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Abstract: An odd c-coloring of a graph is a proper c-coloring such that each non-isolated vertex has
at least one color appearing an odd number of times in its neighborhood. The minimum number of
colors in any odd coloring of G, denoted x,(G), is called the odd chromatic number. This concept
was introduced by PetruSevski and Skrekovski, who conjectured that every planar graph G is odd
5-colorable and observed that y,(GOH) < x,(G) - x,(H) for connected nontrivial graphs G and H.
In this paper, for specific Cartesian product graphs GoH, such as P,oP,, C,O0P,, and C,0C,, we
determine the exact value of y,(GOH), which establishes tighter upper bounds than the multiplicative
bound x,(G) - x,(H). We show that y,(P,0P,) < 4 with a complete characterization of all cases;
Xo(C,,OP,) < 5 with a full classification for even and odd m; and y,(C,0C,) < 5 with necessary and
sufficient conditions for 3-, 4-, and 5-colorability under parity and divisibility constraints. These results
significantly improve upon the multiplicative upper bound and provide new constructive methods and
theoretical insights for studying odd colorings in Cartesian product graphs. Additionally, we determine
that y,(K,,0P,) = x,(K,,0C,) = m form = 3 and C,, is an even cycle or m > 4.
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Mathematics Subject Classification: 05C15, 05C10

1. Introduction

All graphs in this paper are simple, finite, and undirected. We follow Bondy’s work [1] for any
terminology and notation not defined here. An n-path (n-cycle) is a path (cycle) with n vertices, denoted
by P,(C,). An odd c-coloring of a graph is a proper c-coloring such that each nonisolated vertex must
have a color appearing an odd number of times within its neighbors. The odd chromatic number y,(G)
is the minimum integer ¢ for which G admits an odd c-coloring. A graph is odd c-colorable if it has an
odd c-coloring. Let ¢ : V(G) — {1,2,...,c} be an odd coloring of G. Then ¢(v) denotes the color of
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v, and ¢,(v) denotes an odd color of v; if v has many odd colors, then choose an arbitrary one.
0dd coloring was introduced by PetruSevski and Skrekovski [11]. They showed that planar graphs
are odd 9-colorable and proposed the following conjecture.

Conjecture 1.1. [11] Every planar graph G has the odd chromatic number at most 5.

Further studies on the odd chromatic number were conducted by Caro et al. [2], where they showed
that 8 colors are enough for a significant family of planar graphs. Building upon these results, Petr and
Portier [12] improved the upper bound, proving that every planar graph is odd 8-colorable.

Beyond planar graphs, odd colorings have been investigated in more general graph classes.
Metrebian [9] proved the following result about toroidal graphs.

Theorem 1.2. [9] Every toroidal graph is odd 9-colorable.

Cranston et al. [4] demonstrated that every 1-planar graph is odd 23-colorable, a bound later
improved by Niu and Zhang [10] to 16-colorability and subsequently reduced to 13-colorability by
Liu, Wang, and Yu [8]. For odd colorings of k-planar graphs, we refer the reader to [5, 6]. Outerplanar
graphs have also been a subject of investigation. Caro, PetruSevski, and Skrekovski [2] proved that
every outerplanar graph is odd 5-colorable, with the bound being tight due to the existence of the
cycle Cs, which is not odd 4-colorable. Recently, Kashima and Zhu [7] strengthened this result by
showing that every maximal outerplanar graph is odd 4-colorable. Furthermore, they proved that a
connected outerplanar graph G is odd 4-colorable if and only if G contains a block that is not a copy
of Cs. A particular focus has been given to planar graphs with high girth. For each positive integer
¢, determine the minimum girth g. such that a planar graph with girth at least g, is odd c-colorable.
Cho et al. [3] showed that 6 < g4 < 11, g5 < 7, g7 < g6 < 5, and gg < 3. Wang and Yang [13]
proposed enhancements to the existing proof framework, proving that every planar graph without 4°-
cycles adjacent to 7~ -cycles is odd 6-colorable.

A critical direction of odd coloring research involves analyzing Cartesian product graphs. For a
graph G, we denote its vertex and edge sets by V(G) and E(G), respectively. Given two graphs G and
H, the Cartesian product GOH is defined as the graph with vertex set V(GOH) = V(G) X V(H) =
{(ui,vj) | u; € V(G),v; € V(H)}. Two vertices (u;,v;) and (uy,v;) are adjacent if and only if either
u; = u and v;v; € E(H) or v; = v; and u;u; € E(G). For simplicity, we denote (u;,v;) by (i, j), where
1 <i<|V(G)land 1 < j < |V(H)|, interpreting the vertex as lying in the i-th row and j-th column. The
subgraph induced by vertices {(i, j)|j € {1,2,...,|V(H)|}} is called the H-direction, and that induced
by vertices {(i, j)|i € {1,2,...,|V(G)|}} is called the G-direction.

Such Cartesian products often form gridlike structures. The subgraph induced by the vertices
{G@, ), j+1D,@+1,)),@G+1,j+ 1)} constitutes a 4-cycle, which we refer to as cell(, j).

Given a vertex v € V(G), its neighborhood is Ng(v) = {u € V(G) | uv € E(G)}, and its degree is
dc(v) = |Ng(v)|. A vertex is called a d-vertex if its degree is d, and a d-neighbor of v is a d-vertex
in Ng(v). When no confusion arises, we suppress the graph subscript and write N(v), d(v), and so on.
Similarly, we abbreviate ¢(i, j) for ¢((i, j)) and N(i, j) for N((i, j)).

For Cartesian products, Caro, PetruSevski, and Skrekovski obtained a foundational bound:

Lemma 1.3. /2] If G and H are connected nontrivial graphs, then
Xo(GOH) < min{y(G) - xo(H), x0(G) - x(H)} < x,(G) - xo(H).
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However, this bound is often loose for structured products such as grids P,,0P, or toroidal graphs
C,0P, and C,,0C,. Path P, (n > 1) and cycle C, (n > 3) exhibit simple odd chromatic behaviors:

Lemma 1.4. /2]

3, 3|n,
n, n<2,
Xo(Pn) = Xo(C) =34, 3tnandn +5,
3, n>3;
5, n=5.

