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Abstract: Reproducibility has become a fundamental concern in modern statistical practice, yet
its quantitative assessment remains limited for commonly used dependence measures. This study
introduces a systematic evaluation of the reproducibility probability (RP), defined as the probability
that the same statistical decision would be reached if an experiment were independently replicated
under identical conditions. RP was examined for three widely used correlation tests (Pearson,
Spearman, and Kendall) across different types of relationships and sample conditions. Through Monte
Carlo simulations, RP was shown to provide a meaningful quantitative measure of the stability of
statistical decisions across repeated experiments. Results indicated that the underlying relationship
between variables, sample size, and noise level influenced reproducibility. In linear relationships, RP
increased with both the strength of the true correlation and the sample size. For example, under strong
linear dependence (p = 0.9), RP exceeded 0.95 for n = 40 and approached 1.00 for n = 80. For
weak or null correlations (o = 0 or p = 0.3), the tests typically yielded non-significant p-values, and
the corresponding RP values were generally above 0.5, reflecting stable decisions in the nonrejection
area. The Pearson test demonstrated slightly higher RP in small samples due to its sensitivity to
linear dependence, whereas rank-based methods achieved comparable reproducibility as the sample
size increased. In contrast, under nonlinear nonmonotonic and piecewise monotonic relationships,
reproducibility depended on both sample size and noise intensity. For small samples, all tests displayed
highly variable RP values, while for larger samples or higher noise levels, RP values converged across
methods. The results emphasized the role of RP as a reliable indicator of correlation test stability and
revealed how underlying dependence patterns influenced the reproducibility of statistical results.
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1. Introduction

Correlation analysis is a fundamental tool in statistics, used to quantify the strength and direction
of the relationship between two variables. Among the most widely used methods are the Pearson,
Spearman, and Kendall correlation tests. Specifically, the Pearson correlation coefficient is used to
determine the linear association between two continuous variables, predicated on the assumption of
data normality. Conversely, the Spearman correlation, which relies on a rank transformation of the data,
evaluates monotonic relationships and demonstrates greater resilience to deviations from normality and
the presence of extreme values. Kendall’s tau, similarly a rank-based metric, determines the degree of
agreement and disagreement within paired data points, offering a completely nonparametric approach
to identify monotonic dependencies.

Despite extensive research that has examined the significance testing of correlations, their
reproducibility has received far less attention. Reproducibility probability (RP) quantifies the
probability that a statistical decision, whether to reject or not reject the null hypothesis (Hy), would be
replicated in an independent repetition of the same experiment. RP therefore provides a direct
measure of the stability and dependability of statistical conclusions under repeated sampling.

In recent years, reproducibility in statistical hypothesis testing has gained increased attention as
a cornerstone of scientific credibility. Reproducible results demonstrate that statistical conclusions
are not mere artifacts of random variation or analytic choices. The National Academies of Sciences,
Engineering, and Medicine [1] distinguish reproducibility (obtaining the same results using the same
data and methods)from replicability, which concerns consistent findings under newly collected data.
RP, by contrast, evaluates the expected stability of a hypothesis-testing decision when new data are
collected under the same design.

Goodman [2] was among the first to examine the reproducibility of statistical findings, noting that
p-values do not convey the likelihood that a significant result would reoccur. Senn [3] further clarified
the conceptual distinction between the p-value and reproducibility probability, emphasizing their
fundamentally different roles in statistical inference.

The broader reproducibility crisis in science has highlighted the instability of statistical conclusions
under repeated experimentation. Ioannidis [4] showed that many published results fail to replicate,
while Gelman and Carlin [5] characterized the prevalence of Type S and Type M errors that arise near
decision boundaries. Benjamin et al. [6] proposed lowering the conventional significance threshold
to improve replicability, and McShane and Gal [7] argued for moving beyond dichotomous decisions
given their inherent instability.

Recent methodological developments have advanced reproducibility assessment. Hedges and
Schauer [8] developed statistical methods and optimal design principles for ensembles of replication
studies, linking replication analysis to power and study design. Power-oriented reproducibility
approaches investigate how hypothesis decisions depend on study power and design characteristics.
Simkus and collaborators [9] use predictive, nonparametric methods to quantify statistical
reproducibility while incorporating uncertainty about future data. Atmanspacher and Maasen [10]
highlighted conceptual challenges that arise when linking reproducibility to statistical evidence.

Applications in engineering further underscore the need to evaluate the stability of correlation-based
inference. Zhang et al. [11, 12] demonstrated how linear, and nonlinear dependencies naturally arise
in multi-component systems under s-dependent competing risks, where assessing reproducibility is
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practically important.

Within this landscape, RP offers a decision-focused, post-study measure that quantifies the
expected consistency of hypothesis-testing conclusions under repeated sampling. RP, therefore,
complements power analysis, predictive inference, and replication design by directly assessing the
stability of statistical decisions.

In this study, RP is defined as the conditional probability that an independent replication of the
experiment, using the same design and analysis, yields the same hypothesis test decision to reject or
not reject Hy as the original study, given the observed data. Thus, RP quantifies the post-study stability
of a binary decision under repeated sampling.

