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Abstract: In this paper, we addressed the absorption of sound by a nonlinear multi-mode panel 

absorber. Nonlinear structural vibration has been greatly investigated in recent decades, but very few 

researchers have considered structural nonlinearities in structural–acoustic models. Importantly, the 

first structural resonant frequency of a perforated panel absorber with typical dimensions is much lower 

than the absorption peak frequency. The results of this study indicated that such resonant vibration 

cannot enhance the absorption performance. Thus, a novel approach was proposed, namely to increase 

the first nonlinear panel resonant frequency by pre-setting the initial deflection profile, enabling the 

resonant vibration effect to be used for widening the absorption bandwidth. A new solution method, 

termed the phase angle elimination method, was developed for cases of damped nonlinear vibration. 

The principle of the method was to transform the nonlinear governing equation of a perforated panel 

into a set of multi-mode formulations. A numerical case study was conducted to examine the effects of 

various parameters on the absorption performance. 
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1. Introduction  

In this paper, we present an innovative sound-absorption technique and a classical solution 
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method for the resulting governing equations. The innovative technique involves increasing the panel 

resonant frequency of an absorber by pre-setting the initial deflection profile to widen the absorption 

bandwidth. The method of solving the nonlinear governing equation, termed the phase angle 

elimination method, involves eliminating the phase angles by squaring and adding the nonlinear 

equations generated in the harmonic balance process. The conventional linear damping assumption is 

adopted in the modeling procedure. To calculate the absorption coefficient, the impedances of the 

structural and acoustic items are obtained and combined.  

Tunable acoustic metamaterials, nonlinear panel vibration, linear sound absorption, and vibration 

have attracted widespread research interest. Most researchers investigating the areas of structural 

dynamics and acoustics have focused on theoretical modeling and solution method development 

without any experimentation. For example, Hu et al. [1] presented a modeling and dynamic analysis 

on spar-type floating offshore wind turbines system via structure-preserving iterative method. They 

developed a coupled dynamic model based on the Hamilton's variational principle and generalized 

multi-symplectic method. The dynamic responses of the spar-type floating offshore wind turbines 

system were studied for various wind field cases. Xi et al. [2] studied a hub-cracked beam with hollow 

tapered cross-section using a structure-preserving method. An iteration approach was used to develop 

a coupled dynamic model for the planar rotation and the transverse vibration of the system. The effects 

of the crack's parameters on the various stabilities were examined in the numerical simulations. The 

accuracy of the proposed method was also verified by a finite element method. Hu et al. [3] investigated 

the coupling dynamic behaviors of flexible thin-walled tapered hub-beam with a tip mass. The 

governing equations representing the coupling system were developed. Then, the formulations with 

dynamic symmetry-breaking factor were obtained for the vibration of the system using the Preissmann 

scheme. From the results, the contour lines of the stable vibration amplitude showed the important 

effects of the tip mass on the dynamic responses. Kan et al. [4] reproduced the vibration localization 

in a mistuned bladed disk system. They considered the morphological characteristics and the micro-

dynamic behaviors to establish an improved dry friction model to study the coupling effects and the 

dynamic responses of the entire bladed disk system. In the numerical results, the phenomenon of 

vibration localization was generated and various influences were revealed. Some have focused solely 

on either the nonlinear vibrational responses or the acoustic properties, without addressing both. Chen 

et al.’s [5] review highlighted advances in the technology of tunable acoustic metamaterials based on 

modulation techniques. Such techniques are principally developed to extend the acoustic response into 

wider frequency bands, creating tunable acoustic metamaterials capable of good acoustic performance 

for specific applications. These and other technologies for improving acoustic performance (e.g., 

mechanical loading, magnetic control, and active control) are based on very different principles from 

those that exploit nonlinear/large-deflection vibration phenomena, which usually do not require 

additional devices or special materials (e.g., magnetic control/active control systems, damping 