In this paper, we investigate the odd coloring of graphs P,,0P,, C,,0P,, and C,,0C, and obtain the
following results.

Theorem 1.5. Every P,,0P, (1 < m < n) is odd 4-colorable; moreover, we have the following result:
n ifm=1,1<n<2,
Xo(PnOP,) =13 ifm=1,n>30rm=3,n>40orm=n=4,
4 ifm>4,n>5orm=2,n>20rm=n=3.
Theorem 1.6. Every C,,0P, (m > 3,n > 1) is odd 5-colorable; moreover, we have the following result:
2, ifm=2k, n=2;
3, ifm=2k+1,n=2 orm=3k,n+?2
Xo(CmDPn) = orm=2k, n>3;
5, ifm=5n=1;

4, otherwise.

Theorem 1.7. Every C,,0C, (m,n > 3) is odd 5-colorable; moreover, we have the following result:

3, ifim,n} ={3k,2t}(k > 1, t > 2);
Xo(CrOCy) =15, ifm=n=3or{m,n}=1{35};

4, otherwise.

These results indicate that Cartesian products of paths and cycles may admit tighter bounds on their
odd chromatic number than the multiplicative bound x,(G) - x,(H). Theorems 1.5 and 1.6 provide
support for Conjecture 1.1. For toroidal graphs C,,0P,, C,,0C,, the odd chromatic number is 5, which
is smaller than the upper bound 9 in Theorem 1.2.

We employ coloring matrices to study the odd chromatic number of Cartesian product graphs GOH.
By designing compact, regular coloring templates, we build periodic global colorings that reduce
global coloring to finite local patterns. This method not only simplifies the construction and verification
of colorings but also guarantees scalability to graphs of arbitrary size. Such a structured periodic
approach is crucial for improving the classical product bound and obtaining tight odd chromatic
numbers.

The paper is organized as follows. Section 2 focuses on the study of P,,0P,, where we determine
the minimum odd chromatic number for different values of m and n. In Section 3, we analyze C,,0P,
and obtain the corresponding results. Section 4 then turns to an investigation of C,,0C,, and under
a range of conditions, we establish the minimum odd chromatic number for this Cartesian product.
Finally, Section 5 presents new findings on the odd chromatic number of Cartesian products involving
a complete graph—specifically, products of a complete graph with either a path or a cycle.
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2. Odd coloring of P,,0P,

In this section, we begin by establishing an upper bound of 4 for the odd coloring number of the
grid graph P,0P, when m,n > 1. Subsequently, we exploit the inherent properties of odd 3-colorings
to derive the core rules that govern such colorings and on this basis, determine the chromatic number
across distinct cases.

Lemma 2.1. If a graph contains a vertex of even degree, then it is not odd 2-colorable.

Proof. Suppose, for contradiction, that a graph G containing at least one even-degree vertex is odd 2-
colorable. Let v be an even-degree vertex in G. Define the neighborhood of v as N(v) = {uy, us, . . ., ux}.
Because the coloring uses only two colors, we first color v. To maintain a proper coloring, all neighbors
Uy, Uy, . .., Uy must be assigned the other color, say ¢(u;) # ¢(v). However, this assignment implies
that v has exactly one color appearing in its neighborhood, and it appears an even number of times
(because d(v) is even). This contradicts the definition of an odd coloring. Thus, no such 2-coloring can
exist, proving that G is not odd 2-colorable. O

Lemma 2.2. For any integers m,n > 1, we have y,(P,0P,) < 4.

1 3
) ) 2 4
Proof. Set the coloring matrix A = (a,,) = 31|
4 2
For the vertices in the Cartesian product P,,0P,, we define a 4-coloring ¢ : V(P,0P,) — {1,2,3,4}
as follows. The periodic coloring scheme is illustrated in Figure 1:

()D(l’ ]) =dapyg,

where p=(i—1)mod4+1landg=(j—1)mod 2+ 1.

Figure 1. The odd 4-coloring of P,,0OP,.
From the coloring scheme, we can observe that every cell in the graph contains vertices with four
distinct colors. If we color (i, j) with color 1, then we should color its four neighbors (i + 1, j), (i— 1, j),

(i, j+ 1), and (i, j— 1) with colors 2, 4, 3, and 3, respectively. This ensures that the vertex (i, j) satisfies
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the odd coloring condition. If (i, j) is assigned a different color, a similar pattern follows, ensuring a
valid odd coloring. In a more specific case, if the vertex is located on the boundary of P,,0P,, it will
have fewer neighbors, but the odd coloring condition is still satisfied. Thus, for any integers m, n, we
conclude that y,(P,,0P,) < 4. O

Lemma 2.3. Forn > 4, y,(P;0P,) = 3.

Proof. We begin by defining two coloring matrices,

12 123
Ar=@h =3 1|, A=@)H=|2 3 1].
12 123

For Cartesian product P;0P,, there are four 2-vertices. To satisfy the odd coloring requirement, we
define the following scheme:

i {a?}, if j <3,
@, j) = (2) .
i.j mod 3+1° if j > 3.

The periodic coloring scheme is illustrated in Figure 2.

1 2 1 2 3 1 2 3

3 1 2 3 1 2 I3 1

1 2 1 2 3 1 2 3

—_—

Figure 2. The odd 3-coloring of P;0OP,.

To verify the validity of this coloring, consider a vertex (2, j). If j < 3, then it is easily observed
that each (2, j) has a color which occurs an odd number of times in its neighbors from Figure 2. Then
assume j > 4. If we assign (2, j) the color 1, then its four neighbors, (1, j), (3, j),(2,j — 1), and
(2, j+ 1) receive colors 3, 3, 3, and 2, respectively. This guarantees that (2, j) satisfies the odd coloring
condition. If (2, j) is assigned a different color, a similar argument holds, ensuring that every vertex
maintains the required property.

For boundary vertices, all of them have an odd degree except for the four corner vertices
(1,1),3,1),(1,n), and (3, n), which are 2-vertices. To confirm that these corner vertices also satisfy
the odd coloring condition, we check their adjacent vertices. Because ¢(1,2) # ¢(2, 1), vertex (1, 1)
maintains the odd coloring condition. The same reasoning applies to (3, 1), (1, n), and (3, n), confirming
that all corner vertices are properly colored. This ensures that every vertex satisfies the odd coloring
condition.

