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Abstract: This paper proposes a flexible probability mass function for modeling count data, particularly 

over-dispersed and asymmetric observations. A novel two-parameter discrete distribution, the discrete 

power inverted Topp–Leone distribution, is presented using a survival discretization technique. The 

following statistical characteristics are examined: factorial moments, probability-generating function, 

quantiles, mean, variance, mean residual life, and entropy measures. The best estimators of the unknown 

parameters were obtained using various techniques, such as maximum likelihood, moments, least 

squares, Anderson–Darling, and Cramér-von Mises. A simulation study showed that the accuracy of the 

estimates improves with larger samples, although higher parameter values may affect precision. The 

findings indicate that the efficiency of these estimation methods varies under different conditions. 

Applications to liver lesions, chromatid aberrations, and criminal sociology datasets confirm the model’s 

usefulness for discrete count data in fields such as social sciences, pharmacology, and environmental 

health. Finally, for modeling count data, the new probabilistic model can be employed as a competitive 

alternative to other existing distributions. 
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1. Introduction 

In a variety of disciplines, such as applied science, epidemiology, agriculture, sociology, public 

health, and medicine, count data modeling is crucial. Although many probability distributions have been 

developed to model count data, more flexible discrete distributions are required to handle count datasets 

with high over-dispersion. The widely used traditional discrete probability models, such as Poisson, 

geometric, and negative binomial distributions, have limitations because of their unique behaviors. For 

example, the Poisson distribution works best with datasets with equidispersion, while the negative 

binomial distribution works best with datasets that are overly dispersed. Flexible discrete distributions 

always require a good resolution because real-life datasets can be either over- or under-dispersed. There 

are several ways to discretize continuous distributions, such as infinite series methods, mixed-Poisson 

models, and survival discretization, the most widely applied of these [1]. More specifically, if W is a 

continuous random variable with survival function (SF), 𝑆(𝑤) = 𝑃(𝑊 ≥ 𝑤), then 𝑃(𝑊 = 𝑤) =

𝑃(𝑤 ≤ 𝑊 < 𝑤 + 1) = 𝑃(𝑊 ≥ 𝑤) − 𝑃(𝑊 ≥ 𝑤 + 1) = 𝑆(𝑤) − 𝑆(𝑤 + 1),  w = 0, 1, 2,..., gives the 

probability mass function (PMS) of its analogue discrete random variable W with support for the set of 

nonnegative integer numbers. 

The discretization of continuous probability distributions has received a lot of attention in recent 

decades. Additionally, numerous authors presented new discrete models, some of which are listed as 

follows: discrete Weibull distribution [2], discrete Burr (DBurr) and Pareto distributions [3], discrete 

inverse Weibull (DIW) distribution [4], discrete generalized Burr-XII distribution [5], discrete log-

logistic distribution (DLL) [6], discrete extended Weibull distribution [7], discrete Burr-Hatke 

distribution [8], discrete Xgamma distribution [9], discrete Bilal distribution [10], discrete Teissier 

distribution [11], discrete inverted Topp–Leone distribution [12], discrete Nadharajah-Haghighi 

distribution [13], discrete two-parameter Lindley distribution [14], discrete Marshall-Olkin-Weibull 

distribution [15], discrete Gumbel distribution [16], discrete Ramos-Louzada distribution [17], discrete 

quasi Xgamma distribution [18], discrete new XLindley distribution [19], discrete inverted 

Kumaraswamy (DIKU) distribution [20], discrete Marshall-Olkin Burr XII distribution[21], and discrete 

Muth distribution [22]. 

Even though there are many different lifetime data distributions available, there is still a need for 

more adaptable models that can capture complex data behavior in a range of scenarios. The continuous 

power inverted Topp-Leone (PITL) distribution introduced by [23] has proven useful in a variety of 

reliability scenarios. The cumulative distribution function (CDF) and SF of the PITL model are given, 

respectively, by: 

𝐹(𝑤; 𝜍) = 1 − [
(1+2𝑤𝜂)𝜅

(1+𝑤𝜂)2𝜅] ; 𝜂, 𝜅, 𝑤 > 0,       (1) 

and 

𝑆(𝑤; 𝜍) =
(1 + 2𝑤𝜂)𝜅

(1 + 𝑤𝜂)2𝜅
, 

where 𝜅 and 𝜂 are shape parameters and 𝜍 = (𝜅, 𝜂)𝑇 is the parameter set. The CDF (1) reduces to 

inverted Topp-Leone distribution as proposed by [24]. As mentioned by [23], the PITL distribution has 

proven useful in the engineering field and has multiple applications in various fields, as investigated by 

numerous researchers (see, e.g., El-Saeed et al. [25], Nassr et al. [26], Ibrahim et al. [27], and Hassan 
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and Almetwally [28]). 

In many fields, count data are frequently too dispersed, which makes traditional statistical models 

difficult to use. We provide the discrete PITL (DPITL) distribution as a solution to this problem. In order 

to efficiently model over-dispersed discrete data, we primarily contribute by introducing the DPITL 

distribution, which is derived from the survival discretization method. It should be noted that the discrete 

ITL (DITL) distribution, which was first presented by Eldeeb et al. [12], can be considered as a 

particularly special model from the novel DPITL distribution. The following are the primary reasons to 

investigate this novel’s distribution. 

▪ The DPITL distribution has a decreasing and upside-down bathtub hazard rate function (HRF) and 

can handle over-dispersed count data. 

▪ To determine various statistical characteristics, such as moments, quantile function (QF), median, 

factorial moments, moment generating function (MGF), dispersion index, coefficient of variation, 

mean residual lifetime, probability-generating function (PGF), and entropy measures. 

▪ To use the maximum likelihood (ML), moments (MM), least squares (LS), Anderson–Darling (AD), 

and Cramér–von Mises (CM) estimation approaches to accurately estimate the parameters of the 

DPITL distribution. Additionally, a comprehensive simulation analysis is conducted to assess the 

robustness of the proposed estimators. 

▪ The applicability of the proposed model in comparison to the others is demonstrated using three real-

world datasets from social sciences, environmental health, and pharmacology. 

The remainder of this paper is divided into seven sections. In Section 2, the DPITL distribution’s 

construction is derived. Some of its fundamental traits are explained in Section 3. In Section 4, the ML, 

CM, LS, AD, and MM techniques are used to estimate the DPITL distribution parameters. In Section 5, 

the performance of the recently proposed estimates is assessed using Monte Carlo simulation results. 

The practical applications of DPITL distribution are examined in Section 6. The key findings and 

implications from this study’s examination of the DPITL distribution are summed up in Section 7. 