RP differs from several related concepts in the reproducibility literature. Predictive power is a
pre-study quantity based on assumed effect sizes rather than realized data; false positive risk concerns
the probability a significant result is false; and test-retest reliability evaluates measurement
consistency rather than inferential decisions. RP is closely related to Goodman’s replication
probability [2], but it is extended by explicitly assessing agreement across both rejection and
nonrejection decisions. The proposed framework focuses on estimating RP for Pearson, Spearman,
and Kendall tests under diverse association structures, thereby providing targeted insight into the
stability of correlation-based inference.

Table 1 provides a conceptual comparison of RP with these related metrics, highlighting their
primary object, conditioning, target quantity, and typical applications. This distinction underscores
RP’s unique role as a decision-focused tool for post-hoc assessment of statistical stability,
complementing pre-study planning (e.g., power analysis) and evidential recalibration (e.g., false
positive risk).

Table 1. Conceptual comparison of reproducibility metrics.

Metric Primary Conditioning Target Typical Use
Object Quantity

RP (this study) Binary  test Observed data Probability of Assessing
decision same decision stability of

on replication correlation test

outcomes
Predictive Power Test statistic Assumed Prob. of Power analysis,
effect and rejecting Hy study planning
design
False Positive Truth of Hy p-value + Prob. Reinterpreting
Risk priors significant evidence from
result is false p-values
Goodman’s Significance Observed Prob. of Evaluating
Replication Prob. outcome statistic another reproducibility
significant of significance
result
Test-Retest Measurement Repeated Consistency Instrument
Reliability scores measurements index (ICC) reliability
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Despite these valuable contributions, the reproducibility of statistical inference methods,
particularly correlation tests, remains inadequately investigated. Correlation analysis is fundamental
across numerous empirical sciences; however, there is limited understanding of how frequently
correlation test outcomes would be replicated across repeated sampling, or how critical factors such as
sample size, underlying dependence structures, and noise influence this stability.

RP is particularly suited to correlation testing because Pearson, Spearman, and Kendall statistics
are highly sensitive to sample size, noise levels, and the form of the underlying association. Standard
p-values do not reflect how stable a decision would be under repeated sampling, whereas RP directly
quantifies the probability of decision concordance.

It is important to note that RP is fundamentally linked to classical properties of hypothesis testing.
RP depends on the test’s power, type I error rate, and the sampling distribution of the test statistic.
When power is low (such as in small samples or under weak effect sizes) the decision boundary is
highly sensitive to sampling variability, which reduces RP. In contrast, when power is high, rejection
decisions become more stable and RP approaches one. Under the null hypothesis, RP tends to be high
because the test statistic usually lies far from the rejection region, leading to consistent non-rejection
decisions. Thus, RP can be viewed as a post-study measure that reflects how features of the sampling
distribution translate into the expected stability of hypothesis-testing decisions.

This paper aims to evaluate RP of Pearson, Spearman, and Kendall correlation tests across various
functional relationships, sample sizes, and noise levels. This provides insight into when correlation
test decisions are most and least likely to replicate, offering practical guidance for applied researchers.

This paper is organized as follows. Section 2 outlines the overall methodology adopted in this
study. It begins with a formal definition of reproducibility probability (RP) in subsection 2.1 and its
interpretation within the framework of hypothesis testing. Subsection 2.2 then describes the
resampling-based same-decision approach used to estimate decision stability. Next, subsection 2.3
reviews the Pearson, Spearman, and Kendall correlation tests, emphasizing their theoretical
assumptions and properties.  Subsection 2.4 details the data-generating mechanisms used to
investigate the behavior of RP under varying conditions. Section 3 reports the analysis of the
simulation outcomes, summarizing the RP patterns by conditions. Section 4 provides a detailed
discussion interpreting these patterns in light of the theoretical properties of the correlation tests.
Section 5 applies the RP framework to a real dataset to illustrate its practical use in empirical
research. The study’s key findings and implications are presented in Section 6.

2. Methodology

2.1. Reproducibility probability (RP)

Reproducibility probability (RP) is defined as the probability that a statistical test yields the same
conclusion when the experiment is repeated independently under identical conditions [2].

RP can be formulated either unconditionally, based on population-level quantities, or conditionally,
based on the observed data.

Unconditional RP refers to the probability that two independent replications lead to the same
decision under the true data-generating mechanism. If 7 denotes the test’s rejection probability (i.e.,
its power under the true distribution), then the probability that both replications produce the same
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decision is
P(same decision) = 7% + (1 — 1),

a classical result in hypothesis testing [13].
This study focuses on the conditional reproducibility probability:

RP = P(D* = D, | data),

which quantifies the stability of the observed hypothesis test decision given the specific dataset.
Conditional RP is directly estimatable via bootstrap resampling and is therefore the relevant measure
for applied settings.

High RP values indicate that the observed decision is likely to be reproduced in independent
replications, whereas low RP values signal instability and increased susceptibility to sampling
variability.