Thus, we conclude that for n > 4, the odd chromatic number of P;OP, is 3, completing the proof.

O

Observation 2.4. Let G be a Cartesian product graph of two graphs. If G is odd 3-colorable, then it
can be colored following the next rules:

Rule 1: If three vertices in cell(i, j) are assigned three distinct colors, then the fourth vertex must take
the color of its diagonal opposite.
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Rule 2: If three vertices in N(i, j) of G have been assigned colors, then the fourth neighbor should take
a color that appears either zero or twice in N(i, j), and this color must be different from the color of
(i, )-

Rule 3: At each coloring step, Rule 1 should be applied first, followed by Rule 2.

Lemma 2.5. A Cartesian product graph P,,0P, (1 < m < n) is not odd 3-colorable if it belongs to
either of the following cases: (i)m =2,n > 2; (ii)m >4, n > 5.

Proof. Each of (1) and (i1) is illustrated in Figure 3.

(1) Suppose P,0OP,, is odd 3-colorable. We assign colors to a few vertices and derive a contradiction.
First, we color (1,1) and (2, 1) with two different colors. Then we color (1,2) with a color not in
{e(1,1),,(1, 1)} and color (2,2) with a color not in ¢(N(2,2)) U ¢,(N(2,2)). Note that because
lp(N(2,2)) U ¢,(N(2,2))] = 3, there are no more colors available for (2,2). Thus, we reach a
contradiction, proving that P,O0P, is not odd 3-colorable.

(i1) Suppose P,,0P, is odd 3-colorable. We attempt to construct a valid odd 3-coloring and derive
a contradiction. By Observation 2.4, we begin by coloring (1, 1), (1,2), and (2, 1) with three distinct
colors. By Rule 1, we assign the color ¢(1, 1) to (2,2). While coloring the vertex (2, 3), two distinct
cases emerge. The specific vertex coloring order can be seen in Figure Al.

SEN

(a) The illustration for (i).

1 ]2
N s s
w20 !
(b) The illustration for Case 1. (¢) The illustration for Case 2.

Figure 3. The illustrations for Lemma 2.5.

Case 1: Color (2,3) with ¢(1,2). Applying Rule 2, we color (3,2) with ¢(1,2). Now, for (3, 3), we
have two choices:

AIMS Mathematics Volume 11, Issue 1, 1311-1331.
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(1) If the vertex (3, 3) is assigned the color ¢(1, 1), then applying the coloring rules leads to (2,4)
having two neighbors with color ¢(2, 1) and two with color ¢(1,2), which violates the odd coloring
condition;

(2) If (3, 3) is colored with (2, 1), then the coloring on cell(1, j) has ¢(1, j) = ¢(2, j+ 1) for j = 1,2
and the coloring on cell(2, j) has ¢(3, j) = ¢(2, j + 1) for j = 1,2. By applying Rule 2 to N(3,2), we
have ¢(4,2) = ¢(3, 1). Then, applying Rule 1 to cell(3, 2), we have ¢(4, 3) = ¢(3,2). If we color (1, 3)
with color ¢(2,2) = 1, by Rule 2 on N(2, 3) and N(3, 3), we have ¢(2,4) = ¢(3,4) = 1, contrary to the
proper coloring. Then ¢(1,3) = 3 # ¢(2,2). Similarly, we have ¢(4, 1) = 3 # ¢(3,2). For the six cells,
we find that (i) each cell(i, j) uses three colors fori € {1,2,3} and j € {1,2}; (i) (i, j)) = i+ 1,j+ 1)
for each i € {1,3},j € {1,2} and (3, j) = ¢(2, j + 1) for each j € {1,2}. Rule 1 is repeatedly applied
to cell(i, j) and Rule 2 to N(i, j) for i € {1,2,3}; with the process carried out step by step for columns
j=3,4,5,...,n—1, we can color vertices (i, j + 1) with ¢(i, k) fori € {1,2,3,4}and k = j mod 3+ 1.
As aresult, we find that ¢(1, j) = ¢(2, j + 1) for each j € {1,2,...,n — 1}. This implies that the vertex
(1, n) has two identically colored neighbors, violating the odd coloring condition because d(1,n) = 2.

Case 2: Color (2, 3) with ¢(2, 1). By Rule 2, we color (3, 2) with ¢(2, 1). Again, for (3, 3), we consider
two cases:

(1) If (3, 3) is colored with ¢(1, 1), then after the coloring rules are propagated, (3,4) ends up with
two neighbors colored with ¢(1, 1) and the other two with ¢(1, 2), violating the odd coloring constraint;

(2) If (3, 3) is colored with ¢(1,2), then further application of the rules leads to the fact that for the
six cells, (i) each cell(i, j) uses three colors for i € {1,2} and j € {1,2,3}; (i1) ¢(i, j) = i+ 1,j+ 1)
for each i € {1,2},j € {1,3} and (i + 1,2) = ¢(i,3) for each i € {1,2}. Similar to the discussion
in Case 1 (2), Rule 1 is repeatedly applied to cell(i, j) and Rule 2 to N(i, j) for j € {1,2,3}; with the
process carried out step by step for columns i = 3,4,...,m — 1, we can color vertices (i + 1, j) with
w(k, j) for j € {1,2,3,4} and k =i mod 3 + 1. As a result, we find that ¢(i, 1) = ¢(i + 1,2) for each
ie€{l,2,...,m— 1}, causing (m, 1) to have an invalid odd coloring configuration because d(m, 1) = 2.

All cases lead to contradictions, showing that it is impossible to construct a valid odd 3-coloring for
P,,0P,. Thus, P,,0P,, is not odd 3-colorable whenm > 4,n > 5. O

Proof of Theorem 1.5. By Lemma 2.2, each P,,0P, (m,n > 1) is odd 4-colorable. It is easy to see that
Xo(P1OP,) = x,(P,). According to Lemma 1.4,

n ifl<n<?2,

()PDPn:
Xo(P1of) {3 ifn> 3.