materials, and metamaterials). In this study, a technique based on tuning the structural properties of a 

conventional material to induce nonlinear phenomena is developed, aiming to improve the acoustic 

performance. Pandey et al. [6] presented a thermoelastic stability analysis of laminated composite 

plates. Higher-order shear deformation theory and von-Karman nonlinear kinematics were adopted in 

developing the mathematical formulations of the problem, which exhibited cubic nonlinearity owing 

to the shear deformable elastic foundation. The nonlinear governing equations were solved by a two-

part procedure: First using the quadratic extrapolation technique for linearization, then using the fast-

converging finite double Chebyshev series for spatial discretization. The effects of various parameters 
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on the buckling and postbuckling responses were studied. Li and Yao [7] proposed a double-mode 

model representing the nonlinear flexural vibration of a sandwiched thin panel with a symmetric 

rectangular honeycomb geometry. The Galerkin method and homotopy analysis were used to derive 

and solve the two major coupled nonlinear governing equations, and the primary and harmonic 

resonances were analyzed. The proposed method was used to identify the softening and hardening 

nonlinear characteristics. Shahmohammadi et al. [8] addressed the geometrically nonlinear and size-

dependent responses of shallow, sandwiched, curved micro-panels. The governing equations were 

obtained using a modified first-order shear deformation theory and the Galerkin method. The effects 

of mechanical and geometrical properties on the forced vibrations were investigated. Zheng et al. [9] 

analyzed the acoustic characteristics of an ultra-micro-perforated panel absorber under oblique 

incidence using finite element simulations and discrete integral calculations. It was found that the 

sound absorption was optimized in the case of 45-degree incidence. The proposed absorber achieved 

an average absorption coefficient of 0.9 across the medium to high frequency range. Lee et al. [10] 

conducted a theoretical and experimental analysis of a finite flexible micro-perforated panel absorber. 

Absorption was optimized by appropriately selecting the perforation and structural parameters based 

on a parametric analysis. The absorption bandwidth was found to widen when the linear structural 

resonant frequency was set higher than the absorption peak frequency caused by the perforations. 

Nonlinear structural acoustics has been relatively rarely studied. Lee [11] presented a study of 

absorption by a flat panel absorber under the influence of perforation, air pumping, and nonlinear 

vibration. A simple single-mode approach was adopted to develop a concise absorption formula. This 

study differs from that of Lee [11] in several respects, including the pre-set deflection profile and 

solution method. Lee et al. [12] theoretically and experimentally investigated the sound absorption of 

a nonlinearly vibrating curved panel. The theoretical formulation was developed based on the 

assumptions of quadratic and cubic nonlinear structural vibrations, linear damping, and linear acoustics. 

Indeed, most structural or acoustic models have employed linear damping assumptions (e.g., [13]). 

The reported theoretical and experimental observations have generally been in agreement. Some 

discrepancies around the resonant peaks and resonant frequency shifts have been observed, attributed 

to the assumptions of linear damping and ideal boundary conditions. Zhou et al. [14] used a nonlinear 

vibration absorber to suppress the nonlinear response of a panel flutter in supersonic airflow. The 

nonlinear aero-elastic equations of a three-dimensional panel were established using Galerkin’s 

method and piston aerodynamic theory. The results showed that the nonlinear aero-elastic responses 

of the panel were significantly reduced by recurrent transient resonance capture and permanent 

resonance capture in the suppression region. As mentioned, few researchers have incorporated 

structural nonlinearity into their vibro-acoustic models, and those that have done so focused on very 

specific problems unrelated to that in this paper. 

