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Abstract: In this paper, we investigated the complex dynamics of a discrete-time predator-prey model
incorporating a double Allee effect in the prey population. We investigated the existence and stability
of biologically meaningful fixed points, including extinction, prey-only, and coexistence equilibria.
Through analytical and numerical bifurcation analysis, we demonstrated that the model underwent
a Neimark-Sacker bifurcation as key parameters varied, leading to quasi-periodic oscillations that
characterized realistic population cycles. Our results revealed that stronger Allee effects tend to
destabilize the model, increasing extinction risks and promoting oscillatory dynamics, while higher
predator mortality rates and saturation in predation response enhance stability. A comparative analysis
with models lacking the Allee effect highlights its critical role in delaying equilibrium convergence
and inducing instability at low population densities. These findings provide important insights for
ecological conservation, particularly for species vulnerable to population depletion, and contribute to
the theoretical understanding of predator-prey models with density-dependent growth constraints.
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1. Introduction

Predator-prey interactions are essential elements of ecological models, influencing the population
dynamics of species across many environments. The conventional Lotka-Volterra model, first
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developed by Lotka [1] and Volterra [2], offers a fundamental framework for examining predator-
prey interactions. This model, while fundamental in theoretical ecology, inadequately represents the
complex characteristics of actual ecological systems due to its oversimplified structure. Researchers
have discovered many elements that substantially alter these interactions, including functional
responses [3], harvesting [4], cannibalism [5], fear-induced behaviors [6, 7], prey refuge [8], and the
Allee effect [9–11]. To more effectively include these ecological intricacies, researchers have devised
several extensions of the original framework.

The Allee effect, first identified by Allee [12], is a biological phenomenon whereby populations
experience reduced per capita growth rates at low densities. This reduction may be ascribed to
challenges in mate acquisition, diminished efficacy in group defense, or inadequacies in collective
foraging. Consequently, populations may encounter critical density limits under which extinction
becomes increasingly likely. Usually, the Allee effect is classified as either strong or weak. With a
strong Allee effect, populations below a certain threshold cannot survive and go toward extinction.
On the other hand, a weak Allee effect just reduces population growth at low densities without
necessarily driving the species toward extinction. In addition to theoretical work, Allee effects are well
documented in real ecological systems. Strong Allee effects appear in species such as Atlantic cod,
where individuals have difficulty finding mates and feeding efficiently at very low densities, leading
to several observed stock collapses. Cooperative mammals such as African wild dogs also show a
strong Allee effect, when pack size falls below a critical level, group hunting becomes ineffective and
the population cannot sustain itself. Weak Allee effects are also common in nature. For example,
many insects and marine invertebrates show reduced reproductive success when population density
is low, even though they can persist above very small population sizes. These cases show that low-
density difficulties, whether strong or weak, are widespread in nature and can play an important role
in population stability and extinction risk, underscoring the importance of incorporating Allee effects
into predator-prey models. The Allee effect on prey populations may significantly affect predator-prey
dynamics, leading to bistability, numerous stable states, and increased extinction risk for predators
and prey.

Several studies have shown the critical impact of the Allee effect on the dynamics of predator-
prey models. Shang and Qiao [13] examined a model in which the prey exhibits a strong Allee
effect, revealing that it results in heteroclinic bifurcations and a reduction in the number of limit
cycles, hence influencing the model’s overall stability. Kumbakar et al. [14] examined the effects
of a strong Allee effect on prey populations, revealing that it may lead to bistability and tristability,
underlining the importance of initial population levels in shaping long-term behavior. Zhang
and Wang [15] investigated a discrete-time predator-prey model incorporating a weak Allee effect
on predators, demonstrating its influence on codimension-one bifurcations and the appearance of
chaotic dynamics, which exhibits significant sensitivity to parameter values and initial conditions.
Furthermore, Dong et al. [16] studied a delayed population model, including a weak Allee effect,
and concluded that the delay might enhance stability, transitioning the model from unstable to stable
regimes. Furthermore, Zeng and Yu [17] conducted a comprehensive study on multiple predator-prey
models and concluded that incorporating the Allee effect significantly increases dynamical richness by
inducing bifurcations such as Hopf and Bogdanov-Takens, which are not observed in models lacking
this effect. Liu et al. [18] investigated how the Allee effect on prey impacts a Leslie-Gower model with
hunting cooperation. It was demonstrated that increasing the intensity of the Allee could destabilize
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coexistence and cause various bifurcations, such as saddle-node, Hopf, and Bogdanov-Takens. Their
work indicates that for high-intensity Allee effects, the predator-prey model is more sensitive to
species extinction. Various dynamic outcomes, such as multistability and high-codimension bifurcation
resulting from the Allee mechanism, were demonstrated by Chen et al. [19] in the context of a Leslie-
Gower predator-prey model with strong Allee effects. Their work emphasized how the strength of an
Allee effect, in addition to the availability of prey refuge, is very important for the dynamics of species
coexistence.

We start by examining the predator-prey model proposed in [20], which includes a strong Allee
effect for the prey species and a Holling type II functional response for the predator: dX

dT = rX(1 − X
k )(X − A) − bXY,

dY
dT = Y( λbX

1+bhX − d),
(1.1)

where X(T ) and Y(T ) denote the densities of the prey and predator populations at time T , respectively.
The parameter r represents the intrinsic growth rate of the prey, while k is its carrying capacity. A
denotes the Allee threshold, indicating the critical density below which the prey population may
decline. b is the predation rate, λ is the conversion efficiency of prey into predator biomass, h is
the handling time of the predator, and d represents the predator’s natural mortality rate. The study
in [20] showed that a strong Allee effect can destabilize the model, leading to the emergence of limit
cycle oscillations and raising the risk of prey extinction. Their investigation revealed various forms of
bifurcations, including transcritical and Hopf bifurcations, underlining the considerable significance of
the Allee effect on population dynamics.

While most of the predator-prey models use a single Allee effect, relatively fewer researchers
have dealt with the incorporation of double Allee effects. The double Allee mechanism appears
when there are two different biological processes that independently restrain the population growth
at low densities. Such dual limitations may arise from ecological factors such as impaired mating
opportunities, poor reproductive success, or weakened cooperative defense against predators. The
inclusion of double Allee effect thus gives a more realistic representation of the issues faced by small
populations. We note that exploring the effects of this combined mechanism on predator-prey dynamics
is essential to capture the richer and more involved dynamics in nature and represents the novelty in
extending the model (1.1), including double Allee effect.

