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Abstract: In this paper, we addressed the absorption of sound by a nonlinear multi-mode panel
absorber. Nonlinear structural vibration has been greatly investigated in recent decades, but very few
researchers have considered structural nonlinearities in structural-acoustic models. Importantly, the
first structural resonant frequency of a perforated panel absorber with typical dimensions is much lower
than the absorption peak frequency. The results of this study indicated that such resonant vibration
cannot enhance the absorption performance. Thus, a novel approach was proposed, namely to increase
the first nonlinear panel resonant frequency by pre-setting the initial deflection profile, enabling the
resonant vibration effect to be used for widening the absorption bandwidth. A new solution method,
termed the phase angle elimination method, was developed for cases of damped nonlinear vibration.
The principle of the method was to transform the nonlinear governing equation of a perforated panel
into a set of multi-mode formulations. A numerical case study was conducted to examine the effects of
various parameters on the absorption performance.
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1. Introduction

In this paper, we present an innovative sound-absorption technique and a classical solution
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method for the resulting governing equations. The innovative technique involves increasing the panel
resonant frequency of an absorber by pre-setting the initial deflection profile to widen the absorption
bandwidth. The method of solving the nonlinear governing equation, termed the phase angle
elimination method, involves eliminating the phase angles by squaring and adding the nonlinear
equations generated in the harmonic balance process. The conventional linear damping assumption is
adopted in the modeling procedure. To calculate the absorption coefficient, the impedances of the
structural and acoustic items are obtained and combined.

Tunable acoustic metamaterials, nonlinear panel vibration, linear sound absorption, and vibration
have attracted widespread research interest. Most researchers investigating the areas of structural
dynamics and acoustics have focused on theoretical modeling and solution method development
without any experimentation. For example, Hu et al. [1] presented a modeling and dynamic analysis
on spar-type floating offshore wind turbines system via structure-preserving iterative method. They
developed a coupled dynamic model based on the Hamilton's variational principle and generalized
multi-symplectic method. The dynamic responses of the spar-type floating offshore wind turbines
system were studied for various wind field cases. Xi et al. [2] studied a hub-cracked beam with hollow
tapered cross-section using a structure-preserving method. An iteration approach was used to develop
a coupled dynamic model for the planar rotation and the transverse vibration of the system. The effects
of the crack's parameters on the various stabilities were examined in the numerical simulations. The
accuracy of the proposed method was also verified by a finite element method. Hu et al. [3] investigated
the coupling dynamic behaviors of flexible thin-walled tapered hub-beam with a tip mass. The
governing equations representing the coupling system were developed. Then, the formulations with
dynamic symmetry-breaking factor were obtained for the vibration of the system using the Preissmann
scheme. From the results, the contour lines of the stable vibration amplitude showed the important
effects of the tip mass on the dynamic responses. Kan et al. [4] reproduced the vibration localization
in a mistuned bladed disk system. They considered the morphological characteristics and the micro-
dynamic behaviors to establish an improved dry friction model to study the coupling effects and the
dynamic responses of the entire bladed disk system. In the numerical results, the phenomenon of
vibration localization was generated and various influences were revealed. Some have focused solely
on either the nonlinear vibrational responses or the acoustic properties, without addressing both. Chen
et al.’s [5] review highlighted advances in the technology of tunable acoustic metamaterials based on
modulation techniques. Such techniques are principally developed to extend the acoustic response into
wider frequency bands, creating tunable acoustic metamaterials capable of good acoustic performance
for specific applications. These and other technologies for improving acoustic performance (e.g.,
mechanical loading, magnetic control, and active control) are based on very different principles from
those that exploit nonlinear/large-deflection vibration phenomena, which usually do not require
additional devices or special materials (e.g., magnetic control/active control systems, damping
materials, and metamaterials). In this study, a technique based on tuning the structural properties of a
conventional material to induce nonlinear phenomena is developed, aiming to improve the acoustic
performance. Pandey et al. [6] presented a thermoelastic stability analysis of laminated composite
plates. Higher-order shear deformation theory and von-Karman nonlinear kinematics were adopted in
developing the mathematical formulations of the problem, which exhibited cubic nonlinearity owing
to the shear deformable elastic foundation. The nonlinear governing equations were solved by a two-
part procedure: First using the quadratic extrapolation technique for linearization, then using the fast-
converging finite double Chebyshev series for spatial discretization. The effects of various parameters

AIMS Mathematics Volume 11, Issue 1, 1202—1218.