2.2. Bootstrap estimation of reproducibility probability

To estimate RP empirically, a nonparametric plug-in approach based on the paired bootstrap was
adopted. In this framework, the unknown joint distribution Fyy is approximated by the empirical
distribution F; xv, and RP (which is defined in terms of new independent samples from Fyy) is
estimated by resampling from F, xy- Because the correlation tests considered in this study rely on
paired observations (x;,y;), the resampling scheme follows the standard pairs-bootstrap
procedure [14]. Each bootstrap sample is generated by drawing n pairs (x;, y;) with replacement from
the observed data, thereby preserving the joint dependence structure between X and Y. This approach
parallels case-based bootstrapping in regression models, where the empirical distribution of the
observed pairs serves as a nonparametric estimator of the unknown joint distribution Fy y.

Given an observed dataset {(x;, y;)}"_,, from the joint distribution of (X, ¥), the estimation procedure
proceeded as follows:

(1) Compute the test statistic and corresponding p-value from the original data using a chosen
correlation method (Pearson, Spearman, or Kendall).

(2) Record the initial decision Dy = I(,.), Where a is the chosen significance level; this means Dy = 0
when the null hypothesis is not rejected and Dy = 1 when it is rejected.

(3) Draw B bootstrap samples of size n by resampling pairs (x;,y;) with replacement (pairwise
bootstrap).

(4) Recalculate the p-value, denoted p, where b = 1, ..., B, and determine D;, = [, ).

(5) Estimate RP as the proportion of bootstrap decisions that match the original decision:

RP - v H(gb = Do).

2.1)

Although RP is defined in terms of new independent samples from the true distribution Fyy, the
bootstrap estimator replaces Fxy by the empirical distribution Fxy. Under classical nonparametric
bootstrap theory [15, 16], resampling from Fy y consistently approximates sampling from Fyy when

(1) the sample size n is sufficiently large,
(2) the dependence within pairs (X, Y) is preserved,
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(3) the statistic is a sufficiently smooth functional of Fyy.

Correlation statistics satisfied these conditions under mild assumptions, making the paired bootstrap
a theoretically justified method for approximating the probability of decision agreement under repeated
sampling.

The bootstrap estimator
B

RP = lZI[(D,, = Dy)
B =

is unbiased for the bootstrap analogue of RP, RP*, conditional on the observed data, and has conditional
Monte Carlo variance: .
RP*(1 — RPY)
— 5
where RP* denotes the reproducibility probability under F, x.y- Bias arises because F, x.y replaces Fyy,
but this plug-in bias diminishes as n — co. Thus, under the usual bootstrap regularity conditions, the
paired-bootstrap estimator is consistent for decision reproducibility.

Bootstrap-based RP estimation depended entirely on the observed sample. When 7 is small, F, Xy
may poorly approximate Fyy, producing unstable or biased RP estimates. Pearson correlation is
particularly sensitive to outliers and non-Gaussian distributions, whereas rank-based tests (Spearman,
Kendall) are more robust but not immune to finite-sample effects. Consequently, bootstrap RP
estimates depend strongly on the original data and should be interpreted as conditional,
data-dependent approximations rather than exact replications of sampling from the true distribution.

Var(ﬁ | FX,y) =

2.3. Correlation tests considered

Three widely used tests for association between two continuous variables were considered:
Pearson’s product-moment correlation [17], Spearman’s rank correlation [18], and Kendall’s tau [19].
All are applied to paired observations (x;,y;), i = 1,...,n, to test Hy: p = 0 against H; : p # 0 using
their usual large-sample null distributions.

Pearson’s test is based on the sample correlation:

. 2 (X = X)) = y)
VI (i = %)% 2 (i — )2

which, under H, and standard regularity conditions, yields the z-statistic:

Spearman’s test applies the same construction to the marginal ranks R(x;) and R(y;), producing a
correlation coefficient pg and corresponding 7-statistic:

Ps Nn —

l—pg

\S)

TSZ

which is approximately #,_, under H, for continuous distributions without ties [18]. Discrete data with
ties require permutation tests or tie corrections.
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Kendall’s

standardizes to

ZK:

ne — Ny

B %n(n -1

Ta

approx N(O, 1)

2(2n+5)
In(n—1)

for large n without ties [19]. With ties, 7, and tie-adjusted variance are required.

Table 2 summarizes assumptions, robustness, computational complexity, expected RP behavior, and
optimal use cases for Pearson, Spearman, and Kendall tests.

Table 2. Comparison of Pearson, Spearman, and Kendall correlation tests.

Pearson Spearman Kendall
Assumptions Linear relationship; Monotonic Monotonic
normality assumptions relationship (not concordance; pairwise
for inference. necessarily linear). comparison based.
Robustness Sensitive to outliers Robust to outliers; Most robust to noise
and nonlinear patterns; invariant to monotonic and outliers; less
affected by skewness transformations; sensitive to extreme
and heavy tails. performance degrades values than Spearman.
when global
monotonicity is
violated.
Computational ~ O(n) O(nlogn) on?)
Complexity
Expected High RP under strong High RP when RP broadly similar to
RP linear dependence; the association Spearman but often
Behavior RP decreases is approximately slightly  lower in
under nonlinear monotonic; RP small samples due to
or non-monotonic decreases when reduced efficiency.
relationships. monotonicity is
violated or holds
only locally (e.g.,
sinusoidal or
piecewise patterns).
Best For Strictly linear Linear or Noisy, small-sample,
relationships. approximately or tied datasets where
monotonic robustness is critical.
relationships;
local monotonic
segments of nonlinear
associations.
AIMS Mathematics Volume 11, Issue 1, 957-976.