Numerous researchers have investigated predator-prey models, including double Allee effects,
uncovering a variety of intricate dynamics. Tiwari and Raw [21] examined a Leslie-Gower model,
including double Allee effects and predator interference. Their analysis revealed multistability, Hopf
bifurcations, and spatial configurations, including circular and rhombus-shaped patterns arising from
Turing instability. Wang et al. [22] investigated a reaction-diffusion predator-prey model that integrates
the double Allee effect. They demonstrated the formation of spatial patterns, including spots and
stripes, and validated their analytical results using numerical simulations. Jiao and Chen [23] examined
a delayed predator-prey model, including the double Allee effect, demonstrating the interplay between
delay and Allee effects that results in Bogdanov-Takens bifurcation and intricate dynamic behaviors.
Mandal et al. [24] incorporated prey refuge and double Allee effects, revealing codimension-one and
two bifurcations, bi- and tri-stability, and showing that double Allee effect significantly increases model
complexity. Pal and Saha [25] conducted a detailed bifurcation analysis of a ratio-dependent model
with the double Allee effect in prey, identifying bi-stability, separatrix curves, and multiple bifurcation
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phenomena, including Bogdanov-Takens, Hopf, and homoclinic bifurcations, emphasizing sensitivity
to initial conditions and ecological implications. Wang and Yang [26] illustrated that integrating a
double Allee effect in the prey population considerably affects the stability and coexistence of species,
containing oscillatory dynamics often via Hopf bifurcation. Mondal et al. [27] investigated how the
double Allee effect alters both continuous and discrete predator-prey systems, revealing that Allee
intensity can enhance or destabilize system stability depending on its strength. They demonstrated that
weak Allee effects increase extinction risk, while strong Allee effects promote stability and can lead to
multistability and complex bifurcation behaviors.

Motivated by the above studies, we modify model (1.1) by incorporating a double Allee effect in
the prey population, leading to the following model:dX

dT = rX(1 − X
k )( X−m

X+l ) − bXY,
dY
dT = Y( λbX

1+bhX − d),
(1.2)

where condition l < k is imposed for biological plausibility, and m lies within the interval (−k, k).
The first Allee effect is represented by the term X − m, which models reduced reproductive success
when the prey population falls below the threshold m. The second Allee effect is introduced through
the factor X

X+l , which increases monotonically with prey density. Biologically, this term captures
additional density-dependent limitations arising at low population sizes. When X is small relative to l,
the ratio X

X+l becomes significantly less than one, reducing the effective growth rate of the prey. This
reflects situations where the population experiences constraints such as limited availability of fertile
individuals, impaired cooperative defense, or difficulties in group foraging, even when the classical
Allee threshold is not explicitly crossed. The functional form approaches one as X increases, meaning
these subsidiary density-dependent inhibitions diminish when population densities are high. Therefore,
the system includes two separate biological mechanisms that each reduce population growth at low
densities, enhancing the ecological realism of the model.

Prey PredatorrX
(
1 −

X
k

) (X − m
X + l

) λbXY
1+bhX

bXY −dY

Figure 1. Flowchart of the predator-prey model (1.2).

To reduce the number of parameters, we introduce the following transformations:

x =
X
k
, y =

bY
r
, t = rT.

Then, we obtain the following non-dimensional form of (1.2):dx
dt = x(1 − x)( x−α

x+β ) − xy,
dy
dt = y( γx

1+ηx − σ),
(1.3)
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where α = m
k , β = l

k , γ = kbλ
r , η = bhk, and σ = d

r . One can see that β, γ, η, and σ are positive constants
and α ∈ (−1, 1).

In contrast, discrete-time models are particularly suited to describe populations with nonoverlapping
generations, distinct reproductive cycles, and seasonal breeding patterns. Typical examples are insects
such as mayflies that have short, synchronized life cycles, or anadromous fish such as Pacific salmon
whose life history is marked by distinct generational cycles. Additionally, discrete-time systems
are renowned for their ability to produce complex dynamics like period-doubling (PD) bifurcations,
Neimark-Sacker (NS) bifurcations, and chaotic behavior that are rarely observed in continuous
systems [28–30]. Significantly, in contrast to two-dimensional continuous systems, the discrete maps
can also be chaotic in one dimension; for instance, the logistic map, which implies a richer spectrum of
possible dynamics in populations. Thus, the choice of discretization method is a delicate task because
it sometimes drastically affects whether or not the discrete model inherits the qualitative dynamics
from the original continuous model. Though the forward Euler method is a commonly used and
simple discretization technique [31, 32], it may introduce inconsistencies into the model, such as
negative population values that do not make biological sense. For this reason, we make use of the
piecewise constant argument method [33–35] ensures non-negative solutions while preserving much
of the dynamical behavior of the original model.

By applying piecewise constant arguments to address non-linear differential equations and
accounting for consistent time intervals that represent the mean growth rates of both species, (1.3)
can be reformulated as  1

x(t)
dx
dt = (1 − x[t])( x[t]−α

x[t]+β ) − y[t],
1

y(t)
dy
dt =

γx[t]
1+ηx[t] − σ.

(1.4)

Here, [t] denotes the integer part of t, where 0 < t < ∞. Moreover, by integrating (1.4) over the interval
[n, n + 1) for n = 0, 1, 2, . . . , we obtainxt = xne( (1−xn)(xn−α)

xn+β
−yn)(t−n),

yt = yne( γxn
1+ηxn

−σ)(t−n).
(1.5)

By letting t → n + 1, we obtain xn+1 = xne
(1−xn)(xn−α)

xn+β
−yn ,

yn+1 = yne
γxn

1+ηxn
−σ.

(1.6)

Through the integration of a dual Allee effect and implementation of a discrete-time approach,
in this investigation, we advance the comprehension of predator-prey interactions in ecologically
realistic scenarios. Moreover, this study furthers our theoretical understanding of density-dependent
populations while offering practical applications for species conservation and ecosystem management
through its characterization of critical population thresholds.

The organization of the paper is as follows: In Section 2, we investigate the existence and
topological classification of the equilibrium points, while in Section 3, we explore the local bifurcation
phenomena occurring at the positive equilibrium. In Section 4, we present numerical simulations
that support and illustrate the analytical results. We conclude with a summary of the key findings in
Section 5.

AIMS Mathematics Volume 11, Issue 1, 1117–1144.



1122

2. Existence and stability of fixed points

In this section, we consider fixed points of the model and investigate their local stability properties.
A fixed point is an ecological equilibrium where both species’ population sizes become fixed from
generation to generation. Stability assessment is biologically crucial because it provides insight into
whether small environmental or demographic perturbations are self-correcting, that is, return the
system to the equilibrium, or magnify and drive the populations from the steady state. Local dynamics
around these states are characterized by the Jacobian matrix and its eigenvalues at each equilibrium.
Such information is key to understanding persistence, coexistence, extinction risks, and other long-term
ecological outcomes predicted by the model.

2.1. Analysis of fixed points’ existence

The fixed points (x, y) of (1.6) can be found by solving the following system:x = xe(1−x)( x−α
x+β )−y,

y = ye
γx

1+ηx−σ.
(2.1)

Solving the above equations yields four fixed points:

E0 = (0, 0), E1 = (1, 0), E2 = (α, 0),

E3 =
( σ

γ − ησ
,−

(γ − (η + 1)σ)(αγ − σ(αη + 1))
(γ − ησ)(β(γ − ησ) + σ)

)
.

Each fixed point has a meaningful biological interpretation:

• E0 = (0, 0): This represents the extinction equilibrium, indicating the complete demise of both
species. It signifies an environmentally degraded situation, often unfavorable or occurring under
severe circumstances.
• E1 = (1, 0): In this condition, species x exists independently with a population of x = 1, but

species y is nonexistent. This equilibrium indicates that species x may achieve stability by self-
limiting development, irrespective of species y.
• E2 = (α, 0): In this scenario, species x endures at a diminished level x = α in the absence of

species y. The fixed point occurs just when α > 0, indicating that the parameter α influences the
solitary survival of species x.
• E3 = (x̄, ȳ): This is an interior equilibrium representing the coexistence of both species. For E3 to

be biologically meaningful (i.e., x̄ > 0 and ȳ > 0), the following conditions must be satisfied:

γ > σ(1 + η), αγ < σ(1 + αη).