2. Theoretical formulation 

Consider a panel with a pre-static deflection profile backed by a cavity (see Figure 1). Before 

obtaining the absorption coefficient, the panel impedance is derived using the phase angle elimination 

method. Then, the cavity and perforation impedances are considered and combined with the panel 

impedance using the electro-acoustic analogy. The governing equation of the panel with a pre-static 

deflection profile is given by [12]. 
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Figure 1. A panel with a pre-static deflection profile backed by a cavity. 
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where 𝜌 is the panel density per unit length; 𝐸 is Young’s modulus; I is the second moment of area; 𝑦𝑜 

is the initial deflection profile (i.e., 𝐴𝑜 sin (

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𝑥))), 𝐴𝑜 is the initial center deflection); a, b, and h are 

the panel length, width, and thickness, respectively; 𝐹(𝑡) = 𝜌𝑔 cos(𝑡) ;  is a dimensionless 

excitation parameter;  is the excitation frequency; g is gravity; and y is the transverse displacement, 

which can be expressed in the following form 
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In Eq (1), the nonlinear modal coupling terms come from 
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represents the nonlinear structural stiffness. It can be seen that if the pre-set deflection 𝑦𝑜 is increased, 

then the nonlinear modal coupling effects between 𝐴1, 𝐴3, and 𝐴5 in Eq (2) will also increase. In 

this study, a three-mode approach is adopted. The corresponding modal equations are derived (in the 

next section, it is proven that this three-mode approach is accurate enough). The first modal reduction 
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Add a damping term into the first modal governing equation to obtain the following equation: 
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where  is the linear damping ratio. 

Consider two harmonic terms in the following approximation form:  

𝐴1(𝑡) = 𝐴11 cos(𝑡 + ) + 𝐴13 cos(3𝑡 + 3) (7) 

Insert (7) into (6) and perform the harmonic balance of cos(𝑡). 
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Insert (7) into (6) and perform the harmonic balance of sin(𝑡): 
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(−2 + (1)2)𝐴11 sin() + 1𝐴11 cos() + 

1
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The phase angle can be eliminated by squaring both sides of (8-9) and adding them together. Then, 
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Insert (7) into (6) and perform the harmonic balance of cos(3𝑡). 
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(11) 

Insert (7) into (6) and perform the harmonic balance of sin(3𝑡). 
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(12) 

Again, the phase angle can be eliminated by squaring both sides of (11-12) and adding them 

together. The sin(3) and cos(3) terms can be eliminated. 
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Add a damping term in the second modal governing equation to obtain the following equation: 
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Consider two harmonic terms in the following approximation form:  
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Insert (15) into (14) and perform the harmonic balance of cos(𝑡). 
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(3(𝐴11)2 + 50(𝐴53)2 + 2𝐴11𝐴13 + 54(𝐴33)2 + 2(𝐴13)2 + 50𝐴51𝐴53 + 75(𝐴51)2)𝐴31 +

𝐴33(𝐴11)2 + 25𝐴33(𝐴51)2 + 100𝐴33𝐴51𝐴53 + 4𝐴11𝐴13𝐴33] cos() = 
4𝑔

3
. 

Insert (15) into (14) and perform the harmonic balance of sin(𝑡). 
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2(𝐴13)2 + 50𝐴51𝐴53 + 75(𝐴51)2)𝐴31 + 𝐴33(𝐴11)2 + 25𝐴33(𝐴51)2 + 100𝐴33𝐴51𝐴53 +

4𝐴11𝐴13𝐴33] sin() = 0. 

(17) 

The phase angle can be eliminated by squaring both sides of (16-17) and adding them together. 

The sin() and cos() terms can be eliminated. 
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1

4
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3
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2𝐴11𝐴13 + 54(𝐴33)2 + 2(𝐴13)2 + 50𝐴51𝐴53 + 75(𝐴51)2)𝐴31 + 𝐴33(𝐴11)2 +

25𝐴33(𝐴51)2 + 100𝐴33𝐴51𝐴53 + 4𝐴11𝐴13𝐴33]}
2

+ {3𝐴31}2 = {
4𝑔

3
}

2
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(18) 

Insert (15) into (14) and perform the harmonic balance of cos(3𝑡). 