1204

on the buckling and postbuckling responses were studied. Li and Yao [7] proposed a double-mode
model representing the nonlinear flexural vibration of a sandwiched thin panel with a symmetric
rectangular honeycomb geometry. The Galerkin method and homotopy analysis were used to derive
and solve the two major coupled nonlinear governing equations, and the primary and harmonic
resonances were analyzed. The proposed method was used to identify the softening and hardening
nonlinear characteristics. Shahmohammadi et al. [8] addressed the geometrically nonlinear and size-
dependent responses of shallow, sandwiched, curved micro-panels. The governing equations were
obtained using a modified first-order shear deformation theory and the Galerkin method. The effects
of mechanical and geometrical properties on the forced vibrations were investigated. Zheng et al. [9]
analyzed the acoustic characteristics of an ultra-micro-perforated panel absorber under oblique
incidence using finite element simulations and discrete integral calculations. It was found that the
sound absorption was optimized in the case of 45-degree incidence. The proposed absorber achieved
an average absorption coefficient of 0.9 across the medium to high frequency range. Lee et al. [10]
conducted a theoretical and experimental analysis of a finite flexible micro-perforated panel absorber.
Absorption was optimized by appropriately selecting the perforation and structural parameters based
on a parametric analysis. The absorption bandwidth was found to widen when the linear structural
resonant frequency was set higher than the absorption peak frequency caused by the perforations.

Nonlinear structural acoustics has been relatively rarely studied. Lee [11] presented a study of
absorption by a flat panel absorber under the influence of perforation, air pumping, and nonlinear
vibration. A simple single-mode approach was adopted to develop a concise absorption formula. This
study differs from that of Lee [11] in several respects, including the pre-set deflection profile and
solution method. Lee et al. [12] theoretically and experimentally investigated the sound absorption of
a nonlinearly vibrating curved panel. The theoretical formulation was developed based on the
assumptions of quadratic and cubic nonlinear structural vibrations, linear damping, and linear acoustics.
Indeed, most structural or acoustic models have employed linear damping assumptions (e.g., [13]).
The reported theoretical and experimental observations have generally been in agreement. Some
discrepancies around the resonant peaks and resonant frequency shifts have been observed, attributed
to the assumptions of linear damping and ideal boundary conditions. Zhou et al. [14] used a nonlinear
vibration absorber to suppress the nonlinear response of a panel flutter in supersonic airflow. The
nonlinear aero-elastic equations of a three-dimensional panel were established using Galerkin’s
method and piston aerodynamic theory. The results showed that the nonlinear aero-elastic responses
of the panel were significantly reduced by recurrent transient resonance capture and permanent
resonance capture in the suppression region. As mentioned, few researchers have incorporated
structural nonlinearity into their vibro-acoustic models, and those that have done so focused on very
specific problems unrelated to that in this paper.

2. Theoretical formulation

Consider a panel with a pre-static deflection profile backed by a cavity (see Figure 1). Before
obtaining the absorption coefficient, the panel impedance is derived using the phase angle elimination
method. Then, the cavity and perforation impedances are considered and combined with the panel
impedance using the electro-acoustic analogy. The governing equation of the panel with a pre-static
deflection profile is given by [12].
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Figure 1. A panel with a pre-static deflection profile backed by a cavity.
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where p is the panel density per unit length; E is Young’s modulus; I is the second moment of area; y,
is the initial deflection profile (i.e., 4, sin (g x))), A, 1s the initial center deflection); a, b, and 4 are

the panel length, width, and thickness, respectively; F(t) = xpg cos(wt); k is a dimensionless

excitation parameter; @ is the excitation frequency; g is gravity; and y is the transverse displacement,
which can be expressed in the following form