These requirements guarantee that species y derives enough advantage from its interaction with
species x to offset its natural mortality rate σ, while species x remains unaffected by excessive
suppression from species y.

As a result, the model demonstrates many ecological outcomes, including extinction, solitary
species survival, and mutual cohabitation. Recognizing these fixed points is essential for
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comprehending the model’s long-term dynamics, hence facilitating further stability and bifurcation
investigations.

2.2. Stability analysis of fixed points

To analyze the local dynamics near each equilibrium, we compute the Jacobian matrix of
model (1.6) at any fixed point (x, y):

J(x, y) =


e−

(−1+x)x
A+x −by(A2+A(3−2x)x−(−1+x)x2)

(A+x)2 −be−
(−1+x)x

A+x −byx

cem+cx−yy −em+cx−y(−1 + y)

 . (2.2)

Let θ1 and θ2 be the eigenvalues of J(x, y). The type of each fixed point is then characterized based
on the modulus of these eigenvalues:

Definition 2.1. A fixed point (x, y) of system (1.6) is characterized as follows:

(1) It is called a sink if both eigenvalues satisfy |θ1|< 1 and |θ2|< 1.
(2) It is a source if |θ1|> 1 and |θ2|> 1.
(3) It is classified as a saddle when one eigenvalue lies inside and the other outside the unit circle,

i.e., max{|θ1|, |θ2|} > 1 and min{|θ1|, |θ2|} < 1.
(4) The point is said to be non-hyperbolic if at least one eigenvalue satisfies |θi|= 1 for i = 1, 2.

When the eigenvalues take a complicated form, direct use of this definition is not straightforward.
Therefore, the next result provides an effective approach for analyzing the stability of the fixed point.

Lemma 2.2. [36] Consider the quadratic polynomial ∆(θ) = θ2 + K1θ + K0. Assume that ∆(1) > 0.
Let θ1 and θ2 be the roots of ∆(θ) = 0. Then the following statements hold:

(1) Both eigenvalues satisfy |θ1|< 1 and |θ2|< 1 if ∆(−1) > 0 and K0 < 1.
(2) One eigenvalue lies inside and the other outside the unit circle, i.e., |θ1|< 1 < |θ2| (or vice versa),

if ∆(−1) < 0.
(3) Both eigenvalues satisfy |θ1|> 1 and |θ2|> 1 if ∆(−1) > 0 and K0 > 1.
(4) The roots θ1 and θ2 are complex with |θ1,2|= 1 when K2

1 − 4K0 < 0 and K0 = 1.

Proposition 2.3. The trivial fixed point E0 is

(1) a sink if 0 < α < 1,
(2) never a source,
(3) a saddle if −1 < α < 0,
(4) non-hyperbolic if α = 0.

Proof. We obtain

J(E0) =

e− αβ 0

0 e−σ

 . (2.3)

The eigenvalues of J(E0) are θ1 = e−
α
β and θ2 = e−σ. Clearly, |θ2|< 1. Moreover,

∣∣∣∣e− αβ ∣∣∣∣

< 1, 0 < α < 1,
= 1, α = 0,
> 1, −1 < α < 0.

(2.4)
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Proposition 2.4. The fixed point E1 is

(1) a sink if 0 < γ < σ(1 + η),
(2) never a source,
(3) a saddle if γ > σ(1 + η),
(4) non-hyperbolic if γ = σ(1 + η).

Proof. We obtain

J(E1) =

α+β1+β −1

0 e
γ

1+η−σ

 . (2.5)

The eigenvalues of J(E1) are θ1 =
α+β

1+β and θ2 = e
γ

1+η−σ. Clearly, |θ1|< 1. Moreover,

∣∣∣∣e γ
1+η−σ

∣∣∣∣

< 1, 0 < γ < σ(1 + η),
= 1, γ = σ(1 + η),
> 1, γ > σ(1 + η).

(2.6)

Proposition 2.5. The fixed point E2 is

(1) never a sink,
(2) a source if γ > σ(1+αη)

α
,

(3) a saddle if 0 < γ < σ(1+αη)
α

,
(4) non-hyperbolic if γ = σ(1+αη)

α
.

Proof. We obtain

J(E2) =
1 + α(1−α)

α+β
−α

0 e
αγ

1+αη−σ

 . (2.7)

The eigenvalues of J(E2) are θ1 = 1 + α(1−α)
α+β

and θ2 = e
αγ

1+αη−σ. Since 0 < α < 1, therefore, |θ1|> 1.
Moreover, we obtain ∣∣∣∣e αγ

1+αη−σ
∣∣∣∣

< 1, 0 < γ < σ(1+αη)

α
,

= 1, γ = σ(1+αη)
α
,

> 1, γ > σ(1+αη)
α
.

(2.8)

Next, we investigate the local stability of the positive fixed point (x̄, ȳ) = E3 of model (1.6). The
Jacobian matrix at positive equilibrium (x̄, ȳ) is given by

J(x̄, ȳ) =

 w11 −x̄
γȳ

(1+x̄η)2 1

 , (2.9)

where w11 =
−x̄3+x̄2(1−2β)+β2+x̄(α+3β+αβ)

(x̄+β)2 . The corresponding characteristic polynomial is

∆(θ) = θ2 + (−1 − w11)θ + w11 +
x̄ȳγ

(1 + x̄η)2 .

It can be obtained through calculations that

∆(0) = w11 +
x̄ȳγ

(1 + x̄η)2 , ∆(−1) = 2 + 2w11 +
x̄ȳγ

(1 + x̄η)2 , ∆(1) =
x̄ȳγ

(1 + x̄η)2 .
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Thus, ∆(1) > 0. By choosing ∆(−1) > 0, we get

2 + 2w11 +
x̄ȳγ

(1 + x̄η)2 > 0,

γ > −
2(1 + w11)(1 + x̄η)2

x̄ȳ
.

Similarly, ∆(−1) < 0 is equivalent to γ < −2(1+w11)(1+x̄η)2

x̄ȳ . Next, setting ∆(0) < 1 implies that

w11 +
x̄ȳγ

(1 + x̄η)2 < 1,

γ <
(1 − w11)(1 + x̄η)2

x̄ȳ
.

Similarly, ∆(0) > 1 is equivalent to γ > (1−w11)(1+x̄η)2

x̄ȳ and ∆(0) = 1 is equivalent to γ = (1−w11)(1+x̄η)2

x̄ȳ . As
a result, we obtain the following result:

Theorem 2.6. The positive fixed point E3 = (x̄, ȳ) of the model (1.6) is

(1) a sink if −2(1+w11)(1+x̄η)2

x̄ȳ < γ < (1−w11)(1+x̄η)2

x̄ȳ ,

(2) a source if γ > max{ − 2(1+w11)(1+x̄η)2

x̄ȳ , (1−w11)(1+x̄η)2

x̄ȳ },

(3) a saddle if γ < −2(1+w11)(1+x̄η)2

x̄ȳ ,

(4) non-hyperbolic, and (1.6) experiences NS bifurcation at E3 if −3 < w11 < 1 and γ = (1−w11)(1+x̄η)2

x̄ȳ .

