ≤ g6 ≤ 5, and g8 ≤ 3. Wang and Yang [13]
proposed enhancements to the existing proof framework, proving that every planar graph without 4−-
cycles adjacent to 7−-cycles is odd 6-colorable.

A critical direction of odd coloring research involves analyzing Cartesian product graphs. For a
graph G, we denote its vertex and edge sets by V(G) and E(G), respectively. Given two graphs G and
H, the Cartesian product G�H is defined as the graph with vertex set V(G�H) = V(G) × V(H) =

{(ui, v j) | ui ∈ V(G), v j ∈ V(H)}. Two vertices (ui, v j) and (uk, vl) are adjacent if and only if either
ui = uk and v jvl ∈ E(H) or v j = vl and uiuk ∈ E(G). For simplicity, we denote (ui, v j) by (i, j), where
1 ≤ i ≤ |V(G)| and 1 ≤ j ≤ |V(H)|, interpreting the vertex as lying in the i-th row and j-th column. The
subgraph induced by vertices {(i, j)| j ∈ {1, 2, . . . , |V(H)|}} is called the H-direction, and that induced
by vertices {(i, j)|i ∈ {1, 2, . . . , |V(G)|}} is called the G-direction.

Such Cartesian products often form gridlike structures. The subgraph induced by the vertices
{(i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1)} constitutes a 4-cycle, which we refer to as cell(i, j).

Given a vertex v ∈ V(G), its neighborhood is NG(v) = {u ∈ V(G) | uv ∈ E(G)}, and its degree is
dG(v) = |NG(v)|. A vertex is called a d-vertex if its degree is d, and a d-neighbor of v is a d-vertex
in NG(v). When no confusion arises, we suppress the graph subscript and write N(v), d(v), and so on.
Similarly, we abbreviate ϕ(i, j) for ϕ((i, j)) and N(i, j) for N((i, j)).

For Cartesian products, Caro, Petruševski, and Škrekovski obtained a foundational bound:

Lemma 1.3. [2] If G and H are connected nontrivial graphs, then

χo(G�H) ≤ min{χ(G) · χo(H), χo(G) · χ(H)} ≤ χo(G) · χo(H).
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However, this bound is often loose for structured products such as grids Pm�Pn or toroidal graphs
Cm�Pn and Cm�Cn. Path Pn (n ≥ 1) and cycle Cn (n ≥ 3) exhibit simple odd chromatic behaviors:

Lemma 1.4. [2]

χo(Pn) =

n, n ≤ 2,
3, n ≥ 3;

χo(Cn) =


3, 3 | n,
4, 3 - n and n , 5,
5, n = 5.

In this paper, we investigate the odd coloring of graphs Pm�Pn, Cm�Pn, and Cm�Cn and obtain the
following results.

Theorem 1.5. Every Pm�Pn (1 ≤ m ≤ n) is odd 4-colorable; moreover, we have the following result:

χo(Pm�Pn) =


n if m = 1, 1 ≤ n ≤ 2,
3 if m = 1, n ≥ 3 or m = 3, n ≥ 4 or m = n = 4,
4 if m ≥ 4, n ≥ 5 or m = 2, n ≥ 2 or m = n = 3.

Theorem 1.6. Every Cm�Pn (m ≥ 3, n ≥ 1) is odd 5-colorable; moreover, we have the following result:

χo(Cm�Pn) =



2, if m = 2k, n = 2;
3, if m = 2k + 1, n = 2 or m = 3k, n , 2

or m = 2k, n ≥ 3;
5, if m = 5, n = 1;
4, otherwise.

Theorem 1.7. Every Cm�Cn (m, n ≥ 3) is odd 5-colorable; moreover, we have the following result:

χo(Cm�Cn) =


3, if {m, n} = {3k, 2t}(k ≥ 1, t ≥ 2);
5, if m = n = 3 or {m, n} = {3, 5};
4, otherwise.

These results indicate that Cartesian products of paths and cycles may admit tighter bounds on their
odd chromatic number than the multiplicative bound χo(G) · χo(H). Theorems 1.5 and 1.6 provide
support for Conjecture 1.1. For toroidal graphs Cm�Pn, Cm�Cn, the odd chromatic number is 5, which
is smaller than the upper bound 9 in Theorem 1.2.

We employ coloring matrices to study the odd chromatic number of Cartesian product graphs G�H.
By designing compact, regular coloring templates, we build periodic global colorings that reduce
global coloring to finite local patterns. This method not only simplifies the construction and verification
of colorings but also guarantees scalability to graphs of arbitrary size. Such a structured periodic
approach is crucial for improving the classical product bound and obtaining tight odd chromatic
numbers.

The paper is organized as follows. Section 2 focuses on the study of Pm�Pn, where we determine
the minimum odd chromatic number for different values of m and n. In Section 3, we analyze Cm�Pn

and obtain the corresponding results. Section 4 then turns to an investigation of Cm�Cn, and under
a range of conditions, we establish the minimum odd chromatic number for this Cartesian product.
Finally, Section 5 presents new findings on the odd chromatic number of Cartesian products involving
a complete graph—specifically, products of a complete graph with either a path or a cycle.
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2. Odd coloring of Pm�Pn

In this section, we begin by establishing an upper bound of 4 for the odd coloring number of the
grid graph Pm�Pn when m, n ≥ 1. Subsequently, we exploit the inherent properties of odd 3-colorings
to derive the core rules that govern such colorings and on this basis, determine the chromatic number
across distinct cases.