By Lemma 2.3, y,(P;0P,) = 3 forn > 4. By Lemmas 2.5 and 2.2, it follows that for n > 2,
Xo(P,OP,) =4;form>4andn >3, y,(P,0P,) = 4.

Additionally, it is easy to construct an odd 3-coloring for P,O0P4, and the specific coloring result is
shown in Figure 4(a). Therefore, y,(P4,0P4) = 3.

We assume that P;0P; has an odd 3-coloring ¢. From the coloring procedure, it follows that if all
vertices in N(2,2) are colored, then three of them must have the same color. By symmetry, we may
assume that ¢(1,2) = ¢(2,1) = ¢(3,2), as shown in Figure 4(b). However, this results in the even-
degree vertices (1, 1) and (3, 1) not having an odd coloring, contradicting our assumption. Therefore,
P;0P;5 is not odd 3-colorable. By Lemma 2.2, we have y,(P;0P;) = 4. Finally, we can deduce
Theorem 1.5. |
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2
3 1 |3 2
2 1 |3
2 3 1 |3
2
3 1 2 1
(a) The odd 3-coloring of P4O0P;,. (b) P30P;5 is not odd 3-colorable.

Figure 4. Coloring with 3 colors.

3. The odd chromatic number of C,,0P,

In this section, we investigate the odd chromatic number of the Cartesian product C,,0P,. Our
analysis begins with the special case n = 2, followed by a general classification for arbitrary n > 3. We
provide constructive colorings for various values of m and conclude with a sharp upper bound.

Lemma 3.1. For all integers m > 3,

2, ifmis even,

(C,,0Py) = x(C,) =
Xo(CnF2) = X(Cn) {3, if m is odd.

Proof. Observe that the degree of each vertex in C,,0P, is 3. Because all vertices have odd degrees,
any proper coloring automatically satisfies the condition for an odd coloring. Thus, x,(C,O0P;) =
x(C,,0P,). Let ¢ be a proper x(C,,)-coloring of C,, and C,, = 12...ml. Define

Q) (i) if j=1;
1 =
P w(imodm+1) if j=2.

Clearly, ¢(i, 1) # ¢(i,2) fori(i+ 1) € E(C,,). This construction ensures that adjacent vertices receive
different colors, satisfying the odd coloring requirement. Thus, we conclude:

2, if m1is even;

(C,,0P) = x(C,,) =
XoCnBF2) = X(C) {3, if m is odd.

Lemma 3.2. For all integers n > 3,
(i) C,,0P, is odd 3-colorable, where m € 2N* U 3N*;
(ii) Cerx1 0P, is not odd 3-colorable.

Proof. We now consider the general case n > 3, where C,,0P, contains vertices with degree 4. By
Lemma 2.1, we attempt to apply an odd coloring using three colors. For any 4-vertex v, N(v) satisfies

le(N(v))| = 2, with one color appearing three times and the other once. This leads to two distinct types
for o(N(v)):

Type I: The two neighbors of v along the P,-direction receive the same color (see Figure 5(a));

AIMS Mathematics Volume 11, Issue 1, 1311-1331.
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Type II: The two neighbors along the P,-direction receive different colors (see Figure 5(b)).

Starting from the initial coloring shown in Figure 5, we apply the coloring rules described in
Observation 2.4. The color of every vertex is uniquely determined by the coloring rules and the
configuration type. Hence, the coloring process is deterministic and completely governed by local
parity constraints.

3 3
® °
3 1 3 3 1 2
[ L @ ® ® ®
2 3
L4 °®

(a) Two neighbors along the P,-direction receive the  (b) Two neighbors along the P,-direction receive

same color. different colors.

Figure 5. Two distinct configurations for ¢(N(v)).

Starting from one vertex as shown in Figure 5(a) and then applying the coloring rules described in
Observation 2.4, we can obtain the resulting coloring as seen in Figure 6(a). In the resulting coloring,
all the vertices have two neighbors receiving the same color along the P,-direction. A repeating
coloring pattern with period 3 along the cycle-direction, period 2 along the path-direction can be found.
Based on the repeating coloring pattern, we define the coloring scheme for C5,0P,, as

iy = Dmea3 st irj=1 (mod2),
i,j) =
PP = imod 3+ 1, ifj=0 (mod 2).

Based on the above discussion, we assume that all 4-vertices are Type II. A repeating coloring
pattern with period 2 along the C,,-direction and period 3 along the P,-direction can then be identified,
as shown in Figure 6(b). Based on the repeating coloring pattern, we define the coloring scheme for
Cy 0P, as

G i) (j—Dmod3+1, ifi=1 (mod?2),
I,j) =
e jmod3+1, ifi=0 (mod 2).

Therefore, we conclude that C,,0P, is odd 3-colorable if m = 2k or m = 3k. Any attempt to apply
an odd 3-coloring to Cg.;OP, will inevitably force some vertex to have no color appearing an odd
number of times in its neighborhood. Thus, C,,0P, is odd 3-colorable if and only if m € {0, 2, 3,4}
(mod 6). This implies that Cg;.1OP, is not odd 3-colorable. O
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L>3
S AN
4 S
L3 1 3
N 2 3 1 2 3
N ,

e
3 tla Iz 12 s R \1\
C | 3 1 vi2 I3 1 l2 13 i
1 3 1 3 1 N 4 T
— N3l el ls l1 2 s

(a) The resulting coloring of Case 1. (b) The resulting coloring of Case II.
Figure 6. The odd coloring of Case I and Case II.

Lemma 3.3. y,(Ce210OP,) =4 foralln >3, ke Z*.