964

2.4. Simulation design

To examine RP under controlled and interpretable conditions, a simulation framework was designed
to span a broad range of dependence structures, noise levels, and sample sizes commonly encountered
in empirical studies. The goal is to evaluate how RP behaves when the underlying association varies
from linear to strongly nonlinear, from low to high noise, and when sample sizes range from very small
to moderately large.

Four functional relationships were selected to represent linear and nonlinear associations, with a
focus on globally non-monotonic and piecewise monotonic dependence structures. These models are
widely used as benchmark functions in the dependence-measure literature, and have been employed
in simulation studies evaluating nonlinear association statistics such as MIC [20], distance
correlation [21], and other modern dependence tests [22,23].

e Linear: Y = pX+ /1 — p? &, where X, & ~ N(0, 1). This model provides a baseline scenario where
Pearson correlation is optimal and reflects the most common assumption in applied correlation
analyses.

e Quadratic: Y = X2 +& with X ~ U(=2, 2). This nonlinear, symmetric, non-monotonic pattern (U-
shaped) is widely used in simulation benchmarks for dependence measures [20,21] and appears
in biomarker dose-response curves and environmental risk models.

e Sinusoidal: Y = sin(X) + & with X ~ U(—2r,2r). Sinusoidal relationships are classic examples
of periodic associations and are routinely used to evaluate methods for detecting nonlinear
dependence [20, 22].

e Absolute value (piecewise): Y = |X| + &, with X ~ U(-2,2). This piecewise, magnitude-driven
pattern is another standard benchmark for evaluating nonlinear and non-monotonic
dependence [20, 23], reflecting threshold-like or regime-switching behaviour.

These models spanned qualitatively different association structures (strictly linear, nonlinear
nonmonotonic, and piecewise) which allows for assessment of the robustness of Pearson, Spearman,
and Kendall tests across diverse settings.

The values p € {0,0.3,0.6,0.9} were chosen to reflect widely used benchmarks for weak, moderate,
and strong associations, following the conventional effect size classifications discussed by Cohen [24].
This range enabled investigation of RP across low-, moderate-, and high-power regimes.

Noise levels o, € {0.2,0.5, 1,2} represented low, medium, and high noise conditions. This helps
to see how stable the results are when measurement errors increase. These noise levels reflected real-
world measurement errors often found in biomedical, psychological, and environmental studies, and
enabled the investigation of how increasing noise lowers the reproducibility probability across different
dependence structures.

Sample sizes n € 10,40, 80 were selected to represent small, moderate, and larger finite-sample
regimes typically discussed in the statistical literature. Very small samples such as n = 10 are
characteristic of exploratory or pilot studies, where as sample sizes around 10-12 are commonly
recommended [25]. Medium sample sizes in the range of 30-50 are frequently used in simulation
studies evaluating the behavior of correlation estimators, including Pearson, Spearman, and
Kendall [26]. Larger samples, such as n = 80, fall within the range where classical large-sample
theory for rank-based correlations begins to provide accurate approximations [27]. Considering these
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sample sizes allowed us to examine how RP behaves across underpowered, moderately powered, and
large-powered regimes

Each parameter configuration was evaluated using M = 100 Monte Carlo replications and B =
1000 bootstrap iterations per replication. These values were chosen based on preliminary convergence
checks: Increasing M and B further produced negligible changes in RP estimates, indicating sufficient
numerical stability. These choices are consistent with simulation-based reproducibility studies and
ensure that Monte Carlo variability remains small relative to the observed patterns.

For each simulated dataset, the original p-value and its corresponding RP estimate were computed
for the Pearson, Spearman, and Kendall correlation tests. This pairing of p-values with their RP values
enabled direct comparison of decision stability across linear and nonlinear settings, noise levels, and
sample sizes.

Table 3 summarizes all components of the simulation framework, including the selected values,
their methodological purpose, and their empirical relevance.

Table 3. Summary of simulation components, selected values, and their methodological and
empirical motivations.