2. The discrete power inverted Topp–Leone distribution 

This section provides the probability mass function (PMF) of the DPITL distribution, CDF, HRF, 

and reversed HRF. The PMF of a random variable W has the DPITL distribution provided by using the 

survival discretization method as follows: 

  𝜌(𝑊 = 𝑤; 𝜍) = 𝑃(𝑊 ≥ 𝑤) − 𝑃(𝑊 ≥ 𝑤 + 1) =
(1+2𝑤𝜂)𝜅

(1+𝑤𝜂)2𝜅
−

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅
;   𝑤 ∈ 𝑁0,        (2) 

where 𝑁0 = 0,1,2, . .. and 𝜂, 𝜅 > 0. The CDF of DPITL distribution is given by 

𝛽(𝑤; 𝜍)  = 𝑃(𝑊 ≤ 𝑤) = 1 − 𝑃(𝑊 > 𝑤) = 1 − 𝑆(𝑤 + 1) = 1 −
(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅 ;  𝑤 ∈ 𝑁0. (3) 

So, the SF and HRF of the DPITL distribution are obtained as follows: 

𝑆(𝑤; 𝜍) = 𝑃(𝑊 ≥ 𝑤) = 1 − 𝐹(𝑤) + 𝜌(𝑊 = 𝑤) = 1 − 𝐹(𝑤 + 1) =
(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅
, 

𝜓(𝑤; 𝜍)  =
𝜌(𝑊=𝑤;𝜍)

𝑆(𝑤;𝜍)
=

(1+2𝑤𝜂)𝜅(1+(𝑤+1)𝜂)2𝜅

(1+𝑤𝜂)2𝜅(1+2(𝑤+1)𝜂)𝜅
− 1.      (4) 
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To show the shapes of the PMF (2) and HRF (4), Figures 1 and 2 depict their plots for varying values of 

the parameters 𝜅  and 𝜂 . The PMF curves in Figure 1 are right-skewed and decreasing, which 

highlights the DPITL distribution’s effective handling of skewed data. The HRF in Figure 2 is also very 

flexible, with useful shapes like decreasing and upside-down curves that make it a great choice for 

various count models. 

 

Figure 1. Visualizing the PMF of the DPITL distribution. 

 

Figure 2. Visualizing the HRF of the DPITL distribution. 
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3. Some structural properties 

This section assesses several statistical properties of the proposed model, each of which is derived 

mathematically. In the following paragraphs, the statistical features and their mathematical derivations 

will be discussed. 

3.1. Quantile function 

According to Rohatgi and Saleh [29], the qth quantile function of a discrete random variable W, 

say wq, satisfies the following conditions: 

𝑃(𝑊 ≤ 𝑤𝑞) ≥ 𝑞 and 𝑃(𝑊 ≥ 𝑤𝑞) ≥ 1 − 𝑞. 

This can be expressed as follows using the CDF 𝛽(𝑤) as: 

𝛽(𝑤𝑞 − 1) < 𝑞 ≤ 𝛽(𝑤𝑞). 

One can find the DPITL distribution’s qth quantile by: 

𝑤(𝑞) = (1 − (1 − 𝑞)1/𝜅 + √(1 − (1 − 𝑞)1/𝜅)2 − (1 − (1 − 𝑞)1/𝜅))
1/𝜂

− 1.   (5) 

Based on Eq (5), the median is given by: 

𝑤(0.5) = (1 − (0.5)1/𝜅 + √(1 − (0.5)1/𝜅)2 − (1 − (0.5)1/𝜅))
1/𝜂

− 1. 

Similarly, the first quartile (𝑤(0.25)) and third quartile (𝑤(0.75)) can be produced by setting q = 0.25 

and 0.75 in Eq (5). From a computational perspective, formula (5) can be readily adapted by using the 

inverse transform method to produce pseudo-random data from the DPITL distribution. Specifically, a 

pseudo-random value from the DPITL distribution will be obtained by evaluating wq with a pseudo-

random value q taken from the uniform distribution (0,1). 

3.2. Probability-generation function 

Here, the PGM of the DPITL model is obtained. Given the set of nonnegative integers {0, 1, 2,... }, let 

W be a discrete random variable. The PGF of the DPITL distribution is given as follows: 

𝐺𝑊 (𝑡) = ∑ 𝑡𝑤

∞

𝑤=0

𝜌(𝑊 = 𝑤; 𝜍) = 1 + (𝑡 − 1) ∑ 𝑡𝑤−1𝑆(𝑤; 𝜍)

∞

𝑤=1

 

= 1 + (𝑡 − 1) ∑ 𝑡𝑤−1∞
𝑤=1

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅.        (6) 

Furthermore, the factorial moments of the DPITL distribution can be determined from the PGF by using 

the following relationship:  𝜇𝑚
′ (𝑡)  =

𝑑𝑚

𝑑𝑡𝑚 𝐺𝑊(𝑡)|𝑡=1. Hence, the mean of the DPITL distribution is the 
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first factorial moment, which can be determined as follows: 

𝐺𝑊
′  (𝑡) = ∑ 𝑡𝑤−1

∞

𝑤=1

(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅
+ (𝑡 − 1) ∑(𝑤 − 1)𝑡𝑤−2

∞

𝑤=1

(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅
. 

Hence, setting t =1 in the previous equation, the mean of distribution is given by: 

𝜇1
′ = 𝐸(𝑊) = 𝐺′𝑊 (1) = ∑

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅
∞
𝑤=1 . 

The second differentiation 𝐺𝑊
′′ (𝑡) at t =1 provides the second factorial moments 

𝐺𝑊
′′ (1) = ∑ (𝑤 − 1)∞

𝑤=1
(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅. 

The (𝐺′′′(𝑤)) and fourth (𝐺′′′′(𝑤)) differentiations differentiations at t =1 provide the third and 

fourth factorial moments 

𝐺′′′(1) = ∑ (𝑤 − 1)(𝑤 − 2)∞
𝑤=1

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅. 

and, 

𝐺′′′′(1)  = ∑ (𝑤 − 1)(𝑤 − 2)(𝑤 − 3)∞
𝑤=1

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅. 

3.3. Non-central moments 

Here, the non-central moments of DPITL model are provided based on MGF. It is worth noting that 

MGF can take a similar formula of Eq (6) by replacing it with et (i.e., t = et) 

𝑀𝑊 (𝑡) = 1 + (𝑒𝑡 − 1) ∑ (𝑒𝑡)𝑤−1∞
𝑤=1

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅 .     (7) 

Differentiating (7) with respect to t and setting t = 0, we determine the mean of the DPITL distribution  

𝑑𝑀𝑊 (𝑡)

𝑑𝑡
= (𝑒𝑡 − 1) ∑ (𝑤 − 1)(𝑒𝑡)𝑤−2∞

𝑤=1
(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅 + ∑ (𝑒𝑡)𝑤∞
𝑤=1

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅 .  (8) 

By setting t=0 in (8), the first moment of the DPITL distribution is obtained as follows: 

𝜇1
′ = 𝐸(𝑊) =

𝑑𝑀𝑊 (𝑡)

𝑑𝑡
|𝑡 = 0 = ∑

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅
∞
𝑤=1 .     (9) 

The second derivative of (9) with respect to t, when evaluated at t=0, provides the second non-central 

moment of the DPITL distribution 

𝐸(𝑊2) =
𝑑2𝑀𝑊 (𝑡)

𝑑𝑡2
|𝑡 = 0 = ∑ (2𝑤 − 1)

(1+2(𝑤+1)𝜂)𝜅

(1+(𝑤+1)𝜂)2𝜅
∞
𝑤=1 .    (10) 

The variance of the DPITL distribution is given by 
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𝜎2 = 𝐸(𝑊2) − (𝐸(𝑊))2 = ∑ (2𝑤 − 1)
(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅

∞

𝑤=1

− [∑
(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅

∞

𝑤=1

]

2

. 