7 Y (57
y(x,t) = A; sin (E x) + As sin (;x) + Ag sin <7x> ()

In Eq (1), the nonlinear modal coupling terms come from y+y o) f (32;%) dx, which

represents the nonlinear structural stiffness. It can be seen that if the pre-set deflection y, isincreased,
then the nonlinear modal coupling effects between A;, A3, and As in Eq (2) will also increase. In
this study, a three-mode approach is adopted. The corresponding modal equations are derived (in the
next section, it is proven that this three-mode approach is accurate enough). The first modal reduction

rocess involves multiplying sin (=x) by each side of Eq (1) and integrating with respect to x.
p a

1 d2a 4 El 712 Ebh 4 Ebh
pa B+ (S5 + 0 (40)2) Ay + ~—[(41)° + 94, (43) + 254, (45)* +
34,(4)? + 9AO(A3)2 + 254,(45)?] = k£ cos (art) G

=

d?4
dt21 + (@)%A; + B,[(A1)* + 941 (A3)% + 254 (A5) + 34,(A1)? + 94,(43)* +
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254,(45)%] = K47gcos (wt),

Ebhn*
4pa*”’

where o, =Z—z\/%( (AO)Z) B, =

212

Again, multiply sin (%ﬁ x) by each side of Eq (1) and integrate with respect to x.

2 4
pa 2+ (B4, + = 97" Ebh B [240414; + A3(A1)? + 2545(45)? + 945%] = 222 cos (wt)

= 4)
d?4; 2 2 2 31_ . 49
ot (@0:)?A3+ f, [240A4143 + A3(A1)? + 2543(45)% + 945°|= K5 cos(at),
(37:)2 9 Ebhr*
where w3 = ; By = T pat

Again, multiply sin (%ﬁ x) by each side of Eq (1) and integrate with respect to x

Spa dd:‘; +2 (50" S As+ Z‘E‘T’f@[zlalom5 + A5(41)? + 945(A3)? + 25(45)* 1= % cos (at)
=
)
d2a
2+ (05)2 As+ 55 [2A0ArAs + As(A1)? + 9A45(43)% + 25(45)°]= k=22 cos (at)

57)2 25 Ebhz*
where g —( ) / s By = .

4 pa4
Add a damping term into the first modal governing equation to obtain the following equation:

d?4,
dt2

dA1

+ (@1)2A1 + &0y T2+ B, [(A1)* + 9A1(43)? + 34,(A1)? + 94,(45)?] = x*Z cos (at), (6)

where ¢ is the linear damping ratio.
Consider two harmonic terms in the following approximation form:
A (t) = Ay; cos(awt + 0) + A3 cos(3at + 36) (7)
Insert (7) into (6) and perform the harmonic balance of cos(wt).

(—&* + (0,)*) A1 cos(8) — Ew, wA;4 sin(6) +

1
Zﬂl [3(A11)° + 3413(411)?
+ (50(As3)% + 50451453 + 75(As51)* + 27(A31)* + 6(A413)? + 18(433)?

(8)

4g
+18413433) A1y + 12413431433 + 3A13(431)?] cos(6) = K
Insert (7) into (6) and perform the harmonic balance of sin(wt):
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(—a* + (w1)?)A1; sin(60) + v, wA cos(6) +

1
Zﬁl [3(A11)° + 3413(A11)?

+ (50(A4s3)* + 50451453 + 75(A51)* + 27(A31)* + 6(A13)* + 18(433)?
+ 18A4,3A33)A11 + 124,343,433 + 3413(A31)*] sin(6) = 0.

)

The phase angle can be eliminated by squaring both sides of (8-9) and adding them together. Then,
the sin(#) and cos(6) terms can be eliminated.