Proof. We define a periodic coloring block composed of two parts. The first five rows follow a 6-
column periodic matrix A, while the remaining rows are filled with a smaller 2-row, 3-column matrix
A,. Define

1 24123
3413 41
Ai=@=1[2121 2 3], Azz(a@.)):[l 4 2],
e 1 4 31
3242 42
413 431
The coloring is defined as
) e
.. ai i—1) mo s IS 1 < 5,
A6y mod 241, -1y mod 3410 1>

Due to the periodic structure and the fact that (6k + 1) — 5 is always even, the remaining rows can be
tiled by A, without conflict. The coloring scheme is verified on C;;0Py, and this construction ensures
that all adjacent vertices receive distinct colors and that each vertex has at least one color appearing
an odd number of times in its neighborhood. The specific odd coloring scheme of C;0Py can be seen
in Figure A2(a). By periodicity, it can be easily extended to arbitrary Cg.;OP,. By Lemma 3.2 (ii),
Xo(c6kiIDPn) =4 o

Proof of Theorem 1.6. Because C,,0P, = C,,, x,(C,,0OPy) = x,(C,,). By Lemma 1.4, y,(C,,0P;) = 3
when m = 3k, y,(C,0P,) = 5 when m = 5; otherwise we have y,(C,,0P;) = 4. By Lemma 3.1, we
characterize the odd chromatic number of C,,0P,. Thus, we have y,(C,0P;) = 2 and x,(Cy_10P;) =
3 when k > 2. In the case where n > 3, we consider m in the context of modulo 6. By Lemmas 3.2
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and 3.3, y,(C,,0P,) = 3 when m € {0,2,3,4} (mod 6) and y,(C,,0P,) = 4 when m € {1,5} (mod
6). O

We conclude with a tight upper bound for all m, n € Z* in the following.
Corollary 3.4. y,(C,0P,) < x,(C,,) (m>3,n>1).

This bound significantly improves upon the multiplicative upper bound x,(C,) - x.(P,) < 15,
demonstrating how periodic structures and matrix-based constructions can effectively reduce the
coloring complexity of Cartesian product graphs.

4. The odd chromatic number of C,,0C,

Lemma 4.1. The odd chromatic number of Cartesian product C,,0C,, is 3 if and only if {m,n} = {3k, 2t}
forintegers k > 1 and t > 2.

Proof. In the Cartesian product C,,0C,, each vertex is a 4-vertex. Hence, to achieve an odd 3-coloring,
we must assign colors in such a way that for every vertex, one color appears on exactly three neighbors
and another appears on exactly one neighbor.

According to the classification of 4-vertex configurations in Figure 5, namely Type I and Type 1,
and the corresponding colorings shown in Figure 6(a), the coloring admits a repeating pattern with
period 3 along the C,,-direction and period 2 along the C,-direction. As illustrated in the figures, the
coloring scheme in Figure 6(b) can be obtained by rotating the scheme in Figure 6(a) counterclockwise
by 90°. This suffices to consider only one type when dealing with C,,0C,, because both directions are
cycles. As seen in Figure 7(a), we define the coloring scheme for C5,0C, as

o fi=Dmea3 sl irj=1 (mod2),
i,j) =
PP = imod 3 + 1, ifj=0 (mod 2).

Therefore, such an odd 3-coloring is only possible when m = 3k and n = 2¢. By symmetry, m = 2¢ and
n = 3k is the same case. Hence, we have y,(C,,0C,) = 3 if and only if {m, n} = {3k, 2¢} for integers
k>1landt > 2. O

(a) The coloring of C5,0C,, with 3 colors. (b) The coloring of C4OC,, with 4 colors.

Figure 7. The odd coloring for C3;0C,; and C40C>;.
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Lemma 4.2. If at least one of m or n is even, then C,,0C, is odd 4-colorable.

Proof. By symmetry, we assume n = 2¢ (¢ > 2) is even. By Lemma 4.1, we have y,(C,,0C,) =3 < 4
when m = 0 (mod 3), and we assume m # 0 (mod 3). In this case, C,,0C,; is not odd 3-colorable
by Lemma 4.1. Then, we consider using four colors to obtain an odd coloring. We discuss two cases
based on the value of m.

Case 1: m = 5.
Let n = p (mod4). Because n = 2t, p € {0, 2}, define two color matrices as follows:

4 3 1212
21 213 4
Ar=@)=|3 2|, A=@))=|3 4 1 2|.
4 3 21 2 1
21 4 3 4 3

Then, we define a coloring scheme based on A; and A,. We remark that for p = 0, the constraint
J < p yields an empty set of valid indices. In this scenario, the corresponding branch of the piecewise
function is discarded, and only the case where j > p is retained for analysis.

1) o
. a; ; if j < p,
w@ﬂ={5 .
4 ketymod4r1 > D
This construction combines two blocks to cover all columns of C,,, satisfying the coloring condition.
For example, if ¢(i, j) = 1, the colors of its neighbors could be {2,2,2, 3}, {2,2,2,4}, {2,2,3,4}, or
{2, 3, 3,4}, ensuring that some color appears an odd number of times. By symmetry, the same holds for
color 2, 3, 4.

Case 2: m # 5.

In this case, we can define m = 4k + g, where k > 1,q € {0, 3,6,9}. We add a transitional coloring
block in the C,,-direction on top of the periodic construction. It should be noted that when g = 0, the
condition j < g corresponds to an empty index range and thus can be disregarded, meaning only the
case of j > p in the piecewise function needs to be considered.

3) -
¢, ) = {a“‘l)fnod 3el, (-hmod2e1 154
T )

(i-g—1) mod 4+1, (j—1) mod 2+1 ifi > g,
with
- -
Az = (ag)) =2 1, As= (ag;})) =15 4l
3 4 L 3

As shown in Figure 7(b), it is easily obtained that C4,0C5, is odd 4-colorable. The coloring scheme
is verified on Cy0OC4, and this construction ensures that all adjacent vertices receive distinct colors
and that each vertex has at least one color appearing an odd number of times in its neighborhood. The

AIMS Mathematics Volume 11, Issue 1, 1311-1331.



1323

specific odd coloring scheme of Co0C, can be seen at Figure A2(b). By periodicity, it can easily
extend to arbitrary Cy,,0C»,. Thus, C,,0C, is odd 4-colorable. O

Lemma 4.3. If both m and n are odd, then

5, ifm=n=3or{mn}={3,5}

0 CmDCn =
Xof ) {4, otherwise.

Proof. For C;0C5; and C30Cs, it can be verified by exhaustive checking that no odd 4-coloring exists.
The odd 5-coloring is shown in Figure 8; hence y,(C;0C3) = x,(C30Cs) = 5.

(a) C30C3

Figure 8. Odd 5-coloring for C30C5; and Cs0Cs5.