The third non-central moment of the DPITL distribution is obtained by getting the third derivative of (7) 

with respect to t and setting t=0: 

𝐸(𝑊3) =
𝑑3𝑀𝑊 (𝑡)

𝑑𝑡3
|𝑡 = 0 = ∑(3𝑤2 − 3𝑤 + 1)

(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅

∞

𝑤=1

. 

The fourth non-central moment of the DPITL distribution is obtained by getting the fourth derivative 

of (7) with respect to t and setting t=0: 

𝐸(𝑊4) =
𝑑4𝑀𝑊 (𝑡)

𝑑𝑡4
|𝑡 = 0 = ∑(4𝑤3 − 6𝑤2 + 4𝑤 − 1)

(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅

∞

𝑤=1

. 

According to the aforementioned moments, the measure of skewness (𝜆1) is defined by 𝜆1 =
𝐸(𝑊−𝜇1

′
)3

𝜎3 , 

kurtosis (𝜆2 ) is given by 𝜆2 =
𝐸(𝑊−𝜇1

′
)4

𝜎4 ,  and coefficient of variation is given by 𝐶𝑉 = (
𝜎

𝜇
) × 100, 

where 𝜎  is the standard deviation and dispersion index formulated as 𝐼𝐷 =
𝜎2

𝜇1
′ .  Table 1 presents a 

comprehensive statistical summary of the DPITL distribution. It lists the 𝜇1

′
, 𝜎2, 𝜆1, 𝜆2, 𝐶𝑉, and 𝐼𝐷 

key properties that change when one changes the parameter values to help understand the distribution’s 

behavior and for evaluating its performance under different conditions. 

Table 1. Statistical exploration of DPITL distribution under varying parameters. 

𝜅 𝜂 𝜇′1 𝜎2 𝜆1 𝜆2 𝐶𝑉 𝐼𝐷 

1.5 

0.5 1.35932 5.59691 1.97402 6.14751 1.74041 4.11744 

1.5 1.28721 2.58857 2.17410 9.08805 1.24991 2.01099 

3 0.77279 0.50632 1.48094 10.60068 0.92077 0.65518 

2.5 

0.5 1.17580 4.53568 2.22520 7.57907 1.81129 3.85752 

1.5 0.71045 0.97402 2.48998 13.90659 1.38916 1.37100 

3 0.50883 0.29685 0.47918 2.71612 1.07077 0.58340 

From Table 1, the following key observations are revealed: 

▪ As 𝜅 increases, holding 𝜂 constant, the values for 𝜇1
′ , 𝜎2, and 𝐼𝐷 decrease, while those for 

𝐶𝑉 increases. 

▪ As 𝜂 increases, holding 𝜅 constant, the values of 𝜇1
′ , 𝜎2, 𝐶𝑉, and 𝐼𝐷 decrease. 

▪ The DPITL distribution is exceptionally versatile, offering robust modeling capability for both 

under-dispersed (𝜎2 < 𝜇1
′  ) and over-dispersed (𝜎2 > 𝜇1

′  ) count data across its full parameter 

space. 

▪ Parameter selection allows the DPITL distribution to achieve flexible dispersion behavior. 
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▪ Modeling a lower dispersion (𝐼𝐷  < 1) suggests suitability for modeling failures and a high 

degree of predictability. 

▪ Lifetime data with high variability is best suited for reliability models that account for higher 

dispersion (𝐼𝐷 > 1). 

▪ Positive 𝜆1  values indicate that this distribution is right-skewed, and as the skewness value 

approaches zero, the PMF becomes more symmetric. 

▪ Elevated kurtosis, or leptokurtic distributions, indicates greater tail risk and a higher probability 

of extreme outliers compared to normal distribution. Conversely, low kurtosis, or platykurtic 

distributions, suggests that values are more tightly clustered around the mean, resulting in a lower 

probability of extreme outcomes. 

Figure 3 visually represents these patterns through 3D plots of 𝜇1
′ , 𝜎2, 1, 𝜆2, 𝐶𝑉, and 𝐼𝐷. 
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Figure 3. 3D visualization of DPITL distribution properties. 

Consistent with the numerical data presented in Table 1, Figure 3 effectively illustrates the 

flexibility of the DPITL distribution. In this visual representation, the (X, Y) axes display the actual 

values of the parameters used in the numerical data, while the (Z) axis represents the value of the measure 

being studied; additionally, the accompanying color key confirms the precise numerical output for the 



1154 

AIMS Mathematics  Volume 11, Issue 1, 1145–1174. 

surface. This comprehensive visual evidence confirms that its constantly positive skewness and the 

potential for high and low kurtosis underscore the versatility of its PMF and HRF in modeling diverse 

data shapes. The mean residual life function for a discrete random variable W with a SF is expressed as 

follows: 

𝛭(𝑙; 𝜍)  = 𝐸(𝑊 − 𝑙|𝑊 ≥ 𝑙) =
1

𝑆(𝑙−1;𝜍)
∑ 1 − 𝑆(𝑖 − 1; 𝜍)∞

𝑖=𝑙+1 .    (11) 

Based on (11), the following represents the mean residual life at w of a random variable W with the 

DPITL distribution 

𝛭(𝑙; 𝜍)  =
(1 + 2𝑙𝜂)𝜅

(1 + 𝑙𝜂)2𝜅
∑

(1 + 2𝑖𝜂)𝜅

(1 + 𝑖𝜂)2𝜅

∞

𝑖=𝑙+1

. 

3.4. Entropy measures 

The degree of uncertainty attached to a random variable is known as entropy. It is widely used in a 

variety of disciplines, including computer science, survival analysis, econometrics, quantum 

information, and information theory (see Rényi [30]). It can be stated as 

𝜗𝑏  =
1

1−𝑏
𝑙𝑜𝑔{∑ 𝜌𝑏(𝑊 = 𝑤; 𝜍)∞

𝑤=0 } , 𝑏 ≠ 1, 𝑏 > 0,      (12) 

where the W∼DPITL(𝜍) distribution can be derived by substituting PMF (2) in (12) as follows: 

𝜗𝑏  =
1

1 − 𝑏
𝑙𝑜𝑔 {∑ [

(1 + 2𝑤𝜂)𝜅

(1 + 𝑤𝜂)2𝜅
−

(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅
]

𝑏∞

𝑤=0

}. 

The Tsallis entropy presented by [31] for the DPITL distribution has the following expression: 

𝑇𝑏  =
1

𝑏−1
{1 − ∑ 𝜌𝑏(𝑊 = 𝑤; 𝜍)∞

𝑤=0 }, 𝑏 ≠ 1, 𝑏 > 0.      (13) 

The Tsallis entropy of the DPITL distribution can be derived by substituting PMF (2) in (13) as follows: 

𝑇𝑏  =
1

𝑏 − 1
{1 − ∑ [

(1 + 2𝑤𝜂)𝜅

(1 + 𝑤𝜂)2𝜅
−

(1 + 2(𝑤 + 1)𝜂)𝜅

(1 + (𝑤 + 1)𝜂)2𝜅
]

𝑏∞

𝑤=0

}. 

The entropy of the DPITL distribution is challenging to obtain in a closed form using simple 

computations but can be used to numerically solve complicated equations using a range of parameter 

values, as shown in Table 2. 