Lemma 2.1. If a graph contains a vertex of even degree, then it is not odd 2-colorable.

Proof. Suppose, for contradiction, that a graph G containing at least one even-degree vertex is odd 2-
colorable. Let v be an even-degree vertex in G. Define the neighborhood of v as N(v) = {u1, u2, . . . , u2k}.

Because the coloring uses only two colors, we first color v. To maintain a proper coloring, all neighbors
u1, u2, . . . , u2k must be assigned the other color, say ϕ(ui) , ϕ(v). However, this assignment implies
that v has exactly one color appearing in its neighborhood, and it appears an even number of times
(because d(v) is even). This contradicts the definition of an odd coloring. Thus, no such 2-coloring can
exist, proving that G is not odd 2-colorable. �

Lemma 2.2. For any integers m, n ≥ 1, we have χo(Pm�Pn) ≤ 4.

Proof. Set the coloring matrix A = (ap,q) =


1 3
2 4
3 1
4 2

 .
For the vertices in the Cartesian product Pm�Pn, we define a 4-coloring ϕ : V(Pm�Pn)→ {1, 2, 3, 4}

as follows. The periodic coloring scheme is illustrated in Figure 1:

ϕ(i, j) = ap,q,

where p = (i − 1) mod 4 + 1 and q = ( j − 1) mod 2 + 1.
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Figure 1. The odd 4-coloring of Pm�Pn.

From the coloring scheme, we can observe that every cell in the graph contains vertices with four
distinct colors. If we color (i, j) with color 1, then we should color its four neighbors (i+1, j), (i−1, j),
(i, j + 1), and (i, j− 1) with colors 2, 4, 3, and 3, respectively. This ensures that the vertex (i, j) satisfies
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the odd coloring condition. If (i, j) is assigned a different color, a similar pattern follows, ensuring a
valid odd coloring. In a more specific case, if the vertex is located on the boundary of Pm�Pn, it will
have fewer neighbors, but the odd coloring condition is still satisfied. Thus, for any integers m, n, we
conclude that χo(Pm�Pn) ≤ 4. �

Lemma 2.3. For n ≥ 4, χo(P3�Pn) = 3.

Proof. We begin by defining two coloring matrices,

A1 = (a(1)
i, j ) =


1 2
3 1
1 2

 , A2 = (a(2)
i, j ) =


1 2 3
2 3 1
1 2 3

 .
For Cartesian product P3�Pn, there are four 2-vertices. To satisfy the odd coloring requirement, we
define the following scheme:

ϕ(i, j) =

a(1)
i, j , if j < 3,

a(2)
i, j mod 3+1, if j ≥ 3.

The periodic coloring scheme is illustrated in Figure 2.

1 23

2

2 11

1

3

2

2

2 31

1

1 23

23

1

3

31

Figure 2. The odd 3-coloring of P3�Pn.

To verify the validity of this coloring, consider a vertex (2, j). If j ≤ 3, then it is easily observed
that each (2, j) has a color which occurs an odd number of times in its neighbors from Figure 2. Then
assume j ≥ 4. If we assign (2, j) the color 1, then its four neighbors, (1, j), (3, j), (2, j − 1), and
(2, j + 1) receive colors 3, 3, 3, and 2, respectively. This guarantees that (2, j) satisfies the odd coloring
condition. If (2, j) is assigned a different color, a similar argument holds, ensuring that every vertex
maintains the required property.

For boundary vertices, all of them have an odd degree except for the four corner vertices
(1, 1), (3, 1), (1, n), and (3, n), which are 2-vertices. To confirm that these corner vertices also satisfy
the odd coloring condition, we check their adjacent vertices. Because ϕ(1, 2) , ϕ(2, 1), vertex (1, 1)
maintains the odd coloring condition. The same reasoning applies to (3, 1), (1, n), and (3, n), confirming
that all corner vertices are properly colored. This ensures that every vertex satisfies the odd coloring
condition.

Thus, we conclude that for n ≥ 4, the odd chromatic number of P3�Pn is 3, completing the proof.
�

Observation 2.4. Let G be a Cartesian product graph of two graphs. If G is odd 3-colorable, then it
can be colored following the next rules:

Rule 1: If three vertices in cell(i, j) are assigned three distinct colors, then the fourth vertex must take
the color of its diagonal opposite.
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Rule 2: If three vertices in N(i, j) of G have been assigned colors, then the fourth neighbor should take
a color that appears either zero or twice in N(i, j), and this color must be different from the color of
(i, j).

Rule 3: At each coloring step, Rule 1 should be applied first, followed by Rule 2.

Lemma 2.5. A Cartesian product graph Pm�Pn (1 ≤ m ≤ n) is not odd 3-colorable if it belongs to
either of the following cases: (i) m = 2, n ≥ 2; (ii) m ≥ 4, n ≥ 5.

Proof. Each of (i) and (ii) is illustrated in Figure 3.
(i) Suppose P2�Pn is odd 3-colorable. We assign colors to a few vertices and derive a contradiction.

First, we color (1, 1) and (2, 1) with two different colors. Then we color (1, 2) with a color not in
{ϕ(1, 1), ϕo(1, 1)} and color (2, 2) with a color not in ϕ(N(2, 2)) ∪ ϕo(N(2, 2)). Note that because
|ϕ(N(2, 2)) ∪ ϕo(N(2, 2))| = 3, there are no more colors available for (2, 2). Thus, we reach a
contradiction, proving that P2�Pn is not odd 3-colorable.