Remark 2.7. The classification of E3 characterizes how the two populations behave near their
coexistence densities. When E3 is a sink, small deviations in the prey or predator abundances diminish
over time, leading the system back to steady coexistence. If E3 is a source or a saddle, such deviations
grow, indicating that the coexistence state cannot be maintained under small ecological fluctuations. At
the critical value of γ specified in condition (4) of Theorem 2.6, the system undergoes an NS bifurcation,
through which the constant coexistence state is replaced by sustained oscillations in prey and predator
densities.

3. NS bifurcation analysis at E3

In this section, we investigate the NS bifurcation at the interior fixed point E3 = (x̄, ȳ) of the discrete-
time model (1.6) by treating γ as the primary bifurcation parameter. The NS bifurcation, also known as
the discrete analogue of the Hopf bifurcation, plays a crucial role in understanding the transition from
stable fixed point behavior to the emergence of closed invariant curves and quasiperiodic oscillations.

We aim to determine the conditions under which a pair of complex conjugate eigenvalues of the
Jacobian matrix evaluated at E3 cross the unit circle in the complex plane, leading to a qualitative
change in the model dynamics. Specifically, we seek the critical value γ = γ1 at which |θ1,2|= 1,
with θ1,2 being complex conjugate eigenvalues of the Jacobian J(E3). The occurrence and nature of
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the NS bifurcation depend on several nondegeneracy and transversality conditions, which ensure that
the bifurcation is not degenerate and that a smooth invariant closed curve is created or destroyed as
γ passes through γ1. These conditions are established using bifurcation theory techniques presented
in [37, 38].

We investigate the NS bifurcation at E3 = (x̄, ȳ) when condition (4) of Theorem 2.6 is satisfied.
Applying a minor perturbation δ to γ in model (1.6), we obtainxn+1 = xne

(1−xn)(xn−α)
xn+β

−yn ,

yn+1 = yne
(γ+δ)xn
1+ηxn

−σ.
(3.1)

We shift the fixed point E3 = (x̄, ȳ) to the origin by introducing the change of variables un = xn − x̄
and vn = yn − ȳ. With this transformation, system (3.1) takes the following form:un+1

vn+1

 =


w11 −x̄

e
x̄δ

1+x̄η ȳ(δ− (−1+w11)(1+x̄η)2

x̄ȳ )

(1+x̄η)2 e
x̄δ

1+x̄η


un

vn

 +
F1(un, vn)

F2(un, vn)

 , (3.2)

where

F1(un, vn) = a1u2
n + a2v2

n + a3unvn + a4u3
n + a5v3

n + a6u2
nvn + a7unv2

n + O((|un|+|vn|)4),
F2(un, vn) = b1u2

n + b2unvn + b3u3
n + b4u2

nvn + O((|un|+|vn|)4),
a1 = (x̄5 + x̄4(−2 + 4β) + 2β2(α + β + αβ) − 4x̄2β(α + (4 + α)β) − 2x̄3(α + (5 + α)β − 2β2)

+ x̄(α2 + 2α(2 + α)β + (1 + α)(3 + α)β2 − 6β3))/(2(x̄ + β)4),

a2 =
x̄
2
, a3 =

x̄3 − β2 + x̄2(−1 + 2β) − x̄(α + (3 + α)β)
(x̄ + β)2 ,

a4 = (−x̄7 + x̄6(3 − 6β) + 3α2β2(1 + β)2 − 3β4(1 + 2β) + 3x̄5(α + (7 + α)β − 4β2)
− 3x̄2(α2 + 4α(1 + α)β + (3 + α)(1 + 5α)β2 + 2(6 + α(6 + α))β3 − 8β4)
+ x̄4β((57 − 8β)β + 12α(1 + β)) + x̄(3α2β(1 + β)2 + α3(1 + β)3 − 9αβ2(1 + β)(1 + 2β)
− β3(11 + 30β)) − 3x̄3((3 − 22β)β2 + α2(1 + β)2 − 4αβ(−1 + β2)))/(6(x̄ + β)6),

a5 = −
x̄
6
,

a6 = (−x̄5 + x̄4(2 − 4β) − 2β2(α + β + αβ) + 4x̄2β(α + (4 + α)β) + 2x̄3(α + (5 + α)β − 2β2)
+ x̄(−4αβ(1 + β) − α2(1 + β)2 + 3β2(−1 + 2β)))/(2(x̄ + β)4),

a7 =
−x̄3 + x̄2(1 − 2β) + β2 + x̄(α + (3 + α)β)

2(x̄ + β)2 , b1 =
e

x̄δ
1+x̄η ȳ(γ + δ)(γ + δ − 2η(1 + x̄η))

2(1 + x̄η)4 ,

b2 =
e

x̄δ
1+x̄η (γ + δ)
(1 + x̄η)2 , b3 =

e
x̄δ

1+x̄η ȳ(γ + δ)((γ + δ)2 − 6(γ + δ)η − 6(−1 + x̄(γ + δ))η2 + 12x̄η3 + 6x̄2η4)
6(1 + x̄η)6 ,

b4 =
e

x̄δ
1+x̄η (γ + δ)(γ + δ − 2η(1 + x̄η))

2(1 + x̄η)4 .

Applying condition (4) of Theorem 2.6, we find that the Jacobian matrix of system (3.2) evaluated
at the origin satisfies the following characteristic equation:

θ2 − p(δ)θ + q(δ) = 0, (3.3)
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where

p(δ) = e
x̄δ

1+x̄η + w11, q(δ) =
e

x̄δ
1+x̄η (1 + x̄ȳδ + x̄η(2 + x̄η))

(1 + x̄η)2 .

The solutions of (3.3) are given by

θ1,2 =
p(δ)

2
±

i
2

√
4q(δ) − p2(δ). (3.4)

It then follows that |θ1,2|=
√

q(δ) = 1. Furthermore, we compute(
d|θ1|
dδ

)
δ=0
=

(
d|θ2|
dδ

)
δ=0
=

x̄(1 + ȳ + x̄η)
2(1 + x̄η)2 > 0.

In addition, condition θi1,2 ̸= 1 must hold for i = 1, 2, 3, 4 when δ = 0, which leads to p(0) ̸= −2, 0, 1, 2.
Employing condition (4) from Theorem 2.6, it follows that p(0) = 1 + w11 ̸= ±2. Therefore, the
remaining restrictions reduce to p(0) ̸= 0, 1 which is equivalent to

w11 ̸= −1, 0. (3.5)

The canonical form of system (3.2) at δ = 0 can be derived by implementing the linear
transformation given below:

un

vn

 =

−x̄ 0

1−w11
2

−

√
3 − 2w11 − w2

11
2


en

fn

 . (3.6)

Substituting transformation (3.6) into system (3.2), we obtain the following form:

en+1

fn+1

 =


1+w11
2

−

√
3 − 2w11 − w2

11
2√

3 − 2w11 − w2
11

2
1+w11

2


en

fn

 +
χ(en, fn)

Υ(en, fn)

 , (3.7)

where

χ(en, fn) = c1e2
n + c2 f 2

n + c3en fn + c4e3
n + c5 f 3

n + c6e2
n fn + c7en f 2

n + O((|en|+| fn|)4),
Υ(en, fn) = d1e2

n + d2 f 2
n + d3en fn + d4e3

n + d5 f 3
n + d6e2

n fn + d7en f 2
n + O((|en|+| fn|)4).