Component Choices Purpose / Expected Empirical Relevance
Properties

Dependence Linear, quadratic, Represent linear, Biomarker dose-

function sinusoidal, nonlinear non- response (quadratic),

Correlation

level p

Noise level o,

Sample size n

piecewise | X |

0,0.3,0.6,0.9

0.2,0.5,1,2

10, 40, 80

monotonic associations;
assess how curvature
and regime changes
affect RP

Span no, weak,
moderate, and strong
dependence; cover low-
and high-power regimes
for correlation tests

Vary signal-to-noise
ratio from low to high
noise; study robustness
of RP to measurement
error and unobserved
variability

Represent small,
moderate, and larger
finite samples; examine
finite-sample  behavior
and approach to

asymptotics

periodic/seasonal effects
(sinusoidal), threshold
or regime-switching

behavior (piecewise)

Typical effect sizes
reported in  applied
correlation studies;
standard benchmarks in

simulation work

Reflects measurement

variability in
psychological,
biomedical, and
observational data
sets

Pilot or exploratory
studies (n = 10),
medium-size
experiments (n =~ 40),
and more typical studies
(n = 80)
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3. Analysis and visualization

For each test and data scenario, the estimated RP values were plotted against their corresponding
p-values. The resulting RP-p plots revealed how the stability of a test decision varies across different
sample sizes. In these plots, different colours represent each correlation test (Pearson, Spearman, or
Kendall). The vertical dashed line represents the significance threshold @ = 0.05, which separates
the rejection region (p < @) from the non-rejection region of the null hypothesis. The horizontal
dotted line at RP = 0.5 serves as a reference for the stability of statistical decisions. Points above this
line indicated relatively stable decisions (i.e., the same conclusion is likely to be reached in repeated
samples), whereas points near or below this level suggest higher variability and lower reproducibility of
the test outcome. RP was plotted against the original p-value for each simulation (dots), with LOESS
smoothing curves (lines) added to highlight the general trend.

Figure 1 shows the reproducibility probability (RP) values for Pearson, Spearman, and Kendall
correlation tests under different linear correlation strengths p € {0,0.3,0.6, 0.9}, using X ~ N(0, 1) and
Y = pX + /1 — p? g, where £ ~ N(0, 1), for different sample sizes 10, 40 and 80.

1.00
0.75
0.501-"
0.25

0.00
1.00

0.75
0.501--
0.25

0.00
1.00

0.75
0.50 1"
0.25

0.00
1.00

0.75
0.501-"
0.25
0.00

O:d

e0=d

RP values

90

60=0

0.00 025 050 0.75 1.000.00 0.25 050 0.75 1.000.00 0.25 050 075 1.00
p—value (original sample)

Test == Pearson === Spearman == Kendall

Figure 1. Relationship between reproducibility probability (RP) and p-value for the Pearson,
Spearman, and Kendall correlation tests under different linear correlation strengths p €
{0,0.3,0.6,0.9}, using X ~ N(0,1) and Y = pX + /1 —p’e, where ¢ ~ N(0,1), at a
significance level of @ = 0.05.

Across all scenarios, the RP values exhibited a consistent pattern: RP tended to decrease as the
p-values approached the significance threshold @ and increased when the p-values were farther from
this boundary, this pattern noticed in many studies such as [28-31].
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When the true correlation was weak (p = 0 or 0.3), most p-values fell in the non-rejection region,
and the corresponding RP values were generally above 0.5. These RP values also increased with sample
size, indicating more stable non-rejection decisions for larger n. Pearson tended to show slightly higher
RP values than Spearman and Kendall in the non-rejection region for n = 10 and n = 40, although
this difference diminished as the sample size increased. As the true correlation became strong, the
tests frequently produced very small p-values, especially for moderate and large sample sizes. In these
settings, RP values were close to 1, reflecting consistently significant decisions in repeated samples.
For n = 10 when p = 0.9, and n = 40 when p = 0.6, Pearson tended to show slightly lower RP values
compared to Spearman and Kendall in the non-rejection region, but slightlly higher RP values within
the rejection region.

RP variability was highest when the p-values were close to the significance level «, particularly in
small samples. As n increased, the RP values became smoother and more similar in all three correlation
tests.

Figure 2 presents the RP values for the Pearson, Spearman, and Kendall correlation tests under a
nonmonotonic quadratic relationship where X ~ U(-2,2) and Y = X* + &, with &£ ~ N(0, 02). Results
are shown for different sample sizes n € {10, 40, 80} and noise levels o, € {0.2,0.5, 1, 2}.

n=10 n=40 n=80

1.00
0.75
0.50
0.25

0.00
1.00

0.75
0.501-"
0.25

0.00
1.00

0.75
0.501--
0.25

0.00
1.00

0.75
0.501--
0.25
0.00

RP values

1
0.00 0.25 050 075 1.000.00 0.25 050 0.75 1.000.00 0.25 0.50 0.75 1.00
p—value (original sample)

Test === Pearson === Spearman =e—= Kendall

Figure 2. Relationship between reproducibility probability (RP) and p-value for Pearson,
Spearman, and Kendall under a non-monotonic quadratic model with X ~ U(-2,2) and
Y =X +¢& e~ N, oﬁ). Results are shown for sample sizes n € {10,40, 80} and noise
levels o, € {0.2,0.5,1,2} at & = 0.05.

The reproducibility patterns depended strongly on both sample size and noise level. For small
sample sizes, all three tests yield nearly similar RP values with high variability, particularly for the
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Pearson test, which showed unstable performance due to its sensitivity to nonlinearity. As the sample
size increased and noise remained low, the reproducibility probability (RP) for the Pearson test
becomes slightly higher, followed by Spearman and then Kendall tests. When both the sample size
and noise level increase, the RP values across all tests converge and become approximately similar,
suggesting that under higher noise and large samples, the differences among the correlation measures
diminish and all tests exhibit comparable reproducibility.