(ii) Suppose Pm�Pn is odd 3-colorable. We attempt to construct a valid odd 3-coloring and derive
a contradiction. By Observation 2.4, we begin by coloring (1, 1), (1, 2), and (2, 1) with three distinct
colors. By Rule 1, we assign the color ϕ(1, 1) to (2, 2). While coloring the vertex (2, 3), two distinct
cases emerge. The specific vertex coloring order can be seen in Figure A1.

？2

31

(a) The illustration for (i).

1 23

2

2 1

2

1

2

31

3

1

1

3

2

3

2

3

1 23

2

2 3

2

1

31

1

3

3

1

1

1

2

13

(b) The illustration for Case 1.

1 33

2

3 1

2

2

11

1

2

1

3

3

1

2

1 33

2

3 2

1

2

11

2

1

2

3

2

1

31 13

(c) The illustration for Case 2.

Figure 3. The illustrations for Lemma 2.5.

Case 1: Color (2, 3) with ϕ(1, 2). Applying Rule 2, we color (3, 2) with ϕ(1, 2). Now, for (3, 3), we
have two choices:
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(1) If the vertex (3, 3) is assigned the color ϕ(1, 1), then applying the coloring rules leads to (2, 4)
having two neighbors with color ϕ(2, 1) and two with color ϕ(1, 2), which violates the odd coloring
condition;

(2) If (3, 3) is colored with ϕ(2, 1), then the coloring on cell(1, j) has ϕ(1, j) = ϕ(2, j+1) for j = 1, 2
and the coloring on cell(2, j) has ϕ(3, j) = ϕ(2, j + 1) for j = 1, 2. By applying Rule 2 to N(3, 2), we
have ϕ(4, 2) = ϕ(3, 1). Then, applying Rule 1 to cell(3, 2), we have ϕ(4, 3) = ϕ(3, 2). If we color (1, 3)
with color ϕ(2, 2) = 1, by Rule 2 on N(2, 3) and N(3, 3), we have ϕ(2, 4) = ϕ(3, 4) = 1, contrary to the
proper coloring. Then ϕ(1, 3) = 3 , ϕ(2, 2). Similarly, we have ϕ(4, 1) = 3 , ϕ(3, 2). For the six cells,
we find that (i) each cell(i, j) uses three colors for i ∈ {1, 2, 3} and j ∈ {1, 2}; (ii) ϕ(i, j) = ϕ(i + 1, j + 1)
for each i ∈ {1, 3}, j ∈ {1, 2} and ϕ(3, j) = ϕ(2, j + 1) for each j ∈ {1, 2}. Rule 1 is repeatedly applied
to cell(i, j) and Rule 2 to N(i, j) for i ∈ {1, 2, 3}; with the process carried out step by step for columns
j = 3, 4, 5, . . . , n−1, we can color vertices (i, j + 1) with ϕ(i, k) for i ∈ {1, 2, 3, 4} and k = j mod 3 + 1.
As a result, we find that ϕ(1, j) = ϕ(2, j + 1) for each j ∈ {1, 2, . . . , n − 1}. This implies that the vertex
(1, n) has two identically colored neighbors, violating the odd coloring condition because d(1, n) = 2.

Case 2: Color (2, 3) with ϕ(2, 1). By Rule 2, we color (3, 2) with ϕ(2, 1). Again, for (3, 3), we consider
two cases:

(1) If (3, 3) is colored with ϕ(1, 1), then after the coloring rules are propagated, (3, 4) ends up with
two neighbors colored with ϕ(1, 1) and the other two with ϕ(1, 2), violating the odd coloring constraint;

(2) If (3, 3) is colored with ϕ(1, 2), then further application of the rules leads to the fact that for the
six cells, (i) each cell(i, j) uses three colors for i ∈ {1, 2} and j ∈ {1, 2, 3}; (ii) ϕ(i, j) = ϕ(i + 1, j + 1)
for each i ∈ {1, 2}, j ∈ {1, 3} and ϕ(i + 1, 2) = ϕ(i, 3) for each i ∈ {1, 2}. Similar to the discussion
in Case 1 (2), Rule 1 is repeatedly applied to cell(i, j) and Rule 2 to N(i, j) for j ∈ {1, 2, 3}; with the
process carried out step by step for columns i = 3, 4, . . . ,m − 1, we can color vertices (i + 1, j) with
ϕ(k, j) for j ∈ {1, 2, 3, 4} and k = i mod 3 + 1. As a result, we find that ϕ(i, 1) = ϕ(i + 1, 2) for each
i ∈ {1, 2, . . . ,m − 1}, causing (m, 1) to have an invalid odd coloring configuration because d(m, 1) = 2.

All cases lead to contradictions, showing that it is impossible to construct a valid odd 3-coloring for
Pm�Pn. Thus, Pm�Pn is not odd 3-colorable when m ≥ 4, n ≥ 5. �

Proof of Theorem 1.5. By Lemma 2.2, each Pm�Pn (m, n ≥ 1) is odd 4-colorable. It is easy to see that
χo(P1�Pn) = χo(Pn). According to Lemma 1.4,

χo(P1�Pn) =

n if 1 ≤ n ≤ 2,
3 if n ≥ 3.

By Lemma 2.3, χo(P3�Pn) = 3 for n ≥ 4. By Lemmas 2.5 and 2.2, it follows that for n ≥ 2,
χo(P2�Pn) = 4; for m ≥ 4 and n ≥ 5, χo(Pm�Pn) = 4.

