AIMS Mathematics, 11(1): 977-1020.
DOI: 10.3934/math.2026043
ATMS Mathematics Received: 21 October 2025

Revised: 31 December 2025
Accepted: 08 January 2026
https://www.aimspress.com/journal/Math Published: 13 January 2026

Research article

A hybrid transformer framework integrating sentiment and dynamic
market structure for stock price movement forecasting

Dong-Jun Kim', Eunjung Noh? and Sun-Yong Choi'->*

! Department of Finance and Big data, Gachon University, Seongnam 13120, Republic of Korea
2 Department of Mathematics and Computer Science, Rollins College, Winter Park, Florida, USA

* Correspondence: Email: sunyongchoi @ gachon.ac.kr; Tel: +82317505387.

Abstract: Traditional financial forecasting models are inherently limited as their sole reliance on
price data causes them to overlook critical information such as market sentiment and dynamic inter-
market interactions. To address this shortcoming, this study proposes a novel hybrid transformer model
that integrates heterogeneous data sources. Specifically, our framework combines investor sentiment
extracted from news headlines using FinBERT and dynamic changes in market structure analyzed with
a TVP-VAR model, along with traditional log-return data. In forecasting experiments conducted on
four major global stock indices (S&P 500, FTSE 100, CSI 300, and Nikkei 225), the proposed model
consistently demonstrated superior performance compared to both single-data-source models and
traditional benchmarks. We found that the inclusion of dynamic market structure information, derived
from the TVP-VAR model, as a predictive variable was a decisive factor in improving forecasting
accuracy. This research empirically validates that a multi-modal approach combining heterogeneous
data can significantly enhance the precision of financial market forecasting.
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1. Introduction

Financial markets constitute a dynamic system driven by multilayered factors such as global
capital flows, policy shifts, and corporate earnings. While the log return serves as a key metric for
volatility measurement and risk management, accurate forecasting remains highly challenging due to
the inherent non-stationarity, volatility clustering, and unpredictable exogenous shocks embedded in
financial data [1,2]. Furthermore, existing price-based models often fail to fully capture the complex
dynamics of the market. This failure stems primarily from their inability to integrate and analyze non-
price latent factors, such as investor psychological responses (sentiment) and the dynamically evolving
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structure of inter-country market interactions. The omission of this critical information is the core
research problem limiting predictive accuracy.

To overcome these fundamental limitations and maximize forecasting precision, this study
proposes a novel hybrid Transformer framework that systematically integrates heterogeneous data
sources—text (sentiment), structure (spillover effects), and price (log returns)—representing our
primary contribution. Specifically, we employ FinBERT to extract quantitative sentiment variables
from news headlines and utilize the Time-Varying Parameter Vector Autoregression (TVP-VAR) model
to quantify the dynamic spillover effects among national indices. By integrating these multi-layered
exogenous features into a Transformer-based deep learning model to learn long-range dependencies,
we empirically demonstrate a significant enhancement in predictive performance unattainable by
conventional single-data-source models. This integrated methodology offers substantial practical value
for portfolio optimization, algorithmic trading, and systemic risk mitigation.

To highlight the methodological novelty of our approach, we summarized comparative studies from
2021 to 2025 in Table 1. As shown in the table, existing literature can be broadly categorized into two
streams. Group A focuses on monitoring dynamic market structures and systemic risk using models
like TVP-VAR but often overlooks the unstructured sentiment information embedded in news text [3—
5]. Conversely, Group B leverages advanced NLP models like FinBERT to capture investor sentiment
but typically restricts analysis to individual assets or fails to explicitly model the time-varying spillover
effects among markets [6-8]. In contrast, our study distinguishes itself by organically integrating both
micro-level investor sentiment (via FinBERT) and macro-level dynamic market structure (via TVP-
VAR) within a unified hybrid Transformer framework, thereby overcoming the limitations of these
isolated approaches.

Recent deep learning approaches have extended beyond the short-term dependency learning of
Recurrent Neural Network (RNN) variants (Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU)), drawing attention to the ability of Transformer architectures to capture long-range
dependencies [9, 10]. Thanks to the self-attention mechanism, Transformers can learn interactions
across entire input sequences in parallel, effectively alleviating the vanishing gradient problem that
intensifies with sequence length. When pre-trained language models (e.g., Bidirectional Encoder
Representations from Transformers (BERT), Financial BERT (FinBERT)) originally developed for
natural language processing are adapted to financial time series, they enable multi-modal learning
across unstructured text and structured price data, yielding significant improvements in prediction
accuracy and training stability compared to conventional RNNs [11, 12]. To exploit these structural
advantages, this study integrates Convolutional Neural Network (CNN)-based feature extractors and
an LSTM-based preprocessing module within a unified Transformer framework.

Price movements in financial markets often cannot be fully explained by historical price data
alone, as investors’ psychological responses tend to precede volatility shifts. Consequently, there
has been a surge of interest in quantifying market sentiment from text sources - such as news
articles, official announcements, and social media - and using it as an auxiliary predictor [13, 14].
Domain-specific pre-trained language models offer superior understanding of financial terminology
and context, enabling fine-grained interpretation of tone and nuance beyond simple positive, negative,
neutral classification [15, 16]. In this study, we incorporate country-specific sentiment indices into the
Transformer input to capture spillover effects that price-based models alone may miss, thereby further
enhancing forecasting performance.
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Table 1. Comparison of recent related works (2021-2025) and the novelty of the proposed
framework. Existing studies typically focus on either market structure (Group A) or
sentiment analysis (Group B) in isolation.

Reference Methodology Key Characteristics & Limitations

Group A: Focus on Dynamic Market Structure

[3] TVP-VAR + Deep Learning Monitors systematic financial risk using dynamic connectedness;
Lacks textual sentiment integration.

[4] TVP-VAR + Quantile VAR Analyzes dynamic return and volatility spillovers across multi-asset markets;
Relies solely on market data, neglecting unstructured sentiment inputs.

[5] TVP-VAR + Deep Learning Forecasts exchange rate spillovers using dynamic market structure;

Does not account for unstructured investor sentiment data.

Group B: Focus on Investor Sentiment

[6] FinBERT + LSTM Forecasts S&P 500 movements using mathematically derived sentiment analysis;
Relies on LSTM, lacking dynamic market structure analysis.

[7] FinBERT + Deep Learning Predicts bank stock prices using sentiment analysis;
Focuses on individual assets without inter-market spillover effects.

[8] FinBERT + Numerical Masking Enhances sentiment accuracy via numerical change-related masking;

Focuses on textual understanding without integrating dynamic market structure.

Proposed Framework
This Study TVP-VAR + FinBERT Integrates both dynamic market structure (macro) and
+ Hybrid Transformer investor sentiment (micro) into a unified Transformer model.

Building on the potential of alternative data sources, this study moves beyond simple variable
addition to rigorously examine the efficacy of systematic information integration. Specifically, to
validate the superiority of the proposed approach, we formulate the following research question and
measurable hypothesis

e Research Question: Does a multi-modal deep learning framework that integrates unstructured text
data (sentiment) and structural market data (spillover effects) with historical prices significantly
outperform traditional single-source models in forecasting financial time series?

e Hypothesis: We hypothesize that the proposed hybrid Transformer model, which incorporates
FinBERT-derived sentiment indices and TVP-VAR-based spillover features, will yield
statistically lower prediction errors (e.g., Root Mean Square Error (RMSE), Mean Absolute Error
(MAE)) compared to baseline models relying solely on historical log returns or single-modal
1nputs.

Accordingly, the core objective of this study is to improve prediction accuracy by integrating
latent factors that are difficult to capture with price-based models alone. To this end, we first convert
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investment sentiment, which varies with news, into a variable through the sentiment analysis of news
headlines. Second, we explicitly model the dynamic spillover effects among different stock indices. By
applying these multi-layered exogenous variables to an integrated deep learning framework, we aim
to learn the complex market interactions with greater precision and maximize predictive performance,
thereby demonstrating the practical value of the proposed model.

In this study, we propose a hybrid Transformer-based framework to capture the complex
characteristics inherent in financial time series data. The proposed architecture consists of three
core modules, each specializing in processing unstructured text information, dynamic inter-market
interactions, and inherent time-series patterns.

First, we utilize FinBERT, a language model specialized for the financial domain, to extract market
sentiment from news headline data [15, 17]. This process transforms the dynamic changes in investor
sentiment, which are difficult to ascertain from price data alone, into quantitative features that are used
as input variables for the model [18, 19].

Second, we adopt the TVP-VAR model to explicitly capture the time-varying spillover effects
between countries [20,21]. Because interactions among assets in countries are constantly changing
in response to policy shifts and macroeconomic shocks, the TVP-VAR model can effectively estimate
these dynamic relationships [22,23].

Third, we use a Transformer as the core prediction model to learn the long-term dependencies
inherent in time series data [9, 24, 25]. Unlike traditional RNN-based models, the Transformer’s self-
attention mechanism directly computes the relationships between all points within a sequence [26,27].
This enables the Transformer model to select crucial past information and dynamically incorporate its
influence into predictions, thereby effectively learning complex and non-linear patterns [28,29].

Accordingly, the proposed model is an organic hybrid architecture that extracts multi-faceted
features through specialized modules tailored to each data type’s characteristics and integrates them
into a Transformer to learn long-term time-series patterns. Through this approach, we aim to maximize
the predictive performance for the log returns of each country’s stock index by comprehensively
analyzing multivariate financial data.

Through the proposal and empirical validation of this integrated framework, this study makes two
primary academic contributions.

First, it offers a methodological contribution by proposing a novel hybrid deep learning architecture
that systematically integrates multi-source data. Unlike existing research that relies on single sources
of information, our model quantifies market participant sentiment through FinBERT and the dynamic
changes in market structure through a combination of TVP-VAR and CNN. In other words, the
framework proposed in this study integrally considers both the psychological factors of investors,
quantified through FinBERT, and the structural factors of the market’s endogenous interconnectedness,
estimated by the TVP-VAR model. By fusing qualitative, text-based information reflecting investor
sentiment with quantitative information capturing the time-varying market structure through TVP-
VAR, it becomes possible to analyze the dynamics of individual assets comprehensively within the
context of their interaction with the entire market system, thereby moving beyond a fragmented
perspective. Conclusively, this integrated methodology, centered on the dynamic structural analysis
enabled by TVP-VAR, overcomes the limitations in the explanatory power of single-data-source
models and makes a core contribution to the significant enhancement of predictive performance by
more precisely capturing the complex and non-linear dynamics of financial markets.
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Second, this study empirically demonstrates that the interconnectedness between markets is a
variable that dynamically evolves in response to external shocks, and that this structural change itself
serves as a significant source of predictive information. Predictable patterns emerge as the market
structure reorganizes in response to specific policy changes or macroeconomic events, and our model
learns these patterns to forecast future returns. This suggests that to predict the price of an individual
asset, it is not only the asset’s historical data that is important, but it is also essential to analyze the
dynamics of the entire market system. Consequently, this research presents new clues to predictability
previously overlooked through the dynamic analysis of market structure, indicating that the analysis of
exogenous variables can play a pivotal role in individual asset prediction.

The remainder of the paper is structured as follows. The next section reviews prior studies that
apply sentiment analysis to stock market prediction and highlights recent developments in transformer-
based hybrid modeling. Section 3 details the stock data employed in the analysis and outlines the
procedure for collecting the news data. Section 4 describes the sentiment analysis framework and
introduces the proposed models, including the baseline TVP-VAR and Transformer-based approaches.
Section 5 reports the empirical forecasting outcomes and compares them with benchmark models.
Finally, Section 6 concludes with a summary of the main findings and their implications.

2. Literature review

Traditional forecasting in finance has relied on econometric models such as Autoregressive
Integrated Moving Average (ARIMA), Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH), and VAR to capture price dynamics and volatility. While effective under stable conditions,
these models focus solely on numerical data and often fail to account for investor sentiment or regime
shifts, limiting their predictive power. Our study builds on this limitation by incorporating additional
non-price signals into the forecasting process.