{(—602 + (@)?)A1; + iﬂl [3(411)° + 3413(A411)% + (50(As3)? + 5045, 453 +
75(As1)? +27(A31)* + 6(A13)* + 18(A33)° + 18A4;3433) A1 + 124,343, A35 + (10)

2 2
3A13(A31)2]} + {w,0A11 Y = {K%g} .
Insert (7) into (6) and perform the harmonic balance of cos(3wt).
(—9¢* + (w1)?) A3 cos(360) — 3éw, wA 3 sin(36) +
iﬂl[(A11)3 +6413(A11)? + (36431433 + 9(A31) + 25(451)* + 10045, A53) A4 + (1T)
27A13(A33)% +3(A13)° + 504,3(As1)? + 184;3(A31)% + 754,3(As3)?] cos(36) = 0.
Insert (7) into (6) and perform the harmonic balance of sin(3wt).
(—9¢* + (@,)?)A;3sin(360) + 3Ew, wA;5 cos(36) +
iﬂl[(A11)3 + 6A413(A11)% + (36431433 + 9(A31)* + 25(As1)* + 10045, 453) A, + (12)
27A13(A33)% +3(A13)* + 504,3(As1)? + 184,3(431)% + 754,3(453)?] sin(36) = 0.
Again, the phase angle can be eliminated by squaring both sides of (11-12) and adding them
together. The sin(3 ) and cos(3 ) terms can be eliminated.
{(—9602 + (@) A5 + iﬁl[(l‘lny + 6A413(A11)? + (36431433 + 9(A31)* + 25(451)* +
100451 As3)A1; + 27A413(A33)% + 3(A13)° + 504,3(As1)* + 184,3(A431)% + (13)

75A13(A53)2]}2 + {35601(01413}2 =0.

Add a damping term in the second modal governing equation to obtain the following equation:

d?4;
dt2

dAs
dt

+ (03)*As+éwz =2 + B,[2404143 + A3(A1)? + 254;5(45)? + 94;5°]= Kz—i cos (wt). (14)

Consider two harmonic terms in the following approximation form:

A;(t) = Az cos(wt + 6) + A5 cos(3wt + 36). (15)
Insert (15) into (14) and perform the harmonic balance of cos(wt).

(—&* + (w3)*)A31 cos(6) — Sz @Az, sin(6) + %ﬂs [27(A31)% + 27A33(A31)% + (16)
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(3(A11)? + 50(As3)* + 2411413 + 54(A33)% + 2(A13)* + 5045, 453 + 75(A51)?) A3y +
4
Az3(A11)? + 25A33(As1)* + 100433451 As3 + 441, A13433] cos(6) = Kf{-

Insert (15) into (14) and perform the harmonic balance of sin(wt).

(—a? + (w3)?) A3, sin(0) + EwzwAsz, cos(6) +
%ﬁS [27(A31)% + 27A453(A31)? + (3(A11)? + 50(As3)? + 2413415 + 54(433)° + (17)
2(A13)? + 50451453 + 75(As1)?) A3y + A33(A11)? + 25433(As1)? + 10045345, 453 +

The phase angle can be eliminated by squaring both sides of (16-17) and adding them together.
The sin(6) and cos(#) terms can be eliminated.

(=0 + (@) 431 +3 B,[27(A31)° + 27A35(A31)? + (3(A11)? + 50(4s3)? +

2411413 + 54(A33)% 4+ 2(A13)* + 50451453 + 75(A51)*) A3y + Az3(411)* + (18)
2 Y

25A433(As1)* + 10043345, 453 + 4A11A13A33]} + {EwswAz, ) = {Kfr} .

Insert (15) into (14) and perform the harmonic balance of cos(3at).
(—9(02 + (0)3)2)1433 COS(S&) — 3§W3G)A33 Sln(3€) +
1
25 [9(A31)° + 54A433(A31)* + (4411413 + 25(As1)? + (A11)? + 100451 As3) Az + (19)
3433(A13)* + 2433(A11)* + 27(A33)° + 75A33(As3)? + 50433(As51)?] cos(36) = 0.

