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Abstract: This paper proposes a flexible probability mass function for modeling count data, particularly
over-dispersed and asymmetric observations. A novel two-parameter discrete distribution, the discrete
power inverted Topp—Leone distribution, is presented using a survival discretization technique. The
following statistical characteristics are examined: factorial moments, probability-generating function,
quantiles, mean, variance, mean residual life, and entropy measures. The best estimators of the unknown
parameters were obtained using various techniques, such as maximum likelihood, moments, least
squares, Anderson—Darling, and Cramér-von Mises. A simulation study showed that the accuracy of the
estimates improves with larger samples, although higher parameter values may affect precision. The
findings indicate that the efficiency of these estimation methods varies under different conditions.
Applications to liver lesions, chromatid aberrations, and criminal sociology datasets confirm the model’s
usefulness for discrete count data in fields such as social sciences, pharmacology, and environmental
health. Finally, for modeling count data, the new probabilistic model can be employed as a competitive
alternative to other existing distributions.
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1. Introduction

In a variety of disciplines, such as applied science, epidemiology, agriculture, sociology, public
health, and medicine, count data modeling is crucial. Although many probability distributions have been
developed to model count data, more flexible discrete distributions are required to handle count datasets
with high over-dispersion. The widely used traditional discrete probability models, such as Poisson,
geometric, and negative binomial distributions, have limitations because of their unique behaviors. For
example, the Poisson distribution works best with datasets with equidispersion, while the negative
binomial distribution works best with datasets that are overly dispersed. Flexible discrete distributions
always require a good resolution because real-life datasets can be either over- or under-dispersed. There
are several ways to discretize continuous distributions, such as infinite series methods, mixed-Poisson
models, and survival discretization, the most widely applied of these [1]. More specifically, if /W is a
continuous random variable with survival function (SF), S(w) =P(W = w),then P(W =w) =
PwsW<w+1)=PW=w)—-PW=w+1)=Sw)—-Sw+1), w=0,1, 2,..., gives the
probability mass function (PMS) of its analogue discrete random variable W with support for the set of
nonnegative integer numbers.

The discretization of continuous probability distributions has received a lot of attention in recent
decades. Additionally, numerous authors presented new discrete models, some of which are listed as
follows: discrete Weibull distribution [2], discrete Burr (DBurr) and Pareto distributions [3], discrete
inverse Weibull (DIW) distribution [4], discrete generalized Burr-XII distribution [5], discrete log-
logistic distribution (DLL) [6], discrete extended Weibull distribution [7], discrete Burr-Hatke
distribution [8], discrete Xgamma distribution [9], discrete Bilal distribution [10], discrete Teissier
distribution [11], discrete inverted Topp—Leone distribution [12], discrete Nadharajah-Haghighi
distribution [13], discrete two-parameter Lindley distribution [14], discrete Marshall-Olkin-Weibull
distribution [15], discrete Gumbel distribution [16], discrete Ramos-Louzada distribution [17], discrete
quasi Xgamma distribution [18], discrete new XLindley distribution [19], discrete inverted
Kumaraswamy (DIKU) distribution [20], discrete Marshall-Olkin Burr XII distribution[21], and discrete
Muth distribution [22].

Even though there are many different lifetime data distributions available, there is still a need for
more adaptable models that can capture complex data behavior in a range of scenarios. The continuous
power inverted Topp-Leone (PITL) distribution introduced by [23] has proven useful in a variety of
reliability scenarios. The cumulative distribution function (CDF) and SF of the PITL model are given,
respectively, by:

1+2wm¥
Fwi¢) = 1= [T in e w > 0, (1)
and
(1+ 2w
Swi¢) = ——,
(w;¢) L+ Wiy

where k and 7 are shape parameters and ¢ = (k,7n)7 is the parameter set. The CDF (1) reduces to
inverted Topp-Leone distribution as proposed by [24]. As mentioned by [23], the PITL distribution has
proven useful in the engineering field and has multiple applications in various fields, as investigated by
numerous researchers (see, e.g., El-Saeed et al. [25], Nassr et al. [26], Ibrahim et al. [27], and Hassan

AIMS Mathematics Volume 11, Issue 1, 1145-1174.



1147

and Almetwally [28]).
In many fields, count data are frequently too dispersed, which makes traditional statistical models
difficult to use. We provide the discrete PITL (DPITL) distribution as a solution to this problem. In order
to efficiently model over-dispersed discrete data, we primarily contribute by introducing the DPITL
distribution, which is derived from the survival discretization method. It should be noted that the discrete
ITL (DITL) distribution, which was first presented by Eldeeb et al. [12], can be considered as a
particularly special model from the novel DPITL distribution. The following are the primary reasons to
investigate this novel’s distribution.
= The DPITL distribution has a decreasing and upside-down bathtub hazard rate function (HRF) and
can handle over-dispersed count data.

= To determine various statistical characteristics, such as moments, quantile function (QF), median,
factorial moments, moment generating function (MGF), dispersion index, coefficient of variation,
mean residual lifetime, probability-generating function (PGF), and entropy measures.

= To use the maximum likelihood (ML), moments (MM), least squares (LS), Anderson—Darling (AD),
and Cramér—von Mises (CM) estimation approaches to accurately estimate the parameters of the
DPITL distribution. Additionally, a comprehensive simulation analysis is conducted to assess the
robustness of the proposed estimators.

= The applicability of the proposed model in comparison to the others is demonstrated using three real-
world datasets from social sciences, environmental health, and pharmacology.

The remainder of this paper is divided into seven sections. In Section 2, the DPITL distribution’s
construction is derived. Some of its fundamental traits are explained in Section 3. In Section 4, the ML,
CM, LS, AD, and MM techniques are used to estimate the DPITL distribution parameters. In Section 5,
the performance of the recently proposed estimates is assessed using Monte Carlo simulation results.
The practical applications of DPITL distribution are examined in Section 6. The key findings and
implications from this study’s examination of the DPITL distribution are summed up in Section 7.