Additionally, it is easy to construct an odd 3-coloring for P4�P4, and the specific coloring result is
shown in Figure 4(a). Therefore, χo(P4�P4) = 3.

We assume that P3�P3 has an odd 3-coloring ϕ. From the coloring procedure, it follows that if all
vertices in N(2, 2) are colored, then three of them must have the same color. By symmetry, we may
assume that ϕ(1, 2) = ϕ(2, 1) = ϕ(3, 2), as shown in Figure 4(b). However, this results in the even-
degree vertices (1, 1) and (3, 1) not having an odd coloring, contradicting our assumption. Therefore,
P3�P3 is not odd 3-colorable. By Lemma 2.2, we have χo(P3�P3) = 4. Finally, we can deduce
Theorem 1.5. �
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1 33

2

3 1

2

2
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11

1

2

1

3

3

(a) The odd 3-coloring of P4�P4.

1 32

2

2

(b) P3�P3 is not odd 3-colorable.

Figure 4. Coloring with 3 colors.

3. The odd chromatic number of Cm�Pn

In this section, we investigate the odd chromatic number of the Cartesian product Cm�Pn. Our
analysis begins with the special case n = 2, followed by a general classification for arbitrary n ≥ 3. We
provide constructive colorings for various values of m and conclude with a sharp upper bound.

Lemma 3.1. For all integers m ≥ 3,

χo(Cm�P2) = χ(Cm) =

2, if m is even,

3, if m is odd.

Proof. Observe that the degree of each vertex in Cm�P2 is 3. Because all vertices have odd degrees,
any proper coloring automatically satisfies the condition for an odd coloring. Thus, χo(Cm�P2) =

χ(Cm�P2). Let ψ be a proper χ(Cm)-coloring of Cm and Cm = 12 . . .m1. Define

ϕ(i, j) =

 ψ(i) if j = 1;
ψ(i mod m + 1) if j = 2.

Clearly, ϕ(i, 1) , ϕ(i, 2) for i(i+1) ∈ E(Cm). This construction ensures that adjacent vertices receive
different colors, satisfying the odd coloring requirement. Thus, we conclude:

χo(Cm�P2) = χ(Cm) =

2, if m is even;
3, if m is odd.

�

Lemma 3.2. For all integers n ≥ 3,
(i) Cm�Pn is odd 3-colorable, where m ∈ 2N+ ∪ 3N+;
(ii) C6k±1�Pn is not odd 3-colorable.

Proof. We now consider the general case n ≥ 3, where Cm�Pn contains vertices with degree 4. By
Lemma 2.1, we attempt to apply an odd coloring using three colors. For any 4-vertex v, N(v) satisfies
|ϕ(N(v))| = 2, with one color appearing three times and the other once. This leads to two distinct types
for ϕ(N(v)):

Type I: The two neighbors of v along the Pn-direction receive the same color (see Figure 5(a));

AIMS Mathematics Volume 11, Issue 1, 1311–1331.
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Type II: The two neighbors along the Pn-direction receive different colors (see Figure 5(b)).

Starting from the initial coloring shown in Figure 5, we apply the coloring rules described in
Observation 2.4. The color of every vertex is uniquely determined by the coloring rules and the
configuration type. Hence, the coloring process is deterministic and completely governed by local
parity constraints.

1 33

3

2

(a) Two neighbors along the Pn-direction receive the
same color.

1 23

3

3

(b) Two neighbors along the Pn-direction receive
different colors.

Figure 5. Two distinct configurations for ϕ(N(v)).

Starting from one vertex as shown in Figure 5(a) and then applying the coloring rules described in
Observation 2.4, we can obtain the resulting coloring as seen in Figure 6(a). In the resulting coloring,
all the vertices have two neighbors receiving the same color along the Pn-direction. A repeating
coloring pattern with period 3 along the cycle-direction, period 2 along the path-direction can be found.
Based on the repeating coloring pattern, we define the coloring scheme for C3k�Pn as

ϕ(i, j) =

(i − 1) mod 3 + 1, if j ≡ 1 (mod 2),
i mod 3 + 1, if j ≡ 0 (mod 2).

Based on the above discussion, we assume that all 4-vertices are Type II. A repeating coloring
pattern with period 2 along the Cm-direction and period 3 along the Pn-direction can then be identified,
as shown in Figure 6(b). Based on the repeating coloring pattern, we define the coloring scheme for
C2k�Pn as

ϕ(i, j) =

( j − 1) mod 3 + 1, if i ≡ 1 (mod 2),
j mod 3 + 1, if i ≡ 0 (mod 2).

Therefore, we conclude that Cm�Pn is odd 3-colorable if m = 2k or m = 3k. Any attempt to apply
an odd 3-coloring to C6k±1�Pn will inevitably force some vertex to have no color appearing an odd
number of times in its neighborhood. Thus, Cm�Pn is odd 3-colorable if and only if m ∈ {0, 2, 3, 4}
(mod 6). This implies that C6k±1�Pn is not odd 3-colorable. �
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3

3

1 3

2 1 2 1 2

3 2 3 2 3

1 3 1 3 1

2 1 2 1 2

3 2 3 2 3

3 1 3

(a) The resulting coloring of Case I.