One of the most important advances in this regard is the use of sentiment extracted from
textual sources such as financial news, social media, and analyst reports. Early studies relied on
sentiment dictionaries and Term Frequency—Inverse Document Frequency (TF-IDF) features; for
example, [30] showed that aggregated sentiment from StockTwits microblogs improved directional
accuracy compared to price-only models. Later, deep learning models moved sentiment analysis
beyond simple lexical counts: [31] incorporated a CNN-derived sentiment index into an LSTM model,
and [32] combined technical indicators with dictionary-based sentiment features using a two-layer
LSTM. These studies consistently demonstrated that textual sentiment adds value to forecasting.
However, their sentiment representation was often shallow, leaving much of the linguistic nuance
unused. This gap motivated our focus on Transformer-based embeddings, which capture richer
contextual information from financial language.

The development of domain-specific language models, particularly FinBERT, has substantially
advanced financial sentiment analysis. For instance, [33] used FinBERT to classify sentiment in news
headlines and showed that incorporating these features into an LSTM significantly improved prediction
accuracy over price-only baselines. Similarly, [34] combined forum-based sentiment with technical
indicators in a hybrid LSTM, again finding that models with sentiment consistently outperformed those
without. These works establish two points: (i) financial sentiment carries unique predictive content,
and (ii) domain-tuned Transformers like FinBERT are especially effective at extracting it. Yet, in most
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cases, sentiment is treated as a supplementary feature, without being embedded into a broader view of
market structure. Our study extends this literature by not only using FinBERT embeddings but also
situating them alongside dynamic measures of inter-market connectedness.

At the same time, research on hybrid deep learning architectures has shown the promise of
Transformers in financial forecasting. The self-attention mechanism enables the capture of long-
range dependencies and contextual interactions that LSTMs and CNNs often miss. For example, [35]
adapted a Multi-Transformer model for volatility forecasting and found it superior to both traditional
econometric models and LSTM-based hybrids. Similar hybrid architectures have been validated in
various domains, from engineering systems [36] to intelligent transportation [37], underscoring the
versatility of Transformer-based approaches. In finance, [38] showed that combining Bidirectional
LSTM (BiLSTM), a modified Transformer with temporal convolution, and a Temporal Fusion
Transformer outperformed baseline models in Shanghai and Shenzhen markets. These results
collectively suggest that Transformer-based hybrids can effectively handle complex temporal data.
However, most Transformer hybrids in finance rely solely on price data or technical indicators,
without leveraging external sentiment or structural information. This motivates our contribution: A
Transformer-based framework that integrates heterogeneous data streams.

Beyond sentiment, another important strand of the literature emphasizes modeling time-varying
interdependencies across financial markets. The TVP-VAR framework has been widely employed
to capture dynamic spillovers, particularly during periods of market stress or policy shifts. For
example, [20] analyze volatility transmission in European sovereign bond markets using TVP-VAR,
while [21] examine cross-market linkages under global uncertainty. More recent studies, such as [22]
and [23], further demonstrate that TVP-VAR effectively tracks the evolving interactions among asset
classes and across international markets.

Alongside TVP-VAR-based approaches, alternative frameworks have been proposed to model
cross-market dependence. In particular, multivariate volatility models such as Dynamic Conditional
Correlation GARCH (DCC-GARCH) are widely used to capture time-varying correlations across
assets [39,40]. These models offer a parsimonious and statistically tractable representation of co-
movement dynamics and are well suited for volatility analysis. However, because DCC-GARCH
primarily focuses on second-moment correlations, it does not explicitly characterize directional
spillovers or network-based shock transmission, limiting its ability to capture asymmetric propagation
mechanisms across markets [41].

Another influential line of research relies on connectedness measures derived from vector
autoregressive frameworks to assess inter-market linkages and systemic risk [41, 42]. These
measures provide intuitive interpretations of spillover intensity and are effective for monitoring market
interconnectedness. Nevertheless, when implemented using static or rolling-window specifications,
they may suffer from sensitivity to window selection and are often better suited for descriptive analysis
than for modeling smoothly evolving market structures [43].

Table 2 compares alternative cross-market spillover modeling approaches and motivates the
choice of the TVP-VAR framework. While DCC-GARCH and VAR-based connectedness measures
provide useful insights into market dependence, TVP-VAR offers greater flexibility by allowing
spillover dynamics to evolve continuously over time. This property makes TVP-VAR particularly
well suited for capturing structural changes under heightened uncertainty and for integration into
predictive forecasting models. Accordingly, this study embeds TVP-VAR—derived spillover measures
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as structured input features within a hybrid Transformer architecture, enabling joint modeling of
dynamic market structure, sentiment, and price information.

Table 2. Comparison of cross-market spillover modeling approaches and justification of

TVP-VAR.
Approach Representative Main Strengths Limitations for Forecasting
Studies

DCC-GARCH [39,40] Captures time-varying Focuses on second-moment
correlations and volatility co- dependence; lacks  directional
movements in a parsimonious spillover interpretation and network-
multivariate framework based transmission mechanisms [41]

VAR-based [41-43] Provides intuitive measures of Often relies on static or rolling-

connectedness spillover intensity and systemic window estimation; sensitive

measures risk; useful for monitoring inter- to window choice and primarily
market linkages descriptive in nature

TVP-VAR [20-23] Allows coefficients and spillovers Typically used  for  spillover

spillover models

to evolve smoothly over

time; captures directional and
network-based interdependencies,

especially during stress periods

quantification and risk monitoring
rather than embedded as predictive

features

This study - Leverages TVP-VAR to extract Embeds TVP-VAR spillover estimates
dynamic structural information as structured input features within a
reflecting evolving market hybrid Transformer architecture,
interdependencies enabling  joint modeling  with

sentiment and price information

While existing studies have advanced financial forecasting through sentiment analysis, econometric
modeling, and deep learning, several methodological limitations remain. Sentiment-based approaches,
including FinBERT-style language models, may suffer from domain shift across markets and time
periods and can be sensitive to noisy or ambiguous textual information, particularly during turbulent
market conditions. Likewise, TVP-VAR and related models are primarily used for descriptive analysis
of dynamic spillovers and entail substantial computational and estimation costs, with scalability
challenges as the dimensionality of the system increases. In addition, Transformer-based forecasting
models, while powerful in capturing long-range dependencies, often rely on large parameter spaces and
high-dimensional feature representations, raising concerns regarding overfitting, interpretability, and
robustness when heterogeneous inputs are weakly structured. Moreover, many existing frameworks
lack a clear formalization of how heterogeneous data sources are integrated and bounded within
the model. These limitations motivate the need for a more critically grounded and systematically
integrated approach that carefully balances model expressiveness with interpretability, robustness, and
computational feasibility.
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Recent advancements in financial forecasting have increasingly shifted towards multimodal
deep learning frameworks that integrate heterogeneous data sources beyond historical prices. For
instance, [44] demonstrated that fusing news sentiment with external shock variables, such as COVID-
19 statistics, significantly enhances stock trend prediction. Similarly, [45] introduced an Investor
Concern Sentiment Index by combining news text with search volume data to capture investor
attention, while [46] utilized spatial feature fusion to integrate product sentiment with historical order
data.Alongside text-based approaches, visual data has also emerged as a valuable predictive resource;
for instance, [47] proposed a hybrid LSTM-CNN model incorporating candlestick charts to capture
technical analysis features.

Despite these progressions, existing multimodal studies predominantly focus on micro-level factors
or static visual patterns, often overlooking the dynamic evolution of inter-market dependencies.
Unlike [47], which visualizes single-asset technical indicators, our study utilizes TVP-VAR to generate
spillover heatmaps representing the macroscopic connectivity between markets. By integrating these
structural visual features with micro-level sentiment via a hybrid Transformer, we establish a novel
framework that explicitly captures the dynamic reorganization of market structures, a dimension largely
unexplored in prior multimodal research.

Furthermore, despite the technical progress achieved in multimodal forecasting methodologies,
several important issues remain concerning the structural design and implementation of the proposed
framework.

First, regarding the level of detail in the text, full-text articles can provide richer contextual
information; however, in practice they often contain unnecessary narration, redundancy, and off-topic
sentences, thereby increasing preprocessing costs [48,49]. By contrast, news headlines convey core
events in a highly compressed form and are thus reported to be relatively less noisy while retaining
immediate signals relevant to market reactions. Accordingly, headline-based text mining has been
utilized in short-horizon financial fluctuation forecasting [33,50].

Second, cross-market heterogeneity constitutes a critical challenge because market responses to
news are not uniform across differing regulatory environments [51,52]. Therefore, accurately capturing
the dynamics of each market generally requires country-specific data collection strategies rather than
relying solely on a unified global news feed [53,54].

Third, sentiment measurement is structurally influenced by media-specific reporting biases,
particularly a negativity bias in financial news. Prior studies document that negative events tend to
be reported more frequently and more prominently than positive ones, and that such negative tone
is significantly associated with market trading activity [55,56]. Consequently, sentiment indicators
based only on simple polarity frequency (i.e., lexicon-based counting) may be overly skewed toward
pessimism [57,58]. To address this asymmetry, we avoid a purely lexicon-based approach and instead
adopt a context-aware model such as FInBERT, which can capture nuanced semantic meanings in
financial language, thereby mitigating the risk of distortions in the sentiment distribution [59, 60].

In addition, we provide a literature integration table (Table 3) that systematically summarizes
existing studies, identifies their key limitations and research gaps, and clearly explains how the
proposed framework addresses these gaps.
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Table 3. Integration of prior literature and positioning of the present study.

Research Representative Key Limitations / Gaps How This Study Differs / Contributes
Stream Studies
Sentiment-based [30-32] Early sentiment representations Utilizes Transformer-based sentiment
forecasting rely on dictionary-based or shallow embeddings to extract richer contextual
embedding methods, which limit information from financial text.
the ability to capture contextual and
nuanced financial language.
FinBERT-based [33,34] Although  FinBERT  improves Integrates FinBERT-based  micro-
sentiment models sentiment  extraction, sentiment level sentiment with dynamic market
features are typically treated structure in a unified forecasting
as auxiliary inputs and are not framework.
integrated with macro-level market
structure.
Hybrid deep [35-38] Most Transformer-based hybrids Employs a Transformer architecture
learning and remain price-centric or rely on with self-attention to jointly model
Transformer technical indicators, with limited use interactions among price, sentiment,
models of external sentiment or structural and structural features.
information.
Dynamic market [20-23] TVP-VAR outputs are primarily used Transforms TVP-VAR spillover
structure and for descriptive spillover analysis and estimates into heatmaps and embeds
spillovers (TVP- systemic risk monitoring rather than them as predictive features within a
VAR) as predictive inputs. hybrid Transformer model.
Multimodal [44-47] Existing multimodal approaches Introduces a multimodal framework that
financial focus mainly on micro-level fuses sentiment, price, and TVP-VAR-
forecasting sentiment or static visual features based structural connectivity to capture
and largely overlook time-varying dynamic market reorganization.
inter-market connectivity.
This study - - Proposes a  hybrid Transformer
framework that systematically

integrates FinBERT-based sentiment,
TVP-VAR-based

structure, and historical prices for

dynamic  market

enhanced forecasting accuracy.

Consequently, in light of the limitations identified in the existing literature reviewed in this section,
the present study seeks to address the following research gaps. First, much of the existing literature
relies on single-source inputs or loosely coupled multimodal approaches, typically incorporating
investor sentiment or market structure separately, which limits their ability to jointly capture behavioral
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and systemic drivers of asset prices. Second, while time-varying parameter models such as TVP-
VAR are widely used to analyze dynamic spillovers and systemic risk, their outputs are primarily
treated as descriptive diagnostics rather than as structured predictive features embedded within
forecasting models. Third, although Transformer-based architectures have demonstrated strong
performance in financial time-series prediction, most applications remain heavily price-centric and lack
a rigorous framework for integrating heterogeneous data sources with clearly defined transformation
and interaction assumptions. These gaps motivate the present study, which proposes a unified hybrid
Transformer framework that systematically integrates FinBERT-based sentiment measures and TVP-
VAR-based dynamic market structure with historical price information to enhance predictive accuracy
and better reflect the adaptive and interconnected nature of financial markets.