Figure 3 presents RP values for the Pearson, Spearman, and Kendall correlation tests under a
nonmonotonic sinusoidal relationship, where X ~ U(—2n,2x) and Y = sin(X) + &, with & ~ N(0, o2).
The results are shown for different sample sizes n € {10, 40, 80} and noise levels o, € {0.2,0.5, 1, 2}.
Across all correlation methods, RP values were approximately similar, with most of the
corresponding p-values located in the non-rejection region. For small samples or high noise levels, all
three methods yield predominantly nonsignificant results, and RP values higher than 0.5 in the
non-rejection area. As the sample size increased and the noise level decreased, a larger proportion of
p-values appeared in the rejection region across all three methods. This produced consistently high
RP values in the rejection region, while the occasional p-values that remained near the significance
threshold exhibited lower RP.

1.00
0.75
0.501-"
0.25

0.00
1.00

0.75
0.501-"
0.25

0.00
1.00

0.75
0.50
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p—value (original sample)

Test === Pearson === Spearman === Kendall

Figure 3. Relationship between reproducibility probability (RP) and p-value for the Pearson,
Spearman, and Kendall correlation tests under a nonmonotonic nonlinear model, with X ~
U(-2r,2m) and Y = sin(X) + &, with € ~ N(0, of), at o = 0.05.

Figure 4 shows RP values for Pearson, Spearman, and Kendall correlation tests under the piecewise
model, Y = |X]| + &, where X ~ U(-2,2) and € ~ N(O, 0'5). The results are shown for different sample
sizes n € {10,40, 80} and different levels of noise strengths o, € {0.2,0.5, 1,2}. Most of the p-values
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remained in the non-rejection region across all tests, sample sizes, and noise levels. At low noise and
moderate and high sample sizes, Pearson displayed slightly higher RP values, while Spearman and
Kendall occasionally yield smaller p-values. Under high noise, the RP values became nearly identical
in all three correlation tests.

n=10 n=40 n=80

1.00
0.75
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0.25
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RP values
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0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.0 0.25 0.50 0.75 1.00

p—value (original sample)

Test === Pearson === Spearman == Kendall

Figure 4. Relationship between reproducibility probability (RP) and p-value for the Pearson,
Spearman, and Kendall correlation tests under the piecewise model, ¥ = |X| + &, where
X ~ U(-2,2) and € ~ N(0,0?). Results are shown for sample sizes n € {10,40, 80} and
noise levels o, € {0.2,0.5, 1, 2} at a significance level of & = 0.05.

4. Discussion

The reproducibility patterns observed in the simulations reflect fundamental properties of
correlation test statistics and their sampling distributions. RP is lowest when the observed statistic lies
near its critical threshold, where small perturbations from repeated sampling can easily change the
decision, and increases as the statistic moves farther from the rejection boundary. Importantly, RP
depends on the sampling distribution of the test statistic rather than on the p-value itself. Low RP
values often occur near p = @ because the corresponding statistic is close to the critical region, but the
nonlinear mapping between the statistic and its p-value, as well as the asymmetry of finite-sample
distributions, implies that the minimum RP does not necessarily align exactly with p = «; in several
panels of Figures 1 and 3, the empirical RP minimum occurs slightly to the left or right of the nominal
threshold.

Under linear dependence, Pearson correlation aligns closely with the linear data-generating
mechanism and therefore tends to yield more concentrated sampling distributions and higher RP than
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Spearman and Kendall, particularly in small to moderate samples and under strong linear signals. In
very small samples, however, a few nonrejection outcomes for Pearson can exhibit noticeably lower
RP than the rank-based tests because the Pearson statistic is more sensitive to sampling fluctuations,
whereas Spearman and Kendall, being rank-based, produce slightly more stable decisions even when
they occasionally fail to detect the strong linear association. As n increases, the sampling distributions
of all three statistics tighten around their expectations, leading to convergence of RP values across
tests. High RP for large |p| reflects high power and consistently significant decisions, while high RP
for weak p in the non-rejection region reflects consistently non-significant outcomes far from the
rejection boundary.

For nonlinear designs, the quadratic, sinusoidal, and |x| models highlight how nonmonotonic or
piecewise-monotonic structure interacts with the tests’ assumptions. In the quadratic model, curvature
induces moderate linear association, so Pearson often attains slightly higher RP at moderate and large n,
while Spearman and Kendall show lower RP because global monotonicity is violated. In the sinusoidal
design, repeated oscillations make the global correlation approximately zero, so all methods produce
mostly non-significant p-values and uniformly high RP for non-rejection; occasional detections of local
linear segments at larger n and low noise lead to pockets of high RP in the rejection region. For the
Y = |X| + £ model, symmetry implies zero population correlation for all three measures; any apparent
nonzero correlation in low-noise, moderate-n settings arises from sampling within one branch, and
increasing noise quickly obscures both curvature and rank orderings, driving all methods toward high
non-rejection RP. Overall, the simulations reveal clear interaction effects: Larger n reduces sampling
variability and stabilizes RP, higher noise obscures structure and pushes all methods toward uniformly
high non-rejection RP, and alignment between the true functional form and the test’s assumptions
determines which test attains higher RP in low-noise regimes.