2. The discrete power inverted Topp—Leone distribution

This section provides the probability mass function (PMF) of the DPITL distribution, CDF, HRF,
and reversed HRF. The PMF of a random variable  has the DPITL distribution provided by using the
survival discretization method as follows:

(a+2wme  (a+2(w+1)D*

p(W =w;¢c)=PW=w)—PW=w+1) = e " arawrome W € N,, (2)
where Ny = 0,1,2,... and 1,k > 0. The CDF of DPITL distribution is given by
(1+2(w+1)M*

Bw;¢) =PW<w)=1-PW>w)=1-Sw+1)=1- weEN,. (3)

A+w+1)mz2e’

So, the SF and HRF of the DPITL distribution are obtained as follows:

(1+ 2w + )M~

Swi)=PWzw)=1-FWwW)+pW=w)=1-Fw+1) = (1+ (w+ 1)1)%’

. _ pW=w;0) _ (1+2wMX(1+(w+1)1)2¥ _
l,b(W, C) - Sw;¢) - (1+wM)2K(1+2(w+1)M¥ : (4)
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To show the shapes of the PMF (2) and HRF (4), Figures 1 and 2 depict their plots for varying values of
the parameters k¥ and 7. The PMF curves in Figure 1 are right-skewed and decreasing, which
highlights the DPITL distribution’s effective handling of skewed data. The HRF in Figure 2 is also very
flexible, with useful shapes like decreasing and upside-down curves that make it a great choice for
various count models.
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Figure 1. Visualizing the PMF of the DPITL distribution.
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Figure 2. Visualizing the HRF of the DPITL distribution.

AIMS Mathematics Volume 11, Issue 1, 1145-1174.



1149

3. Some structural properties

This section assesses several statistical properties of the proposed model, each of which is derived
mathematically. In the following paragraphs, the statistical features and their mathematical derivations
will be discussed.

3.1. Quantile function

According to Rohatgi and Saleh [29], the gth quantile function of a discrete random variable W,
say wy, satisfies the following conditions:

P(W<w,)=qandP(W =w,)=1—gq.

This can be expressed as follows using the CDF B(w) as:

B(wg —1) < q < B(wg).
One can find the DPITL distribution’s qth quantile by:

1/n
-1

e = (1= -V +/A-A- = -A-a) )

Based on Eq (5), the median is given by:

wosy = (1= (05 +JA = (0572 — (1= (05)79) ' —1.

Similarly, the first quartile (W ,5)) and third quartile (w 75)) can be produced by setting g = 0.25

and 0.75 in Eq (5). From a computational perspective, formula (5) can be readily adapted by using the
inverse transform method to produce pseudo-random data from the DPITL distribution. Specifically, a
pseudo-random value from the DPITL distribution will be obtained by evaluating w, with a pseudo-
random value ¢ taken from the uniform distribution (0,1).

3.2. Probability-generation function

Here, the PGM of the DPITL model is obtained. Given the set of nonnegative integers {0, 1, 2,... }, let
W be a discrete random variable. The PGF of the DPITL distribution is given as follows:

G ®) = ) " pW =w;g) =1+t =1) ) £ 15(w;5)
w=0 w=1
— _ 1Yo pw—1 @+2WHDDE
=1+ (- DXt e (6)

Furthermore, the factorial moments of the DPITL distribution can be determined from the PGF by using

the following relationship: p,(t) = i—n; Gy (t)|¢=1- Hence, the mean of the DPITL distribution is the
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first factorial moment, which can be determined as follows:

Gy (t) = z po-r A+ 200 4 DT +(t—1) Z (w — 1)tV 2 (1 +2w+1H)N"

(1+ (w+ 1)m)2e 1+ (w+ 1)7)2e

Hence, setting 7 =1 in the previous equation, the mean of distribution is given by:

r_ Ay v (@+2w4+1)N
m=EW) =Gw (D) = Lw=1 0o

The second differentiation Gy (t) att=1 provides the second factorial moments

(1+2(w+1)ME
(1+(w+1)m)2K”

Gw(1) = Xp=1(w =1

The (G"'(w)) and fourth (G"'"'(w)) differentiations differentiations at ¢ =1 provide the third and
fourth factorial moments

M1y = Y _ _ oy @2w+DN*
G (1) - W=1(W 1)(W 2) (1+(W+1)77)2K.
and,
nrr _ \w A+2(w+1)T)*
G (1) - W=1(W - 1)(W - 2)(W - 3) A+ w+1)m)2e’

3.3. Non-central moments
Here, the non-central moments of DPITL model are provided based on MGF. It is worth noting that
MGF can take a similar formula of Eq (6) by replacing it with €’ (i.e., = ')

o —_1 (+2(w+1)M*
My (£) =1+ (e" = D Xn=1 (e oo ()

Difterentiating (7) with respect to ¢ and setting # = 0, we determine the mean of the DPITL distribution

(1+2(w+1)MH¥ (1+2(w+1)MH¥

dMy (t) 0 - 0
— == (et - 1) ZW=1(W - 1)(et)W 2 (1+(w+1)1)2K + ZW=1(et)W (1+(W+1)n)2K' (8)

dt

By setting =0 in (8), the first moment of the DPITL distribution is obtained as follows:

o _dAMw (D), _ o vw (2D
l’tl - E(W) - dt It - 0 - w=1 (1+(W+1)1])2K' (9)

The second derivative of (9) with respect to #, when evaluated at /=0, provides the second non-central
moment of the DPITL distribution

d*My (1)
dt?