(−92 + (3)2)𝐴33 cos(3) − 33𝐴33 sin(3) + 

1

4


3
[9(𝐴31)3 + 54𝐴33(𝐴31)2 + (4𝐴11𝐴13 + 25(𝐴51)2 + (𝐴11)2 + 100𝐴51𝐴53)𝐴31 +

3𝐴33(𝐴13)2 + 2𝐴33(𝐴11)2 + 27(𝐴33)3 + 75𝐴33(𝐴53)2 + 50𝐴33(𝐴51)2] cos(3) = 0. 

(19) 

Insert (15) into (14) and perform the harmonic balance of sin(3𝑡). 

(−92 + (3)2)𝐴33 sin(3) + 33𝐴33 cos(3) + 

1

4


3
[9(𝐴31)3 + 54𝐴33(𝐴31)2 + (4𝐴11𝐴13 + 25(𝐴51)2 + (𝐴11)2 + 100𝐴51𝐴53)𝐴31 +

3𝐴33(𝐴13)2 + 2𝐴33(𝐴11)2 + 27(𝐴33)3 + 75𝐴33(𝐴53)2 + 50𝐴33(𝐴51)2] sin(3) = 0. 

(20) 

The phase angle elimination process can be done by squaring both sides of (19-20) and adding 

them together. The sin(3) and cos(3) terms can be eliminated. 

{(−92 + (3)2)𝐴33 +
1

4


3
[9(𝐴31)3 + 54𝐴33(𝐴31)2 + (4𝐴11𝐴13 + 25(𝐴51)2 + (𝐴11)2 +

100𝐴51𝐴53)𝐴31 + 3𝐴33(𝐴13)2 + 2𝐴33(𝐴11)2 + 27(𝐴33)3 + 75𝐴33(𝐴53)2 +

50𝐴33(𝐴51)2]}
2

+ {33𝐴33}2 = 0. 

(21) 

Add a damping term in the third modal governing equation to obtain the following equation: 
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d2𝐴5

d𝑡2 + (5)2𝐴5 + 5
𝑑𝐴5

d𝑡
+

5
[2𝐴0𝐴1𝐴5 + 𝐴5(𝐴1)2 + 9𝐴5(𝐴3)2 + 25(𝐴5)3]= 

4𝜌𝑎𝑔

5
cos (𝑡). (22) 

Consider two harmonic terms in the following approximation form:  

𝐴5(𝑡) = 𝐴51 cos(𝑡 + ) + 𝐴53 cos(3𝑡 + 3). (23) 

Insert (23) into (22) and perform the harmonic balance of cos(𝑡) 

(−2 + (5)2)𝐴51 cos() − 5𝐴51 sin() + 

1

4


5
[75(𝐴51)3 + 75𝐴53(𝐴51)2 + (18(𝐴33)2 + 150(𝐴53)2 + 3(𝐴11)2 + 18𝐴31𝐴33 +

2𝐴11𝐴13 + 27(𝐴31)2 + 2(𝐴13)2)𝐴51 + 36𝐴53𝐴31𝐴33 + 𝐴53(𝐴11)2 + 4𝐴53𝐴11𝐴13 +

9𝐴53(𝐴31)2] cos() =  
4𝑔

5
. 

(24) 

Insert (23) into (22) and perform the harmonic balance of sin(𝑡) 

(−2 + (5)2)𝐴51 sin() + 5𝐴51 cos() + 

1

4


5
[75(𝐴51)3 + 75𝐴53(𝐴51)2 + (18(𝐴33)2 + 150(𝐴53)2 + 3(𝐴11)2 + 18𝐴31𝐴33 +

2𝐴11𝐴13 + 27(𝐴31)2 + 2(𝐴13)2)𝐴51 + 36𝐴53𝐴31𝐴33 + 𝐴53(𝐴11)2 + 4𝐴53𝐴11𝐴13 +

9𝐴53(𝐴31)2] sin() = 0. 