2 3

3 1 2

3 1 2 3

3 1 2

2 3

1 2 3

3 1 2

1 2 3

3 1 2

1 2 3

3

1

3

(b) The resulting coloring of Case II.

Figure 6. The odd coloring of Case I and Case II.

Lemma 3.3. χo(C6k±1�Pn) = 4 for all n ≥ 3, k ∈ Z+.

Proof. We define a periodic coloring block composed of two parts. The first five rows follow a 6-
column periodic matrix A1, while the remaining rows are filled with a smaller 2-row, 3-column matrix
A2. Define

A1 = (a(1)
i j ) =


1 2 4 1 2 3
3 4 1 3 4 1
2 1 2 1 2 3
3 2 4 2 4 2
4 1 3 4 3 1


, A2 = (a(2)

i j ) =

[
1 4 2
4 3 1

]
.

The coloring is defined as

ϕ(i, j) =

a(1)
i,( j−1) mod 6+1, 1 ≤ i ≤ 5;

a(2)
(i−6) mod 2+1,( j−1) mod 3+1, i > 5.

Due to the periodic structure and the fact that (6k±1)−5 is always even, the remaining rows can be
tiled by A2 without conflict. The coloring scheme is verified on C11�P9, and this construction ensures
that all adjacent vertices receive distinct colors and that each vertex has at least one color appearing
an odd number of times in its neighborhood. The specific odd coloring scheme of C11�P9 can be seen
in Figure A2(a). By periodicity, it can be easily extended to arbitrary C6k±1�Pn. By Lemma 3.2 (ii),
χo(C6k±1�Pn) = 4. �

Proof of Theorem 1.6. Because Cm�P1 � Cm, χo(Cm�P1) = χo(Cm). By Lemma 1.4, χo(Cm�P1) = 3
when m = 3k, χo(Cm�P1) = 5 when m = 5; otherwise we have χo(Cm�P1) = 4. By Lemma 3.1, we
characterize the odd chromatic number of Cm�P2. Thus, we have χo(C2k�P2) = 2 and χo(C2k−1�P2) =

3 when k ≥ 2. In the case where n ≥ 3, we consider m in the context of modulo 6. By Lemmas 3.2
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and 3.3, χo(Cm�Pn) = 3 when m ∈ {0, 2, 3, 4} (mod 6) and χo(Cm�Pn) = 4 when m ∈ {1, 5} (mod
6). �

We conclude with a tight upper bound for all m, n ∈ Z+ in the following.

Corollary 3.4. χo(Cm�Pn) ≤ χo(Cm) (m ≥ 3, n ≥ 1).

This bound significantly improves upon the multiplicative upper bound χo(Cm) · χo(Pn) ≤ 15,
demonstrating how periodic structures and matrix-based constructions can effectively reduce the
coloring complexity of Cartesian product graphs.

4. The odd chromatic number of Cm�Cn

Lemma 4.1. The odd chromatic number of Cartesian product Cm�Cn is 3 if and only if {m, n} = {3k, 2t}
for integers k ≥ 1 and t ≥ 2.

Proof. In the Cartesian product Cm�Cn, each vertex is a 4-vertex. Hence, to achieve an odd 3-coloring,
we must assign colors in such a way that for every vertex, one color appears on exactly three neighbors
and another appears on exactly one neighbor.

According to the classification of 4-vertex configurations in Figure 5, namely Type I and Type II,
and the corresponding colorings shown in Figure 6(a), the coloring admits a repeating pattern with
period 3 along the Cm-direction and period 2 along the Cn-direction. As illustrated in the figures, the
coloring scheme in Figure 6(b) can be obtained by rotating the scheme in Figure 6(a) counterclockwise
by 90◦. This suffices to consider only one type when dealing with Cm�Cn, because both directions are
cycles. As seen in Figure 7(a), we define the coloring scheme for C3k�C2t as

ϕ(i, j) =

(i − 1) mod 3 + 1, if j ≡ 1 (mod 2),
i mod 3 + 1, if j ≡ 0 (mod 2).

Therefore, such an odd 3-coloring is only possible when m = 3k and n = 2t. By symmetry, m = 2t and
n = 3k is the same case. Hence, we have χo(Cm�Cn) = 3 if and only if {m, n} = {3k, 2t} for integers
k ≥ 1 and t ≥ 2. �

3 22

1

3 22

2

1 3

1

3

1

11

3 3

2

3

2

1

3

2

1

(a) The coloring of C3k�C2t with 3 colors.

2 11

1

1 22

2

4 3

4

3

4

11

2 2

3

1

3

4

2

2

1

(b) The coloring of C4k�C2t with 4 colors.

Figure 7. The odd coloring for C3k�C2t and C4k�C2t.
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Lemma 4.2. If at least one of m or n is even, then Cm�Cn is odd 4-colorable.

Proof. By symmetry, we assume n = 2t (t ≥ 2) is even. By Lemma 4.1, we have χo(Cm�C2t) = 3 < 4
when m ≡ 0 (mod 3), and we assume m , 0 (mod 3). In this case, Cm�C2t is not odd 3-colorable
by Lemma 4.1. Then, we consider using four colors to obtain an odd coloring. We discuss two cases
based on the value of m.

Case 1: m = 5.
Let n ≡ p (mod4). Because n = 2t, p ∈ {0, 2}, define two color matrices as follows:

A1 = (a(1)
i j ) =


4 3
2 1
3 2
4 3
2 1


, A2 = (a(2)

i j ) =


1 2 1 2
2 1 3 4
3 4 1 2
2 1 2 1
4 3 4 3


.