(1+2(w+1)MH¥

2\ —
EW?) = (1+(w+1)m)2K’ (10)

6= 0= 5w —1)

The variance of the DPITL distribution is given by
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L , N L @+2w+me (4 2w + D]

The third non-central moment of the DPITL distribution is obtained by getting the third derivative of (7)
with respect to ¢ and setting =0:

d*My (1) NP
e =0= Z(sw 3w+ 1)

w=1

(1+2(w + 1M~

EW?) = (1 + (w + Dmyze’

The fourth non-central moment of the DPITL distribution is obtained by getting the fourth derivative
of (7) with respect to ¢ and setting =0:

d*My, (t)
dt*

(1+2(w + 1M~

EW®) = (1+ (w + D2

|t=0=Z(4W3—6W2+4W—1)

w=1

E(W_Hl )3

According to the aforementioned moments, the measure of skewness (1) is defined by 1, = e

_, 4

kurtosis (A;) is given by A, = E(WU#, and coefficient of variation is given by CV = (E) x 100,
2

where o is the standard deviation and dispersion index formulated as ID = Z. Table 1 presents a

4
1

comprehensive statistical summary of the DPITL distribution. It lists the ,ul/ , 0%, A4, A5, CV,and ID

key properties that change when one changes the parameter values to help understand the distribution’s
behavior and for evaluating its performance under different conditions.

Table 1. Statistical exploration of DPITL distribution under varying parameters.

K n Uy a? M Ay cv ID
0.5 1.35932 5.59691 1.97402 6.14751 1.74041 4.11744

1.5 1.5 1.28721 2.58857 2.17410 9.08805 1.24991 2.01099
3 0.77279 0.50632 1.48094 10.60068 0.92077 0.65518

0.5 1.17580 4.53568 2.22520 7.57907 1.81129 3.85752

2.5 1.5 0.71045 0.97402 2.48998 13.90659 1.38916 1.37100
3 0.50883 0.29685 0.47918 2.71612 1.07077 0.58340

From Table 1, the following key observations are revealed:

» As k increases, holding 71 constant, the values for uj, o
CV increases.

* As 7 increases, holding k constant, the values of uj, 2, CV,and ID decrease.

= The DPITL distribution is exceptionally versatile, offering robust modeling capability for both
under-dispersed (6% < p}) and over-dispersed (6% > p,) count data across its full parameter
space.

= Parameter selection allows the DPITL distribution to achieve flexible dispersion behavior.

2 and ID decrease, while those for
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* Modeling a lower dispersion (ID < 1) suggests suitability for modeling failures and a high
degree of predictability.

= Lifetime data with high variability is best suited for reliability models that account for higher
dispersion (ID >1).

= Positive A; values indicate that this distribution is right-skewed, and as the skewness value
approaches zero, the PMF becomes more symmetric.

= Elevated kurtosis, or leptokurtic distributions, indicates greater tail risk and a higher probability
of extreme outliers compared to normal distribution. Conversely, low kurtosis, or platykurtic
distributions, suggests that values are more tightly clustered around the mean, resulting in a lower
probability of extreme outcomes.

Figure 3 visually represents these patterns through 3D plots of 3, 0%, A1, A4,,CV, and ID.

AIMS Mathematics Volume 11, Issue 1, 1145-1174.
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Figure 3. 3D visualization of DPITL distribution properties.

Consistent with the numerical data presented in Table 1, Figure 3 effectively illustrates the
flexibility of the DPITL distribution. In this visual representation, the (X, Y) axes display the actual
values of the parameters used in the numerical data, while the (Z) axis represents the value of the measure
being studied; additionally, the accompanying color key confirms the precise numerical output for the
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surface. This comprehensive visual evidence confirms that its constantly positive skewness and the
potential for high and low kurtosis underscore the versatility of its PMF and HRF in modeling diverse
data shapes. The mean residual life function for a discrete random variable W with a SF is expressed as
follows:

1

izi+1 1= S = 1;0). (an

Based on (11), the following represents the mean residual life at w of a random variable W with the
DPITL distribution

@20 O (20"

MESD = armyex 2, atme
i=l+1

3.4. Entropy measures
The degree of uncertainty attached to a random variable is known as entropy. It is widely used in a
variety of disciplines, including computer science, survival analysis, econometrics, quantum
information, and information theory (see Rényi [30]). It can be stated as
9y = —1og{Ti_o p"(W = w;)},b # 1,b >0, (12)
where the W~DPITL(¢) distribution can be derived by substituting PMF (2) in (12) as follows:

1 DL+ 2w (142w + DM
% =7 pl00 {Z A +wnzx  (1+ w+ 1)17)%] }

w=0

The Tsallis entropy presented by [31] for the DPITL distribution has the following expression:
Ty =51~ Zisop’(W = wi)},b # 1,b > 0. (13)

The Tsallis entropy of the DPITL distribution can be derived by substituting PMF (2) in (13) as follows:

T, = b%l{l _ WZ:) [(1 +2wh* (142w + 1)n)x]b}.

(L+wn2E  (1+ (w+ D7)

The entropy of the DPITL distribution is challenging to obtain in a closed form using simple
computations but can be used to numerically solve complicated equations using a range of parameter
values, as shown in Table 2.

The entropy values for the DPITL distribution shown in Table 2 are detailed as follows:

= ¢, obtains its smallest value with respect to T;, when b = 0.5. On the other hand, T, has a

lower value than ¥, when b= 1.5.

* As k increases while » and 7 remain constant, entropy measurements decrease.

* As 7 increases while x and b remain constant, entropy measurements decrease.

* As b increases while k¥ and 7 remain constant, entropy measurements decrease.
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Table 2. Entropy measurements for DPITL distribution.

Parameters Measure

k n b % Ty
0.8 2 3.23794 8.09579
' 5 1.29933 1.82981
2 1.60341 2.45867
1.8 5 0-5 0.81092 0.99998
)5 2 1.24812 1.73297
5 0.73738 0.89168
0.8 2 1.69625 1.14357
' 5 0.73630 0.61598
13 2 L5 1.06104 0.82340
5 0.68466 0.57977
)5 2 0.87374 0.70789
5 0.69516 0.58721

The glyph designs in Figure 4 are used to visually represent the uncertainty of measurements for
the DPITL distribution.