1 2312
For C50C5,41, where t > 3, we define two coloring matrices A; = (afjl.)) = [4 3 4 2 3|,A, =
241 41
1 2
(ag)) =12 1]. To satisty the odd coloring requirement, we define the following scheme:
4 3
N I if j <5,
i j)=14 "t
"0( ]) { 592)(j—6) mod 2+1 lfJ > 5.

As shown in Figure 9, the coloring scheme is verified on C;0Cy, and this construction ensures that
all adjacent vertices receive distinct colors and that each vertex has at least one color appearing an odd
number of times in its neighborhood. By periodicity, it can easily extend to arbitrary C30C,,,;. Thus,
C;0Cy,,1 is odd 4-colorable.

Figure 9. Odd 4-coloring of C;0Cy.
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For Cs0C; and C;0C;, we design appropriate odd coloring schemes for them as shown in
Figure A4.

Because the graphs C,,0C, and C,0C,, are isomorphic, for a more general case, we may assume
without loss of generality that m < n for C,,0C,. Under this assumption, we define the coloring

scheme for C,;,10C as follows: ¢(i, j) = a® , Where g denotes the index
A= ¢ J) (=5 mod r¥+1, (j-s') mod ¢¥'+1 g

of the region to which the vertex (i, j) belongs, with g € {1,...,9}. This ensures the coloring is repeated
modularly within the assigned block. The 9 regions are shown in Figure A3.

e A® is the coloring matrix assigned to region g;
o (s sifg)) is the starting offset of region g, which is the top left corner of the region;

l' b

o (¥, ci.g)) is the size of the coloring matrix A® for region g.

The coloring matrices are defined as follows:

2 1 4 1 3] 2 1] 2 1 4 3]
AD =11 2 1 3 4|, AP =|3 4|, A®=|1 4 1 4],
3 4 3 1 2] 14 1 4 3 21
2 1 2 4 3] [1 3] 2 1 4 3]
(CO 5 = © —
AT = 4 2 3 1 2| AT = 2|’ AT = 4 3 2 1)
2 1 2 4 3] [1 3] 2 1 4 3]
4 3 4 21 31 4 3 21
M = ®) — © —
A 2 4 2 4 3 A 2 31 A 2 1 4 3|
4 2 3 1 2] 14 2] 4 3 2 1]
The regions and corresponding rules are summarized in Table 1:
Table 1. The coloring matrices and the coloring rules.
Region ¢ Applicable Range Matrix A® Offset (sl@’ si.g)) Size (rfg), cE.g))
1 i<3,j<5 base block (1,1) (3,5)
2 i<3,5<j<5+p base block (1,6) (3,2)
3 i<3,5+B<j<n periodic block (1,6 + ) (3,4)
4 3<i<3+4+a, j<5 base block 4,1 2,5
5 3<i<3+4+a, 5<j<5+p baseblock (4,6) 2,2)
6 3<i<3+a,5+B<j<n periodic block (4,6 +p) (2,4)
7 3+a<i<m, j<5 periodic block (4 +a,1) 4,5)
8 3+a<i<m,5<j<5+p periodic block 4+ a,6) 4,2)
9 3+a<i<m,5+pB<j<n periodicblock 4+ a,6+p5) 4,4)

Note: @ = (m—3) mod 4 € {0,2},8=(n—5) mod 4 € {0, 2}.

Special case: (i) When m = 5: if 8 = 0, then set ¢(5,4) = 2 and ¢(5,5) = 1;if 8 =2 and n # 7, then
set (5,4) = ¢(3,7) =2 and ¢(5,5) = 4.
(i1)) When m > 7, set ¢(m,4) = 2, ¢o(m,5) = 1.
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(iii)) And when m > 7: if @ = 0 and 8 = 2, then set ¢(3 + 4¢,8) = 3, (3 +4¢,9) =4, p(4 + 4¢,8) =1,
and (4 + 4¢,9) = 2; if @ = B = 2, then reset A? as A3, A® as A4, and A as As and set ¢(4,8) =

—7=
o5 +4¢,8) = 3, 9(5 + 4¢,9) = 4, where c e Nt and ¢ <+ — ¢
The matrices Az, A4, and As are given as follows:
1 2 4 3
2 1
2 4 4 3 2 1
A3‘i g A4‘[4 2]’ A=l 1 43
4 3 2 1

The coloring scheme is verified on Cs0Cs, Cs0OCy3, Cs0Cys5, C110C 3, C1;0C,5, C130C,3, and
C;0C;s, and this construction ensures that all adjacent vertices receive distinct colors and that each
vertex has at least one color appearing an odd number of times in its neighborhood. By periodicity, it
can be easily extended to arbitrary Cy;,10C5,,;. The odd 4-coloring of Cs0Cs, Cs0C,3, and CsOC5
can be seen in Figure AS. The odd 4-coloring of C;,0C3, C1,0C;s, C130C3, and C130C5 can be seen
in Figure A6. O

By Lemmas 4.1-4.3, Theorem 1.7 can be obtained.

Proof of Theorem 1.7. By Lemma 4.1, y,(C,0C,) = 3 if {m,n} = {3k,2t}; otherwise, we have
Xo(C,OC,) > 4. By Lemmas 4.2 and 4.3, y,(C30C3) = x,(C30Cs) = 5, and x,(C,0C,) = 4 in
other cases. Thus, C,,0C,, is odd 5-colorable. O

In general toroidal graphs, Theorem 1.2 provides an upper bound of 9 for the odd chromatic number,
which is a universal estimate based on the most complex possible structures of toroidal graphs. For the
special class of Cartesian product graphs C,,0C,, we refine this upper bound to 5 through detailed
structural analysis and the construction of periodic odd colorings. It provides a solid theoretical
foundation for further study of odd colorings in Cartesian product graphs.

5. Odd coloring of Cartesian product with special simple graphs

Lemma 5.1. Let G be a simple graph with no isolated vertices and suppose that x ,(G) = k. Let ¢ be
an odd k-coloring of G.

(i) If every nonisolated vertex has at least two colors appearing an odd number of times in its
neighborhood under ¢, then x,(GOH) < x,(G), where H is a path or an even cycle.

(ii) If every nonisolated vertex has at least three colors appearing an odd number of times in its
neighborhood under ¢, then y,(GOC,) < x,(G).