Insert (15) into (14) and perform the harmonic balance of sin(3wt).

(_9(02 + (a)3)2)A33 Sln(30) + 3§Q3CL)A33 COS(SQ) +

1

25 [9(A31)° + 54A433(A31)* + (4411413 + 25(As1)? + (A11)? + 100451 As3) Az + (20)
3A433(A13)* + 2433(A11)* + 27(A33)* + 75A33(A53)? 4+ 50433(4s51)?] sin(36) = 0.

The phase angle elimination process can be done by squaring both sides of (19-20) and adding
them together. The sin(3 ) and cos(3 #) terms can be eliminated.

1
(=967 + (0)%)A35 + 3 B,[9(A31)° + 54433 (A31)? + (4413415 + 25(As1)? + (Ar1)* +
10045, As53)Az1 + 3433(A13)% + 2433(A11)% 4+ 27(A33)° + 75433(As3)* + (21)

501433(1451)2]}2 + {363 wA33}* = 0.

Add a damping term in the third modal governing equation to obtain the following equation:

AIMS Mathematics Volume 11, Issue 1, 1202—1218.
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d?As
dt2

+ (@5)2As + Eas LB [2A0A1 A5 + As(A1)? + 945(A3)? + 25(4s)*]= k2 cos (at). (22)

Consider two harmonic terms in the following approximation form:
As(t) = Agq cos(awt + 6) + As; cos(3wt + 36). (23)
Insert (23) into (22) and perform the harmonic balance of cos(wt)
(—a? + (w5)?)Agq cos(8) — EwswAgq sin(6) +
%55[75(1451)3 + 75A453(As1)? + (18(433)* + 150(As3)* + 3(A11)* + 1843, 433 +

24
2411413 + 27(A31)% + 2(A13)?)Asy + 36A53A31A33 + As3(A11)? + 4453411415 + @4
9As3(A31)%] cos() = k2.

Insert (23) into (22) and perform the harmonic balance of sin(wt)
(—a? + (w5)?)Agq sin() + EwswAsq cos(6) +
1
Zﬂ5[75(1451)3 + 75A53(A51)* + (18(A433)* + 150(As3)* + 3(411)* + 18431433 + (25)

2411413 + 27(A31)* 4+ 2(A13)*)Asy + 36453431433 + As3(A11)* + 4453411413 +
9A53(A31)?] sin(6) = 0.

The phase angle can be eliminated by squaring both sides of (24-25) and adding them together.
The sin(#) and cos(6) terms can be eliminated.

{(—(02 + (ws)?)Asy

1
+ Zﬂ5[75(1451)3 + 75A453(451)?

+ (18(433)% + 150(A53)% + 3(A411)% + 1843, A33 + 24, A5 + 27(A3,)?
+ 2(A13)?)Asy + 36A53A31 433 + As3(A11)* + 4453411413
4g 2

+9Asa(Us)?l] + (Gomoner)? = fetd)

Insert (23) into (22) and perform the harmonic balance of cos(3wt).

(26)

(—961)2 + (0)5)2)1453 COS(39) - 35&)5(()1453 Sln(3l9) + iﬁS[ZS(A51)3 + 150A53(A51)2 +
(4411A13 + 36431455 + (A11)% + 9(A31)) A5y + 18453(A51)? + 27 As5(A35)% + (27)
2453(A11)% + 3453(A13)% + 75(4s3)3] cos(6) = 0.

Insert (23) into (22) and perform the harmonic balance of sin(3wt)

(_9(02 + (COS)Z)A53 Sln(39) + 350)50)1453 COS(39)
(28)
+iﬂ5 [25(A51)® + 150453(A51)* + (4411413 + 36431453 + (A11)* + 9(431)*) A5 +

AIMS Mathematics Volume 11, Issue 1, 1202—1218.
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18453(A31)* + 27As53(A33)? + 2453(A11)? + 3453(413)* + 75(4s53)°] sin(36) = 0.