The Appendix provides the values of the coefficients ci and d j. To identify the direction of the NS
bifurcation, the first Lyapunov exponent is calculated as follows:

L =
([
−Re

(
(1 − 2θ1)θ22

1 − θ1
τ20τ11

)
−

1
2
|τ11|

2−|τ02|
2+Re(θ2τ21)

])
δ=0
, (3.8)
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where the values of τ20, τ11, τ02, and τ21 are derived from the Taylor expansions of the functions
χ(en, fn) and Υ(en, fn) in the canonical form (3.7). They are computed using the following standard
formulas from bifurcation theory [37, 38]:

τ20 =
1
8

[
χenen − χ fn fn + 2Υen fn + i(Υenen − Υ fn fn − 2χen fn)

]
,

τ11 =
1
4

[
χenen + χ fn fn + i(Υenen + Υ fn fn)

]
,

τ02 =
1
8

[
χenen − χ fn fn − 2Υen fn + i(Υenen − Υ fn fn + 2χen fn)

]
,

τ21 =
1

16

[
χenenen + χen fn fn + Υenen fn + Υ fn fn fn + i(Υenenen + Υen fn fn − χenen fn − χ fn fn fn)

]
,

where the subscripts denote partial derivatives evaluated at (en, fn) = (0, 0). Based on the above
analysis, we obtain the following result:

Theorem 3.1. Suppose that condition (4) of Theorem 2.6 holds. If the first Lyapunov coefficient L given
in (3.8) is non-zero and condition (3.5) is true, then model (1.6) undergoes an NS bifurcation at the fixed
point E3, as the bifurcation parameter γ varies in a neighborhood of the critical value γ1 =

(1−w11)(1+x̄η)2

x̄ȳ .
Moreover, if L < 0 (respectively, L > 0), the NS bifurcation is supercritical (respectively, subcritical),
and a unique closed invariant curve bifurcates from E3, which is attracting (respectively, repelling).

Remark 3.2. The occurrence of a NS bifurcation signifies that steady coexistence becomes unstable
and gives rise to persistent oscillations in both species. From an ecological perspective, this represents
predator-prey cycles driven by nonlinear density dependence and the combined influence of two Allee
effects. The amplitude and frequency of these oscillations depend on how strongly low-density effects
restrict prey growth. Thus, the NS bifurcation identifies critical ecological thresholds separating stable
coexistence from cyclic population behavior.

4. Numerical simulations and bifurcation analysis

In this section, we present numerical simulations to illustrate the stability and bifurcation behavior
of the model. By systematically varying key parameters, we analyze their impact on the model’s
equilibrium stability and the emergence of complex dynamical patterns. Our primary focus is
on detecting NS bifurcations, where a stable equilibrium loses stability and gives rise to quasi-
periodic oscillations. This transition is crucial in ecological modeling, as it signifies persistent cyclic
interactions between predator and prey populations. We use MATHEMATICA for computations and
MATLAB for plotting the graphs.

The numerical simulations provide insight into how ecological interactions and environmental
factors shape predator-prey dynamics. By systematically varying key parameters, we observe
transitions from stable coexistence to oscillatory behavior, which reflects real-world ecological
scenarios, where population cycles emerge due to changes in resource availability, predation pressure,
or species interactions. The transformed parameters (α, β, γ, η, σ) encapsulate these ecological effects
in a more compact mathematical framework while retaining their biological significance.

Numerical simulations show how changes in prey growth parameters and predator efficiency modify
long-term population dynamics. If the Allee thresholds are strong, then prey populations may fall to
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levels from which recovery is difficult, thereby leading indirectly to predator population reduction. On
the other hand, if predation pressure or conversion efficiency is high, then increases in the predator
populations may destabilize the recoveries of their prey and generate oscillations. These results
demonstrate the ecological relevance of the double Allee effect by illustrating how multiple low-density
limitations can amplify or suppress predator-prey cycles.

4.1. Effect of γ on stability and bifurcation

We examine the effect of the bifurcation parameter γ while keeping other parameters fixed at α =
−0.66, β = 0.93, η = 0.88, and σ = 0.85. For these parameter values, the model undergoes an NS
bifurcation at γ ≈ 2.810381. The corresponding positive fixed point is E3 ≈ (0.412145, 0.469596).
The eigenvalues of the Jacobian matrix evaluated at E3 are θ1,2 = 0.853541 ± 0.521026i, which satisfy
condition |θ1,2|= 1. This verifies that (1.6) experiences NS bifurcation at γ ≈ 2.810381. Moreover, we
obtain

τ20 = −0.0476695 − 0.0521211i, τ11 = 0.018306 + 0.0799617i,

τ02 = 0.20171 + 0.170237i, τ21 = 0.0150405 − 0.0087488i.

Thus, it is obtained that L = −0.0515658 < 0, which shows that NS bifurcation is supercritical.
To further illustrate this transition, we present bifurcation diagrams for xn and yn over the range

γ ∈ [2.70, 3.20], as shown in Figures 2(a) and 2(b). The initial conditions are set as x0 = 0.40 and
y0 = 0.45. The diagrams indicate that for γ < 2.810381, E3 is stable. However, as γ increases
beyond the bifurcation threshold γ ≈ 2.810381, the stability of E3 is lost due to NS bifurcation. This
bifurcation signifies a transition from a stable fixed point to a stable limit cycle, where the model
exhibits quasi-periodic oscillations. Figure 2(c) presents the corresponding graph of the maximum
Lyapunov exponent (MLE).

Figure 3 illustrates the phase portraits of the model for different values of γ. These phase portraits
provide insight into the dynamical transition of the model. For lower values of γ, such as 2.76, 2.78
and 2.80 (Figures 3(a) and 3(c)), trajectories spiral toward equilibrium point E3, indicating local
stability. As γ increases toward the bifurcation threshold (γ ≈ 2.810381), the phase portraits change
significantly. At γ = 2.82 (Figure 3(d)), an emerging closed invariant curve can be observed,
suggesting the onset of quasi-periodic nature. For γ > 2.810381 (Figures 3(e)–3(i)), the fixed point
E3 loses stability, and trajectories evolve into a stable closed orbit. Figure 3(j) shows that the radius of
invariant is increasing as we increase the value of γ. This closed curve represents persistent oscillations,
characteristic of an NS bifurcation. This transition highlights the impact of bifurcation parameter γ on
the model’s dynamics, showing how small changes in environmental or interaction factors can lead to
significant qualitative shifts in predator-prey population behavior.

Although we present the numerical simulations in this section for specific parameter sets, the
qualitative behaviors reported therein, such as the instability of E3 via an NS bifurcation, closed
invariant curves, and transitions between stable and oscillatory regions, are independent of these
choices. In our additional computations for larger regions of the biologically feasible parameter
space, we find that the NS bifurcation occurs so long as condition γ = (1−w11)(1+x̄η)2

x̄ȳ is met and the
nondegeneracy conditions of Theorem 3.1 are satisfied. The simulations below must therefore be
understood as representative examples of general dynamical structures exhibited by the model, rather
than as isolated behaviors restricted to any single parameter choice.
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One crucial finding is the impact of γ, which represents the predator’s efficiency in converting
prey biomass into its own growth. As γ increases, meaning the predator becomes more effective at
utilizing prey for reproduction, the model transitions from a stable equilibrium to a state of persistent
oscillations due to an NS bifurcation. Ecologically, this corresponds to a scenario where improved
predator efficiency leads to a destabilizing feedback loop: A high conversion rate initially benefits
the predator, but as prey declines due to excessive predation, the predator population also experiences
fluctuations. This pattern is commonly observed in nature when predator populations lag behind prey
abundance, resulting in periodic predator-prey cycles, such as those seen in lynx-hare or wolf-moose
models.