Proof. Because ¢ is an odd k-coloring of G, define ¢ : V(G) — {1,2,...,k}. Let V(G) = {uy, ..., uy}
and P, = vivp---v,, C, = vivo---v,v;. For the Cartesian products GOP, and GOC,, we represent
vertices by (i, j), where the first coordinate corresponds to the vertex u; € V(G), and the second

coordinate j € {l,...,n} represents v; of the path (or cycle). We now construct colorings for the
two cases and verify that they are valid odd k-colorings.
(1) Define
{go(ui), j=1 (mod ?2),
@', )) =
ew)modk+1, j=0 (mod 2).
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This coloring clearly uses only k colors. By the above definition, this coloring constitutes a proper
k-coloring regardless of whether H is a path or an even cycle - provided that 1 # n (mod 2) when H
is specified as an even cycle. For any nonisolated vertex (i, j), its neighbors in the G-direction have
exactly the same color distribution as the neighbors of u; in G under ¢. Hence, without considering the
H-direction, the neighborhood of (i, j) already contains at least two colors occurring an odd number of
times. Along the H-direction, each vertex has at most two neighbors. If it has two neighbors along the
H-direction, they receive the same color under the construction, so they do not alter the parity of any
color counts. If it has only one neighbor along the H-direction, the worst case is that this neighbor’s
color coincides with one of the odd colors in the G-direction. But since there are at least two odd
colors under coloring ¢’ in the G-direction, at least one odd color remains after adding this neighbor.
Therefore, ¢’ is a valid odd k-coloring, implying y,(GOH) < x,(G), where H is a path or an even cycle.

(11) By (1), we only need to prove the case of GOC,, where n is odd. To handle the cyclic closure, we
introduce a short offset for the first three layers and then proceed with a 2-periodic alternating pattern.
Define

(p(uj)+j—2)mod k+1, j<3;

@' (0, ) = {puy), j=24,(j-3)=1 (mod 2);
@(u;) mod k + 1, j>4,(j—-3)=0 (mod 2).

Clearly, this coloring uses only k colors. For any nonisolated vertex (i, j), its neighbors in the
G-direction already guarantee that at least three colors appear an odd number of times. Along the C,-
direction, each vertex v has exactly two neighbors. The two neighbors are colored by at most two odd
colors of v. Because there were at least three odd colors under coloring ¢’ in the G-direction, at least
one odd color remains. Therefore, ¢’ is a valid odd k-coloring, and we conclude that y,(GOC,) < k. O

Corollary 5.2. If m = 3 and C,, is an even cycle or m > 4, then we have
Xo(K,OP,) = x,(K,,0C,) = xo(Ky) = x(K,,)) = m.

Proof. Because every vertex of K, is adjacent to all the other m — 1 vertices, any proper m-coloring ¢
of K, is automatically an odd m-coloring. Hence, y,(K,,) = x(K,,) = m.

Moreover, under ¢, each nonisolated vertex has m — 1 colors appearing an odd number of times in
its neighborhood. Note that m — 1 > 3 form >4 and m — 1 = 2 for m = 3. By Lemma 5.1, we have
Xo(K,OP,), xo(K,,OC,) < xo(K,;) =m whenm >4 or m =3 and C, is an even cycle.

Finally, since both K,,0P, and K,,0C, contain K,, as an induced subgraph, we must have

X()(KmDPn)» Xo(KmDCn) ZX(Km) :X()(Km) =m.

Combining with the previous inequalities gives y,(K,0P,) = x,(K,O0C,) = x,(K,) when m = 3
and C, is an even cycle or m > 4. O

6. Conclusions

This paper has systematically determined the exact odd chromatic numbers for fundamental
Cartesian products of paths and cycles, specifically P,,0P,, C,0P,, and C,0C,. Theorems 1.5-1.7
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present a complete characterization, demonstrating that these structured graphs admit significantly
tighter bounds than the general multiplicative bound y,(G) - x,(H) established in prior work.

A central contribution of this research is the development of a constructive methodology. We
introduced explicit coloring matrices and leveraged modular arithmetic to generate periodic coloring
schemes. This approach is not merely an existence proof but provides a practical and extensible
algorithm for odd coloring these infinite graph families. The core technical challenge involved ensuring
that these periodic patterns form proper odd colorings when the indices wrap around in cycles, a
condition we thoroughly analyzed and guaranteed through careful coloring matrix design and parity
arguments.

Our results for the toroidal graphs C,,0P, and C,O0C, are particularly noteworthy, refining the
known universal upper bound of 9 for general toroidal graphs down to 5 for this specific Cartesian
product family. Furthermore, the facts that all grid graphs P, 0P, admit odd 4-coloring and that
all graphs C,,0P, admit odd 5-coloring provide supporting evidence for the PetruSevski-Skrekovski
conjecture that all planar graphs are odd 5-colorable.

In summary, this work provides a comprehensive solution to the odd coloring problem for these
foundational graph products. The matrix-based constructive framework we established offers a
powerful paradigm for analyzing parity constraints in graph colorings and is poised to inspire future
investigations into more complex graph products and other variants of proper coloring with local
constraints.
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Appendix

The vertex coloring order of the graph in Lemma 2.5.

(a) The coloring order for Case 1.

1 2 13 14

1

1

|3 a4 Is 12 |14
1

1

|7 |6 |8 |11 |13
1

1

' J10 |9 J10 |12 |14
1

1

| casel(1)

! 2 13 15

s [ |

| l3 4 5 12 |14
1

V17 e |8 |11 |13
1

1

1 |15 |9 10 [12 |14
1

1

! 14 |13 |15

1

1

1 casel (2)

I 2 6 10 12 |
] 1
1 1
13 ]4 |5 |9 |11
1 1
1 1
1 13 7 8 10 12
1 1
1 1
! 12 |11 |12 !
1 1
1 1
| case2 (1) |
| 1 6 15 1
1 1
1 1
: 3 4 5 9 14 :
1 1
p 113 |7 |8 J10 |13 |
1 1
]

v l1s J12 11 |12 15
1 1
] ]
1 14 13 14 1
1 1
] ]
] 1
I case2(2) 1

(b) The coloring order for Case 2.

Figure A1. The vertex coloring order of the graph in Lemma 2.5 (ii).