The entropy values for the DPITL distribution shown in Table 2 are detailed as follows: 

▪ 𝜗𝑏 obtains its smallest value with respect to 𝑇𝑏 when b = 0.5. On the other hand, 𝑇𝑏 has a 

lower value than 𝜗𝑏 when b = 1.5. 

▪ As 𝜅 increases while b and 𝜂 remain constant, entropy measurements decrease. 

▪ As 𝜂 increases while 𝜅 and b remain constant, entropy measurements decrease. 

▪ As b increases while 𝜅 and 𝜂 remain constant, entropy measurements decrease. 
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Table 2. Entropy measurements for DPITL distribution. 

Parameters Measure 

k 𝜂 b ϑb Tb 

0.8 
2 

0.5 

3.23794 8.09579 

5 1.29933 1.82981 

1.8 
2 1.60341 2.45867 

5 0.81092 0.99998 

2.5 
2 1.24812 1.73297 

5 0.73738 0.89168 

0.8 
2 

1.5 

1.69625 1.14357 

5 0.73630 0.61598 

1.8 
2 1.06104 0.82340 

5 0.68466 0.57977 

2.5 
2 0.87374 0.70789 

5 0.69516 0.58721 

The glyph designs in Figure 4 are used to visually represent the uncertainty of measurements for 

the DPITL distribution. 

 

Figure 4. Visual entropy of glyph designs for DPITL distribution. 

Figure 4 illustrates the use of two colors in the glyphs to convey information: the yellow center 

represents the average entropy, while the surrounding white area reflects the degree of uncertainty. A 

smaller white area indicates lower uncertainty and thus better performance. From this visualization, 

performance depends on the value of b. When  b  =  0.5, measure 𝜗𝑏 performs better with smaller white 

areas, whereas at b  =1.5, measure 𝑇𝑏 shows superior results with reduced uncertainty. These graphical 

insights align perfectly with the numerical results reported in Table 2. 
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4. Estimation methods 

To estimate the unknown parameters of DPITL distribution, five methods are employed: ML, MM, 

LS, CM, and AD. 

4.1. Maximum likelihood estimation 

Given a random sample w1, w2,…,wn drawn independently from the DPITL distribution, the 

likelihood function can be expressed as: 

𝐿(𝜍) = ∏ [
(1+2𝑤𝑗

𝜂
)𝜅

(1+𝑤
𝑗
𝜂

)2𝜅
−

(1+2(𝑤𝑗+1)𝜂)𝜅

(1+(𝑤𝑗+1)𝜂)2𝜅
]𝑛

𝑗=1 .      (14) 

We start by determining the log-likelihood function in order to get the ML estimator of 𝜅̂ of 𝜅 and 𝜂̂ 

of 𝜂. This is accomplished by taking Eq (14)’s natural logarithm, denoted by 𝑙𝑜𝑔 ℓ, which produces the 

following expression: 

𝑙𝑜𝑔 ℓ = ∑ 𝑙𝑜𝑔[𝐴(𝑤𝑗, 𝜍) − 𝐵(𝑤𝑗 + 1, 𝜍)]𝑛
𝑗=1 ,       (15) 

where 𝐴(𝑤𝑗, 𝜍) =
(1+2𝑤𝑗

𝜂
)𝜅

(1+𝑤
𝑗
𝜂

)2𝜅 and 𝐵(𝑤𝑗 + 1, 𝜍) =
(1+2(𝑤𝑗+1)𝜂)𝜅

(1+(𝑤𝑗+1)𝜂)2𝜅 . 

The first partial derivatives of (15), with respect to the 𝜅 and 𝜂 are 

𝜕 𝑙𝑜𝑔 ℓ

𝜕𝜅
= ∑

𝐴𝜅
′ (𝑤𝑗,𝜍)−𝐵𝜅

′ (𝑤𝑗+1,𝜍)

[𝐴(𝑤𝑗,𝜍)−𝐵(𝑤𝑗+1,𝜍)]

𝑛
𝑗=1 ,       (16) 

𝜕 𝑙𝑜𝑔 ℓ

𝜕𝜂
= ∑

𝐴𝜂
′ (𝑤𝑗,𝜍)−𝐵𝜂

′ (𝑤𝑗+1,𝜍)

[𝐴(𝑤𝑗,𝜍)−𝐵(𝑤𝑗+1,𝜍)]

𝑛
𝑗=1 ,       (17) 

where 

𝐴𝜅
′ (𝑤𝑗, 𝜍) =

(1+2𝑤𝑗
𝜂

)𝜅[𝑙𝑛(1+2𝑤𝑗
𝜂

)−2 𝑙𝑛(1+𝑤𝑗
𝜂

)]

(1+𝑤
𝑗
𝜂

)2𝜅
,      (18) 

and 

𝐴𝜂
′ (𝑤𝑗, 𝜍) =

2𝜅𝑤𝑗
𝜂

𝑙𝑛 𝑤𝑗[(1+𝑤𝑗
𝜂

)2𝜅(1+2𝑤𝑗
𝜂

)𝜅−1−2𝜅(1+2𝑤𝑗
𝜂

)𝜅(1+𝑤𝑗
𝜂

)2𝜅−1]

(1+𝑤
𝑗
𝜂

)4𝜅
.    (19) 

Note that 𝐵𝜅
′ (𝑤𝑗, 𝜍)  and 𝐵𝜂

′ (𝑤𝑗 + 1, 𝜍)  have the same expressions as provided in (18) and (19) by 

replacing 𝑤𝑗 with 𝑤𝑗 + 1. The ML estimators 𝜅̂ and 𝜂̂ are obtained after setting the right-hand side 

of Eqs (16) and (17) to zero. Since there is no analytical solution for this system, a numerical approach 

such as Nelder-Mead is required to solve them numerically. 
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4.2. Moments method  

Here, the moment estimators 𝜅̂2 of 𝜅 and 𝜂̂2 of 𝜂 are discussed. In order to apply this method, 

we usually equate the population moments to the corresponding sample moments and solve the resulting 

equations of moments to obtain 𝜅̂2  and 𝜂̂2.  To be more precise, we would equate the population 

moments E(W) and E(W2) (from Eqs (9) and (10), respectively) to the sample moments 𝑚1 =
1

𝑛
∑ 𝑤𝑗

𝑛
𝑗=1  

and 𝑚2 =
1

𝑛
∑ 𝑤𝑗

2.𝑛
𝑗=1  Then, we would solve these two equations for 𝜅 and 𝜂 simultaneously. It can 

be challenging to find a direct numerical solution for this system of two nonlinear equations in two 

unknowns; instead, Khan et al. [32] presented a method of pseudo-moment by minimizing the following 

function with respect to 𝜅 and 𝜂. 

𝐻(𝜅, 𝜂) = (𝑚1 − 𝐸(𝑊))2 + (𝑚2 − 𝐸(𝑊2))2. 

For instance, optimization functions such as optim can be used in the R environment to complete the 

task. 

4.3. Least squares method 

Here, the LS estimators 𝜅̂3 of 𝜅 and 𝜂̂3 of 𝜂 are determined. The LS estimators 𝜅̂3 and 𝜂̂3 

are obtained by minimizing the following function: 

𝑙𝑠(𝜍)  = ∑ [𝛽(𝑤(𝑖); 𝜍) −
𝑖

𝑛 + 1
]

2𝑛

𝑖=1

, 

where 𝛽(𝑤(𝑖); 𝜍)  denotes the CDF of the DPITL distribution evaluated at the i-th order statistic. 