Figure 4. Visual entropy of glyph designs for DPITL distribution.

Figure 4 illustrates the use of two colors in the glyphs to convey information: the yellow center
represents the average entropy, while the surrounding white area reflects the degree of uncertainty. A
smaller white area indicates lower uncertainty and thus better performance. From this visualization,
performance depends on the value of 5. When b = 0.5, measure 9, performs better with smaller white
areas, whereas at b =1.5, measure T, shows superior results with reduced uncertainty. These graphical
insights align perfectly with the numerical results reported in Table 2.
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4. Estimation methods

To estimate the unknown parameters of DPITL distribution, five methods are employed: ML, MM,
LS, CM, and AD.

4.1. Maximum likelihood estimation

Given a random sample wi, wa,...,w, drawn independently from the DPITL distribution, the
likelihood function can be expressed as:

(1+2wh*  (142(w+1)T)"
_ TN i’ J
L(g) = Ilj=1 [(1+w}7)2'C (1+(wj+1)m32x [ (14

We start by determining the log-likelihood function in order to get the ML estimator of ¥ of k and 7
of 7. This is accomplished by taking Eq (14)’s natural logarithm, denoted by log ¢, which produces the
following expression:

log ¢ = ¥}_; log[A(w;,¢) — B(w; + 1,¢)], (15)

(1+2w7)"
where A(wj, ¢) = C

_ (1+2(wj+1)M*
1+w}7)2"

and B(wj + 1,¢) = o, D)

The first partial derivatives of (15), with respect to the k and 7n are

a logt _ n A;C(Wj:C)_BI’c(Wj"'LC) (16)
ok “U=1 [Aw;,9)-B(wj+1,0)]’
logl _ s Ap(Wj,)—Bp(wj+1,6) (17)
an I= [awj0)-B(wj+19)]’
where
, a+2wh|in(1+2wH-2 In(1+w’)
Ky 5) = 2D a9
J
and

, 2kw’ Inw -[(1+w7)2"(1+2w7)"‘1—2K(1+2w7.7)"(1+w7.7)2"‘1]
— J J J J ] ]
ATI (W]’ C) - (1+W;_7)4-K,' ' (19)

Note that B,(wj,¢) and By (Wj +1, g) have the same expressions as provided in (18) and (19) by

replacing w; with w; + 1. The ML estimators K and ) are obtained after setting the right-hand side
of Egs (16) and (17) to zero. Since there is no analytical solution for this system, a numerical approach
such as Nelder-Mead is required to solve them numerically.
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4.2. Moments method

Here, the moment estimators K, of k and 7, of 1 are discussed. In order to apply this method,
we usually equate the population moments to the corresponding sample moments and solve the resulting
equations of moments to obtain K, and 7j,. To be more precise, we would equate the population

moments E(W) and E(W?) (from Eqs (9) and (10), respectively) to the sample moments m, = lym

naj=1Yj

1 . .
and m, = =Y, w?. Then, we would solve these two equations for k¥ and 1 simultaneously. It can
n<J=1"

be challenging to find a direct numerical solution for this system of two nonlinear equations in two
unknowns; instead, Khan et al. [32] presented a method of pseudo-moment by minimizing the following
function with respect to k and 7.

H(x,m) = (my — E(W))? + (m, — E(W*))*.

For instance, optimization functions such as optim can be used in the R environment to complete the
task.

4.3. Least squares method

Here, the LS estimators K3 of k¥ and 7j; of n are determined. The LS estimators K; and 73
are obtained by minimizing the following function:

n

150 = > [Bowir -——

i=1

where [ (W(i) ;g) denotes the CDF of the DPITL distribution evaluated at the i-th order statistic.

Alternatively, the LS estimators K3 and 7j; can be acquired by working out the following equations,
with respect to k and 7:

al .
;}(Cc) = Qi1 [ﬁ(W(i); ¢)— ﬁ] 6K(w(i)|g) =0, (20)
al .

where 8, (W(;)|¢), 6, (Wi |¢) have the same expressions of Eqs (18) and (19) with negative sign and the

ordered sample w;). Since the solution to Eqs (20) and (21) cannot be found in closed form, numerical
optimization techniques can be used to obtain K3 and 7)3.

4.4. Cramér-von Mises method

Here, the CM estimators K, of k and 7, of n are obtained. The CM estimators K, and 7,are
obtained by minimizing the following function:

AIMS Mathematics Volume 11, Issue 1, 1145-1174.
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2i—-112

C() = o+ X [Bway ) -2 (22)

12n

The CM estimators K, and 1j, can be obtained by solving the following equations, with respect to k
and 7, as an alternative to Eq (22).

ac 2i-1 23
—a@ =y, [ﬁ(w(i); ¢) — ;—] Sc(wepylg) =0, (23)
ac 2i—1 24

ai;g) [ [/3 Wiy ©) ;n ]671 (wpl) =0, 24)

where &, (Wi [¢), 6, (W(i)l¢) have the same expressions of Eqs (18) and (19) with negative sign and the

ordered sample w(;. Since the solution to Eqgs (23) and (24) cannot be found in closed form, numerical
optimization techniques can be used to obtain K, and 7,.