(25) 

The phase angle can be eliminated by squaring both sides of (24-25) and adding them together. 

The sin() and cos() terms can be eliminated. 

{(−2 + (5)2)𝐴51

+
1

4


5
[75(𝐴51)3 + 75𝐴53(𝐴51)2

+ (18(𝐴33)2 + 150(𝐴53)2 + 3(𝐴11)2 + 18𝐴31𝐴33 + 2𝐴11𝐴13 + 27(𝐴31)2

+ 2(𝐴13)2)𝐴51 + 36𝐴53𝐴31𝐴33 + 𝐴53(𝐴11)2 + 4𝐴53𝐴11𝐴13

+ 9𝐴53(𝐴31)2]}
2

+ {5𝐴51}2 = {
4𝑔

5
}

2

. 

(26) 

Insert (23) into (22) and perform the harmonic balance of cos(3𝑡). 

(−92 + (5)2)𝐴53 cos(3) − 35𝐴53 sin(3) +
1

4


5
[25(𝐴51)3 + 150𝐴53(𝐴51)2 +

(4𝐴11𝐴13 + 36𝐴31𝐴33 + (𝐴11)2 + 9(𝐴31)2)𝐴51 + 18𝐴53(𝐴31)2 + 27𝐴53(𝐴33)2 +

2𝐴53(𝐴11)2 + 3𝐴53(𝐴13)2 + 75(𝐴53)3] cos() =  0. 

(27) 

Insert (23) into (22) and perform the harmonic balance of sin(3𝑡) 

(−92 + (5)2)𝐴53 sin(3) + 35𝐴53 cos(3) 

+
1

4


5
[25(𝐴51)3 + 150𝐴53(𝐴51)2 + (4𝐴11𝐴13 + 36𝐴31𝐴33 + (𝐴11)2 + 9(𝐴31)2)𝐴51 +

(28) 
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18𝐴53(𝐴31)2 + 27𝐴53(𝐴33)2 + 2𝐴53(𝐴11)2 + 3𝐴53(𝐴13)2 + 75(𝐴53)3] sin(3) = 0. 

The phase angle can be eliminated by squaring both sides of (27-28) and adding them together. 

The sin(3) and cos(3) terms can be eliminated. 

{(−92 + (5)2)𝐴53

+
1

4


5
[25(𝐴51)3 + 150𝐴53(𝐴51)2

+ (4𝐴11𝐴13 + 36𝐴31𝐴33 + (𝐴11)2 + 9(𝐴31)2)𝐴51 + 18𝐴53(𝐴31)2

+ 27𝐴53(𝐴33)2 + 2𝐴53(𝐴11)2 + 3𝐴53(𝐴13)2 + 75(𝐴53)3]}
2

+ {35𝐴53}2

= 0. 

(29) 

From the above procedures, the six unknowns (i.e., 𝐴11, 𝐴13, 𝐴33, 𝐴35, 𝐴51 , and 𝐴53 ) can be 

found by solving the six equations (i.e., (10), (13), (18), (21), (26), and (29)). Note that if the classical 

harmonic balance method are used, there would be twelve equations generated because twelve 

unknowns are set in the solution form (see the following solution forms in the classical harmonic 

method)  

𝑦(𝑥, 𝑡) = (𝐴11 sin(𝑡) + 𝐴13 sin(3𝑡) + 𝐵11 cos(𝑡) + 𝐵13 cos(3𝑡)) sin (


𝑎
𝑥) 

            +(𝐴31 sin(𝑡) + 𝐴33 sin(3𝑡) + 𝐵31 cos(𝑡) + 𝐵33 cos(3𝑡)) sin (
3

𝑎
𝑥) 