(a) (b)

(c)

Figure 2. Bifurcation diagrams and MLE graph of model (1.6) as γ varies. Fixed parameter
values are α = −0.66, β = 0.93, η = 0.88, and σ = 0.85 and initial conditions are x0 = 0.40
and y0 = 0.45.
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(a) γ = 2.76 (b) γ = 2.78 (c) γ = 2.80

(d) γ = 2.82 (e) γ = 2.84 (f) γ = 2.86

(g) γ = 2.92 (h) γ = 2.98 (i) γ = 3.04

(j)

Figure 3. Phase portraits of (1.6) by varying γ and fixing α = −0.66, β = 0.93, η = 0.88,
σ = 0.85, x0 = 0.40, and y0 = 0.45.
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4.2. Effect of α, β, η, and σ on stability and bifurcation

The dynamics of model (1.6) are also influenced by other parameters. To further explore the
bifurcation behavior, we fix β = 0.45, γ = 1.8, η = 0.11, and σ = 0.45 and vary α within the
interval [−0.75,−0.55]. The bifurcation analysis reveals that NS bifurcation occurs at α ≈ −0.688157,
where the positive fixed point E3 ≈ (0.257069, 0.993166) loses stability. The bifurcation diagrams
in Figure 4, generated with initial conditions x0 = 0.25 and y0 = 0.95, illustrate this transition. As
α approaches the critical value, the fixed point destabilizes due to NS bifurcation. This indicates the
emergence of quasi-periodic oscillations in the predator-prey interactions, leading to cyclic population
dynamics instead of convergence to a steady equilibrium. Figure 4(c) depicts the corresponding MLE
graph.

(a) (b)

(c)

Figure 4. Bifurcation diagrams and the corresponding MLE plot of (1.6) with respect to the
variation of α. The fixed parameter values are β = 0.45, γ = 1.8, η = 0.11, and σ = 0.45,
while the initial conditions are x0 = 0.25 and y0 = 0.95.

α, associated with the Allee effect threshold, plays a crucial role in determining whether a prey
population can persist. When α is too high (indicating a strong Allee effect), the model becomes more
vulnerable to extinction, as prey populations struggle to recover when numbers fall below a critical
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level. However, as α decreases, indicating a weaker Allee effect, the model stabilizes, enabling more
sustainable coexistence. This is particularly relevant in conservation biology, where species subjected
to strong Allee effects, such as certain fish or insect populations, face higher extinction risks if their
numbers drop too low.

To further explore the impact of parameter variations on the model’s dynamics, we now fix α =
−0.43, γ = 1.17, η = 0.22, and σ = 0.12 and allow β to vary over the interval [0.35, 0.55]. When β is
relatively small, the model stabilizes at the positive fixed point E3 ≈ (0.104932, 0.895338). However,
as β increases, stability is lost at the critical threshold β ≈ 0.429839, triggering an NS bifurcation. The
bifurcation diagrams in Figure 5, plotted with initial conditions x0 = 0.15 and y0 = 0.85, illustrate this
transition from stability to quasi-periodic oscillations. The related MLE plot is given in Figure 5(c).

(a) (b)

(c)

Figure 5. Bifurcation diagrams and MLE plot of model (1.6) changing β and fixing α =
−0.43, γ = 1.17, η = 0.22, and σ = 0.12, and initial values are x0 = 0.15 and y0 = 0.85.

β, which represents the second Allee effect component, influences model stability by modifying the
reproductive success of the prey population. As β increases, the threshold for sustainable population
growth becomes higher, making the model more prone to oscillations or population collapses. This
suggests that environmental factors limiting fertility, such as habitat fragmentation or pollution,
can lead to increased population instability, emphasizing the importance of maintaining suitable
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reproductive conditions for species conservation.
To investigate the impact of η on the model’s dynamics, we set α = 0.54, β = 0.4, γ = 1.7, and σ =

0.77 and vary η within the range [0.88, 0.92]. The bifurcation analysis reveals that for smaller values of
η, the model exhibits NS bifurcation. However, as η increases beyond the critical value η ≈ 0.897359,
the model stabilizes at the positive fixed point E3 ≈ (0.763106, 0.045441). The bifurcation diagrams
are given in Figure 6 using initial conditions x0 = 0.80 and y0 = 0.05. The MLE plot is depicted in
Figure 6(c).

(a) (b)

(c)

Figure 6. Bifurcation diagrams and MLE graph of model (1.6) as η varies. Fixed parameter
values are α = 0.54, β = 0.4, γ = 1.7, and σ = 0.77, and initial values are x0 = 0.80 and
y0 = 0.05.

η controls the saturation effect in the predator’s response to prey density. For lower values of η, the
model exhibits NS bifurcation, leading to instability and oscillatory predator-prey cycles. This suggests
that when the predator’s response to prey is less saturated, small disturbances can amplify, resulting in
persistent fluctuations in population sizes. However, as η increases, the model stabilizes, leading to a
stable positive fixed point where both species coexist in equilibrium. Ecologically, this implies that a
higher saturation effect in the predator’s functional response helps regulate prey consumption in a way
that promotes long-term stability. Such stabilization can be attributed to a more controlled predation
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rate that prevents excessive depletion of prey, a phenomenon commonly observed in ecosystems where
predators adjust their foraging strategies in response to prey abundance.

Next, we analyze the effect of σ on the model’s dynamics by fixing α = 0.67, β = 1.57, γ = 0.93,
and η = 0.88, while varying σ within the range [0.4455, 0.4555]. The bifurcation analysis reveals that
for smaller values of σ, the model exhibits quasi-periodic oscillations, indicating the occurrence of NS
bifurcation at σ ≈ 0.447182. As σ increases beyond this threshold, the model stabilizes at the positive
fixed point E3 ≈ (0.833549, 0.011326). This transition is depicted in Figure 7, where bifurcation
diagrams are plotted using the initial conditions x0 = 0.85 and y0 = 0.01. The corresponding MLE
graph is given in Figure 7(c).

(a) (b)

(c)

Figure 7. Bifurcation diagrams and MLE plot of model (1.6) changing σ, and fixing α =
0.67, β = 1.57, γ = 0.93, and η = 0.88 and initial conditions are x0 = 0.85 and y0 = 0.01.

σ, which is the predator mortality rate relative to the prey growth rate, has a stabilizing effect when
increased. Higher σ values imply that predators face greater mortality pressure, preventing unchecked
predator growth and thereby reducing oscillatory fluctuations in the model. However, when σ is too
low, predators persist even when prey numbers decline, leading to prolonged periods of instability.
This reflects ecological scenarios where predator overpopulation, in the absence of sufficient natural
mortality, can drive prey to dangerously low levels, disrupting ecosystem balance.
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4.3. Comparative dynamics with and without the Allee effect

In this section, we demonstrate the significant impact of the Allee effect on the long-term behavior
of a discrete predator-prey model. In particular, we show that incorporating the Allee effect can
substantially slow the convergence to the model’s interior fixed point and alter the model’s qualitative
dynamics.