3. Data description

3.1. Stock index

This study utilizes daily closing prices from four major benchmark equity indices: the S&P 500
(Standard & Poor’s 500 Index, United States), the FTSE 100 (Financial Times Stock Exchange 100
Index, United Kingdom), the CSI 300 (China Securities Index 300, China), and the Nikkei 225
(Nikkei 225 Stock Average, Japan). The data were retrieved from the Investing.com database.
The sample period spans from 1 January 2020 to 31 December 2024, a horizon selected to capture
post-COVID-19 structural changes in global equity markets and to mitigate regime-related biases
associated with pre-pandemic observations. All entries with missing values were removed, after
which logarithmic returns were computed for each index. Subsequently, basic statistical analyses
were conducted to characterize the time-series properties. These preprocessing procedures provide
the empirical foundation for the analyses that follow.

Table 4 presents the basic descriptive statistics and stationarity test outcomes for the daily log returns
of four national equity indices. Overall, the mean returns are near zero, with the S&P 500 exhibiting
the highest average at 0.0006 and the FTSE 100 the lowest at 0.0001, suggesting that most indices
display long-term mean-reverting characteristics.

Table 4. Basic summary statistics and test results for the country-level index returns.
The Jarque—Bera statistic (J.-B.) tests the null hypothesis of normality for the sample
returns; ADF and PP are the Augmented Dickey—Fuller and Phillips—Perron unit-root tests,
respectively. * denotes rejection of the null hypothesis at the 1% significance level.

Index Obs Mean Max. Min. Std. dev. Skew Kurt. J.-B. ADF PP

S&P 500 1071 0.0006 0.0897 -0.1277 0.0143 -0.9545 16.8430 8714.13%  -9.81%  -38.79¢
FTSE 100 1071 0.0001 0.0867 -0.1151  0.0117 -1.0878 18.3552 10732.96* -8.09%* -34.26*
CSI 300 1071 0.0001 0.0814 -0.0821 0.0131  0.0696  8.4607  1331.55% -14.59% -30.97¢
Nikkei 225 1071 0.0005 0.0773 -0.0627 0.0138 -0.0138  6.0263  408.74%  -21.24* -32.61%

An analysis of extreme values reveals that the S&P 500 exhibits the widest range, with a maximum
return of 0.0897 and a minimum of -0.1277. In contrast, the Nikkei 225 records the narrowest span,
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ranging from a maximum of 0.0773 to a minimum of -0.0627.

Figure 1 provides a time series visualization of the daily log returns for each index from January
2020 to December 2024. Across all indices, a marked surge in volatility is observable during the
initial phase of the COVID-19 pandemic, followed by a return to relatively stable levels. The S&P
500, in particular, exhibits visually pronounced spikes during early 2020, which align with their high
kurtosis and deviations from normality. Meanwhile, Nikkei 225 and CSI 300 display more constrained
fluctuation patterns. These temporal dynamics underscore the presence of heteroskedasticity and
asymmetry, complementing the statistical diagnostics.

Log Return of S&P 500 Log Return of FTSE 100
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Figure 1. Time-series plots of daily log returns for four major stock indices from 1 January
2020 to 31 December 2024. Each panel illustrates the temporal evolution of log returns for:
(a) S&P 500 (United States), (b) FTSE 100 (United Kingdom), (c) CSI 300 (China), and (d)
Nikkei 225 (Japan).

In terms of volatility, the standard deviations of the S&P 500 (0.0143), CSI 300 (0.0131), and
Nikkei 225 (0.0138) are broadly similar, whereas the FTSE 100 (0.0117) reveals comparatively lower
volatility.

The skewness and kurtosis metrics further indicate that most return distributions are asymmetric
and fat-tailed. For instance, the FTSE 100 demonstrates a pronounced left skew (—1.0878) and
extreme kurtosis (18.3552), implying frequent occurrences of tail events. These statistical properties
are corroborated by the J.-B. test, which decisively rejects the null of normality for all indices at the
1% significance level.

Additionally, the results of the ADF and PP unit root tests show that the null hypothesis of a unit root
is rejected at the 1% significance level for all series, indicating that the log returns of all indices satisfy
the stationarity condition. This serves as a fundamental prerequisite for the validity of subsequent
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econometric analyses.

In summary, although the daily log returns of the four indices converge toward zero on average, their
return distributions deviate notably from normality, particularly in terms of tail risk and asymmetry.
Moreover, the confirmation of stationarity across all series affirms the statistical soundness of the
empirical framework that follows.

3.2. News data

The news data used in this study were collected from publicly available article listings on Reuters
(https://www.reuters.com). For dates prior to 2023, we used archive pages with the path pattern
/archive/{YYYY}-{MM}/{DD}/{page}, whereas for dates from 2023 onward we used sitemap pages
with the path pattern /sitemap/{YYYY}-{MM}/{DD}/{page}. The target indices were S&P 500, FTSE
100, CSI 300, and Nikkei 225. Only article titles were used to conduct sentiment classification and
daily aggregation.

The  news collection  pipeline was implemented  using Selenium  with
undetected-chromedriver. We collected articles only on trading days, excluding exchange
holidays for each index. From Reuters archive listings, we filtered candidate documents using
the keyword set provided in Appendix 6.3. For each target date, headlines were extracted via
CSS selectors. To mitigate server load and avoid rate limiting, we introduced inter-request delays,
incremental scrolling, and bounded retries. Extracted headlines underwent light normalization and
de-duplication, after which they were stored by index according to a predefined keyword index

mapping.
We collected headline data for the set of calendar dates common across all indices from 2020-01-06
through 2024-12-27. To ensure reliable daily aggregation, we applied a low-volume filter: If no more

than 5 headlines were available on a given date, we deemed the daily state indeterminate and excluded
that date from all indices. This filter was applied uniformly to maintain comparability across indices.

Table 5 reports the volume of news articles by index and the corresponding sentiment analysis of
news titles obtained using FinBERT. Among the indices, the largest number of news titles was collected
for the S&P 500 (81314 titles), whereas the smallest was for the Nikkei 225 (9245 titles). Across all
indices, the sentiment distribution generally follows the order positive, followed by neutral, and then
negative.

Table 5. Distribution of sentiment polarity in the news dataset: Descriptive statistics of
Reuters headlines classified via FinBERT.

Index Total Positive Neutral Negative Daily Average
S&P 500 81314 32077 30700 18537 96.5
FTSE 100 25082 9931 9267 5884 29.8
CSI300 20242 7664 7059 5519 24
Nikkei 225 9245 3479 3313 2453 11
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3.3. Preliminary diagnostics and lag selection

To validate the structural appropriateness of the proposed framework and capture the dynamic
properties of the time-series data, we conducted preliminary diagnostic tests on the daily log returns.
Specifically, the Ljung—Box test was employed to detect the presence of serial autocorrelation, while
the AutoRegressive Conditional Heteroskedasticity Lagrange Multiplier (ARCH-LM) test was utilized
to examine conditional heteroskedasticity.

According to Table 6, the S&P 500 and FTSE 100 indices exhibited strong autocorrelation at the 1%
significance level, whereas the CSI 300 and Nikkei 225 displayed relatively weak linear dependence.
However, the results of the ARCH-LM test, employed to verify volatility clustering, indicate that the
null hypothesis was decisively rejected for all four indices at the p < 0.001 level. This finding implies
the distinct presence of conditional heteroskedasticity in the data, thereby statistically validating the
application of the TVP-VAR framework—which captures time-varying volatility—over conventional
models relying on fixed parameters.

Table 6. Preliminary diagnostics for autocorrelation and conditional heteroskedasticity. The
table reports the test statistics and corresponding p-values for the Ljung—Box test and the
ARCH-LM test on daily log returns.

Autocorrelation (Ljung—Box) Heteroskedasticity (ARCH-LM)

Index Statistic Q(10) p-value Statistic LM(10) p-value
S&P 500 107.90 0.000 422.17 0.000
FTSE 100 27.85 0.002 270.62 0.000
CSI 300 16.07 0.098 132.32 0.000
Nikkei 225 17.36 0.067 182.08 0.000

To determine the optimal lag length for the TVP-VAR model, we examined standard information
criteria including the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
Hannan-Quinn Information Criterion (HQ). As shown in Table 7, the AIC suggests a lag order of 2
as optimal (with the lowest value of -35.504). However, both the BIC and HQ, which impose stricter
penalties on model complexity, favor a lag order of 1 (with values of -35.359 and -35.432, respectively).
Given the risk of overfitting inherent in time-varying parameter models, we prioritized the principle of
parsimony supported by the BIC and HQ criteria. Consequently, we set the lag order to p = 1 for the
subsequent analysis.
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Table 7. Lag-order selection for the VAR system using information criteria. Bold values
indicate the optimal lag suggested by each criterion.

Lag p AIC BIC HQ
1 35478 35359  -35.432
2 35504  -35.289  -35.421
3 35477  -35.166  -35.358
4 35452 -35.045  -35.296

4. The proposed model

4.1. Sentiment analysis

In this study, we incorporate sentiment information extracted from financial news as an auxiliary
feature to enhance the prediction of log-returns for country-level stock indices. To this end, we adopt
FinBERT, a domain-specific, transformer-based pre-trained language model tailored for financial text
analytics. Traditional return prediction models have predominantly relied on structured data such as
macroeconomic indicators and technical factors [61,62], while recent studies underscore the predictive
value of investor sentiment derived from unstructured textual data [63,64]. Particularly, contextual cues
embedded in global financial news reflecting country-specific macroeconomic conditions, monetary
policies, and geopolitical risks can significantly influence investor expectations and sentiment, thereby
shaping short to medium term volatility in national equity markets [65, 66].

FinBERT is a variant of the BERT architecture, re-trained and fine-tuned specifically for the
financial domain. Its training pipeline consists of three stages, as depicted in Figure 2. The first
stage involves generic-domain pretraining using large scale textual corpora, where FInBERT learns
deep contextual representations via Masked Language Modeling (Masked LM, or MLM) and Next
Sentence Prediction (NSP). The pretraining loss is formally defined as:

-Lpretrain = Lyvim + Lnsp - (41)

In Eq (4.1), Lym denotes the cross-entropy loss for predicting masked tokens, and Lysp captures
binary classification loss for sentence pair coherence.

NSP Masked LM NSP Masked LM Sentiment prediction

DENSE | DENSE DENSE | DENSE | DENSE
Encoderk-th | [CLS] | [Token1 [Token2 - [[MASK] - [ [SEP] | [CLS] | [Token1 (Token2| - [[MASK] | [SEP] | [CLS] [Token1 [Token2 - ([MASK] - | [SEP] |
Encoder3rd | [CLS] |Token1 |Token2 -~ [MASK] ---| [SEP] | [CLS] |Token1 | Token2 --- [MASK] --- [SEP] | [CLS] |[Token1 | Token2 ---|[MASK] --- [SEP] |
Encoder2nd | [CLS] [Token1 |Token2 | --- |[MASK]| ---| [SEP] | [CLS] |Token1 |Token2| --- |[[MASK] ---| [SEP] | [CLS] |Token1| Token2 --- [[MASK] --- [SEP] |
Encoder 1st | [CLS] |Token1 |Token2| --- [MASK] ---| [SEP] | [CLS] |Token1  Token2 -~ [MASK] ‘- [SEP] | [CLS] |Token1 Token2 - |[MASK] - [SEP] |
Embeddings (_[CLS] ] (Token1] (Token2] ‘- ([MAsSK1) ‘-- ((ISEP]_)((IcLS] ) (Token1] (Token2] - (IMASK]] - (([SEP1 ]((ICLS] ] (Token1] (Token2] --- (IMASK1) --- ((ISEP] ]

( )\ )\ J

f f [
Language model on general corpus Language model on financial corpus Classification model on financial sentiment dataset

Figure 2. The basic architecture of the FinBERT model.
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In the second stage, domain-adaptive pretraining is performed on financial corpora, enabling
the model to capture domain-specific semantics, such as terms like “quantitative easing”, “credit
downgrade”, and “rate hike”, which are frequent in economic discourse but rare in general purpose
datasets.