Then, we define a coloring scheme based on A1 and A2. We remark that for p = 0, the constraint
j ≤ p yields an empty set of valid indices. In this scenario, the corresponding branch of the piecewise
function is discarded, and only the case where j > p is retained for analysis.

ϕ(i, j) =

a(1)
i, j if j ≤ p,

a(2)
i, ( j−k−1) mod 4+1 if j > p.

This construction combines two blocks to cover all columns of Cn, satisfying the coloring condition.
For example, if ϕ(i, j) = 1, the colors of its neighbors could be {2, 2, 2, 3}, {2, 2, 2, 4}, {2, 2, 3, 4}, or
{2, 3, 3, 4}, ensuring that some color appears an odd number of times. By symmetry, the same holds for
color 2, 3, 4.

Case 2: m , 5.
In this case, we can define m = 4k + q, where k ≥ 1, q ∈ {0, 3, 6, 9}. We add a transitional coloring

block in the Cm-direction on top of the periodic construction. It should be noted that when q = 0, the
condition j ≤ q corresponds to an empty index range and thus can be disregarded, meaning only the
case of j > p in the piecewise function needs to be considered.

ϕ(i, j) =

a(3)
(i−1) mod 3+1, ( j−1) mod 2+1 if i ≤ q,

a(4)
(i−q−1) mod 4+1, ( j−1) mod 2+1 if i > q,

with

A3 = (a(3)
i j ) =


1 2
2 1
3 4

 , A4 = (a(4)
i j ) =


1 2
2 1
3 4
4 3

 .
As shown in Figure 7(b), it is easily obtained that C4k�C2t is odd 4-colorable. The coloring scheme

is verified on C10�C4, and this construction ensures that all adjacent vertices receive distinct colors
and that each vertex has at least one color appearing an odd number of times in its neighborhood. The
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specific odd coloring scheme of C10�C4 can be seen at Figure A2(b). By periodicity, it can easily
extend to arbitrary C4k+q�C2t. Thus, Cm�C2t is odd 4-colorable. �

Lemma 4.3. If both m and n are odd, then

χo(Cm�Cn) =

5, if m = n = 3 or {m, n} = {3, 5};
4, otherwise.

Proof. For C3�C3 and C3�C5, it can be verified by exhaustive checking that no odd 4-coloring exists.
The odd 5-coloring is shown in Figure 8; hence χo(C3�C3) = χo(C3�C5) = 5.

3 42

2

5 14

31

(a) C3�C3

1 22

2

4 33

11

4

5

2

1

4

5

(b) C3�C5

Figure 8. Odd 5-coloring for C3�C3 and C5�C3.

For C3�C2t+1, where t ≥ 3, we define two coloring matrices A1 = (a(1)
i j ) =


1 2 3 1 2
4 3 4 2 3
2 4 1 4 1

 , A2 =

(a(2)
i j ) =


1 2
2 1
4 3

 . To satisfy the odd coloring requirement, we define the following scheme:

ϕ(i, j) =

a(1)
i, j if j ≤ 5,

a(2)
i, ( j−6) mod 2+1 if j > 5.

As shown in Figure 9, the coloring scheme is verified on C3�C9, and this construction ensures that
all adjacent vertices receive distinct colors and that each vertex has at least one color appearing an odd
number of times in its neighborhood. By periodicity, it can easily extend to arbitrary C3�C2t+1. Thus,
C3�C2t+1 is odd 4-colorable.

3 44

2

4 12

31

2

4

1

3

1

2

2

4

1

1

3

2

2

4

1

1

3

2

Figure 9. Odd 4-coloring of C3�C9.
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For C5�C7 and C7�C7, we design appropriate odd coloring schemes for them as shown in
Figure A4.

Because the graphs Cm�Cn and Cn�Cm are isomorphic, for a more general case, we may assume
without loss of generality that m ≤ n for Cm�Cn. Under this assumption, we define the coloring
scheme for C2k+1�C2t+1 as follows: ϕ(i, j) = a(g)

(i−s(g)
i ) mod r(g)

i +1, ( j−s(g)
j ) mod c(g)

j +1
, where g denotes the index

of the region to which the vertex (i, j) belongs, with g ∈ {1, . . . , 9}. This ensures the coloring is repeated
modularly within the assigned block. The 9 regions are shown in Figure A3.

• A(g) is the coloring matrix assigned to region g;
• (s(g)

i , s(g)
j ) is the starting offset of region g, which is the top left corner of the region;

• (r(g)
i , c(g)

j ) is the size of the coloring matrix A(g) for region g.

The coloring matrices are defined as follows:

A(1) =


2 1 4 1 3
1 2 1 3 4
3 4 3 1 2

 , A(2) =


2 1
3 4
4 1

 , A(3) =


2 1 4 3
1 4 1 4
4 3 2 1

 ,
A(4) =

[
2 1 2 4 3
4 2 3 1 2

]
, A(5) =

[
1 3
3 2

]
, A(6) =

[
2 1 4 3
4 3 2 1

]
,

A(7) =


2 1 2 4 3
4 3 4 2 1
2 4 2 4 3
4 2 3 1 2

 , A(8) =


1 3
3 1
2 3
4 2

 , A(9) =


2 1 4 3
4 3 2 1
2 1 4 3
4 3 2 1

 .
The regions and corresponding rules are summarized in Table 1:

Table 1. The coloring matrices and the coloring rules.