We begin by considering model (1.6) under the influence of a double Allee effect, with the following
parameter values:

α = −0.66, β = 0.93, η = 0.88, σ = 0.85,

and initial conditions x0 = 0.40 and y0 = 0.45. For two different values of γ : 2.80 and 2.81, we
analyze the behavior of the model.

Under these settings, we obtain E3 ≈ (0.41423, 0.468113) for γ = 2.80 and E3 ≈

(0.412221, 0.469542) for γ = 2.81.
To assess the role of the Allee effect, we compare the above with a simplified version of the model

in which the Allee effect is removed. The resulting discrete-time model isxn+1 = xne1−xn−yn ,

yn+1 = yne
γxn

1+ηxn
−σ.

(4.1)

Using the same parametric and initial values, the positive fixed point of the model (4.1) (without
the Allee effect) is calculated as (0.41423, 0.58577) for γ = 2.80, and (0.412221, 0.587779) for γ =
2.81. A direct comparison of these fixed points reveals that, while the prey equilibrium value remains
unchanged, the predator equilibrium is significantly lower in the presence of the Allee effect. This
indicates that the Allee effect reduces the predator’s ability to maintain a higher population level, likely
due to decreased prey availability or efficiency at low prey densities.

Figure 8 presents the time series plots and phase portraits for models (1.6) (blue) and (4.1) (red).
From the time series plots given in Figures 8(a)–8(e), we observe that the model incorporating the
Allee effect converges to the fixed point more slowly, suggesting a delay in population recovery and
stabilization. Biologically, this aligns with the interpretation of the Allee effect: At low population
sizes, individuals face challenges in reproduction and survival, which slows growth and prolongs
instability.

Furthermore, the model without the Allee effect (4.1) shows stable convergence to its interior
fixed point (see Figures 8(j)–8(l)), indicating local asymptotic stability. In contrast, the model with
the Allee effect (1.6) exhibits oscillatory behavior near the fixed point and eventually undergoes an
NS bifurcation (see Figures 8(g)–8(i)). This bifurcation gives rise to quasiperiodic dynamics, where
population levels oscillate indefinitely without settling at a fixed point.

Ecologically, these findings emphasize the critical role of the Allee effect in shaping population
dynamics. The introduction of a double Allee effect creates a threshold-dependent dynamic, resulting
in a significant deceleration of population growth at low densities, perhaps preventing the model from
achieving a stable equilibrium. The presence of an NS bifurcation indicates the possibility of sustained
oscillations in population densities, which may develop into intricate or chaotic patterns when the
model operates near key parameter thresholds.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Time series plots and phase portraits of model (1.6) (blue) and model (4.1) (red)
for the parameter values α = −0.66, β = 0.93, η = 0.88, and σ = 0.85 and initial conditions
x0 = 0.40, and y0 = 0.45. Figures 8(a)–8(f) correspond to γ = 0.80, while Figures 8(g)–8(l)
correspond to γ = 2.81.
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The comparison demonstrates that the inclusion of the Allee effect modifies the locations of
equilibrium points and significantly influences the model’s stability and asymptotic behavior. These
results are crucial for conservation and population management, particularly in settings where low
population densities may increase extinction risks owing to Allee effects.

5. Conclusions

In this study, we analyze the dynamics of a discrete-time predator-prey model, including a double
Allee effect on the prey population. We examine the influence of the Allee effect on predator-
prey interactions via the analysis of fixed points, stability, and bifurcation analysis. The model has
four equilibrium points: Extinction (E0), two prey-only equilibria (E1 and E2), and a coexistence
equilibrium (E3). The stability study demonstrates that the Allee effect substantially affects the model’s
long-term results. Our bifurcation analysis indicates that if certain parameters fluctuate, the positive
equilibrium may become unstable via an NS bifurcation, resulting in quasi-periodic oscillations that
resemble natural population cycles.

The mathematical categorization of coexistence equilibrium reveals under what conditions a
predator-prey model can support stable coexistence in the long term and when extinction or persistent
cycles may prevail. The NS threshold defines the transition from steady coexistence to persistent
oscillations, signaling nonlinear prey growth-driven recurrent population cycles with low-density
effects. These findings illustrate how specific ecological mechanisms impact long-term consequences
and may assist in the development of management practices that avoid collapse for systems prone to
strict low-density constraints.

We found that higher Allee effects disrupt the dynamics, increasing the risk of extinction or long-
term oscillations. On the other hand, higher predator mortality and a more pronounced saturation in
the predator’s functional response help stabilize the model. A comparison of models with and without
the Allee effect reveals that adding Allee dynamics slows the system’s convergence to equilibrium
and may cause instability. These findings have important implications for conservation efforts,
especially for species with small populations that are at danger of extinction owing to high Allee
thresholds. The results emphasize the significance of careful ecosystem management in areas where
such impacts exist.

Biologically, the results of this study show how the interaction of two low-density mechanisms can
drastically modify the predator-prey dynamics. If prey density is small enough, either the threshold-
type Allee effect or the density-dependent performance factor limits recovery and increases the risk
of extinction. Furthermore, these limitations alter the relative balance between prey growth and
predation to produce shifts between stable coexistence and oscillatory dynamics. The analytical and
numerical results thus provide insight into how real ecosystems may respond to collective reproductive
limitations, predation pressure, and environmental restrictions.

Although we develop a valuable understanding of the dynamics of predator-prey models with
multiple Allee effect, limitations should not be overlooked. The dynamics observed are contingent on
our choice of the piecewise constant argument method for discretization. While this method effectively
preserves non-negative solutions and key dynamical features, alternative discretization techniques (e.g.,
the Mickens-type non-standard finite difference scheme) may yield quantitatively different bifurcation
thresholds or stability regions. A comparative study of different discretization methods, as well as a

AIMS Mathematics Volume 11, Issue 1, 1117–1144.
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detailed analytical comparison with the corresponding continuous-time model, are valuable directions
for future research.
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Appendix

List of coefficients associated with the nonlinear terms of system (3.7):

c1 =
1

8(x̄ + β)4

(
− 4x̄6 − (−5 + w11)(−1 + w11)β4 − 4x̄5(−3 + w11 + 4β)

+ 4x̄β2(−((8 + (−7 + w11)w11)β) + (−3 + w11)α(1 + β)) − x̄4(5 + w2
11 − 8α(1 + β)

+ 8β(−7 + 2β) + 2w11(−3 + 8β)) + 2x̄2(4(−3 + w11)αβ(1 + β) − 2α2(1 + β)2

+ β2(−25 + w11(22 − 3w11 − 4β) + 16β)) + 4x̄3(α(1 + β)(−1 + w11 + 4β)

− β(6 − 21β + w11(−7 + w11 + 5β)))
)
,

c2 =
(−1 + w11)(3 + w11)

8
,

c3 = −

√
3 − 2w11 − w2

11

4(x̄ + β)2

(
2x̄3 + (−3 + w11)β2 + x̄2(−3 + w11 + 4β) − 2x̄(α + (4 − w11 + α)β)