Alternatively, the LS estimators 𝜅̂3 and 𝜂̂3 can be acquired by working out the following equations, 

with respect to 𝜅 and 𝜂: 

𝜕𝑙𝑠(𝜍)

𝜕𝜅
 = ∑ [𝛽(𝑤(𝑖); 𝜍) −

𝑖

𝑛+1
] 𝛿𝜅(𝑤(𝑖)|𝜍) = 0𝑛

𝑖=1 ,     (20) 

𝜕𝑙𝑠(𝜍)

𝜕𝜂
 = ∑ [𝛽(𝑤(𝑖); 𝜍) −

𝑖

𝑛+1
] 𝛿𝜂(𝑤(𝑖)|𝜍) = 0𝑛

𝑖=1 ,     (21) 

where 𝛿𝜅(𝑤(𝑖)|𝜍), 𝛿𝜂(𝑤(𝑖)|𝜍) have the same expressions of Eqs (18) and (19) with negative sign and the 

ordered sample w(i). Since the solution to Eqs (20) and (21) cannot be found in closed form, numerical 

optimization techniques can be used to obtain 𝜅̂3 and 𝜂̂3. 

4.4. Cramér-von Mises method 

Here, the CM estimators 𝜅̂4 of 𝜅 and 𝜂̂4 of 𝜂 are obtained. The CM estimators 𝜅̂4 and 𝜂̂4are 

obtained by minimizing the following function: 
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𝐶(𝜍)  =
1

12𝑛
+ ∑ [𝛽(𝑤(𝑖); 𝜍) −

2𝑖−1

2𝑛
]

2
𝑛
𝑖=1 .      (22) 

The CM estimators 𝜅̂4 and 𝜂̂4 can be obtained by solving the following equations, with respect to 𝜅 

and 𝜂, as an alternative to Eq (22). 

𝜕𝐶(𝜍)

𝜕𝜅
 = ∑ [𝛽(𝑤(𝑖); 𝜍) −

2𝑖−1

2𝑛
] 𝛿𝜅(𝑤(𝑖)|𝜍) = 0𝑛

𝑖=1 ,     (23) 

𝜕𝐶(𝜍)

𝜕𝜂
 = ∑ [𝛽(𝑤(𝑖); 𝜍) −

2𝑖−1

2𝑛
] 𝛿𝜂(𝑤(𝑖)|𝜍) = 0𝑛

𝑖=1 ,     (24) 

where 𝛿𝜅(𝑤(𝑖)|𝜍), 𝛿𝜂(𝑤(𝑖)|𝜍) have the same expressions of Eqs (18) and (19) with negative sign and the 

ordered sample w(i). Since the solution to Eqs (23) and (24) cannot be found in closed form, numerical 

optimization techniques can be used to obtain 𝜅̂4 and 𝜂̂4. 

4.5. Anderson darling method  

The AD estimators 𝜅̂5 of 𝜅 and 𝜂̂5 of 𝜂 are obtained by minimizing the following function: 

𝐴(𝜍)  = −𝑛 −
1

𝑛
+ ∑ (2𝑖 − 1)[𝑙𝑜𝑔 𝛽 (𝑤(𝑖); 𝜍) + 𝑙𝑜𝑔[1 − 𝛽(𝑤(𝑛−𝑖+1); 𝜍)]]𝑛

𝑖=1 .   (25) 

The AD estimators 𝜅̂5 and 𝜂̂5 can be obtained by solving the following equations, with respect to 

𝜅and 𝜂, as an alternative to Eq (25): 

𝜕𝐴(𝜍)

𝜕𝜅
= ∑

(2𝑖−1)𝛿𝑘(𝑤(𝑖)|𝜍)

𝛽(𝑤(𝑖);𝜍)

𝑛
𝑖=1 −

(2𝑖−1)𝛿𝑘(𝑤(𝑛−𝑖+1)|𝜍)

1−𝛽(𝑤(𝑛−𝑖+1);𝜍)
,     (26) 

𝜕𝐴(𝜍)

𝜕𝜂
= ∑

(2𝑖−1)𝛿𝜂(𝑤(𝑖)|𝜍)

𝛽(𝑤(𝑖);𝜍)

𝑛
𝑖=1 −

(2𝑖−1)𝛿𝜂(𝑤(𝑛−𝑖+1)|𝜍)

1−𝛽(𝑤(𝑛−𝑖+1);𝜍)
,     (27) 

Where 𝛿𝑘(𝑤(𝑖)|𝜍), 𝛿𝜂(𝑤(𝑖)|𝜍), 𝛿𝑘(𝑤(𝑛−𝑖+1)|𝜍), 𝛿𝜂(𝑤(𝑛−𝑖+1)|𝜍) have the same expressions of Eqs (18) 

and (19) by replacing the random sample with the corresponding ordered sample. Since the solution to 

Eqs (26) and (27) cannot be found in closed form, numerical optimization techniques can be used to 

obtain 𝜅̂5 and 𝜂̂5. 

5. Numerical simulation 

This section presents the performance of ML, MM, LS, CM, and AD methods for estimating the 

parameters of DPITL distribution. A simulation study is conducted under different sample sizes and 

selected parameter values. The steps of the simulation algorithm are outlined as follows: 

1) Set the number of replications (N) to 1000. 

2) Choose the sample size n as (15,25,50,100). 

3) Select parameters as Set1=(𝜅 = 0.9, 𝜂 = 1.2), Set2=(𝜅 = 1.8, 𝜂 = 0.5), and Set3 =(𝜅 = 1.3, 𝜂 =

1.3). 

4) Generate ui for i =1, 2 ,…, n as independent observations from the uniform distribution U(0,1). 
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5) Random samples are then drawn from the DPITL distribution based on Eq (5). 

6) Estimate the DPITL distribution parameters using the chosen methods. 

7) Repeat steps 4–6 N times. 

8) Evaluate the accuracy of the estimators by calculating the mean squared error (MSE) and the mean 

bias (MB) of the estimated parameters. 

R version 4.5.0 was used for all computations, and the bbmle and MASS packages were utilized to 

estimate the parameters. Table 3 and Figure 5 show the findings. The results of the simulation offer 

important new information on how well the estimators work in various scenarios. Below is an overview 

of the key findings: 

▪ Increasing n makes low MSEs and thus various estimates more accurate, as shown in Figure 5.  

▪ When parameters 𝜅 or 𝜂 get higher values, results are less accurate and there is a bigger MSE, as 

shown in Figure 5 and Table 3. 

▪ For the 𝜂 parameter, the optimal estimation method is ML, while for the parameter 𝜅, the AD 

method is preferred, as shown in Figure 5 and Table 3. 

▪ As Figure 5 shows, the estimation of parameter 𝜂 was more accurate in Set 2, while parameter 𝜅 

was estimated more accurately in Set 1. 

▪ The CM method demonstrates superior performance for 𝜅,  outperforming both ML and MM 

methods in most cases, as shown in Table 3. 

▪ The AD method demonstrates superior performance for 𝜂, outperforming both CM and LS methods 

in most cases, as shown in Table 3. 