4.5. Anderson darling method
The AD estimators K5 of k and 75 of n are obtained by minimizing the following function:
1 .
A(g) =-—n——+ Yhi(2i — D[log B (Way; §) + log[1 — BwWm—i+1); 9]]- (25)

The AD estimators K5 and #)s can be obtained by solving the following equations, with respect to
kand 7, as an alternative to Eq (25):

0A(S) _ yn @i-DSwple) — Ri-DSk(Wmn-i+1)lS) (26)
ax =1 Bwaye) 1-B(W(n-i4+1)6)

0A(S) _ ym QI-Déwp)le) — Ri=DEnWmn-i+1)lS) 27)
on =1 Bwye) 1-B(Wn-i+1):S)

Where &, (Wpls), 6,(Wpl6), Sk Wen—is1)l$), 8y (Wm—ir1)ls) have the same expressions of Eqs (18)

and (19) by replacing the random sample with the corresponding ordered sample. Since the solution to
Eqgs (26) and (27) cannot be found in closed form, numerical optimization techniques can be used to
obtain K5 and 7s.

5. Numerical simulation

This section presents the performance of ML, MM, LS, CM, and AD methods for estimating the
parameters of DPITL distribution. A simulation study is conducted under different sample sizes and
selected parameter values. The steps of the simulation algorithm are outlined as follows:

1) Set the number of replications (V) to 1000.

2) Choose the sample size » as (15,25,50,100).

3) Select parameters as Setl=(k = 0.9,n = 1.2), Set2=(x = 1.8,n = 0.5), and Set3 =(k = 1.3, =
1.3).

4) Generate u; fori =1, 2 ,..., n as independent observations from the uniform distribution U(0,1).
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5) Random samples are then drawn from the DPITL distribution based on Eq (5).

6) Estimate the DPITL distribution parameters using the chosen methods.

7) Repeat steps 4—6 N times.

8) Evaluate the accuracy of the estimators by calculating the mean squared error (MSE) and the mean
bias (MB) of the estimated parameters.
R version 4.5.0 was used for all computations, and the bbmle and MASS packages were utilized to
estimate the parameters. Table 3 and Figure 5 show the findings. The results of the simulation offer
important new information on how well the estimators work in various scenarios. Below is an overview
of the key findings:
= Increasing n makes low MSEs and thus various estimates more accurate, as shown in Figure 5.
=  When parameters k or 1 get higher values, results are less accurate and there is a bigger MSE, as
shown in Figure 5 and Table 3.

»= For the n parameter, the optimal estimation method is ML, while for the parameter k, the AD
method is preferred, as shown in Figure 5 and Table 3.

= As Figure 5 shows, the estimation of parameter 7 was more accurate in Set 2, while parameter k
was estimated more accurately in Set 1.

» The CM method demonstrates superior performance for k, outperforming both ML and MM
methods in most cases, as shown in Table 3.

= The AD method demonstrates superior performance for 7, outperforming both CM and LS methods
in most cases, as shown in Table 3.
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Figure 5. Bubble plot MSE performance for DPITL distribution methods.
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Table 3. Numerical simulation results of DPITL distribution with MBs and MSEs for different parameter values.

n True value Setl Set2 Set3
Estimate K Ui K Ui K Ui
Methods MB MSE MB MSE MB MSE MB MSE MB MSE MB MSE
ML 0.67251 0.93345 0.08445 0.34531 0.42206 0.92955 0.00061 0.09481 0.98479 0.92358 0.31364 0.26987
AD 0.12353 0.09059 0.30157 0.34534 0.74087 0.62627 0.39947 0.24561 0.25817 0.16431 0.34487 0.36204
15 LS 0.20218 0.11652 0.51952 0.63224 0.80793 0.74491 0.43141 0.27883 0.32685 0.21057 0.53182 0.49971
CM 0.20861 0.11801 0.55917 0.65202 0.82487 0.76199 0.53639 0.40521 0.33414 0.21460 0.57836 0.52204
MM 0.18736 0.42261 0.35193 0.90917 0.31935 0.99356 0.58872 0.38010 0.19414 0.93862 0.73131 0.92279
ML 0.65943 0.69091 0.35475 0.21212 0.40634 0.61817 0.03548 0.01574 0.95730 0.79578 0.42705 0.10989
AD 0.14988 0.06717 0.29734 0.23021 0.76035 0.52670 0.40756 0.21368 0.27971 0.13055 0.36232 0.21304
25 LS 0.20089 0.08476 0.42437 0.35851 0.80069 0.69913 0.39860 0.20323 0.32264 0.15921 0.46264 0.32494
CM 0.20444 0.08671 0.45554 0.39324 0.81226 0.71058 0.48699 0.29573 0.32768 0.16210 0.49967 0.34797
MM 0.21443 0.33078 0.07360 0.44560 0.36767 0.76107 0.56701 0.33567 0.25988 0.91579 0.27833 0.82626
ML 0.61549 0.51337 0.39087 0.18067 0.37187 0.33685 0.05567 0.00794 0.97811 0.48627 0.44875 0.04079
AD 0.18663 0.05953 0.32547 0.18339 0.78308 0.33510 0.40127 0.18113 0.32169 0.12075 0.40134 0.20268
50 LS 0.21466 0.07049 0.38699 0.23798 0.80188 0.66902 0.36587 0.14881 0.34393 0.14676 0.44960 0.25530
CM 0.21536 0.07125 0.40634 0.25471 0.80971 0.67811 0.43923 0.21529 0.34649 0.14798 0.47056 0.26720
MM 0.29080 0.21056 0.16245 0.20140 0.38454 0.57643 0.56531 0.33074 0.36862 0.83306 0.00740 0.65072
ML 0.62258 0.45430 0.41420 0.13753 0.34390 0.22619 0.05633 0.00566 0.99405 0.12629 0.47469 0.01626
AD 0.19367 0.05016 0.32783 0.14381 0.79972 0.20163 0.40910 0.10699 0.32318 0.10332 0.41059 0.18856
100 LS 0.20963 0.05636 0.35760 0.16702 0.80918 0.56899 0.36738 0.14251 0.33421 0.11850 0.42770 0.20809
CM 0.20828 0.05612 0.36742 0.17430 0.81316 0.67347 0.42790 0.19324 0.33574 0.12696 0.44496 0.21883
MM 0.37944 0.17321 0.23149 0.14901 0.37507 0.46047 0.55457 0.22054 0.64526 0.51676 0.32841 0.38747
ML 0.61467 0.41040 0.42037 0.04786 0.44887 0.15675 0.09445 0.00094 0.98703 0.09790 0.49024 0.00714
AD 0.20179 0.04708 0.33513 0.13090 0.78445 0.12152 0.48574 0.04298 0.32914 0.08492 0.41487 0.01499
200 LS 0.21181 0.05106 0.35060 0.14262 0.78657 0.22586 0.42933 0.08994 0.33446 0.09868 0.41533 0.18374
CM 0.20916 0.05013 0.35482 0.14524 0.79107 0.53199 0.49682 0.15404 0.33544 0.09151 0.43193 0.19614