Region g Applicable Range Matrix A(g) Offset (s(g)
i , s(g)

j ) Size (r(g)
i , c(g)

j )
1 i ≤ 3, j ≤ 5 base block (1, 1) (3, 5)
2 i ≤ 3, 5 < j ≤ 5 + β base block (1, 6) (3, 2)
3 i ≤ 3, 5 + β < j ≤ n periodic block (1, 6 + β) (3, 4)
4 3 < i ≤ 3 + α, j ≤ 5 base block (4, 1) (2, 5)
5 3 < i ≤ 3 + α, 5 < j ≤ 5 + β base block (4, 6) (2, 2)
6 3 < i ≤ 3 + α, 5 + β < j ≤ n periodic block (4, 6 + β) (2, 4)
7 3 + α < i ≤ m, j ≤ 5 periodic block (4 + α, 1) (4, 5)
8 3 + α < i ≤ m, 5 < j ≤ 5 + β periodic block (4 + α, 6) (4, 2)
9 3 + α < i ≤ m, 5 + β < j ≤ n periodic block (4 + α, 6 + β) (4, 4)
Note: α = (m − 3) mod 4 ∈ {0, 2} , β = (n − 5) mod 4 ∈ {0, 2}.

Special case: (i) When m = 5: if β = 0, then set ϕ(5, 4) = 2 and ϕ(5, 5) = 1; if β = 2 and n , 7, then
set ϕ(5, 4) = ϕ(3, 7) = 2 and ϕ(5, 5) = 4.
(ii) When m ≥ 7, set ϕ(m, 4) = 2, ϕ(m, 5) = 1.
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(iii) And when m ≥ 7: if α = 0 and β = 2, then set ϕ(3 + 4c, 8) = 3, ϕ(3 + 4c, 9) = 4, ϕ(4 + 4c, 8) = 1,
and ϕ(4 + 4c, 9) = 2; if α = β = 2, then reset A(2) as A3, A(5) as A4, and A(9) as A5 and set ϕ(4, 8) =

ϕ(5 + 4c, 8) = 3, ϕ(5 + 4c, 9) = 4, where c ∈ N+ and c ≤
m − 7 − α

4
.

The matrices A3, A4, and A5 are given as follows:

A3 =


2 1
1 3
4 2

 , A4 =

[
2 4
4 2

]
, A5 =


1 2 4 3
4 3 2 1
2 1 4 3
4 3 2 1

 .
The coloring scheme is verified on C5�C5, C5�C13, C5�C15, C11�C13, C11�C15, C13�C13, and

C13�C15, and this construction ensures that all adjacent vertices receive distinct colors and that each
vertex has at least one color appearing an odd number of times in its neighborhood. By periodicity, it
can be easily extended to arbitrary C2k+1�C2t+1. The odd 4-coloring of C5�C5, C5�C13, and C5�C15

can be seen in Figure A5. The odd 4-coloring of C11�C13, C11�C15, C13�C13, and C13�C15 can be seen
in Figure A6. �

By Lemmas 4.1–4.3, Theorem 1.7 can be obtained.

Proof of Theorem 1.7. By Lemma 4.1, χo(Cm�Cn) = 3 if {m, n} = {3k, 2t}; otherwise, we have
χo(Cm�Cn) ≥ 4. By Lemmas 4.2 and 4.3, χo(C3�C3) = χo(C3�C5) = 5, and χo(Cm�Cn) = 4 in
other cases. Thus, Cm�Cn is odd 5-colorable. �

In general toroidal graphs, Theorem 1.2 provides an upper bound of 9 for the odd chromatic number,
which is a universal estimate based on the most complex possible structures of toroidal graphs. For the
special class of Cartesian product graphs Cm�Cn, we refine this upper bound to 5 through detailed
structural analysis and the construction of periodic odd colorings. It provides a solid theoretical
foundation for further study of odd colorings in Cartesian product graphs.

5. Odd coloring of Cartesian product with special simple graphs

Lemma 5.1. Let G be a simple graph with no isolated vertices and suppose that χo(G) = k. Let ϕ be
an odd k-coloring of G.

(i) If every nonisolated vertex has at least two colors appearing an odd number of times in its
neighborhood under ϕ, then χo(G�H) ≤ χo(G), where H is a path or an even cycle.

(ii) If every nonisolated vertex has at least three colors appearing an odd number of times in its
neighborhood under ϕ, then χo(G�Cn) ≤ χo(G).

Proof. Because ϕ is an odd k-coloring of G, define ϕ : V(G) → {1, 2, . . . , k}. Let V(G) = {u1, . . . , um}

and Pn = v1v2 · · · vn, Cn = v1v2 · · · vnv1. For the Cartesian products G�Pn and G�Cn, we represent
vertices by (i, j), where the first coordinate corresponds to the vertex ui ∈ V(G), and the second
coordinate j ∈ {1, . . . , n} represents v j of the path (or cycle). We now construct colorings for the
two cases and verify that they are valid odd k-colorings.