4.1. Connection between conditional RP and power

Although reproducibility probability (RP) is not itself a power measure, conditional RP is indirectly
linked to classical notions of power through the sampling distribution of the test statistic. Conditional
RP,

RP g = P(D* = Dy | observed data),

where D* denotes the decision in a hypothetical replication under the same design, depends on how
far the realized test statistic lies from the rejection boundary relative to its sampling variability. Under
standard regularity conditions (continuous distributions, smooth test statistics, and large-sample
approximations), this variability follows the same sampling distribution that defines the test’s power.
However, unlike power, conditional RP conditions on the realized test statistic rather than on the
underlying model parameters. When the observed statistic lies far from the critical value, small
perturbations due to resampling are unlikely to change the decision, leading to high RP. In contrast,
when the observed statistic is close to the rejection boundary, even minor sampling fluctuations can
change the decision, resulting in low RP.

This mechanism explains the empirical patterns observed in the simulations: RP increases with
sample size and effect magnitude because both reduce relative sampling variability, while RP attains its
minimum near the decision boundary. Importantly, this relationship is post-study and data-dependent.
Unlike power, which is a pre-study, population-level quantity, conditional RP generally does not admit
a closed-form expression as a function of (n, p, o) and therefore cannot be used directly for sample
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size determination. Instead, RP complements power by quantifying the stability of a specific realized
decision under repeated sampling with the same design.

4.2. Practical interpretation and use of conditional RP

The reproducibility probability considered in this study is a conditional, post-study measure
intended to complement, rather than replace, conventional hypothesis testing. In practice, RP should
be reported alongside the test statistic and p-value when the stability of a dichotomous
decision (reject vs. not reject Hy) is of interest. RP is particularly informative when the observed
p-value lies close to the significance threshold: A low RP then indicates that the decision is sensitive
to sampling variability and may change under repeated sampling, whereas a high RP in either the
rejection or non-rejection region indicates a decision likely to be reproduced under the same design.

When RP and the p-value convey seemingly conflicting information, RP should be interpreted as a
measure of decision stability rather than evidential strength. For example, a small p-value accompanied
by low RP suggests an unstable rejection decision near the critical boundary, whereas a moderate p-
value with high RP indicates a consistently reproducible non-rejection outcome. In this framework, RP
plays a diagnostic and descriptive role: It quantifies how sensitive a given test decision is to repeated
sampling under the same design. Translating RP into formal design rules (such as determining the
sample size required to achieve a target RP level) would require an unconditional, population-level
formulation of RP linked explicitly to power, and such extensions are therefore beyond the scope of
the present study.

4.3. Limitations and future directions

The simulation framework in this study focused on smooth, continuous data-generating
mechanisms commonly used as benchmarks in the dependence-measurement literature, allowing
systematic assessment of how RP responds to changes in sample size, noise, and functional form.
Several practically important scenarios were not included. Heteroscedastic noise, heavy-tailed
distributions, outliers, and discrete data that induce ties can substantially affect the sampling
distributions of correlation statistics: Heteroscedasticity and asymmetric noise increase sampling
variability and tend to lower RP; heavy tails reduce the stability of Pearson statistics; and ties alter the
null distributions of Spearman and Kendall and require tie-adjusted inference. Another key
assumption in the simulations was independence of observations; clustering, temporal
autocorrelation, or spatial dependence can alter both test statistics and their variability, often reducing
RP. Extending RP analysis to these settings represents an important direction for future work.

The case p = 0 in nonlinear models was intentionally included as a baseline scenario. Although
the global correlation is zero, the underlying functional dependence may be strong, illustrating that RP
reflects reproducibility of the fest decision, not the presence or strength of structural dependence. When
tests have low power against nonlinear alternatives, RP may remain high simply because non-rejection
is consistently reproduced. A further limitation is that RP was reported only through point estimates.
Because RP is itself a Monte Carlo estimator, it has sampling variability that depends on the number
of bootstrap replications B and on the proximity of the test statistic to the rejection boundary. While
confidence intervals for RP can be computed (e.g., via a secondary bootstrap or binomial standard
errors), they are computationally intensive for large simulation grids; interval estimation is therefore
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left for future work.

More broadly, reproducibility assessment in data analysis extends beyond correlation tests.
Correlation coefficients are only one component of exploratory analysis. Graphical tools such as
scatterplots, smoothers, and residual diagnostics are crucial for identifying nonlinear or
non-monotonic structure that may affect reproducibility, and modern dependence measures (e.g.,
distance correlation or mutual-information—based statistics) can complement RP when assessing more
complex associations. Incorporating RP alongside these exploratory and inferential tools can provide
a more comprehensive understanding of the stability of scientific conclusions.