MM 0.49905 0.09651 0.21485 0.05954 0.43111 0.31059 0.50304 0.15560 0.88097 0.45821 0.58165 0.18550
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6. Application of count data

This section demonstrates the effectiveness of DPITL distribution by applying it to a dataset derived
from real-world data. Its efficacy is tested in a comprehensive evaluation comparison with other
distributions, namely DIKU, DBurr, DIW, DLL, negative binomial (NB), and discrete Lomax (DLO) [33].
Various metrics of goodness-of-fit, such as the negative log-likelihood (—log ¥), Akaike information
criterion (A,), Bayesian information criterion (4,), Hannan-Quinn information criterion (A3), consistent
Akaike information criterion (A,), and chi-square (y?) with its corresponding p-value (As), are employed
to compare the fitted models. The ML method was employed to parameterize all competing distributions.
For DPITL distribution, its parameters were also estimated using the MM, LS, CM, and AD techniques.
All parameter estimates were reported along with their respective standard errors (SEs).

6.1. Corticosteroid kidney data
The dataset comprises observations on liver lesions induced by steroid exposure. The study aimed

to investigate the impact of these agents on the formation of lesions in rat embryos. [34]. The basic
descriptive measurements of corticosteroid kidney data are shown graphically in Figure 6.
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Figure 6. Descriptive visual representation of corticosteroid kidney data.

A look at Figure 6 confirms the DPITL distribution’s excellent fit for the data, based on its
relationship to the total test time (TTT) plot and HRF. Moreover, the calculation of its parameters
confirms that the data are indeed over-dispersed, which is consistent with the characteristics of the
DPITL distribution. PMF analysis then reveals the asymmetrical nature of the data, leading us to use
quantile-quantile (QQ) plots and box plots to identify any outliers, where the outliers’ values stand out
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as blue rings. Table 4 provides a comprehensive overview of the fitted discrete distributions and their
respective goodness-of-fit measures, including —log £, A;, Ay, A3, Ay, x?, and As.

Table 4. Observed vs. expected frequencies and model fit for corticosteroid kidney data.

w  Observed Expected
Distribution DPITL DIKU DBurr DIW DLL DLO NB

0 65 64.24978 64.00033 64.73913 63.96051 63.18818 61.54119 64.24497

1 14 19.07262 19.72589 19.18476 20.68863 20.07872 21.03007 16.77790

2 10 8.74196 8.70531 8.48552 8.04508 8.64045 9.69959 9.00464

3 6 4.87816 4.73183 4.63222 422855 4.65721 5.28547 5.65981

4 4 3.04729 2.91023 2.86267 2.59534 2.86608 3.20519 3.81736

5 2 2.05058 1.94231 1.91985 1.75079 1.92272 2.09428 2.67987

6 2 1.45520 1.37388 1.36441 1.25875 1.37020 1.44595 1.93055

7 2 1.07488 1.01496 1.01254 0.94749 1.02102 1.04159 1.41608

8 1 0.81925 0.77554 0.77705 0.73835 0.78736 0.77599 1.05265

9 1 0.64039 0.60879 0.61249 0.59119 0.62390 0.59416 0.79055

10 1 0.51111 0.48855 0.49344 0.48377 0.50538 0.46539 0.59855

11 2 3.45880 3.72237 3.91592 4.71155 4.33878 2.82114 2.02707

Total 110
—log ¥ 170.29343  171.04999  171.13916 17293488  171.71715  170.48061  170.54405

Ay 344.58686  346.09998  346.27832  349.86977  347.43431  344.96122  345.08810
A, 349.98783  351.50094  351.67928 35527073  352.83527  350.36218  350.48906
A3 346.58686  348.09998  348.27832  351.86977  349.43431  346.96122  347.08810
Ay 346.77752  348.29064  348.46898  352.06043  349.62497  347.15188  347.27876
x? 4.42097 5.51000 5.55726 8.28466 6.20214 5.14089 5.35152
As 0.88159 0.78778 0.78328 0.50573 0.71953 0.82186 0.79811

Table 4 conclusively demonstrates the superior fit of the DPITL distribution to the data. This is
quantified by its consistently lowest values across all fitted metrics and the highest A5 when compared
to all other competing distributions, establishing DPITL distribution as the optimal choice. Furthermore,
Figure 7 offers a visual confirmation of the estimation quality.

AIMS Mathematics

Volume 11, Issue 1, 1145-1174.



1163

o |
E | l E | l e
' | ' |
N l X l S
en Y e B
t_g) I ‘_3’ | =
E i l Ig;) | l g B
| v |
EI— — | < | | o
£:3_049| ' ﬁ=0.643|
25 30 35 05 06 07 08 25 30 35
K n K

Figure 7. Contour and profile plots for DPITL distribution on corticosteroid kidney data.