The odd coloring of C110Py and C1,0C4.

. 2 4 1 2 3 1 2
3 4 1 3 4 1 3 4
2 1 2 1 2 3 2 1
3 2 4 2 4 2 3 2
4 1 3 4 3 1 4 1
-
1. 4 2 1 4 2 1 4
4 3 1 4 3 1 4 3
—
1 4 2 1 4 2 1 4
4 3 1 4 3 1 4 3
1 4 2 1 4 2 1 4
4 3 1 4 3 1 4 3

2

1

1 2 1 2
2 1112 []s
\GiBiEl
AT
2 1 2‘ 1
s [ 1ol ]a
1 2 1- 2
s 12T |1
5| i
4\

(a) The odd coloring of C;;0Py in Lemma 3.3. (b) The odd coloring of C;o0C4 in Lemma 4.2.
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Figure A2. The odd 4-coloring of two graphs.
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The 9 regions of odd coloring for Cy10C41.

1,1 1,6){ [1,6+0)

1 2 3
4,1) 4,6) 4,6+73)

4 5 6
(4+a,1) (4+0,6)|(4+a,6+ )

7 8 9

Figure A3. The 9 regions of odd coloring for Cp;10C541.

The designed odd coloring schemes for Cs0Cy and C;0C.

1 2 1 2 1 2 3 \2 »ZI-.-" "2-—_ 1 “_2"" 1 4
NN NisiniaaiA|e
3 4— "3”" 4 ”_1"_“ 2 4 3- »Zi.“ "3““ 2 "]_.__ 3 1
1 2— “;"" 1 “_2"- 1 2 \2 4 A"Z- _____ 3 _______ Z_l- ) 1 4
2 4— ; ______ 4 —————— 3: ) 4 1 1 2 “;3- ----- 1 _______ é ) 4 3
___________________________________ 2 ";_ __-;—_ _;"“-;" 1 4

(a) Cs0Cy (b) C;0C,

Figure A4. Odd 4-coloring of Cs0C; and C;0C7.
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The odd coloring of three typical cases of Cs0C5,, 1.
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(c) CsoCys5(B
Figure AS. The odd 4-coloring of Cs0C;4 ;.

The odd coloring of four typical cases of Cop10C241.
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Figure A6. The odd 4-coloring of four graphs.

Volume 11, Issue 1, 1311-1331.

AIMS Mathematics



1331

References

1.
2.

10.

1.

12.

13.

A. Bondy, U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, Vol. 244, Springer, 2008.

Y. Caro, M. Petruevski, R. Skrekovski, Remarks on odd colorings of graphs, Discrete Appl. Math.,
321 (2022), 392—401. https://doi.org/10.1016/j.dam.2022.07.024

E. K. Cho, L. Choi, H. Kwon, B. Park, Odd coloring of sparse graphs and planar graphs, Discrete
Math., 346 (2023), 113305. https://doi.org/10.1016/j.disc.2022.113305

D. W. Cranston, M. Lafferty, Z. X. Song, A note on odd colorings of 1-planar graphs, Discrete
Appl. Math., 330 (2023), 112—117. https://doi.org/10.1016/j.dam.2023.01.011

V. Dujmovié, P. Morin, S. Odak, Odd colourings of graph products, arXiv, 2022.
https://doi.org/10.48550/arXiv.2202.12882

R. Hickingbotham, Odd colourings, conflict-free colourings and strong colouring numbers, arXiv,
2022. https://doi.org/10.48550/arXiv.2203.10402

M. Kashima, X. Zhu, Odd 4-coloring of outerplanar graphs, Graphs Combinator., 40 (2024), 108.
https://doi.org/10.1007/s00373-024-02842-0

R. Liu, W. Wang, G. Yu, 1-planar graphs are odd 13-colorable, Discrete Math., 346 (2023), 113423.
https://doi.org/10.1016/j.disc.2023.113423

H. Metrebian, Odd colouring on the torus, arXiv, 2022. https://doi.org/10.48550/arXiv.2205.04398

B. Niu, X. Zhang, An improvement of the bound on the odd chromatic number of 1-planar graphs,
In: Q. Ni, W. Wu, Algorithmic aspects in information and management, Lecture Notes in Computer
Science, Springer, 13512 (2022), 388—393. https://doi.org/10.1007/978-3-031-16081-3_33

M. Petrusevski, R. Skrekovski, Colorings with neighborhood parity condition, Discrete Appl.
Math., 321 (2022), 385-391. https://doi.org/10.1016/j.dam.2022.07.018

J. Petr, J. Portier, The odd chromatic number of a planar graph is at most 8, Graphs Combinator.,
39 (2023), 28. https://doi.org/10.1007/s00373-023-02617-z

T. Wang, X. Yang, On odd colorings of sparse graphs, Discrete Appl. Math., 345 (2024), 156-169.
https://doi.org/10.1016/j.dam.2023.11.039

©2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@ AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 1311-1331.


http://dx.doi.org/https://doi.org/10.1016/j.dam.2022.07.024
http://dx.doi.org/https://doi.org/10.1016/j.disc.2022.113305
http://dx.doi.org/https://doi.org/10.1016/j.dam.2023.01.011
http://dx.doi.org/https://doi.org/10.48550/arXiv.2202.12882
http://dx.doi.org/https://doi.org/10.48550/arXiv.2203.10402
http://dx.doi.org/https://doi.org/10.1007/s00373-024-02842-0
http://dx.doi.org/https://doi.org/10.1016/j.disc.2023.113423
http://dx.doi.org/https://doi.org/10.48550/arXiv.2205.04398
http://dx.doi.org/https://doi.org/10.1007/978-3-031-16081-3_33
http://dx.doi.org/https://doi.org/10.1016/j.dam.2022.07.018
http://dx.doi.org/https://doi.org/10.1007/s00373-023-02617-z
http://dx.doi.org/https://doi.org/10.1016/j.dam.2023.11.039
http://creativecommons.org/licenses/by/4.0

	Introduction
	Odd coloring of Pm Pn
	The odd chromatic number of Cm Pn
	The odd chromatic number of CmCn
	Odd coloring of Cartesian product with special simple graphs
	Conclusions