The final stage involves task-specific fine-tuning for sentiment classification. Given an input
sentence, FInBERT extracts the contextual embedding [CLS] corresponding to the [CLS] token and
passes it through a softmax classification layer:

¥ = softmax(Whycrs) + b) , “4.2)
C

Ln == yelog(o) . (4.3)
c=1

In Eq (4.2), the model computes the predicted probability distribution, y, over the sentiment classes.
This is achieved by feeding the final hidden state vector hicrs; € R?, which corresponds to the special
[CLS] token and serves as an aggregate representation of the input sequence, into a classification layer.
This layer consists of a trainable weight matrix W € R“*? and a bias vector b € R. The model is then
optimized by minimizing the categorical cross-entropy loss L., as defined in Eq (4.3). In this loss
function, . is the predicted probability for a given class ¢, and y, is the one-hot encoded ground-truth
label (i.e., y. = 1 for the true class and O otherwise). Here, C = 3 represents the number of classes
(positive, neutral, negative), and d is the dimension of the hidden state.

Through its context-aware representation capability, rich financial vocabulary coverage, and
document-level sentiment integration, FinBERT allows the extraction of quantitative sentiment
indicators from unstructured news text. These sentiment features are expected to play a complementary
role in enhancing the explanatory and predictive performance of traditional price-based return models.

4.2. TVP-VAR model

TVP-VAR is a structural time-series framework that extends the conventional VAR model by
permitting its coefficients to evolve dynamically over time.

This flexibility enables the model to capture dynamic interactions that static specifications struggle
to explain in financial markets, where structural breaks and non-stationarity are commonplace [67,68].

The standard VAR(p) model is described by Eq (4.4):

Vi= Ayt Ay o+t Apyt—p + &, (4.4)

where y, € R” denotes an n-dimensional vector of time-series variables, A; € R™" are fixed coeflicient
matrices, and g, ~ N(0, X) is white noise.

In the TVP-VAR specification, the coefficient matrices are allowed to vary with time, leading to the
reformulation in Eq (4.5):

Vi= Ayt Ay Yo+ Ay i, t & 4.5)

and the temporal evolution of each coefficient is modeled as the random-walk process in Eq (4.6):
vec(A;) = vec(Aj—1) + i, i ~ N0, Q). (4.6)
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This setup naturally accommodates the time-inconsistency generated by policy shifts or market
instability [3,69] and is well suited for tracing shock transmission and dynamic connectedness across
financial markets [70, 71].

In this study, we apply TVP-VAR to country-level stock index log returns to compute time-varying
connectivity strengths, visualize them as spillover heatmaps, embed the resulting images using a CNN,
and integrate these embeddings into the Transformer input. This approach implements a multi-modal
learning architecture that combines structured time-series data with visualized network features.

4.3. Transformer model

The Transformer model is a non-sequential, encoder-decoder architecture that eliminates sequential
recursive operations, thereby enabling the entire input sequence to be processed in parallel. Owing to
this design, it has been widely adopted not only in natural-language processing but also in domains
such as financial time-series forecasting [72,73]. The baseline configuration employed in the present
study is illustrated in Figure 3.

Encoding

Input
Inputs = E
nputs Embedding

,
Outputs Output Mrl:is'::: . AED Multi Head A:D Feed ADD -
(shifted right) Embedding A Attention Forward
Attention Norm Norm Norm

Encoding x
N

Multi Head
Attention

Feed
Forward

Output
Probabilities

Figure 3. The basic architecture of the Transformer model.

The input sequence x = (xi, X2, ..., x7) is first mapped to a d-dimensional embedding, yielding
E € R™4 A deterministic positional-encoding matrix P € R7* is then added to form the initial
representation Z) = E + P. This matrix Z© serves as the input to the first encoder block. In general,
the output of the (I — 1)-th block, denoted as Z/~", becomes the input for the /-th block.

Each of the N encoder blocks consists of a Multi-Head Self-Attention (MHSA) module followed
by a position-wise feed-forward network. In Eq (4.7) scaled dot-product attention is defined as :

Attention(Q, K, V) ft (QKT)V 4.7)

ention(Q, K, V) = softmax . .
Vdy

In Eq (4.7), O, K, and V denote the Query, Key, and Value matrices, respectively. The term d

represents the dimension of the Key and Query vectors. The dot product is scaled by a factor of

«/Ldj to prevent it from growing too large, which could push the softmax function into regions with
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extremely small gradients, thereby stabilizing the training process. For a given encoder block receiving
the input representation Z € R™“, these are computed as linear projections: Q = ZW?, K = ZWX and
V = ZW". Here, W2, WX, and W" € R are the trainable weight matrices. The superscripts Q, K,
and V are not mathematical exponents but rather notational identifiers, indicating that these matrices
are used to project the input into the Query, Key, and Value spaces, respectively.

In Eq (4.8) the MHSA, parallelized over & heads, is formulated as:

MultiHead(Q, K, V) = Concat(head,, ..., head,)W? , (4.8)
head; = Attention(QW?, KWK, VW/) . (4.9)

In this formulation, the projection matrices for each head are distinct: WZ.Q € R, WK € R and
WY € R where it is common to set dy = d, = d/h. In Eq (4.8), W° € R">? denotes the output
projection matrix. Each head, defined in Eq (4.9), captures dependencies in distinct sub-spaces; the
concatenated heads are subsequently projected to form an integrated representation. Every sub-layer is
equipped with residual connections and layer normalization to enhance training stability and mitigate
vanishing gradients.

The decoder mirrors the encoder architecture, except that its first attention sub-layer employs
masking to prevent information leakage from future positions. The subsequent encoder-decoder
attention module conditions the predictions on the encoder output.

The final decoder state is transformed into the output distribution according to

v, = softmax(Wh, + b) . (4.10)

In Eq (4.10), h, € R¢ denotes the final output representation of the decoder stack for the z-th position,
W € RY* is the output projection matrix, and V is the vocabulary (or class) size.

By obviating sequential dependencies, the Transformer achieves substantial training-speed gains
through parallelization [74,75] and effectively alleviates the long-term dependency vanishing-gradient
problem inherent to RNN-based models [76,77].

4.4. Theoretical rationale for model design

In this study, we conceptualize financial markets not as static equilibrium systems but as time-
varying dynamic complex systems in which information-transmission pathways are continuously
reconfigured by exogenous shocks and investor sentiment. From the perspective of the Adaptive
Markets Hypothesis (AMH), market efficiency and risk-transmission channels are not fixed constants;
rather, they evolve in response to changing environments. Accordingly, the forecasting task is framed
not as a simple extrapolation of a univariate time series but as the approximation of a mapping that
generates next-period returns given the heterogeneous information set observable up to time ¢. In our
setting, the information set encompasses (1) trend and volatility signals extracted from past prices, (ii)
sentiment and uncertainty signals reflected in news, and (iii) changes in cross-country connectivity
structure that characterize systemic risk transmission.

To present this framework in a reproducible and verifiable form, we decompose model inputs into
three channels—Price, Sentiment, and Structure—and explicitly fix the data-transformation rules for
each channel. First, the Sentiment channel converts daily news headlines into time-series variables
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by applying FinBERT to obtain sentiment distributions and confidence scores, followed by date-
level aggregation. Importantly, the aggregation procedure is implemented as a fixed rule applied
identically across all countries to ensure reproducibility. Second, the Structure channel assumes that
interactions in a multivariate return system evolve over time; we therefore estimate time-specific
connectivity strengths via a TVP-VAR model and transform them into a Generalized Forecast Error
Variance Decomposition (GFEVD)-based spillover matrix. We interpret this spillover matrix not as
a mere summary statistic but as a weighted network representation of the time-dependent systemic
risk transmission structure. Third, the Price channel consists of a fixed-length historical log-return
sequence, and all training and inference are time-aligned so that only information available prior to
time 7 is used.

In particular, the CNN-on-heatmaps component is defined as a representation-learning step designed
to robustly extract structural patterns embedded in spillover matrices, rather than as a visualization
trick. Concretely, each spillover matrix is (1) normalized using an identical rule, (2) converted into a
standardized input format with fixed resolution, and (3) compressed into a low-dimensional embedding
via a CNN. This standardization is not simply making an image; it is a transformation intended
to preserve, in a consistent manner, structural characteristics implied by the relative arrangement of
matrix elements—such as country-centered concentration of transmission, asymmetric spillovers, and
clustered co-movement—within the model’s input space. As a result, the Structure channel provides
a numerical embedding of the time-varying network state that can be effectively processed by the
Transformer.

Moreover, features from the three channels are merged on a shared timeline to form an integrated
input sequence. The Transformer’s self-attention mechanism then learns, in a context-dependent
manner, which factors (structural changes, sentiment signals, or price trends) are more informative for
prediction at different periods. This design implements the AMH view that market participants adapt
their decision rules as the environment changes. To maintain causal validity, all features—including
spillover matrices and aggregated sentiment—are computed strictly using information available up to
time ¢, and in the test period we apply only the transformation rules fixed in the training period. In sum,
the proposed framework goes beyond an engineering-style concatenation of heterogeneous data by
structurally translating the theoretical premise that micro-level sentiment and macro-level connectivity
jointly shape prices into a principled pipeline of channel decomposition—fixed transformations—
dynamic integration—causality constraints.

4.5. Proposed model

The architectural design of the proposed model is grounded in the theoretical premise that financial
market dynamics are driven by the inter play of investor psychology, structural inter connectedness, and
historical trends. We employ FiInBERT to capture the ‘Sentiment Channel’, addressing the behavioral
finance perspective that price data alone cannot fully reflect investor irrationality. Simultaneously, the
TVP-VAR models the ‘Structural Channel’, based on the econometric theory that risk transmission
pathways among markets evolve dynamically over time. In addition, the Transformer serves as the
integration engine, selected for its ability to learn non-linear interactions and long-range dependencies
among these heterogeneous features, thereby overcoming the limitations of traditional RNN-based
models.

The model proposed in this study, as illustrated in Figure 4, is a hybrid, Transformer-based
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architecture designed to maximize predictive performance by systematically integrating multifaceted
information. The model’s operational principle consists of three main stages: Parallel feature
extraction, multi-dimensional feature fusion and deep learning, and an ensemble-based final prediction.

Based on the hypothesis that asset price formation is driven by the dynamic interaction between
micro-level investor psychology and macro-level systemic linkages, the proposed model employs a
parallel feature extraction stage to capture these distinct dimensions [78,79]. The model extracts core
predictive information through three independent modules.

( ) e N N

News Data FinBERT |

Data

i @
4 N Predict
TVP - VAR CNN | InputData Transformer |, each
model Country’s
Log Return \ J indices

- o J
Figure 4. Architectural overview of the proposed hybrid Transformer framework integrating
sentiment analysis and dynamic market structure.