The phase angle can be eliminated by squaring both sides of (27-28) and adding them together.
The sin(3 6) and cos(3 ) terms can be eliminated.

{(—9602 + (w5)*)As3

1
+ Zﬂ5 [25(A451)% + 150453(A451)?
+ (4A11A13 + 36451433 + (A11)? + 9(A31) P A5y + 18455(A31)? (29)
2
+ 27A55(A33)* + 2453(A11)* + 3453(A13)* + 75(1453)3]} + {3&ws wAs3}>
= 0.

From the above procedures, the six unknowns (i.e., A;1,A13, 433,435,451, and As3z) can be
found by solving the six equations (i.e., (10), (13), (18), (21), (26), and (29)). Note that if the classical
harmonic balance method are used, there would be twelve equations generated because twelve
unknowns are set in the solution form (see the following solution forms in the classical harmonic
method)

y(x,t) = (A1 sin(wt) + A3 sin(3wt) + By; cos(wt) + B3 cos(3wt)) sin (gx)

+(A3q sin(wt) + A3 sin(3wt) + B, cos(wt) + B33 cos(3wt)) sin (%”x) (30)
+(Asgq sin(wt) + Ags sin(3wt) + Bgy cos(wt) + Bss cos(3wt)) sin (%”x)

where Ajq,Aq3,A33,Azs, Asq, and Asz and Byq, By3, Bss, B3s, Bs1, and Bs; are the unknowns for
corresponding sine and cosine components. Hence, the advantage of the phase angle elimination is that
a smaller number of nonlinear equations are generated in the solution procedures. Due to the difference
between the solution forms of the phase angle elimination and classical harmonic balance methods,
the resonant peak values obtained from these two methods would deviate from each other in nonlinear
cases.

Then, the normalized modal impedances of the panel are given by

! ; ! 3 ! A
_dmom [+ ) + 3G o
L PaCa © '
Zy = P’fwsw-f[p’(-w2+<ws>2)+iﬁ'3<3‘3)2], (32)
PaCq @
, . ' 2 3 ! 1 )2
L _Peoso—jlp' o + () + 7F5(54)°] “
57 PaCaw ' >

where A; = Ayq +Ayz; Az = A3y +Azs; and Ag = Agy +Ass. B'1=PBp"s B3s=P,0:P's=

AIMS Mathematics Volume 11, Issue 1, 1202—1218.
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B p'; p' is the panel density per unit area; p, is the air density; and C, is the sound speed.

Consider the overall panel velocity contributed by the modal velocities and find the overall panel
impedance.

Ay Az A
%zpo(_1+_3+_5)

Zy Zz Zs
= (34)
Fy 1
=, T ey
Zy1 Z3 Zs
W2 42 42 4g. 4g 49
whereAlzn—z’ SIWJ Szﬁ’FlzKT’F3:K§,F5:K;,FO:Kg.

Figure 1 shows the impedance of the micro-holes over the panel surface. As shown in [15,16], the
real and imaginary parts of the micro-hole impedance are given by

_ PaCa h ) 100d2f d? 35)
Zug == (0.147d2 9+ — +1.768ﬁh ,

C
s = p“T“ 1.847fh

1 d
(1 T o) 66)

where f'=w/(2m), h is the panel thickness, and d is the perforation diameter. o is the perforation ratio.
Finally, according to the electro-acoustic analogy adopted in [16], the total impedance and
acoustic absorption of the micro-perforated panel backed by a cavity are given by

ZuZp

Ztotal = anv + Z—-|'Zp' (37)
M
a — 4RE(Ztotal)
fotal ™ (1 + RE(Zsorar))? + (IM(Zgorar))? (38)

where Z.,, is the cavity impedance and given by —jp,c, @ cot(a)D / c,)> D 1s the cavity depth.