Figure 7 utilizes contour plots and profile log-likelihood functions to effectively illustrate the
behavior of the estimators and demonstrate how they successfully maximize the fit of the DPITL
distribution to the corticosteroid kidney data. A visual representation of the estimated PMFs is shown in
Figure 8, demonstrating how the fitted distributions apply to the observed and expected frequencies of
the corticosteroid kidney data.
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Figure 8. Observed and expected frequencies of fitted PMFs for corticosteroid kidney data.
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Following the visual confirmation of the fit provided by Figure 8, the precise results of the different
estimation methods (MM, LS, CM, AD, ML) and their SEs are quantified in Table 5, with Figure 9
offering a final visual comparison to determine the best method.

Table 5. Estimators and SEs from different distributions for corticosteroid kidney data.

Distribution DPITL | DIKU DBurr DIW DLL DLO NB

Methods LS AD cM MM | ML

1.23860 1.22998 1.22818 0.12103 3.04949 1.15826 1.28117 0.55809 1.20633 1.88192 0.32153

>

] 1.49317 1.48915 1.51802 0.03668 0.64278 1.42086 1.05364 1.04949 0.77984 1.83186 0.18776
SE (k) 0.43285 0.19714 0.43128 0.56968 0.39074 0.31923 0.16290 0.09733  0.15927 0.64673 0.07419
SE (1) 0.78488 0.30790 0.79620 0.14930 0.09616 0.24068 0.16735 0.14595 0.13570 0.95453  0.04525

K n
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0.4 0.6 Methods
= AD
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L |
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Figure 9. Visual comparison of SEs for DPITL distribution of corticosteroid kidney data.

Consistent with the simulation outcomes, both Table 5 and Figure 9 show that AD is the most
reliable method for estimating parameter x, while ML is the most reliable for parameter 7.

6.2. Leukocyte chromatid data
A culture of human leukocytes was treated with 0.2 g of quinone 1 over a 24-hour period. Chinone is

known for its genotoxic effects. This exposure was found to cause chromatid aberrations per cell [35]. The
basic descriptive measurements of the leukocyte chromatid data are visually represented in Figure 10.
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Figure 10. Descriptive visual representation of leukocyte chromatid data.

Table 6. Observed vs. expected frequencies and model fit for leukocyte chromatid data.

w  Observed Expected
Distribution DPITL DIKU DBurr DIW DLL DLO NB
0 268 267.98513  267.75762  268.03832  267.35656  267.05105  270.39691 270.18834
1 87 87.26737 88.73520 88.66910 92.15893 91.10951 80.90346 78.54283
2 26 25.67757 24.53958 24.42941 21.33613 22.78113 28.19664 29.83460
39 9.55303 9.09453 8.94648 8.00163 8.38642 11.05799 12.21935
4 4 421370 4.09845 4.02150 3.84329 3.91256 4.76436 5.18624
5 2 2.10008 2.10950 2.07998 2.14002 2.11808 2.21652 2.24743
6 1 1.14627 1.19435 1.18893 1.31449 1.26829 1.09920 0.98727
7 3 2.05685 2.47078 2.62628 3.84896 3.37296 1.36492 0.79395
Total 400
—logt 398.54026  398.76146  398.89533  400.26411 399.60105  398.88132  399.85684
Ay 801.08051 801.52293 801.79066  804.52822  803.20209  801.76265 803.71368
A, 809.06344  809.50586  809.77359  812.51115 811.18502 809.74558 811.69661
Ay 803.08051 803.52293 803.79066  806.52822  805.20209  803.76265 805.71368
Ay 804.24186  804.68427  804.95200  807.68957  806.36343 804.92399  806.87502
x2 0.20323 0.27507 0.21911 1.71242 0.79496 3.14624 8.69786
Ag 0.99901 0.89908 0.98887 0.88749 0.91739 0.67715 0.12174

The analysis of the leukocyte chromatid data begins with Figure 10, which uses a TTT plot to
illustrate the excellent fit of the DPITL distribution. This choice is supported numerically, as the
calculation of the parameters confirms the data’s over-dispersed nature, aligning with the DPITL
characteristics. Because the PMF shows an asymmetrical distribution, QQ plots and box plots were used
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to detect outliers, marked by green rings. To evaluate the model’s overall performance, Table 6
summarizes the goodness-of-fit metrics, while Figure 11 provides a visual confirmation of how the
estimators successfully maximize the fit to the data.
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Figure 11. Contour and profile plots for DPITL distribution on leukocyte chromatid data.

The analysis definitively establishes DPITL distribution as the optimal choice for the leukocyte
chromatid data. Table 6 quantifies this superiority by showing that DPITL achieves the lowest metrics
and the highest A5 among all competitors. This high quality of estimation is visually supported by Figure
11, which confirms how the estimators successfully maximize the fit of the DPITL model. Furthermore,
the effectiveness of the chosen distribution is visibly demonstrated in Figure 12, where the estimated
PMFs align perfectly with the observed data frequencies.
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Figure 12. Observed and expected frequencies of fitted PMFs for leukocyte chromatid data.

The visual confirmation of the fit provided by Figure 12 is followed by the quantification of the
model parameters and their SEs in Table 7, with Figure 13 offering a final visual comparison of method
accuracy.
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Figure 13. Visual comparison of SEs for DPITL distribution of leukocyte chromatid data.
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Table 7. Estimators and SEs from different distributions for leukocyte chromatid data.

Distribution DPITL | DKU DBur DIW DLL  DLO  NB
Methods LS AD cM MM | ML
141983 141740 141774 298979 3.85406 291931 159960 0.62218 2.09107 7.45989 0.61981

>

] 2.08292 2.09990 2.09160 1.29241 0.94687 2.96071 1.59249 1.91624 0.71622 6.13210 0.53099
SE (k) 0.22568 0.10626 0.22555 2.45210 0.24722 0.67253 0.10265 0.03970 0.17210 3.42905 0.12690
SE (1) 0.55084 0.22346 0.55298 1.11840 0.08117 0.27721 0.14587 0.16498 0.04428 3.22225 0.05597

Table 7 and Figure 13 both agree that the estimation reliability depends on the parameter being
studied. The AD method is the most reliable choice for estimating parameter k. However, the ML
method is the most reliable for estimating parameter 7. This is consistent with the simulation results.