            +(𝐴51 sin(𝑡) + 𝐴53 sin(3𝑡) + 𝐵51 cos(𝑡) + 𝐵53 cos(3𝑡)) sin (
5

𝑎
𝑥), 

(30) 

where 𝐴11, 𝐴13, 𝐴33, 𝐴35, 𝐴51, 𝑎𝑛𝑑  𝐴53 and 𝐵11, 𝐵13, 𝐵33, 𝐵35, 𝐵51, 𝑎𝑛𝑑 𝐵53 are the unknowns for 

corresponding sine and cosine components. Hence, the advantage of the phase angle elimination is that 

a smaller number of nonlinear equations are generated in the solution procedures. Due to the difference 

between the solution forms of the phase angle elimination and classical harmonic balance methods, 

the resonant peak values obtained from these two methods would deviate from each other in nonlinear 

cases. 

Then, the normalized modal impedances of the panel are given by 

𝑍1 =
𝜌′1 − 𝑗 [𝜌′(−2 + (1)2) +

3
4

′1(𝐴̅1)2]

𝜌𝑎𝐶𝑎 
, 

(31) 

𝑍3 =
𝜌′3−𝑗[𝜌′(−2+(3)2)+

3

4
′3(3𝐴̅3)2]

𝜌𝑎𝐶𝑎 
, (32) 

𝑍5 =
𝜌′5 − 𝑗 [𝜌′(−2 + (5)2) +

3
4 ′5(5𝐴̅5)2]

𝜌𝑎𝐶𝑎
. (33) 

where 𝐴̅1 = 𝐴11 + 𝐴13 ; 𝐴̅3 = 𝐴31 + 𝐴33 ; and 𝐴̅5 = 𝐴51 + 𝐴53 . ′1 = 
1

𝜌′ ; ′3 = 
3

𝜌′ ;  ′5 =
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
5

𝜌′; 𝜌′ is the panel density per unit area; 𝜌𝑎 is the air density; and 𝐶𝑎 is the sound speed.  

Consider the overall panel velocity contributed by the modal velocities and find the overall panel 

impedance. 

𝑉𝑝 = 𝐹𝑜 (
1

𝑍1
+

3

𝑍3
+

5

𝑍5
) 

 

𝑍𝑝 =
𝐹𝑜

𝑉𝑝
=

1

(
1
𝑍1

+
3
𝑍3

+
5
𝑍5

)
, 

(34) 

where 1 =
4√2

2 ; 3 =
4√2

92 ; 5 =
4√2

252 ; 𝐹1 = 
4𝑔


; 𝐹3 = 

4𝑔

3
 ; 𝐹5 = 

4𝑔

5
 ; 𝐹𝑜 = 𝑔. 

Figure 1 shows the impedance of the micro-holes over the panel surface. As shown in [15,16], the 

real and imaginary parts of the micro-hole impedance are given by 

𝑍𝑀,𝑅 =
𝜌𝑎𝑐𝑎


(0.147

ℎ

𝑑2
) (√9 +

100𝑑2𝑓

32
+ 1.768√𝑓

𝑑2

ℎ
), (35) 

𝑍𝑀,𝐼 =
𝜌𝑎𝑐𝑎


1.847𝑓ℎ (1 +

1

√9 + 50𝑑2𝑓
+ 0.85

𝑑

ℎ
), 

(36) 

where f =/(2), h is the panel thickness, and d is the perforation diameter.  is the perforation ratio.  

Finally, according to the electro-acoustic analogy adopted in [16], the total impedance and 

acoustic absorption of the micro-perforated panel backed by a cavity are given by  

𝑍𝑡𝑜𝑡𝑎𝑙 = 𝑍𝑐𝑎𝑣 +
𝑍𝑀𝑍𝑃

𝑍𝑀 + 𝑍𝑃
, (37) 

𝑡𝑜𝑡𝑎𝑙 =
4RE(𝑍𝑡𝑜𝑡𝑎𝑙)

(1 + RE(𝑍𝑡𝑜𝑡𝑎𝑙))2 + (IM(𝑍𝑡𝑜𝑡𝑎𝑙))2
 (38) 

where 𝑍𝑐𝑎𝑣 is the cavity impedance and given by −𝑗𝜌𝑎𝑐𝑎 cot(𝐷
𝑐𝑎

⁄ ); D is the cavity depth.  