 

Figure 5. Bubble plot MSE performance for DPITL distribution methods. 
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Table 3. Numerical simulation results of DPITL distribution with MBs and MSEs for different parameter values. 

n True value Set1 Set2 Set3 

 Estimate 𝜅̂ 𝜂̂ 𝜅̂ 𝜂̂ 𝜅̂ 𝜂̂ 

 Methods MB MSE MB MSE MB MSE MB MSE MB MSE MB MSE 

15 

ML 0.67251 0.93345 0.08445 0.34531 0.42206 0.92955 0.00061 0.09481 0.98479 0.92358 0.31364 0.26987 

AD 0.12353 0.09059 0.30157 0.34534 0.74087 0.62627 0.39947 0.24561 0.25817 0.16431 0.34487 0.36204 

LS 0.20218 0.11652 0.51952 0.63224 0.80793 0.74491 0.43141 0.27883 0.32685 0.21057 0.53182 0.49971 

CM 0.20861 0.11801 0.55917 0.65202 0.82487 0.76199 0.53639 0.40521 0.33414 0.21460 0.57836 0.52204 

MM 0.18736 0.42261 0.35193 0.90917 0.31935 0.99356 0.58872 0.38010 0.19414 0.93862 0.73131 0.92279 

25 

ML 0.65943 0.69091 0.35475 0.21212 0.40634 0.61817 0.03548 0.01574 0.95730 0.79578 0.42705 0.10989 

AD 0.14988 0.06717 0.29734 0.23021 0.76035 0.52670 0.40756 0.21368 0.27971 0.13055 0.36232 0.21304 

LS 0.20089 0.08476 0.42437 0.35851 0.80069 0.69913 0.39860 0.20323 0.32264 0.15921 0.46264 0.32494 

CM 0.20444 0.08671 0.45554 0.39324 0.81226 0.71058 0.48699 0.29573 0.32768 0.16210 0.49967 0.34797 

MM 0.21443 0.33078 0.07360 0.44560 0.36767 0.76107 0.56701 0.33567 0.25988 0.91579 0.27833 0.82626 

50 

ML 0.61549 0.51337 0.39087 0.18067 0.37187 0.33685 0.05567 0.00794 0.97811 0.48627 0.44875 0.04079 

AD 0.18663 0.05953 0.32547 0.18339 0.78308 0.33510 0.40127 0.18113 0.32169 0.12075 0.40134 0.20268 

LS 0.21466 0.07049 0.38699 0.23798 0.80188 0.66902 0.36587 0.14881 0.34393 0.14676 0.44960 0.25530 

CM 0.21536 0.07125 0.40634 0.25471 0.80971 0.67811 0.43923 0.21529 0.34649 0.14798 0.47056 0.26720 

MM 0.29080 0.21056 0.16245 0.20140 0.38454 0.57643 0.56531 0.33074 0.36862 0.83306 0.00740 0.65072 

100 

ML 0.62258 0.45430 0.41420 0.13753 0.34390 0.22619 0.05633 0.00566 0.99405 0.12629 0.47469 0.01626 

AD 0.19367 0.05016 0.32783 0.14381 0.79972 0.20163 0.40910 0.10699 0.32318 0.10332 0.41059 0.18856 

LS 0.20963 0.05636 0.35760 0.16702 0.80918 0.56899 0.36738 0.14251 0.33421 0.11850 0.42770 0.20809 

CM 0.20828 0.05612 0.36742 0.17430 0.81316 0.67347 0.42790 0.19324 0.33574 0.12696 0.44496 0.21883 

MM 0.37944 0.17321 0.23149 0.14901 0.37507 0.46047 0.55457 0.22054 0.64526 0.51676 0.32841 0.38747 

200 

ML 0.61467 0.41040 0.42037 0.04786 0.44887 0.15675 0.09445 0.00094 0.98703 0.09790 0.49024 0.00714 

AD 0.20179 0.04708 0.33513 0.13090 0.78445 0.12152 0.48574 0.04298 0.32914 0.08492 0.41487 0.01499 

LS 0.21181 0.05106 0.35060 0.14262 0.78657 0.22586 0.42933 0.08994 0.33446 0.09868 0.41533 0.18374 

CM 0.20916 0.05013 0.35482 0.14524 0.79107 0.53199 0.49682 0.15404 0.33544 0.09151 0.43193 0.19614 

MM 0.49905 0.09651 0.21485 0.05954 0.43111 0.31059 0.50304 0.15560 0.88097 0.45821 0.58165 0.18550 
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6. Application of count data 

This section demonstrates the effectiveness of DPITL distribution by applying it to a dataset derived 

from real-world data. Its efficacy is tested in a comprehensive evaluation comparison with other 

distributions, namely DIKU, DBurr, DIW, DLL, negative binomial (NB), and discrete Lomax (DLO) [33]. 

Various metrics of goodness-of-fit, such as the negative log-likelihood (− 𝑙𝑜𝑔 ℓ ), Akaike information 

criterion  (𝛬1),  Bayesian information criterion (𝛬2), Hannan-Quinn information criterion (𝛬3), consistent 

Akaike information criterion (𝛬4), and chi-square (𝜒2) with its corresponding p-value (𝛬5), are employed 

to compare the fitted models. The ML method was employed to parameterize all competing distributions. 

For DPITL distribution, its parameters were also estimated using the MM, LS, CM, and AD techniques. 

All parameter estimates were reported along with their respective standard errors (SEs). 

6.1. Corticosteroid kidney data 

The dataset comprises observations on liver lesions induced by steroid exposure. The study aimed 

to investigate the impact of these agents on the formation of lesions in rat embryos. [34]. The basic 

descriptive measurements of corticosteroid kidney data are shown graphically in Figure 6. 

 

Figure 6. Descriptive visual representation of corticosteroid kidney data. 

A look at Figure 6 confirms the DPITL distribution’s excellent fit for the data, based on its 

relationship to the total test time (TTT) plot and HRF. Moreover, the calculation of its parameters 

confirms that the data are indeed over-dispersed, which is consistent with the characteristics of the 

DPITL distribution. PMF analysis then reveals the asymmetrical nature of the data, leading us to use 

quantile-quantile (QQ) plots and box plots to identify any outliers, where the outliers’ values stand out 
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as blue rings. Table 4 provides a comprehensive overview of the fitted discrete distributions and their 

respective goodness-of-fit measures, including − 𝑙𝑜𝑔 ℓ, 𝛬1, 𝛬2, 𝛬3, 𝛬4, 𝜒2, and 𝛬5. 