3. Results and discussion

Figure 2 compares the results obtained from the numerical integration method [17] and the
proposed method. The material and physical properties of the curved metal panel are set as follows:
Young’s modulus £ = 71 x 10° N/m?, Poisson’s ratio v= 0.3, mass density p, = 2700 kg/m>, panel
length a = 300 mm, panel width b = 100 mm, panel thickness # = 2 mm, and damping ratio £= 0.01.
In Figure 2, the displacement amplitude is plotted against the excitation frequency. In general, the two
sets of results are in reasonable agreement with each other. A detectable discrepancy is found at the
nonlinear resonant peak around 100 to 110 Hz. Here, the peak frequencies from the two methods are
somewhat different because the phase angle in the proposed solution form, which represents the
damping and thus affects the peak value, is different from that in [17]. Tables 1-3 show the

AIMS Mathematics Volume 11, Issue 1, 1202—1218.
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convergence results for various excitation levels and excitation frequencies. In these cases, the
maximum vibration amplitude/panel thickness ratio is over 1.4, so these cases can be classified as
highly nonlinear. It can be seen that the two-mode and two-harmonic-term approach is accurate enough
for the numerical cases. Some other direct space—time discretization solution methods (e.g., the
structure-preserving algorithm in [1,2]) may be suitable for solving this nonlinear problem and can be
considered in further work.

o 1
®
:n_ ——  Proposed method
£, o1 P
L o
= O
58 001
$3
75150_001
=
g 0.0001
o

0.00001 T

10 100 1000

Excitation frequency, Hz

Figure 2. Comparison between the results obtained from the proposed method and
numerical simulation method.
Note: The panel amplitudes are normalized as 100%.

Table 1. Convergence result (2 panel modes; A,=0; &=0.01; and @ = 50 Hz).

k=005 =5 =30
1 harmonic term  99.98% 97.22% 86.17%
2 harmonic terms 100.00%  99.93% 98.73%
3 harmonic terms 100.00%* 100.00%* 100.00%*

Note: The panel amplitudes are normalized as 100%.

Table 2. Convergence result (2 panel modes; A,=0; &0.01; and @ = 100 Hz).

k=005 =5 =30
1 harmonic term  94.21% 94.07% 93.07%
2 harmonic terms 97.26% 97.45% 97.93%
3 harmonic terms 100.00%* 100.00%* 100.00%*

Note: The panel amplitudes are normalized as 100%.

Table 3. Convergence result (2 harmonic terms; A,=0; £&=0.01; and @ =400 Hz).

k=005 =35 =30
1 mode approach 73.15% 73.16% 73.41%
2 mode approach 99.99% 99.99% 99.99%
3 mode approach 100.00%* 100.00%* 100.00%*

AIMS Mathematics Volume 11, Issue 1, 1202—1218.
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Absorption coefficient,
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Figure 3. Absorption coefficient versus excitation frequency for various excitation levels
(x =2, 10, 30, from small to large excitations).