First, the sentiment feature extraction module quantifies the market’s psychological drivers from
unstructured news data. We utilized the pre-trained FinBERT model (‘ProsusAl/finbert’), which
utilizes a BERT architecture specifically fine-tuned on the Financial PhraseBank dataset [80]. This
benchmark corpus comprises 4,840 sentences extracted from financial news, manually annotated by
16 experts with financial backgrounds to ensure high inter-annotator agreement. Given that the
model demonstrated superior performance with a classification accuracy of approximately 97% on
this domain-specific dataset [81], we applied it directly for inference without additional fine-tuning.
This approach allows us to leverage its validated capabilities while maintaining generalization across
diverse global markets. FinBERT analyzes news headlines to extract sentiment scores that represent
the positive, neutral, and negative sentiments of market participants. Specifically, as detailed in
Algorithm 1, for each news item i, the model applies FInBERT (Mpp) to generate a Softmax probability
distribution (P;). The class with the maximum probability is identified as the sentiment (Sentiment;),
while the probability value itself serves as the confidence score (Confidence;). Subsequently, through
a daily aggregation process at time ¢, the most frequent sentiment class is mapped to a daily sentiment
score (§;), and the average of the individual confidence scores (C;) is computed to construct the final
daily sentiment dataset (Dsentiment)-

Second, the structural feature extraction module captures systemic changes across the entire
market, moving beyond individual assets to account for risk contagion. The log return data of
national stock indices are fed into a TVP-VAR model(lag over p = 1, horizon H = 10), which
estimates how the interconnectivity and spillover effects between markets evolve over time. This
dynamic connectivity information at each time point is converted into a two-dimensional image, such
as a heatmap, and subsequently compressed into a high-dimensional feature vector using a CNN
(comprising 3 convolutional layers with kernel size of 3 and 5). Following the procedure outlined
in Algorithm 2, based on the log returns up to time 7 (Ryo, 1), the model estimates the time-varying
coefficients (A;,) and the covariance matrix (X,). To ensure robust parameter estimation under non-
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stationary conditions, we specifically employ a Kalman Filter with forgetting factors. These estimates
are then transformed into spillover indices (®,) via GFEVD. Spillover indices ®, proxies the time-
varying intensity of volatility spillovers; elevated connectedness reflects heightened market integration,
implying diminished risk mitigation capacities. This dynamic connectivity information is visualized
as a two-dimensional heatmap image (H,) at each time step, which is subsequently compressed into
a high-dimensional structural feature vector (M;,) via a CNN embedder (Mcnn) and a projector
(Mpyj), thereby converting visual patterns of market structure into numerical features that represent
the evolving systemic risk profile of the financial system. Crucially, this integration enables the
Transformer to incorporate global structural context into its learning of historical price dependencies.

Algorithm 1 FinBERT-based news sensitivity extraction and aggregation (A;)

Require: News Headlines Data Dyeys, Pre-trained FinBERT Model Mgg (ProsusAl)
Ensure: Daily Sentiment Score S, and Average Confidence C;

. Initialize: Load Mgg tokenizer and model (no fine-tuning on downstream tasks)
2: for Each News Item i at Date 7 do

3 P; « Softmax(Mgg(Title;)) > Probability distribution over {Pos, Neg, Neu}
4 Sentiment; « arg max(P;)

5 Confidence; < max(P;)

6: end for
;
8
9

Ju—

. for Each Unique Date ¢ do
S: « MapToValue(MostFrequent({Sentiment; | i € R;}))
: C, < Average({Confidence; | i € R,})
10: end for
11: return Daily Aggregated Sentiment Dseniment = {(Z, S 1, C1)}

Algorithm 2 TVP-VAR and CNN based market structure embedding (A,)
Require: Log Returns Ryo,, Lag p = 1, Horizon H = 10, CNN Mcnn, Projector Mpy;
Ensure: Daily Market Structure Embeddings M, , € RPmod

1: Hyperparams: TVP (6 = 0.99, 1 = 0.99), CNN (L =3, K = 3,5, Dep, = 128)

2: for Time Step 7 do

3: A, X, < TVP-VARR g 14, P) > Estimate time-varying params
4: 0, « GFEVD({AL,}f:l, X, H) > Calculate spillover index
5: H, < GenerateHeatmap(®,) > Visualize as 2D image
6: for Asset k do

7 Ximgk, ¢ ProcessHeatmap(H,, k) > Masking for each asset
8: Ziy — MconnXimg k) > Extract visual features
9: end for

10: 2, —[Zi4....2N,]"

11: Mrow; — Mbproi(Z,;) > Project to Doqer SPace
12: My ; < Mroy (k]

13: end for

14: return Daily Market Structure Embeddings Dyiarker = {(t, My1)}
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The image-based encoding technique for spillover matrices adopted in this study possesses a
theoretical grounding that transcends simple data transformation, effectively capturing complex inter
dependencies within the market that vector-based approaches often overlook. The process of mapping
time-series or matrix data into a two-dimensional image space preserves the correlations among
variables as structural visual patterns, thereby contributing to the model’s ability to learn non-linear
relationships [82, 83]. Specifically, the convolutional operations of CNNs excel at analyzing local
regions on a heatmap to identify specific clusters with high risk-transmission intensity or abrupt
shifts in market structure as meaningful predictive features [84]. Consequently, by transforming
dynamic market spillovers into spatial features, this approach provides a foundation for more precisely
representing and analyzing economic connectedness [85].

Third, in the multi-dimensional feature fusion and deep learning stage, all parallelly extracted
features-namely, the extracted sentiment scores, encoded market structure embeddings, and historical
log returns are merged into a single multi-dimensional time-series sequence based on common calendar
timestamps to ensure temporal alignment. As elaborated in Algorithm 3, the merged dataset (Drgeatures)
is processed via a sliding window technique to form batches (X). To rigorously prevent data leakage,
the target variable is shifted such that the model utilizes information strictly up to time ¢ to predict
returns at ¢ + 1. Instead of simple concatenation, the proposed framework employs an LSTM layer
to process the historical log return data, extracting intrinsic short-term temporal dependencies. These
LSTM-encoded price features are then concatenated with the sentiment scores derived from FinBERT
and the market structure embeddings encoded by the CNN. Finally, this fused feature vector is linearly
projected to the model dimension and combined with positional embeddings to serve as the input for
the Transformer encoder.

Within the Transformer encoder (configured with N = 8 layers, 4~ = 10 attention heads, and
hidden dimension dpeq = 320), the MHSA mechanism captures global inter-dependencies among
all elements within the input sequence. It dynamically learns which past features (sentiment, structure,
or price) and which time steps are most crucial for future predictions, thereby enabling deep modeling
of complex, long-range dependencies inherent in the time-series data.

Finally, the feature vector (Zg,. cLs), now enriched with temporal context from the Transformer
encoder, is passed to a Fully-Connected Layer to generate the final prediction (Y). During the training
process, the model minimizes a composite loss function (Lcomposice) that simultaneously accounts for
the error between predicted and actual values (Y) as well as their correlation (Pearson Correlation). To
improve robustness and control overfitting, we implemented comprehensive regularization strategies
including Dropout (p = 0.1), Weight Decay (1 = 1e —4) in the AdamW optimizer, and Early Stopping
based on validation loss monitoring. This entire process effectively establishes an ensemble structure
within a single model, integrating heterogeneous information sources—sentiment analysis (FinBERT),
market structure analysis (TVP-VAR), and the original time series (log returns)—to produce a unified
output.
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Algorithm 3 Hybrid transformer training and predicting (Apipa))-

Require: Dseniments Dmiarket> Riog, Seqlen L = 60, Epochs E, Tiox Model
Ensure: Predicted Log Returns Rlog
1: Model Config: N = 8, h = 10, dpoger = 320, Dropout p = 0.1, AdamW (1 = le — 4)

2 z)Features — Merge(DSentimenta Z)Market, Rlog)

3: Strain <« SlidingWindow(Dreatures, L)

4: Initialize T'socx With He initialization

5: for Epoche = 1to E do

6: for batch (X, Y, IndexID) in Datal.oader(Sty,;,) do

7 Unpack batch X into Ryog, My, S+, C;

8: Histm < LSTM(R)og) > Extract temporal features from price
9: Xrused < Concatenate(My,, S, C;, Hystm) > Fuse heterogeneous features
10: Zg., < LinearProj(Xgyseq) + IndexEmb(IndexID) + PositionalEmb
11: Zg,. < TransformerEncoder(Zg,,;,)

12: Y FullyConnectedLayer(Zgpc cLs)

13: Liuver — SmoothL1(Y,Y)

14: Lcomposite — Lrtuber + Acorr - (1 = PearsonCor(Y, Y))

15: Minimize(Lcomposite) Via Backprop

16: end for

17: Check Early Stopping based on Validation Loss

18: end for

19: for Time ¢ in Test Period do
20: Virr1 — TsookXrests)

21 Rlog,k,next — Yk,t+1

22: end for

23: return Predicted Log Returns Rlog

To visualize the end-to-end data flow described in the algorithms above, the comprehensive
architecture of the proposed model is illustrated in Figure 5. The diagram is divided into three parallel
input channels on the left, followed by the fusion and prediction modules on the right. The Sentiment
Channel processes raw news headlines through FinBERT to generate probability distributions, which
are then aggregated into daily sentiment features (S;,C;). The Structural Channel transforms log
returns (Rj,,) into dynamic spillover indices via the TVP-VAR model; these indices are visualized
as heatmaps and subsequently compressed into structural embeddings by a CNN. The Price Channel
utilizes an LSTM to extract temporal hidden states (Hs7),) from historical price data. As depicted in
the center of the figure, these heterogeneous features are concatenated and linearly projected before
being augmented with positional embeddings. Finally, the fused sequence enters the Transformer
Encoder stack, where N layers of MHSA and Feed-Forward Networks (FFN) capture long-range
dependencies. The final prediction (¥) is generated by passing the extracted [CLS] token through a
Fully Connected (FC) layer.
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Figure 5. Schematic diagram of the proposed model integrating FinBERT-based sentiment,
TVP-VAR-based market structure.

To ensure the reproducibility of the proposed framework and clarify the feature engineering process,
we summarized the rigorous pre-processing steps and parameter configurations in Table 8.

Table 8. Detailed specifications of data pre-processing and model parameters for

reproducibility.

Module Parameter / Step Value / Specification

Normalization NFKC, HTML & URL removal
) Filtering Criteria Exclude headlines with < 3 words

Sentiment (Text)
Label Mapping Positive (+1), Neutral (0), Negative (—1)
Daily Aggregation Sentiment: Mode, Confidence: Mean
Lag Order (p) 1
Decay Factors 0=099,1=099

Structure (TVP-VAR)
Covariance Smoothing «a = 0.97 (EWMA)

Forecast Horizon (H) 10 days

) Image Resolution 128 x 128 pixels
Feature Imaging

Interpolation Bilinear Interpolation

For the textual data, we applied Normalization Form Compatibility Composition (NFKC) unicode
normalization and filtered out headlines with fewer than three words to minimize noise. The sentiment
labels derived from FinBERT were mapped to numerical values (+1.0 for Positive, 0.0 for Neutral, and
—1.0 for Negative), which were then aggregated daily using the mode for sentiment polarity and the
arithmetic mean for confidence scores.

Regarding the structural features, the TVP-VAR model was estimated using a Kalman Filter with
decay factors set to 6 = 0.99 and A = 0.99, alongside a covariance smoothing factor of @ = 0.97. The
resulting spillover indices (forecast horizon H = 10) were min-max normalized to the [0, 1] range and
upsampled to a resolution of 128 x 128 pixels via bilinear interpolation to serve as standardized inputs
for the CNN feature extractor.

The key advantages of the proposed model are as follows.
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First, it enables a multi-dimensional analysis of the market by systematically integrating data from
multiple domains. This model overcomes the fundamental limitations of traditional time-series models
that rely solely on historical price data. To achieve this, it uses log return data, which captures the
intrinsic characteristics of the assets, as its primary input. At the same time, it employs a FinBERT
model to extract and integrate market sentiment from financial news headlines as a quantitative
indicator, which often provides critical information preceding price fluctuations. Furthermore, through
a combination of a TVP-VAR and CNN, the model captures the dynamic connectivity of the entire
market system, extending beyond individual assets to incorporate macro-level structural changes into
the analysis. By organically fusing these heterogeneous data sources (sentiment, structure, and price),
the model provides a multi-faceted analysis of complex market dynamics that cannot be grasped from
a single data source, thereby enhancing the robustness and accuracy of its predictions.