Table 4. Observed vs. expected frequencies and model fit for corticosteroid kidney data. 

w Observed Expected 

 Distribution DPITL DIKU DBurr DIW DLL DLO NB 

0 65 64.24978 64.00033 64.73913 63.96051 63.18818 61.54119 64.24497 

1 14 19.07262 19.72589 19.18476 20.68863 20.07872 21.03007 16.77790 

2 10 8.74196 8.70531 8.48552 8.04508 8.64045 9.69959 9.00464 

3 6 4.87816 4.73183 4.63222 4.22855 4.65721 5.28547 5.65981 

4 4 3.04729 2.91023 2.86267 2.59534 2.86608 3.20519 3.81736 

5 2 2.05058 1.94231 1.91985 1.75079 1.92272 2.09428 2.67987 

6 2 1.45520 1.37388 1.36441 1.25875 1.37020 1.44595 1.93055 

7 2 1.07488 1.01496 1.01254 0.94749 1.02102 1.04159 1.41608 

8 1 0.81925 0.77554 0.77705 0.73835 0.78736 0.77599 1.05265 

9 1 0.64039 0.60879 0.61249 0.59119 0.62390 0.59416 0.79055 

10 1 0.51111 0.48855 0.49344 0.48377 0.50538 0.46539 0.59855 

11 2 3.45880 3.72237 3.91592 4.71155 4.33878 2.82114 2.02707 

Total 110  

− 𝑙𝑜𝑔 ℓ 170.29343 171.04999 171.13916 172.93488 171.71715 170.48061 170.54405 

𝛬1 344.58686 346.09998 346.27832 349.86977 347.43431 344.96122 345.08810 

𝛬2 349.98783 351.50094 351.67928 355.27073 352.83527 350.36218 350.48906 

𝛬3 346.58686 348.09998 348.27832 351.86977 349.43431 346.96122 347.08810 

𝛬4 346.77752 348.29064 348.46898 352.06043 349.62497 347.15188 347.27876 

𝜒2 4.42097 5.51000 5.55726 8.28466 6.20214 5.14089 5.35152 

𝛬5 0.88159 0.78778 0.78328 0.50573 0.71953 0.82186 0.79811 

Table 4 conclusively demonstrates the superior fit of the DPITL distribution to the data. This is 

quantified by its consistently lowest values across all fitted metrics and the highest 𝛬5 when compared 

to all other competing distributions, establishing DPITL distribution as the optimal choice. Furthermore, 

Figure 7 offers a visual confirmation of the estimation quality. 



1163 

AIMS Mathematics  Volume 11, Issue 1, 1145–1174. 

 

Figure 7. Contour and profile plots for DPITL distribution on corticosteroid kidney data. 

Figure 7 utilizes contour plots and profile log-likelihood functions to effectively illustrate the 

behavior of the estimators and demonstrate how they successfully maximize the fit of the DPITL 

distribution to the corticosteroid kidney data. A visual representation of the estimated PMFs is shown in 

Figure 8, demonstrating how the fitted distributions apply to the observed and expected frequencies of 

the corticosteroid kidney data. 

 

Figure 8. Observed and expected frequencies of fitted PMFs for corticosteroid kidney data. 
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Following the visual confirmation of the fit provided by Figure 8, the precise results of the different 

estimation methods (MM, LS, CM, AD, ML) and their SEs are quantified in Table 5, with Figure 9 

offering a final visual comparison to determine the best method. 

Table 5. Estimators and SEs from different distributions for corticosteroid kidney data. 

Distribution DPITL DIKU DBurr DIW DLL DLO NB 

Methods LS AD CM MM ML 

𝜅̂ 1.23860 1.22998 1.22818 0.12103 3.04949 1.15826 1.28117 0.55809 1.20633 1.88192 0.32153 

𝜂̂ 1.49317 1.48915 1.51802 0.03668 0.64278 1.42086 1.05364 1.04949 0.77984 1.83186 0.18776 

SE (𝜅̂) 0.43285 0.19714 0.43128 0.56968 0.39074 0.31923 0.16290 0.09733 0.15927 0.64673 0.07419 

SE (𝜂̂) 0.78488 0.30790 0.79620 0.14930 0.09616 0.24068 0.16735 0.14595 0.13570 0.95453 0.04525 

 

Figure 9. Visual comparison of SEs for DPITL distribution of corticosteroid kidney data. 

Consistent with the simulation outcomes, both Table 5 and Figure 9 show that AD is the most 

reliable method for estimating parameter 𝜅, while ML is the most reliable for parameter 𝜂. 

6.2. Leukocyte chromatid data 

A culture of human leukocytes was treated with 0.2 g of quinone 1 over a 24-hour period. Chinone is 

known for its genotoxic effects. This exposure was found to cause chromatid aberrations per cell [35]. The 

basic descriptive measurements of the leukocyte chromatid data are visually represented in Figure 10. 
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Figure 10. Descriptive visual representation of leukocyte chromatid data. 

Table 6. Observed vs. expected frequencies and model fit for leukocyte chromatid data. 

w Observed Expected 

Distribution DPITL DIKU DBurr DIW DLL DLO NB 

0 268 267.98513 267.75762 268.03832 267.35656 267.05105 270.39691 270.18834 

1 87 87.26737 88.73520 88.66910 92.15893 91.10951 80.90346 78.54283 

2 26 25.67757 24.53958 24.42941 21.33613 22.78113 28.19664 29.83460 

3 9 9.55303 9.09453 8.94648 8.00163 8.38642 11.05799 12.21935 

4 4 4.21370 4.09845 4.02150 3.84329 3.91256 4.76436 5.18624 

5 2 2.10008 2.10950 2.07998 2.14002 2.11808 2.21652 2.24743 

6 1 1.14627 1.19435 1.18893 1.31449 1.26829 1.09920 0.98727 

7 3 2.05685 2.47078 2.62628 3.84896 3.37296 1.36492 0.79395 

Total 400  

− 𝑙𝑜𝑔 ℓ 398.54026 398.76146 398.89533 400.26411 399.60105 398.88132 399.85684 

𝛬1 801.08051 801.52293 801.79066 804.52822 803.20209 801.76265 803.71368 

𝛬2 809.06344 809.50586 809.77359 812.51115 811.18502 809.74558 811.69661 

𝛬3 803.08051 803.52293 803.79066 806.52822 805.20209 803.76265 805.71368 

𝛬4 804.24186 804.68427 804.95200 807.68957 806.36343 804.92399 806.87502 

𝜒2 0.20323 0.27507 0.21911 1.71242 0.79496 3.14624 8.69786 

𝛬5 0.99901 0.89908 0.98887 0.88749 0.91739 0.67715 0.12174 

The analysis of the leukocyte chromatid data begins with Figure 10, which uses a TTT plot to 

illustrate the excellent fit of the DPITL distribution. This choice is supported numerically, as the 

calculation of the parameters confirms the data’s over-dispersed nature, aligning with the DPITL 

characteristics. Because the PMF shows an asymmetrical distribution, QQ plots and box plots were used 
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to detect outliers, marked by green rings. To evaluate the model’s overall performance, Table 6 

summarizes the goodness-of-fit metrics, while Figure 11 provides a visual confirmation of how  the 

estimators successfully maximize the fit to the data. 

 

Figure 11. Contour and profile plots for DPITL distribution on leukocyte chromatid data. 

The analysis definitively establishes DPITL distribution as the optimal choice for the leukocyte 

chromatid data. Table 6 quantifies this superiority by showing that DPITL achieves the lowest metrics 

and the highest 𝛬5 among all competitors. This high quality of estimation is visually supported by Figure 

11, which confirms how the estimators successfully maximize the fit of the DPITL model. Furthermore, 

the effectiveness of the chosen distribution is visibly demonstrated in Figure 12, where the estimated 

PMFs align perfectly with the observed data frequencies. 
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Figure 12. Observed and expected frequencies of fitted PMFs for leukocyte chromatid data. 

The visual confirmation of the fit provided by Figure 12 is followed by the quantification of the 

model parameters and their SEs in Table 7, with Figure 13 offering a final visual comparison of method 

accuracy. 