)
,

c4 =
1
6

(
−

1
8

(−1 + w11)3 −
3(−1 + w11)2(x̄3 − β2 + x̄2(−1 + 2β) − x̄(α + (3 + α)β))

4(x̄ + β)2

−
1

2(x̄ + β)4 3(−1 + w11)x̄(x̄5 + x̄4(−2 + 4β) + 2β2(α + β + αβ) − 4x̄2β(α + (4 + α)β)

− 2x̄3(α + (5 + α)β − 2β2) + x̄(α2 + 2α(2 + α)β + (1 + α)(3 + α)β2 − 6β3))

+
1

(x̄ + β)6 x̄2(−x̄7 + x̄6(3 − 6β) + 3α2β2(1 + β)2 − 3β4(1 + 2β) + 3x̄5(α + (7 + α)β − 4β2)

− 3x̄2(α2 + 4α(1 + α)β + (3 + α)(1 + 5α)β2 + 2(6 + α(6 + α))β3 − 8β4)
+ x̄4β((57 − 8β)β + 12α(1 + β)) + x̄(3α2β(1 + β)2 + α3(1 + β)3 − 9αβ2(1 + β)(1 + 2β)

− β3(11 + 30β)) − 3x̄3((3 − 22β)β2 + α2(1 + β)2 − 4αβ(−1 + β2)))
)
,

c5 = −
(3 − 2w11 − w2

11)3/2

48
,

c6 = −

√
3 − 2w11 − w2

11

16(x̄ + β)4

(
4x̄6 + (−5 + w11)(−1 + w11)β4 + 4x̄5(−3 + w11 + 4β)

+ 4x̄β2((8 + (−7 + w11)w11)β − (−3 + w11)α(1 + β))
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+ x̄4(5 + w2
11 − 8α(1 + β) + 8β(−7 + 2β) + 2w11(−3 + 8β))

+ 2x̄2(−4(−3 + w11)αβ(1 + β) + 2α2(1 + β)2 + β2(25 − 22w11 + 3w2
11 + 4(−4 + w11)β))

− 4x̄3(α(1 + β)(−1 + w11 + 4β) − β(6 − 21β + w11(−7 + w11 + 5β)))
)
,

c7 =
(−1 + w11)(3 + w11)

16(x̄ + β)2

(
2x̄3 + (−3 + w11)β2 + x̄2(−3 + w11 + 4β) − 2x̄(α + (4 − w11 + α)β)

)
,

d1 =
−1 + w11

8
√

3 − 2w11 − w2
11

(8e−
(−1+w11)(1+x̄η)

ȳ −σ(−1 + w11)
ȳ

+
1

(x̄ + β)4 (4x̄6 + (5 − 6w11 + w2
11)β4

+ 4x̄5(−3 + w11 + 4β) − 4x̄β2(−((8 − 7w11 + w2
11)β) + (−3 + w11)α(1 + β))

+ x̄4(5 + w2
11 − 56β + 16β2 − 8α(1 + β) + 2w11(−3 + 8β))

+ x̄2(−8(−3 + w11)αβ(1 + β) + 4α2(1 + β)2 + 2β2(25 + 3w2
11 − 16β + w11(−22 + 4β)))

− 4x̄3(α(1 + β)(−1 + w11 + 4β) − β(6 + w2
11 − 21β + w11(−7 + 5β))))

−
8e−

(−1+w11)(1+x̄η)
ȳ −σ(−1 + w11 + w11 x̄η + x̄(−1 + 2ȳ)η)

ȳ + x̄ȳη

)
,

d2 =
(−1 + w11)

√
3 − 2w11 − w2

11

8
,

d3 =
(−1 + w11)e−

(−1+w11)(1+x̄η)
ȳ −σ

4ȳ(x̄ + β)2

(
4(x̄ + β)2 + e

(−1+w11)(1+x̄η)
ȳ +σȳ(2x̄3 + (−3 + w11)β2

+ x̄2(−3 + w11 + 4β) − 2x̄(α + 4β − w11β + αβ))
)
,

d4 =
(−1 + w11)

48
√

3 − 2w11 − w2
11

(
((−1 + w11)3 +

6(−1 + w11)2(x̄3 − β2 + x̄2(−1 + 2β) − x̄(α + 3β + αβ))
(x̄ + β)2

+
1

(x̄ + β)4 12(−1 + w11)x̄(x̄5 + x̄4(−2 + 4β) + 2β2(α + β + αβ) − 4x̄2β(α + 4β + αβ)

− 2x̄3((5 − 2β)β + α(1 + β)) + x̄(3(1 − 2β)β2 + 4αβ(1 + β) + α2(1 + β)2))

−
1

(x̄ + β)6 8x̄2(−x̄7 + x̄6(3 − 6β) + 3α2β2(1 + β)2 − 3β4(1 + 2β) + 3x̄5(α + (7 + α)β − 4β2)

− 3x̄2(α2 + 4α(1 + α)β + (3 + α)(1 + 5α)β2 + 2(6 + α(6 + α))β3 − 8β4)
+ x̄4β((57 − 8β)β + 12α(1 + β)) + x̄(3α2β(1 + β)2 + α3(1 + β)3 − 9αβ2(1 + β)(1 + 2β)
− β3(11 + 30β)) − 3x̄3((3 − 22β)β2 + α2(1 + β)2 − 4αβ(−1 + β2))))

+
24e−

(−1+w11)(1+x̄η)
ȳ −σ(−1 + w11)(−1 + w11 + w11 x̄η + x̄(−1 + 2ȳ)η)

ȳ2(1 + x̄η)

−
1

(ȳ + x̄ȳη)2 16e−
(−1+w11)(1+x̄η)

ȳ −σ(1 + x̄(2 − 6ȳ)η + x̄2(1 − 6ȳ + 6ȳ2)η2 + (w11 + w11 x̄η)2

+ 2w11(1 + x̄η)(−1 + x̄(−1 + 3ȳ)η))
)
,

d5 = −
(−1 + w11)2(3 + w11)

48
,
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d6 =
(−1 + w11)

16

( 1
(x̄ + β)4 (4x̄6 + (5 − 6w11 + w2

11)β4 + 4x̄5(−3 + w11 + 4β)

− 4x̄β2(−((8 − 7w11 + w2
11)β) + (−3 + w11)α(1 + β))

+ x̄4(5 + w2
11 − 56β + 16β2 − 8α(1 + β) + 2w11(−3 + 8β))

+ x̄2(−8(−3 + w11)αβ(1 + β) + 4α2(1 + β)2 + 2β2(25 + 3w2
11 − 16β + w11(−22 + 4β)))

− 4x̄3(α(1 + β)(−1 + w11 + 4β) − β(6 + w2
11 − 21β + w11(−7 + 5β))))

+
8e−

(−1+w11)(1+x̄η)
ȳ −σ(−1 + w11 + w11 x̄η + x̄(−1 + 2ȳ)η)

ȳ2(1 + x̄η)

)
,

d7 = −
(
((−1 + w11)2(3 + w11)(2x̄3 + (−3 + w11)β2 + x̄2(−3 + w11 + 4β)

− 2x̄(α + 4β − w11β + αβ))
)/(

16
√

3 − 2w11 − w2
11(x̄ + β)2)

)
.
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