3. Results and discussion  

Figure 2 compares the results obtained from the numerical integration method [17] and the 

proposed method. The material and physical properties of the curved metal panel are set as follows: 

Young’s modulus E = 71  109 N/m2, Poisson’s ratio  = 0.3, mass density p = 2700 kg/m3, panel 

length a = 300 mm, panel width b = 100 mm, panel thickness h = 2 mm, and damping ratio  = 0.01. 

In Figure 2, the displacement amplitude is plotted against the excitation frequency. In general, the two 

sets of results are in reasonable agreement with each other. A detectable discrepancy is found at the 

nonlinear resonant peak around 100 to 110 Hz. Here, the peak frequencies from the two methods are 

somewhat different because the phase angle in the proposed solution form, which represents the 

damping and thus affects the peak value, is different from that in [17]. Tables 1–3 show the 
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convergence results for various excitation levels and excitation frequencies. In these cases, the 

maximum vibration amplitude/panel thickness ratio is over 1.4, so these cases can be classified as 

highly nonlinear. It can be seen that the two-mode and two-harmonic-term approach is accurate enough 

for the numerical cases. Some other direct space–time discretization solution methods (e.g., the 

structure-preserving algorithm in [1,2]) may be suitable for solving this nonlinear problem and can be 

considered in further work.  

 

Figure 2. Comparison between the results obtained from the proposed method and 

numerical simulation method. 

Note: The panel amplitudes are normalized as 100%. 

Table 1. Convergence result (2 panel modes; 𝐴𝑜=0; =0.01; and  = 50 Hz).  

  = 0.05  = 5 = 30 

1 harmonic term  99.98% 97.22% 86.17% 

2 harmonic terms 100.00% 99.93% 98.73% 

3 harmonic terms 100.00%* 100.00%* 100.00%* 

Note: The panel amplitudes are normalized as 100%. 

Table 2. Convergence result (2 panel modes; 𝐴𝑜=0; =0.01; and  = 100 Hz). 

  = 0.05  = 5 = 30 

1 harmonic term  94.21% 94.07% 93.07% 

2 harmonic terms 97.26% 97.45% 97.93% 

3 harmonic terms 100.00%* 100.00%* 100.00%* 

Note: The panel amplitudes are normalized as 100%. 

Table 3. Convergence result (2 harmonic terms; 𝐴𝑜=0; =0.01; and  = 400 Hz). 

  = 0.05  = 5 = 30 

1 mode approach 73.15% 73.16% 73.41% 

2 mode approach 99.99% 99.99% 99.99% 

3 mode approach 100.00%* 100.00%* 100.00%* 
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Figure 3. Absorption coefficient versus excitation frequency for various excitation levels 

( = 2, 10, 30, from small to large excitations). 

Figures 3 and 4 show the absorption plotted against the excitation frequency for various excitation 

levels and damping ratios, neglecting any perforation effect. The material and physical properties of 

the curved metal panel are set as follows: E = 200  109 N/m2,  = 0.3, p = 7800 kg/m3, a = 200 mm, 

b = 100 mm, h = 0.8 mm, and the pre-set static middle deflection Ao = 2 mm. There are two peaks in 

each of the two figures, which are caused by the resonances of the first and second modes, respectively. 

Additionally, the so-called “jump” phenomenon is observed, which can be interpreted as indicating 

multi-solution outcomes in the real world. The governing equation is a cubic nonlinear differential 

equation and may have more than one solution in some frequency ranges. When a vibration response 

type that represents one particular solution outcome changes to another response type, this can be 

considered a jump phenomenon. It can be found that a stronger excitation or smaller damping ratio can 

result in a wider resonant or absorption bandwidth and higher jump frequency, particularly for “jump-

down” cases. If the damping is too high or the excitation is too weak, there is no nonlinear behavior. 