 

Figure 13. Visual comparison of SEs for DPITL distribution of leukocyte chromatid data. 
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Table 7. Estimators and SEs from different distributions for leukocyte chromatid data. 

Distribution DPITL DIKU DBurr DIW DLL DLO NB 

Methods LS AD CM MM ML 

𝜅̂ 1.41983 1.41740 1.41774 2.98979 3.85406 2.91931 1.59960 0.62218 2.09107 7.45989 0.61981 

𝜂̂ 2.08292 2.09990 2.09160 1.29241 0.94687 2.96071 1.59249 1.91624 0.71622 6.13210 0.53099 

SE (𝜅̂) 0.22568 0.10626 0.22555 2.45210 0.24722 0.67253 0.10265 0.03970 0.17210 3.42905 0.12690 

SE (𝜂̂) 0.55084 0.22346 0.55298 1.11840 0.08117 0.27721 0.14587 0.16498 0.04428 3.22225 0.05597 

Table 7 and Figure 13 both agree that the estimation reliability depends on the parameter being 

studied. The AD method is the most reliable choice for estimating parameter 𝜅 . However, the ML 

method is the most reliable for estimating parameter 𝜂. This is consistent with the simulation results. 

6.3. Criminology data 

This third dataset provides specific details from the field of criminal sociology, featuring a 

collection of samples of individuals who display deviant behavior. The information was originally 

gathered and made available to the research community in [36]. A visual representation detailing the 

core descriptive measurements of this dataset is provided in Figure 14. 

 

Figure 14. Descriptive visual representation of criminology data. 

Figure 14 demonstrates the excellent fit of the DPITL distribution for the criminology data using a 

TTT plot. This selection was numerically supported because parameter calculations confirmed the data’s 

over-dispersed nature, matching the DPITL model characteristics. Since the PMF displayed an 

asymmetrical distribution, QQ plots and box plots were used to find outliers, marked by green rings. 

Finally, Table 8 summarizes the overall performance with goodness-of-fit metrics, and Figure 15 

visually shows how the estimators successfully maximized the data fit. 



1169 

AIMS Mathematics  Volume 11, Issue 1, 1145–1174. 

Table 8. Observed vs. expected frequencies and model fit for criminology data. 

w Observed Expected 

Distribution DPITL DIKU DBurr DIW DLL DLO NB 

0 378 376.78024 377.07151 377.35103 376.95193 376.05933 373.31546 376.91281 

1 59 67.86700 68.22705 67.91836 70.63013 70.27035 72.20826 63.79716 

2 26 23.19178 22.59963 22.55391 20.11535 21.08508 23.81006 25.84724 

3 13 10.40213 10.02107 10.01595 8.83166 9.24766 10.24708 12.50426 

4 7 5.44737 5.25824 5.26263 4.77912 4.95317 5.18377 6.54085 

5 11 10.31149 10.82249 10.89813 12.69180 12.38441 9.23537 8.39769 

Total 494  

− 𝑙𝑜𝑔 ℓ 436.34625 437.42421 437.44150 441.40221 440.26395 436.88571 438.00594 

𝛬1 876.69250 878.84843 878.88300 886.80443 884.52791 877.77141 878.01188 

𝛬2 885.09757 887.25350 887.28807 895.20950 892.93298 886.17649 886.41695 

𝛬3 878.69250 880.84843 880.88300 888.80443 886.52791 879.77141 880.01188 

𝛬4 879.99233 882.14826 882.18284 890.10426 887.82774 881.07125 881.31171 

𝜒2 2.63980 3.22717 3.16228 6.86441 5.48641 4.38935 3.22306 

𝛬5 0.45056 0.35791 0.36727 0.07635 0.13945 0.22237 0.34748 

 

Figure 15. Contour and profile plots for DPITL distribution on criminology data. 

The analysis clearly shows that DPITL distribution is the best choice for criminology data. Table 8 

proves this because the DPITL model achieved the lowest metrics and highest 𝛬5 scores compared to 

all other models. This excellent quality of estimation is visually supported by Figure 15, which confirms 

that the estimators successfully fit the DPITL model. Furthermore, Figure 16 clearly demonstrates the 

distribution’s effectiveness, as the estimated PMFs perfectly match the actual observed data. 
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Figure 16. Observed and expected frequencies of fitted PMFs for criminology data. 

Figure 16 visually confirms the model’s fit. Following this, Figure 17 offers a last visual 

comparison to show how accurate the method is. Finally, Table 9 lists the model parameters and their 

SEs. 

 

Figure 17. Visual comparison of SEs for DPITL distribution of criminology data. 
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Table 9. Estimates and SEs from different distributions for criminology data. 

Distribution DPITL DIKU DBurr DIW DLL DLO NB 

Methods LS AD CM MM ML 

𝜅̂ 1.67904 1.68196 1.67764 3.22128 5.00026 1.07831 2.08234 0.40690 1.55405 2.62558 0.26405 

𝜂̂ 1.96284 1.88004 1.97031 1.21884 0.63065 2.17412 1.02957 1.45442 0.47418 1.40748 0.35897 

SE (𝜅̂) 0.20499 0.09979 0.20491 2.77023 0.28035 0.22169 0.11648 0.04364 0.13686 0.57886 0.04434 

SE (𝜂̂) 0.60893 0.19908 0.61146 1.13021 0.05513 0.22557 0.09366 0.13265 0.04787 0.44710 0.04611 

Both Table 9 and Figure 17 agree: the best method for estimation changes depending on the 

parameter. The AD method is the most reliable for estimating parameter 𝜅. However, the ML method 

works best for parameter 𝜂. This result is consistent with the simulation tests. 

7. Concluding remarks 

This article introduces a new two-parameter discrete distribution called DPITL distribution using 

a survival discretization technique. Factorial moments, PGF, QF, mean, variance, mean residual life, 

Tsallis entropy, and Rényi entropy are among the statistical features analyzed. Some estimation methods, 

including ML, MM, LS, AD, and CM, are used to determine the best estimators of the unknown 

parameters. The simulation study demonstrates the performance of different estimation methods for 

DPITL distribution. Results show that larger sample sizes enhance estimation accuracy, while higher 

parameter values may reduce precision. Moreover, the findings indicate that the most suitable method 

varies by parameter: the ML method performs best for the 𝜂 parameter, whereas the AD method is 

preferable for the 𝜅  parameter. The distribution’s usefulness was also confirmed through real data 

applications, including corticosteroid-induced liver lesions in rats, chromatid aberrations in human cells, 

and criminology data. These applications highlight their strong potential for modeling discrete count 

data, especially in fields such as social sciences, toxicology, pharmacology, and epidemiology, where it 

can be applied to analyze events like drug side effects, cellular changes, and the spread of new disease 

cases.  

The present study establishes a strong foundation for DPITL distribution, yet it also suggests 

several compelling directions for future work. A particularly valuable extension would be to formulate 

a Bayesian paradigm for estimating the model’s parameters. This would serve as a powerful complement 

to the frequentist techniques (ML, MM, LS, CM, AD) already investigated. The Bayesian approach 

naturally incorporates previous knowledge, and its result, a joint posterior distribution for the parameters, 

offers a thorough and understandable framework for probabilistic inference that goes beyond point 

estimates to completely describe uncertainty [37–40]. 
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