6.3. Criminology data

This third dataset provides specific details from the field of criminal sociology, featuring a
collection of samples of individuals who display deviant behavior. The information was originally
gathered and made available to the research community in [36]. A visual representation detailing the
core descriptive measurements of this dataset is provided in Figure 14.
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Figure 14. Descriptive visual representation of criminology data.

Figure 14 demonstrates the excellent fit of the DPITL distribution for the criminology data using a
TTT plot. This selection was numerically supported because parameter calculations confirmed the data’s
over-dispersed nature, matching the DPITL model characteristics. Since the PMF displayed an
asymmetrical distribution, QQ plots and box plots were used to find outliers, marked by green rings.
Finally, Table 8 summarizes the overall performance with goodness-of-fit metrics, and Figure 15
visually shows how the estimators successfully maximized the data fit.
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Table 8. Observed vs. expected frequencies and model fit for criminology data.

w  Observed Expected
Distribution DPITL DIKU DBurr DIW DLL DLO NB
0 378 376.78024 377.07151 377.35103 376.95193 376.05933 373.31546 376.91281
1 59 67.86700 68.22705 67.91836 70.63013 70.27035 72.20826 63.79716
2 26 23.19178 22.59963 22.55391 20.11535 21.08508 23.81006 25.84724
3 13 10.40213 10.02107 10.01595 8.83166 9.24766 10.24708 12.50426
4 7 5.44737 5.25824 5.26263 4.77912 4.95317 5.18377 6.54085
5 11 10.31149 10.82249 10.89813 12.69180 12.38441 9.23537 8.39769
Total 494
—log ¢ 436.34625 437.42421 437.44150 441.40221 440.26395 436.88571 438.00594
Ay 876.69250 878.84843 878.88300 886.80443 884.52791 877.77141 878.01188
A, 885.09757 887.25350 887.28807 895.20950 892.93298 886.17649 886.41695
Ag 878.69250 880.84843 880.88300 888.80443 886.52791 879.77141 880.01188
Ay 879.99233 882.14826 882.18284 890.10426 887.82774 881.07125 881.31171
)(2 2.63980 3.22717 3.16228 6.86441 5.48641 4.38935 3.22306
As 0.45056 0.35791 0.36727 0.07635 0.13945 0.22237 0.34748
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Figure 15. Contour and profile plots for DPITL distribution on criminology data.

The analysis clearly shows that DPITL distribution is the best choice for criminology data. Table 8
proves this because the DPITL model achieved the lowest metrics and highest A5 scores compared to
all other models. This excellent quality of estimation is visually supported by Figure 15, which confirms
that the estimators successfully fit the DPITL model. Furthermore, Figure 16 clearly demonstrates the
distribution’s effectiveness, as the estimated PMFs perfectly match the actual observed data.
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Figure 16. Observed and expected frequencies of fitted PMFs for criminology data.

Figure 16 visually confirms the model’s fit. Following this, Figure 17 offers a last visual
comparison to show how accurate the method is. Finally, Table 9 lists the model parameters and their
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Figure 17. Visual comparison of SEs for DPITL distribution of criminology data.
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Table 9. Estimates and SEs from different distributions for criminology data.

Distribution DPITL | DKU DBur DIW DLL  DLO  NB
Methods LS AD M MM | ML
R 1.67904 1.68196 1.67764 322128 5.00026 1.07831 2.08234 0.40690 1.55405 2.62558 0.26405
A 1.96284 1.88004 1.97031 121884 0.63065 2.17412 1.02957 145442 047418 140748 035897
SE (%) 020499 0.09979 020491 277023 0.28035 022169 0.11648 0.04364 0.13686 0.57886 0.04434
SE (%) 0.60893 0.19908 0.61146 1.13021 0.05513 022557 0.09366 0.13265 0.04787 044710 0.04611

Both Table 9 and Figure 17 agree: the best method for estimation changes depending on the
parameter. The AD method is the most reliable for estimating parameter k. However, the ML method
works best for parameter 7. This result is consistent with the simulation tests.

7. Concluding remarks

This article introduces a new two-parameter discrete distribution called DPITL distribution using
a survival discretization technique. Factorial moments, PGF, QF, mean, variance, mean residual life,
Tsallis entropy, and Rényi entropy are among the statistical features analyzed. Some estimation methods,
including ML, MM, LS, AD, and CM, are used to determine the best estimators of the unknown
parameters. The simulation study demonstrates the performance of different estimation methods for
DPITL distribution. Results show that larger sample sizes enhance estimation accuracy, while higher
parameter values may reduce precision. Moreover, the findings indicate that the most suitable method
varies by parameter: the ML method performs best for the 1 parameter, whereas the AD method is
preferable for the x parameter. The distribution’s usefulness was also confirmed through real data
applications, including corticosteroid-induced liver lesions in rats, chromatid aberrations in human cells,
and criminology data. These applications highlight their strong potential for modeling discrete count
data, especially in fields such as social sciences, toxicology, pharmacology, and epidemiology, where it
can be applied to analyze events like drug side effects, cellular changes, and the spread of new disease
cases.

The present study establishes a strong foundation for DPITL distribution, yet it also suggests
several compelling directions for future work. A particularly valuable extension would be to formulate
a Bayesian paradigm for estimating the model’s parameters. This would serve as a powerful complement
to the frequentist techniques (ML, MM, LS, CM, AD) already investigated. The Bayesian approach
naturally incorporates previous knowledge, and its result, a joint posterior distribution for the parameters,
offers a thorough and understandable framework for probabilistic inference that goes beyond point
estimates to completely describe uncertainty [37—40].
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