Figures 3 and 4 show the absorption plotted against the excitation frequency for various excitation
levels and damping ratios, neglecting any perforation effect. The material and physical properties of
the curved metal panel are set as follows: £ =200 x 10° N/m?, v= 0.3, p, = 7800 kg/m>, a = 200 mm,
b =100 mm, 42 = 0.8 mm, and the pre-set static middle deflection 4, = 2 mm. There are two peaks in
each of the two figures, which are caused by the resonances of the first and second modes, respectively.
Additionally, the so-called “jump” phenomenon is observed, which can be interpreted as indicating
multi-solution outcomes in the real world. The governing equation is a cubic nonlinear differential
equation and may have more than one solution in some frequency ranges. When a vibration response
type that represents one particular solution outcome changes to another response type, this can be
considered a jump phenomenon. It can be found that a stronger excitation or smaller damping ratio can
result in a wider resonant or absorption bandwidth and higher jump frequency, particularly for “jump-
down” cases. If the damping is too high or the excitation is too weak, there is no nonlinear behavior.
The peaks due to the first-mode resonance are higher than that of the second mode because of the
greater modal contribution. Generally, the higher the damping ratio is, the narrower the absorption
bandwidth is. In other words, to improve the absorption performance, the damping of the panel or the
panel thickness or curvature should be tuned appropriately. Figures 5—7 show the sound absorption by
a perforated panel backed by a cavity, plotted against the excitation frequency, for various excitation
levels. The perforation absorption peak frequency is around 140 Hz. There is a large trough in each figure,
which is caused by the cavity anti-resonance around 480 Hz. The vibrating-panel effect due to the second
mode is insignificant relative to the perforation effect. Generally, the absorption bandwidths in the jump-
down cases are wider than those in the jump-up cases. Note that there is no jump phenomenon in Figure
7 because the excitation level is too low. It can be seen that in the case of x = 30, the absorption
bandwidths of 300 to 400 Hz and 600 to 800 Hz are wider than those in the other two cases. Figures 8—
10 show three cases, in which the first-mode resonant frequencies are tuned to 84, 148, and 202 Hz,
respectively. There is a trough near the first-mode resonant frequency in each case. The air particle
movement around the perforation holes on the panel causes the sound absorption. However, when the
panel vibrates in the same direction as the air particle movement, the relative air particle movement
around the perforation decreases. Therefore, this negative vibrational effect offsets the positive
perforation effect. This implies that the resonant vibration effect can impair the absorption performance
if the panel resonant frequency is inappropriately set. From these figures, it can be seen that the nonlinear
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vibration effect generally enhances the absorption performance of a panel if the panel configuration is

appropriately tuned.
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Figure 4. Absorption coefficient versus excitation frequency for various damping ratios (§
=0.01, 0.03, 0.1, from small to large damping ratios).

Absorption coefficient,

dimensionless
o o o
N O

o
N

o

linear
Vibration + Pdrforation effect
perforation effect only
0 200 400 600 800

Excitation frequency, Hz

Figure 5. Absorption coefficient versus excitation frequency for the cases with/without

vibration effect (excitation level, k=2, small excitation).
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Figure 6. Absorption coefficient versus excitation frequency for the cases with/without

vibration effect (excitation level, k=10, moderate excitation).
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Figure 7. Absorption coefficient versus excitation frequency for the cases with/without
vibration effect (excitation level, k=30, large excitation).
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Figure 8. Absorption coefficient versus excitation frequency for the cases with/without
vibration effect (1% resonant frequency = 84 Hz).

« % 1st resonant freq. =148 Hz
oS
& 08
S a
= @
S 806
[
c Cc
L w
8 E04
8 ©
2 02 Vibration + Pgrforation effect
perforation effect only
0 - T T
0 200 400 600 800

Excitation frequency, Hz

Figure 9. Absorption coefficient versus excitation frequency for the cases with/without
vibration effect (1% resonant frequency = 148 Hz).
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Figure 10. Absorption coefficient versus excitation frequency for the cases with/without
vibration effect (1% resonant frequency = 202 Hz).

4. Conclusions

In this paper, we have presented the absorption analysis of nonlinear multi-mode panel absorber
using a phase angle elimination method, which is newly applied to this nonlinear structural acoustic
problem. The nonlinear modal formulation is developed from the partial governing equations, which
represent the large-amplitude structural vibration of a curved panel absorber. The results obtained from
the proposed solution method and numerical method are generally in good agreement. The effects of
excitation magnitude, pre-set static deflection, and damping ratio are investigated. It can be concluded
that: 1) A stronger excitation or smaller damping ratio can result in a wider resonant or absorption
bandwidth and higher jump frequencies; 2) the higher the damping ratio is, the lower the absorption
peak is; and 3) the panel resonant frequency can be increased by pre-setting the initial deflection profile,
ensuring that the resonant vibration has a positive effect on the absorption bandwidth. However, the
panel resonant vibration effect can worsen the absorption performance if the panel resonant frequency
is set near or below the perforation absorption peak frequency.
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