(i) Define

ϕ′(i, j) =

ϕ(ui), j ≡ 1 (mod 2),

ϕ(ui) mod k + 1, j ≡ 0 (mod 2).
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This coloring clearly uses only k colors. By the above definition, this coloring constitutes a proper
k-coloring regardless of whether H is a path or an even cycle - provided that 1 . n (mod 2) when H
is specified as an even cycle. For any nonisolated vertex (i, j), its neighbors in the G-direction have
exactly the same color distribution as the neighbors of ui in G under ϕ. Hence, without considering the
H-direction, the neighborhood of (i, j) already contains at least two colors occurring an odd number of
times. Along the H-direction, each vertex has at most two neighbors. If it has two neighbors along the
H-direction, they receive the same color under the construction, so they do not alter the parity of any
color counts. If it has only one neighbor along the H-direction, the worst case is that this neighbor’s
color coincides with one of the odd colors in the G-direction. But since there are at least two odd
colors under coloring ϕ′ in the G-direction, at least one odd color remains after adding this neighbor.
Therefore, ϕ′ is a valid odd k-coloring, implying χo(G�H) ≤ χo(G), where H is a path or an even cycle.

(ii) By (i), we only need to prove the case of G�Cn, where n is odd. To handle the cyclic closure, we
introduce a short offset for the first three layers and then proceed with a 2-periodic alternating pattern.
Define

ϕ′(i, j) =


(ϕ(ui) + j − 2) mod k + 1, j ≤ 3;

ϕ(ui), j ≥ 4, ( j − 3) ≡ 1 (mod 2);

ϕ(ui) mod k + 1, j ≥ 4, ( j − 3) ≡ 0 (mod 2).

Clearly, this coloring uses only k colors. For any nonisolated vertex (i, j), its neighbors in the
G-direction already guarantee that at least three colors appear an odd number of times. Along the Cn-
direction, each vertex v has exactly two neighbors. The two neighbors are colored by at most two odd
colors of v. Because there were at least three odd colors under coloring ϕ′ in the G-direction, at least
one odd color remains. Therefore, ϕ′ is a valid odd k-coloring, and we conclude that χo(G�Cn) ≤ k. �

Corollary 5.2. If m = 3 and Cn is an even cycle or m ≥ 4, then we have

χo(Km�Pn) = χo(Km�Cn) = χo(Km) = χ(Km) = m.

Proof. Because every vertex of Km is adjacent to all the other m − 1 vertices, any proper m-coloring ϕ
of Km is automatically an odd m-coloring. Hence, χo(Km) = χ(Km) = m.

Moreover, under ϕ, each nonisolated vertex has m − 1 colors appearing an odd number of times in
its neighborhood. Note that m − 1 ≥ 3 for m ≥ 4 and m − 1 = 2 for m = 3. By Lemma 5.1, we have
χo(Km�Pn), χo(Km�Cn) ≤ χo(Km) = m when m ≥ 4 or m = 3 and Cn is an even cycle.

Finally, since both Km�Pn and Km�Cn contain Km as an induced subgraph, we must have

χo(Km�Pn), χo(Km�Cn) ≥ χ(Km) = χo(Km) = m.

Combining with the previous inequalities gives χo(Km�Pn) = χo(Km�Cn) = χo(Km) when m = 3
and Cn is an even cycle or m ≥ 4. �

6. Conclusions

This paper has systematically determined the exact odd chromatic numbers for fundamental
Cartesian products of paths and cycles, specifically Pm�Pn, Cm�Pn, and Cm�Cn. Theorems 1.5–1.7
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present a complete characterization, demonstrating that these structured graphs admit significantly
tighter bounds than the general multiplicative bound χo(G) · χo(H) established in prior work.

A central contribution of this research is the development of a constructive methodology. We
introduced explicit coloring matrices and leveraged modular arithmetic to generate periodic coloring
schemes. This approach is not merely an existence proof but provides a practical and extensible
algorithm for odd coloring these infinite graph families. The core technical challenge involved ensuring
that these periodic patterns form proper odd colorings when the indices wrap around in cycles, a
condition we thoroughly analyzed and guaranteed through careful coloring matrix design and parity
arguments.

Our results for the toroidal graphs Cm�Pn and Cm�Cn are particularly noteworthy, refining the
known universal upper bound of 9 for general toroidal graphs down to 5 for this specific Cartesian
product family. Furthermore, the facts that all grid graphs Pm�Pn admit odd 4-coloring and that
all graphs Cm�Pn admit odd 5-coloring provide supporting evidence for the Petruševski-Škrekovski
conjecture that all planar graphs are odd 5-colorable.

In summary, this work provides a comprehensive solution to the odd coloring problem for these
foundational graph products. The matrix-based constructive framework we established offers a
powerful paradigm for analyzing parity constraints in graph colorings and is poised to inspire future
investigations into more complex graph products and other variants of proper coloring with local
constraints.
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Appendix

The vertex coloring order of the graph in Lemma 2.5.
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Figure A1. The vertex coloring order of the graph in Lemma 2.5 (ii).

The odd coloring of C11�P9 and C10�C4.
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(a) The odd coloring of C11�P9 in Lemma 3.3.
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(b) The odd coloring of C10�C4 in Lemma 4.2.

Figure A2. The odd 4-coloring of two graphs.
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The 9 regions of odd coloring for C2k+1�C2t+1.

Figure A3. The 9 regions of odd coloring for C2k+1�C2t+1.

The designed odd coloring schemes for C5�C7 and C7�C7.
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Figure A4. Odd 4-coloring of C5�C7 and C7�C7.
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The odd coloring of three typical cases of C5�C2t+1.
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(c) C5�C15(β = 2)

Figure A5. The odd 4-coloring of C5�C2t+1.

The odd coloring of four typical cases of C2k+1�C2t+1.
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Figure A6. The odd 4-coloring of four graphs.
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