The peaks due to the first-mode resonance are higher than that of the second mode because of the 

greater modal contribution. Generally, the higher the damping ratio is, the narrower the absorption 

bandwidth is. In other words, to improve the absorption performance, the damping of the panel or the 

panel thickness or curvature should be tuned appropriately. Figures 5–7 show the sound absorption by 

a perforated panel backed by a cavity, plotted against the excitation frequency, for various excitation 

levels. The perforation absorption peak frequency is around 140 Hz. There is a large trough in each figure, 

which is caused by the cavity anti-resonance around 480 Hz. The vibrating-panel effect due to the second 

mode is insignificant relative to the perforation effect. Generally, the absorption bandwidths in the jump-

down cases are wider than those in the jump-up cases. Note that there is no jump phenomenon in Figure 

7 because the excitation level is too low. It can be seen that in the case of   = 30, the absorption 

bandwidths of 300 to 400 Hz and 600 to 800 Hz are wider than those in the other two cases. Figures 8–

10 show three cases, in which the first-mode resonant frequencies are tuned to 84, 148, and 202 Hz, 

respectively. There is a trough near the first-mode resonant frequency in each case. The air particle 

movement around the perforation holes on the panel causes the sound absorption. However, when the 

panel vibrates in the same direction as the air particle movement, the relative air particle movement 

around the perforation decreases. Therefore, this negative vibrational effect offsets the positive 

perforation effect. This implies that the resonant vibration effect can impair the absorption performance 

if the panel resonant frequency is inappropriately set. From these figures, it can be seen that the nonlinear 
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vibration effect generally enhances the absorption performance of a panel if the panel configuration is 

appropriately tuned. 

 

Figure 4. Absorption coefficient versus excitation frequency for various damping ratios ( 

= 0.01, 0.03, 0.1, from small to large damping ratios). 

 

Figure 5. Absorption coefficient versus excitation frequency for the cases with/without 

vibration effect (excitation level, =2, small excitation). 

 

Figure 6. Absorption coefficient versus excitation frequency for the cases with/without 

vibration effect (excitation level, =10, moderate excitation). 
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Figure 7. Absorption coefficient versus excitation frequency for the cases with/without 

vibration effect (excitation level, =30, large excitation). 

 

Figure 8. Absorption coefficient versus excitation frequency for the cases with/without 

vibration effect (1st resonant frequency = 84 Hz). 

 

Figure 9. Absorption coefficient versus excitation frequency for the cases with/without 

vibration effect (1st resonant frequency = 148 Hz). 
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Figure 10. Absorption coefficient versus excitation frequency for the cases with/without 

vibration effect (1st resonant frequency = 202 Hz). 

4. Conclusions  

In this paper, we have presented the absorption analysis of nonlinear multi-mode panel absorber 

using a phase angle elimination method, which is newly applied to this nonlinear structural acoustic 

problem. The nonlinear modal formulation is developed from the partial governing equations, which 

represent the large-amplitude structural vibration of a curved panel absorber. The results obtained from 

the proposed solution method and numerical method are generally in good agreement. The effects of 

excitation magnitude, pre-set static deflection, and damping ratio are investigated. It can be concluded 

that: 1) A stronger excitation or smaller damping ratio can result in a wider resonant or absorption 

bandwidth and higher jump frequencies; 2) the higher the damping ratio is, the lower the absorption 

peak is; and 3) the panel resonant frequency can be increased by pre-setting the initial deflection profile, 

ensuring that the resonant vibration has a positive effect on the absorption bandwidth. However, the 

panel resonant vibration effect can worsen the absorption performance if the panel resonant frequency 

is set near or below the perforation absorption peak frequency. 
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