Second, the model adopts an innovative approach by utilizing the dynamic changes in market
structure as quantitative features. In financial markets, the interdependence between assets is not a fixed
value but a dynamic characteristic that constantly evolves in response to external shocks. The proposed
model employs a novel methodology that leverages this exact process of structural reorganization as
core predictive information. To this end, a TVP-VAR model is used to explicitly estimate the time-
varying spillover effects between markets, thereby capturing their dynamic network structure and
mutual influence. Subsequently, the estimated network structure at each time point is treated as a
structural image, to which a CNN is applied to extract key features. This process quantifies complex,
non-linear patterns, such as ‘risk transmission structures centered on a specific country’ or ‘intensified
synchronization across the market’, going beyond simple correlation analysis. By integrating these
systemic drivers - which are imperceptible from price data alone - into the predictive model, its
performance is significantly enhanced.

Accordingly, the proposed model is a sophisticated framework that offers a significant advancement
for financial market prediction. It effectively extracts the unique characteristics of each data type
through specialized modules and integrates them into a powerful time-series learning model, the
Transformer.

5. Empirical results

5.1. Hyperparameter settings and implementation

To ensure reproducibility and conduct an objective performance evaluation, this study adhered to
the rigorous experimental configurations summarized in Table 9.
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Table 9. Experimental configuration and hyperparameter settings for the proposed Hybrid
Transformer.

Category Setting

Data split Train: 2020-2023, Test: 2024
Sequence length L =60
Input dimension 134 (CNN 128 + sentiment/conf. 2 + other returns 4)

Scaler RobustScaler (fit on train)

Transformer N =8, h =10, dpode1 = 320

Dropout p=0.10

Optimizer AdamW

Learning rate 1x1074

Epochs 500

Input noise o =0.01

Loss SmoothL1 (Huber) + correlation regularization

First, to fundamentally eliminate look-ahead bias inherent in time-series forecasting, data splitting
was performed chronologically without random shuffling. The dataset from 2020 to 2023 was utilized
for model training, while data from January to December 2024 were reserved exclusively for testing
to validate out-of-sample prediction performance. The input sequence length (L) was set to 60 days,
designed to capture medium-term market trends effectively.

The input dimension comprises a total of 134 dimensions. This includes 128-dimensional market
structure embeddings compressed via TVP-VAR and CNN, 2-dimensional sentiment scores and
confidence levels extracted by FinBERT, and the 4-dimensional log returns of the target national
indices. In the preprocessing stage, a RobustScaler was applied to minimize the impact of outliers
frequent in financial time series. Crucially, the scaler statistics were computed solely based on the
training data to prevent data leakage.

The architecture of the Transformer was configured with sufficient depth and width to learn the
complex non-linearities of the financial market. The encoder consists of 8 layers (N = 8), with the
number of multi-head attention heads (%) set to 10 and the hidden dimension (dpoqe1) to 320. To prevent
overfitting and enhance generalization, a dropout rate of 0.1 was applied, and slight noise (o = 0.01)
was injected into the input data to ensure model robustness. The AdamW optimizer with weight decay
was employed, with a learning rate set to 1 x 10™*. The loss function utilizes SmoothL.1 Loss, which
is less sensitive to abrupt errors, combined with a regularization term based on Pearson Correlation to
induce directional consistency between predicted and actual values.

5.2. Statistical performance evaluation

To assess the impact of stochasticity arising from weight initialization and mini-batch sampling on
prediction performance, we conducted a robustness evaluation using multiple random seeds. Across
all market indices, the training and evaluation procedures were independently repeated using five
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distinct random seeds; the corresponding results are summarized in Table 10. As observed in the
table, the Mean Squared Error (MSE) of the proposed model exhibits limited variation around the
mean across different seeds, accompanied by generally low standard deviations (Std. Dev.). These
findings underscore the training stability and reproducibility of the model against random initialization.
Furthermore, to ensure consistency in comparative analysis, the main text reports results based on the
specific seed configuration used in the initial experiments, while the robustness of these findings is
further corroborated by the multi-seed analysis presented in Table 10.

Table 10. Robustness to random initialization: Multi-Seed MSE of the proposed model.

Seed Statistics
Index

1 2 3 4 5 Mean Std. Dev.

S&P 500  0.000103 0.000103 0.000090 0.000094 0.000109 0.000100 0.000007
FTSE 100 0.000070 0.000052 0.000059 0.000081 0.000090 0.000070 0.000016
CSI 300 0.000252 0.000223 0.000263 0.000278 0.000216 0.000246 0.000026
Nikkei 225 0.000265 0.000211 0.000231 0.000210 0.000271 0.000238 0.000029

Figure 6 visually compares the time series of log returns predicted by the proposed model against
the actual log returns for four major stock market indices. Overall, the model’s predictions effectively
track the direction and volatility of the actual log returns. Notably, even during periods of surging
volatility, the predicted values consistently follow the trend of the actuals. This suggests that the model
is not merely reverting to a historical average but is meaningfully learning the dynamic shifts in the
market.

However, a temporary divergence between the predicted and actual values is commonly
observed across all indices around April 2024. This discrepancy is analyzed as a combined
result of the model’s inherent limitations and an unforeseeable macroeconomic shock that
impacted the market at the time. Specifically, the U.S. Consumer Price Index (CPI) for
March, released in early April 2024, exceeded market expectations, amplifying concerns about a
potential delay in interest rate cuts by the Federal Reserve (https://www.reuters.com/markets/
us/us-consumer-prices-rise-more-than-expected-march-2024-04-10/). Although the
proposed model is trained on historical data, news text, and inter-market interaction patterns, this event
highlights its limitations in forecasting abrupt shifts in market sentiment that deviate from established
patterns.

This CPI shock triggered a stronger dollar and concerns over global capital outflows, simultaneously
impacting not only the U.S. market but also the equity markets in the U.K., Japan, and China.
Furthermore, the shock exposes an intrinsic limitation of news sentiment analysis models. While
models like FinBERT excel at quantifying the textual nuances (e.g., positive, negative, neutral) of
published news, they fail to predict the intensity of the market reaction to that information [86, 87].
The language model can measure the negative sentiment level of the news, but the observed adverse
market reaction is better interpreted as a consequence of the news increasing uncertainty about the
future path of monetary policy. This implies that the market did more than simply price in the
negative information; it reassessed asset values by demanding a higher risk premium due to heightened
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unpredictability [88,89]. When such an asymmetry exists between textual sentiment and the magnitude
of the actual market response, predictions based on sentiment analysis can exhibit larger errors.
In summary, the visual analysis confirms that the proposed model effectively captures overall market

trends while exhibiting clear limitations in the face of unpredictable exogenous shocks.

To move

beyond this qualitative assessment and to objectively verify the model’s predictive accuracy and the
contribution of each component, additional analyses were conducted using quantitative evaluation

metrics.
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Forecasting performance of the proposed model: A time-series comparison

between predicted and actual log returns across four indices.

Tables 11 and 12 present a quantitative evaluation of the predictive performance of the proposed

model.

The analysis results indicate that the proposed model consistently demonstrates superior

prediction accuracy over all comparison models across all stock indices and evaluation metrics (MSE,

MAE, and RMSE).

Table 11. Ablation study results illustrating the impact of removing Sentiment and TVP-

VAR based market structure features on forecasting accuracy.

Index Proposed Model No TVP-VAR No Sentiment Analysis Only Log Return Data
MSE MAE  RMSE MSE MAE  RMSE MSE MAE  RMSE MSE MAE RMSE
S&P 500  0.000103 0.007743 0.010166 0.000124 0.008715 0.011153 0.000124 0.008673 0.011115 0.000121 0.008587 0.011015
FTSE 100 0.000070 0.006331 0.008356 0.000073 0.006618 0.008565 0.000073 0.006548 0.008520 0.000072 0.006570 0.008509
CSI 300 0.000252 0.011897 0.015886 0.000342 0.012275 0.018498 0.000343 0.012270 0.018518 0.000346 0.012303 0.018597
Nikkei 225 0.000265 0.012528 0.016273 0.000306 0.013335 0.017504 0.000295 0.013051 0.017187 0.000303 0.013191 0.017400
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Table 12. Performance benchmarking of the proposed framework against established
econometric (VAR, GARCH, ARIMA, CIR#) and deep learning (LSTM, N-BEATS)
baselines.

Index VAR GARCH ARIMA

MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

S&P 500  0.000149 0.009437 0.012213 0.000171 0.010089 0.013064 0.000162 0.009936 0.012730
FTSE 100 0.000112 0.008549 0.010573 0.000106 0.008214 0.010288 0.000126 0.008775 0.011215
CSI 300 0.000282 0.011934 0.016789 0.000324 0.012392 0.017988 0.000276 0.012307 0.016605
Nikkei 225 0.000389 0.015464 0.019715 0.000374 0.014567 0.019333 0.000376 0.015166 0.019395

Index CIR# LSTM N-BEATS

MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

S&P 500  0.032792 0.146096 0.181085 0.000148 0.009796 0.012148 0.000111 0.008167 0.010528
FTSE 100 0.004452 0.057490 0.066721 0.000104 0.008106 0.010201 0.000082 0.007262 0.009053
CSI 300 0.063351 0.182399 0.251696 0.000296 0.012004 0.017205 0.000275 0.011548 0.016598
Nikkei 225 0.343276 0.419582 0.585897 0.000388 0.015026 0.019697 0.000272 0.012835 0.016498

First, the effectiveness of the proposed model is clearly demonstrated in Table 11. Notably, for the
CSI300 index, the proposed model exhibited the most significant performance improvement, recording
a MSE of 0.000252. This represents an error reduction of approximately 26.3% compared to the
0.000342 MSE of the ‘No TVP-VAR’ model, which excludes dynamic market structure information.
This suggests that modeling the time-varying interconnectivity between markets plays a crucial role in
enhancing prediction accuracy.

Furthermore, when compared to the ‘No Sentiment Analysis’ model, which omits FinBERT-based
news sentiment information, the error rate increased across all indices. This serves as evidence that
investor sentiment provides critical information for explaining micro-level volatility that is difficult to
capture with price data alone. In the case of the FTSE 100 index, while the performance difference
resulting from variations in input data composition was the smallest among the indices, the proposed
model still demonstrated stable predictive performance by achieving the lowest error across all metrics
(MSE 0.000070).

In addition, the enhanced performance of the proposed model over the model that used ‘Only Log
Return Data’ illustrates that the synergistic effect of complementing heterogeneous data contributes to
an improvement in predictive power.

Furthermore, Table 12 presents a comprehensive comparison with established baselines. These
include traditional econometric models such as VAR, GARCH, ARIMA, and the CIR# model adapted
from [90, 91], as well as deep learning models like LSTM and Neural Basis Expansion Analysis for
Time Series (N-BEATS).

As presented in Table 12, the superiority of the proposed model is evident when compared not only
to conventional time-series models but also to state-of-the-art deep learning approaches.
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For instance, in predicting the S&P 500 index, the proposed model achieved an MSE of 0.000103.
This result surpasses even N-BEATS (0.000111), which exhibited the most competitive performance
among the baselines, thereby validating the precision of our model. Moreover, it demonstrates a
statistically significant improvement in performance compared to the widely utilized LSTM model
(0.000148) as well as traditional econometric models, including VAR (0.000149) and ARIMA
(0.000162).

In contrast, the CIR# model yielded a relatively higher prediction error (MSE of 0.032792 for the
S&P 500) compared to other comparison groups. These findings suggest that the proposed framework
maintains significantly more stable and robust predictive performance when compared with diverse
modeling methodologies.

This trend of superior performance was consistently observed across other stock indices. In the case
of the Nikkei 225 index, the proposed model’s MSE (0.000265) was lower than that of all traditional
benchmark models, further confirming the validity of the methodology proposed in this study.

Thus, the enhanced performance of the proposed model over traditional statistical-based models
and deep learning models that rely on a single data source indicates its effectiveness. This stems from
the model’s organic integration of dynamic market structure analysis, via the TVP-VAR model, with
the results from the FinBERT-based sentiment analysis.

To synthesize these quantitative results and offer a more intuitive understanding of the performance
gaps, Figure 7 visually compares the MSE of the proposed model against all benchmark models for
each stock index.

The most salient result is that the ‘Proposed Model’ consistently records the lowest MSE value
across all stock indices. This clearly corroborates the quantitative analysis presented earlier in Table 11
and Table 12, visually substantiating the predictive superiority of the proposed model.

Notably, the MSE of the ‘No TVP-VAR’ model is discernibly higher than that of the ‘Proposed
Model’ in all markets. This strongly suggests that the dynamic market structure information
analyzed through the TVP-VAR model made a crucial contribution to the enhancement of predictive
performance. Similarly, the ‘No Sentiment Analysis” and ‘Only Log Return Data’ models also exhibit
higher errors than the proposed model, empirically demonstrating that the integration of heterogeneous
data can improve a model’s predictive power.

A notable observation from the benchmark comparison concerns the performance of the CIR#
model, which recorded MSE values distinctly higher than those of other models. This outcome
suggests that the traditional econometric framework of CIR# may face challenges in fully capturing
the complex, non-linear correlations present in multivariate data.

Furthermore, deep learning architectures, such as N-BEATS and LSTM, as well as conventional
time-series models like VAR, GARCH, and ARIMA, also exhibited higher error rates compared to
the proposed model. While N-BEATS demonstrated improved performance over LSTM in certain
indices, it ultimately did not reach the predictive accuracy of the proposed model. These results indicate
that existing methodologies relying on single data sources may be less effective in addressing the
multifaceted dynamics of financial markets.
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In summary, Figure 7 serves as powerful visual evidence for our central claim: a multi-modal
approach that organically combines heterogeneous data sources achieves a predictive performance
unattainable by models that rely on a single source of information.

Furthermore, what is particularly noteworthy about these results is that the enhanced performance
of the proposed model is not confined to a specific market but is consistently observed across all stock
indices analyzed. This suggests that the proposed multi-modal approach is not overfitted to the unique
characteristics of an individual market but possesses a generalized predictive capability effective across
diverse market environments.

Moreover, considering the inherent difficulty of securing a predictive edge in financial markets, even
a marginal improvement in MSE is a significant outcome. It provides strong evidence that the model
successfully leveraged new sources of information that traditional methodologies failed to capture.
Therefore, these findings clearly demonstrate that integrating heterogeneous data provides an effective
pathway to transcend the fundamental limitations of single-data-source models and to capture complex
market dynamics more accurately.

To verify whether the predictive superiority of the proposed model extends beyond simple numerical
differences in error metrics (MSE/MAE/RMSE) to statistical significance, we conducted the Diebold-
Mariano (DM) test. The DM test evaluates the null hypothesis that the mean difference in the
loss series between two competing models is zero. In this study, the loss differential is defined
as (LoSSproposeamodel = LOSSpenchmart). Under this definition, a negative DM statistic implies that the
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proposed model has a significantly smaller average prediction error than the benchmark.

As shown in Table 13, the DM statistics are consistently negative across most comparison models.
Notably, in the Ablation Study, the No TVP-VAR model exhibits large negative statistics, such
as —5.241 for the S&P 500 and —-6.169 for the FTSE 100. This result strongly suggests that
the absence of dynamic market structure information significantly degrades predictive performance,
thereby validating the effectiveness of integrating TVP-VAR features. Similarly, the ‘No Sentiment
Analysis’ model records a statistic of —3.724 for the FTSE 100, confirming that incorporating news-
based investor sentiment is essential for enhancing forecasting accuracy.

Table 13. Diebold—Mariano test statistics comparing the proposed model against baseline
models across different indices.

Model S&P 500 FTSE 100 CSI300  Nikkei 225

Ablation Studies

No TVP-VAR -5.241 -6.169 -4.151 -0.884
No Sentiment Analysis -1.198 -3.724 -0.027 -0.577
Only Log Return Data -3.667 -9.001 -3.200 -1.739

Econometric Baselines

VAR -0.186 -2.602 -1.060 -0.781
GARCH -0.403 -3.366 -1.000 -0.799
ARIMA -0.066 -2.781 -1.004 -0.599
CIR# -13.877 -13.566 -8.671 -10.335

Deep Learning Baselines
LSTM -1.330 -4.365 -0.669 -0.506
N-BEATS -0.384 -0.386 -0.265 -0.298

The proposed model also demonstrates robust statistical superiority over traditional econometric
models and deep learning baselines. It significantly outperforms deep learning models such as LSTM
(—1.330 for S&P 500) and N-BEATS (—0.384 for S&P 500). In particular, the comparison with the
CIR# model yields extremely large negative values, such as —13.877 for the S&P 500 and —13.566 for
the FTSE 100. These values indicate that the univariate CIR# framework fails to sufficiently capture
the return fluctuations in the multivariate and non-stationary market environment of this study.

In summary, the DM test results in Table 13 provide statistical evidence that the performance
improvements observed in Tables 11 and 12 are not due to chance, but are statistically significant
outcomes resulting from the systematic integration of heterogeneous data.

5.3. Economic significance and profitability analysis

In this study, additional analyses were conducted to examine the economic utility of improvements
in previously derived statistical prediction errors (e.g., MSE, MAE) regarding investment performance
and risk management in actual financial markets. Table 14 was compiled by comprehensively
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evaluating the Index of Directionality (IDX) proposed by [90], Value at Risk (VaR) and Conditional
Value at Risk (CVaR) at the 95% confidence level, and risk-adjusted return metrics, specifically the
Sharpe Ratio and Rachev Ratio.

Table 14. Comparison of economic performance metrics across four indices.

Model IDX VaRgs CVaRgs Sharpe Rachev  Model IDX VaRgs CVaRgs Sharpe Rachev
Actual 1.000 —-0.014 —-0.019 2.081 0.968 Actual 1.000 —-0.010 -0.013 0.135 1.124
Proposed Model 0.506 -0.012 -0.017 1.073 1.238 Proposed Model 0.556 -0.010 -0.012 0.140 1.164
No TVP-VAR 0.428 -0.012 -0.020 -2.648 0.983 No TVP-VAR 0.500 -0.009 -0.014 -0.993 0.883

No Sentiment Analysis 0.428 -0.012 -0.020 -2.648 0.983 No Sentiment Analysis 0.506 -0.009 -0.014 -0.825 0.883
Only Log Return Data  0.428 -0.012 -0.020 -2.648 0.983  Only Log Return Data  0.494 -0.009 -0.014 -1.014 0.883

VAR 0450 -0.012 -0.021 -0.849 0.858 VAR 0486 -0.011 -0.014 —-0.986  0.838
GARCH 0.481 -0.014 -0.018 -0.374 1.079 GARCH 0.518 -0.008 -0.012 1.736 1.125
ARIMA 0492 -0.017 -0.022 -2.395 0.622 ARIMA 0491 -0.011 -0.015 -2.037 0.787
CIR# 0428 -0.012 -0.020 -2.648 0.983 CIR# 0475 -0.009 -0.014 -1.214 0.883
LSTM 0.502 -0.014 -0.019 0.089 1.043 LSTM 0.508 -0.011 -0.013 -1.008 1.073
N-BEATS 0.211 -0.018 -0.023 -1.871 0.193 N-BEATS 0475 -0.011 -0.015 -2.586 0.670
(a) S&P 500 (b) FTSE 100
Model IDX VaRgs CVaRgs Sharpe Rachev Model IDX VaRg¢s CVaRgs Sharpe Rachev
Actual 1.000 -0.014 -0.027 0.844 1.565 Actual 1.000 -0.022 -0.034 1.156 0.884
Proposed Model 0.551 -0.016 -0.026 1.235 1.653 Proposed Model 0.519 -0.022 -0.031 0.117 1.077
No TVP-VAR 0.494 -0.028 -0.045 -1.652 0.465 No TVP-VAR 0.482 -0.021 -0.028 -0.569 1.276

No Sentiment Analysis 0.475 -0.028 -0.045 -1.737 0.468 No Sentiment Analysis 0.482 -0.021 -0.028 -0.569 1.276
Only Log Return Data  0.506 -0.028 -0.045 -1.513 0471 Only Log Return Data 0.500 -0.021 -0.027 0.075  1.387

VAR 0481 -0.023 -0.041 -1.745 0.658 VAR 0.506 -0.020 -0.030 1.176 1.162

GARCH 0524 -0.015 -0.037 0334 0904 GARCH 0.508 -0.022 -0.029 0.649  1.260

ARIMA 0512 -0.026 —0.041 -0334 0706 ARIMA 0487 -0.019 —0.026 1.154 1413

CIR# 0489 -0.024 -0.044 -1.620 0.500 CIR# 0482 -0.021 -0.028 -0.569 1.276

LSTM 0.513 -0.015 -0.027 1.080 1581 LSTM 0439 -0.024 -0.034 -0.910  0.927

N-BEATS 0493 -0.016 -0.034 -0456 1.019 N-BEATS 0410 -0.027 -0.039 -5.611  0.369
(c) CSI 300 (d) Nikkei 225

First, examining the IDX results for evaluating directional prediction performance, the proposed
hybrid Transformer model showed relatively higher performance compared to most benchmark models
and single-data source-based models (Table 14). Notably, in the S&P 500, the proposed model
recorded an IDX of 0.506, slightly exceeding 0.5, whereas N-BEATS recorded 0.211, indicating a
significant degradation in directional prediction performance. This suggests that models minimizing
point prediction errors do not always guarantee directional prediction accuracy, implying a potential
discrepancy between error-based performance and direction-based performance. Meanwhile, the
proposed model tended to improve directional prediction performance compared to using only simple
price time series by integrating dynamic market structure information extracted from TVP-VAR and
FinBERT-based investor sentiment information. Indeed, in ablation settings for the S&P 500 where
TVP-VAR or sentiment information was removed, the IDX dropped from 0.506 to 0.428, supporting
the notion that multimodal information integration can contribute to enhanced directional performance.

Additionally, VaR and CVaR were analyzed to evaluate downside risk and tail risk characteristics.
VaR g5 represents the loss quantile at the 95% confidence level, while CVaR 95 measures the average
loss (expected value) in the region exceeding that threshold, thereby reflecting extreme loss risks more
conservatively. In the S&P 500 results (Panel a of Table 14), the VaR( 95 and CVaR s of the actual
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market were —0.014 and —0.019, respectively. The proposed model yielded a VaR s of —0.012 and
a CVaR( 95 of —0.017, values relatively close to the actual market’s downside risk levels. Conversely,
N-BEATS showed a more conservative tail risk estimation with CVaR 95 of —0.023. This implies that
the shapes of the downside tails of predicted return distributions differ by model, and the proposed
model tends to produce estimates closer to the actual market’s tail risk levels.

Furthermore, the direction and magnitude of risk-adjusted performance generated by each model
were compared through Sharpe ratio analysis. In the FTSE 100 market (Panel b of Table 14), the
actual market Sharpe ratio was 0.135, and the proposed model was observed at 0.140, showing a risk-
return structure similar to the market. In contrast, GARCH recorded a relatively large Sharpe ratio of
1.736. This difference can be interpreted alongside discrepancies in VaRgs and CVaRys estimates (e.g.,
GARCH’s VaRgs being estimated less conservatively than the actual market), suggesting the possibility
that risk-adjusted metrics may be overestimated or underestimated depending on the risk estimation
method. Also, in the Nikkei 225 market (Panel d of Table 14), the sign of the Sharpe ratio varied by
model. Specifically, negative Sharpe ratios were observed in No TVP-VAR (-0.569), No Sentiment
Analysis (-0.569), CIR# (-0.569), LSTM (-0.910), and N-BEATS (-5.611), while positive Sharpe
ratios were recorded in VAR (1.176), ARIMA (1.154), GARCH (0.649), Proposed Model (0.117), and
Only Log Return Data (0.075). Thus, in the Nikkei 225, this suggests that risk-adjusted performance is
not uniformly attributed to specific model groups but can vary according to the risk-return estimation
characteristics of each model.

Finally, the Rachev ratio was analyzed to evaluate the asymmetry of the return distribution (Panels
a and c of Table 14). The Rachev ratio is a metric measuring the relative magnitude of upside tail
gains against downside tail risks; a higher value indicates that performance in the extreme gain region
is relatively dominant over the extreme loss region. In the S&P 500, the proposed model recorded
1.238, surpassing both the actual market (0.968) and Only Log Return Data (0.983). Furthermore,
in the CSI 300, it showed the highest value among the comparative models in the panel at 1.653,
suggesting that the proposed model tends to form a more favorable proportion of upside tail gains
relative to downside tail losses. This supports the fact that the proposed model relatively better reflects
asymmetric performance characteristics in tail regions, which are difficult to capture with only mean-
based performance metrics like the Sharpe ratio.

We comprehensively examined how improvements in error-based prediction performance connect
to performance metrics from an economic perspective using IDX, VaR/CVaR, Sharpe ratio, and
Rachev ratio. As a result, the proposed model showed a tendency to be relatively superior to
comparative models in terms of directional prediction (IDX), and characteristics yielding estimates
closer to the actual market’s risk levels were observed in downside and tail risk metrics (VaR/CVaR).
Moreover, when considering both mean-based risk-adjusted performance (Sharpe) and asymmetric
performance in tail regions (Rachev ratio), the proposed model presents potential for improvement
in the multifaceted aspects of return-risk characteristics that are hard to capture with a single metric.
Furthermore, this suggests that a design integrating macro-market structure (spillover) information and
micro-investment sentiment (news data) information can contribute to more realistically reflecting the
shape of the prediction distribution and the risk-return structure.
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6. Discussion and concluding remarks

This study proposes and empirically validates a novel hybrid Transformer model framework that
systematically integrates heterogeneous data to improve the prediction accuracy for volatile and non-
linear financial time-series data. To overcome the limitations of prediction models that rely on a single
data source, the proposed model incorporates investor sentiment, extracted from financial news data,
and the dynamic interaction structure among markets as key predictive variables.

First, we utilized FinBERT, a language model specialized for the financial domain, to convert
investor sentiment from news headlines into quantitative indicators of positive, neutral, and negative
sentiment. This was intended to incorporate the psychological factors of market participants, which
are difficult to capture with price data alone.

Second, a TVP-VAR model was applied to explicitly model the time-varying interconnectedness
and spillover effects among national stock indices. The spillover effects derived from the TVP-VAR
model were converted into a heatmap format, from which a CNN extracted key structural features to
be used as input data.

The extracted log returns, sentiment analysis indicators, and dynamic spillover information were
integrated as multi-dimensional input data for the proposed model. This fusion of heterogeneous
data plays a pivotal role in enabling the model to learn long-term dependencies in the time series,
while simultaneously capturing the complex interactions among various market factors. In predictive
experiments on the log returns of four major stock indices (S&P 500, FTSE 100, CSI 300, and
Nikkei 225), the proposed model consistently demonstrated superior predictive performance across
all evaluation metrics (MSE, MAE, RMSE) when compared to models using a single data source and
traditional time-series models (e.g., VAR, LSTM, GARCH, ARIMA, CIR#).

In summary, the findings of this study empirically demonstrate that a multi-modal approach - which
considers not only the historical price information of individual assets but also textual data reflecting
investor sentiment and the dynamic structural changes of the overall market - can significantly improve
the accuracy of financial market predictions. A comparative analysis against benchmark models
revealed that the proposed model, utilizing all input data, demonstrated the best performance across all
evaluation metrics. This was in contrast to models that used only traditional log-return data or those
that excluded either sentiment indicators or market structure information. This clearly indicates that the
unique information from each data type acts in a complementary manner, creating a powerful synergy
that boosts the robustness and accuracy of the predictive model.

6.1. Contributions and implications

Furthermore, this study empirically substantiates that the dynamic structural change of the market
is itself a critical variable containing decisive information for predicting future returns. This is
evidenced by the most significant degradation in predictive performance observed when the time-
varying interconnectedness among markets was removed from the model. This suggests that the
financial market is not merely a collection of individual assets but a complex network where the
pathways of capital flow and risk contagion are constantly reshaped in response to external shocks
or macroeconomic shifts. The input data generated using the TVP-VAR model in this study effectively
captures and learns the non-linear patterns inherent in this dynamic structural reshaping process,
leveraging it as a source of predictive power.
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Moreover, it was confirmed that sentiment analysis via FinBERT model complements the
model’s predictive power by effectively quantifying the micro-level market volatility and investors’
psychological biases that are not captured by quantitative data. The positive or negative nuances in
news headlines often tend to precede price fluctuations, providing important clues that explain the
market’s short-term overreactions or its sensitivity to uncertainty. Consequently, by simultaneously
considering changes in both the macro-level market structure and micro-level investor sentiment,
the proposed model is able to comprehensively understand and predict the market’s multi-faceted
dynamics.

The results of this study carry meaningful implications for both financial market participants and
policymakers by highlighting the importance of jointly considering investor sentiment and dynamic
market structure in forecasting asset returns. The empirical evidence indicates that price movements
are influenced not only by historical return patterns but also by time-varying spillover effects across
markets and shifts in investor expectations captured through news sentiment. For practitioners,
this suggests that traditional single-source forecasting models may underestimate risk and overlook
predictive signals embedded in the evolving structure of market interconnectedness. Incorporating
dynamic connectedness measures can improve portfolio allocation, enhance hedging effectiveness,
and support more adaptive risk management strategies, particularly during periods of heightened
uncertainty when cross-market linkages strengthen.

The proposed framework also provides practical insights for systemic risk monitoring. By
transforming TVP-VAR-based spillover measures into structured features, the model captures changes
in the transmission of shocks across markets that may serve as early warning indicators of contagion.
Financial institutions can leverage such information to complement stress-testing exercises and to
better assess exposure to external shocks that originate beyond domestic markets.

From a policy perspective, the findings underscore the relevance of sentiment-driven information
and dynamic inter-market linkages for financial stability assessment. Policy announcements,
macroeconomic news, and geopolitical developments influence markets not only through fundamentals
but also by reshaping investor sentiment and the configuration of market interactions. The results
imply that policymakers and central banks could benefit from incorporating sentiment indicators and
time-varying connectedness measures into their surveillance frameworks to better anticipate the market
impact of policy actions and the potential amplification of shocks. Overall, the study supports a system-
oriented view of financial markets and suggests that multi-modal forecasting approaches can contribute
to more informed financial decision-making and more effective policy design.

6.2. Limitations

While this study demonstrates significant improvements in stock index forecasting through a hybrid
Transformer framework, several limitations remain that merit attention in future research.

First, the geographical scope of the analysis is limited. The empirical analysis of this study was
conducted only on four major national indices: the S&P 500 (US), FTSE 100 (UK), CSI 300 (China),
and Nikkei 225 (Japan). As such, there may be constraints in generalizing the results to the broader
global market, including emerging markets with different levels of market efficiency.

Second, the proposed model is designed to be specialized for forecasting at the macro level of
indices; therefore, it has limitations in being directly applied to individual assets. Individual stock
prices are influenced not only by common market factors but also substantially by firm-specific factors
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such as earnings, disclosures, and managerial risks; thus, forecasting at the single-stock level requires
additional integration of micro-level variables at the firm level.

Third, there exist issues of data imbalance and selection bias in the news data collection process.
In Table 5, cross-country disparities in the volume of articles may induce overfitting or reduce the
effective utilization of sentiment signals. In addition, the keyword filtering in Appendix A may lead to
the omission of important news and may result in a bias toward large-cap stocks.

6.3. Future studies

To address the identified limitations and further maximize the utility of the proposed hybrid
Transformer framework, we suggest three primary directions for future study.

First, future work should test the framework’s generalization capability by expanding the target
markets beyond four national indices, including emerging markets, to evaluate robustness across
different levels of market efficiency and institutional settings.

Second, the framework should be extended beyond macro-level index forecasting toward micro-
level prediction for individual assets. To this end, firm-specific news sentiment and within-industry
relational networks could be integrated so as to refine the unit of analysis to the stock level.
This extension may facilitate the construction of more sophisticated portfolio strategies by jointly
accounting for market-wide dynamics and firm-specific risk.

Third, future research should diversify data collection channels to mitigate cross-country
information asymmetry and to more comprehensively reflect market-relevant information. To address
the limitations of relying on a single source (Reuters) and keyword-based retrieval, expanding the data
scope to alternative data sources may help establish a more balanced forecasting environment, even in
markets where information is relatively scarce.

Appendix A: Keyword filters for news collection

The following rules were used to collect Reuters headlines by index. Each entry specifies the
country context, inclusion keywords, and exclude terms applied during scraping.

Listing 1. Index-level keyword and exclusion rules used in data collection

INDEX_FILTERS = {
"S&P 500’ : {
’country’: 'USA’,

"keywords’: [
'u.s.’, ’'us’, 'usa’, ’america’, 'american’, ’'united states’,
'wall street’, ’dow jones’, ’'nasdaq’, ’'s&p’, ’'nyse’,
’federal reserve’, 'fed’, ’fomc’, ’'powell’, ’yellen’,
'white house’, ’congress’, ’senate’, ’treasury’,
"biden’, ’trump’, ’'democrat’, ’'republican’, ’gop’,
’apple’, ’microsoft’, ’amazon’, ’'google’, ’meta’, ’'facebook’,
"tesla’, ’nvidia’, ’jpmorgan’, ’goldman sachs’,
"bank of america’, ’wells fargo’, ’citigroup’,
"dollar’, ’greenback’, ’washington’
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1,
’exclude’: [’canada’, ’'mexico’, ’brazil’, ’latin america’]
3,
"FTSE 1007 : {
"country’: 'UK’,
"keywords’: [
'uk’, ’u.k.’, ’britain’, ’british’, ’england’, ’london’,
"ftse’, ’'lse’, ’london stock’,
"bank of england’, ’boe’, ’threadneedle’,
’downing street’, ’parliament’, ’'westminster’,
’sunak’, ’'rishi’, ’starmer’, ’labour’, ’conservative’, ’tory’,
’pound’, ’sterling’, ’brexit’
1,
"exclude’: [’ireland’, ’scotland only’, ’wales only’]
3,
"CST 300°: {
"country’: ’'China’,
"keywords’: [
’china’, ’chinese’, ’beijing’, ’shanghai’, ’shenzhen’,
’xi jinping’, ’'xi’, ’pboc’, ’csrc’,
’yuan’, ’renminbi’, ’rmb’,
’alibaba’, ’tencent’, ’baidu’, ’huawei’, ’xiaomi’,
’bank of china’, ’icbc’, ’china construction bank’,
’sinopec’, ’petrochina’, ’china mobile’,
1,
’exclude’: [’japan’, ’korea’, ’india’, ’taiwan’, ’'hong kong’]
3
"Nikkei 2257: {
‘country’: ’Japan’,
"keywords’: [
’japan’, ’japanese’, ’tokyo’, ’nikkei’,
"bank of japan’, ’'boj’, ’kuroda’, ’ueda’,
’kishida’, ’fumio’, ’1ldp’, ’diet’,
yen’, ’jpy’,
"toyota’, ’sony’, ’nintendo’, ’softbank’, ’honda’,
'mitsubishi’, 'mitsui’, ’sumitomo’, ’'nissan’,
1,
’exclude’: [’china’, ’korea’, ’taiwan’, ’southeast asia’]
3
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