5. Real data application

To illustrate the practical use of RP in an empirical setting, the relationship between
petal.length and petal.width from the classical Iris dataset was analyzed. These variables
exhibited a strong but nonlinear and species-dependent relationship, making them suitable for
comparing the performance of Pearson, Spearman, and Kendall correlation tests. For each test, the
correlation estimate, the corresponding p-value, a 95% confidence interval (parametric or bootstrap),
and RP based on B = 1000 bootstrap samples were computed.

Table 4 reports the correlation estimates, confidence intervals, the corresponding p-value, and RP
values for Pearson, Spearman, and Kendall methods. All three tests detect a very strong positive
association, with estimates of 0.96 (Pearson), 0.94 (Spearman), and 0.81 (Kendall), and extremely
small p-values (< 107°). The corresponding bootstrap confidence intervals are narrow for all three
measures, indicating a highly stable estimation across resamples. RP values range from 0.88 to 0.95,
showing that the decision to reject Hy would be reproduced in more than 88% of repeated samples of
the same size.

Table 4. Correlation estimates, confidence intervals, and reproducibility probabilities for the
Iris dataset

Method Estimate p-value 95% CI RP

Pearson 0.963 4.68 x 1078¢ [0.952, 0.973] 0.95
Spearman 0.938 8.16 x 10770 [0.916, 0.952] 0.92
Kendall 0.807 2.44 x 107% [0.773, 0.839] 0.88

To complement the real-data analysis, an empirical simulation study based on the Iris dataset was
conducted. Rather than assuming a parametric model, the original sample of size 150 was treated
as an empirical population, and subsamples of sizes n € 10,40, 80 were repeatedly drawn. For each
subsample, the correlation estimate, its corresponding p-value, and the conditional RP were computed
using the paired bootstrap. This procedure evaluates how the stability of the correlation-test decision
would change if the same study were carried out with smaller or larger samples drawn from the same
underlying relationship. In a second step, artificial noise of varying magnitudes o, € {0.2,0.5, 1,2}
was added to the petal.width variable to examine how measurement error affects reproducibility.
For each combination of (n,0,), 100 resampled datasets were generated, the three correlation tests
were computed, and their conditional RP was estimated via the paired bootstrap. This design allowed
us to study how reproducibility degrades when noise obscures the underlying biological signal.
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Figure 5 illustrates how sample size and noise jointly influenced RP in this real-data setting. Small
subsamples exhibited greater variability and lower RP values near the significance boundary, whereas
larger subsamples yielded highly stable decisions with RP values close to one. Nearly all p-values fell
far below the significance threshold @ = 0.05, which explains the consistently high RP values: For this
dataset, the decision to reject Hy would be reproduced in the vast majority of repeated samples. This
reproducibility was particularly strong when the noise level was low and the sample size was moderate
or large.

n=10 n=40 n=80

1.00
0.75
0.501-
0.25

0.00
1.00
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0.501-"
0.25

0.00
1.00
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0.501--
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0.75
0.501-"
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RP values

1 1
000 025 050 0.75 1.000.00 0.25 050 0.75 1.000.00 0.25 0.50 0.75  1.00
p—value (original sample)

Test == Pearson === Spearman === Kendall

Figure 5. Relationship between reproducibility probability (RP) and p-value for the
Pearson, Spearman, and Kendall correlation tests for the Iris dataset (Petal.Length vs.
Petal.Width). Results are shown for sample sizes n € {10,40,80} and noise levels
o, €1{0.2,0.5,1,2} at a significance level of @ = 0.05.

Overall, the Iris example demonstrated how RP complements standard correlation analysis.
Although the effect size was strong and the p-values were extremely small, statistical significance
alone does not indicate how stable the conclusion would be under repeated sampling. The RP values,
which ranged from 0.88 to 0.95, confirmed that the detected association was not only statistically
significant but also highly reproducible in studies of similar design.

6. Conclusions
This study examined the reproducibility probability (RP) of three commonly used correlation tests,
Pearson, Spearman, and Kendall, under a variety of data generating mechanisms and sample

conditions. Through simulations, RP was shown to provide a meaningful quantitative measure of
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decision stability across repeated experiments. The results showed that reproducibility is strongly
influenced by the underlying relationship between variables, the presence of noise, and sample size.

In linear relationships, RP increased with both the strength of the true correlation and the sample
size. When the underlying relationship was strongly linear, all correlation tests, Pearson, Spearman,
and Kendall, showed highly reproducible decisions, with RP values approaching one. The Pearson test
exhibited slightly higher RP in smaller samples, reflecting its greater sensitivity to linear dependence,
while rank-based methods became comparable as the sample size increased. These results confirmed
that, under linear associations, reproducibility primarily depended on the magnitude of the correlation
and the available data rather than on the choice of the correlation test.

While in the nonlinear, non-monotonic, and piecewise settings, reproducibility was affected by
both sample size and noise level. For small samples, all correlation tests exhibited similar yet highly
variable RP values, indicating unstable decision reproducibility. As the sample size increased and
noise remained low, the Pearson test tended to yield slightly higher RP values due to its sensitivity
to curved dependencies, whereas the Spearman and Kendall tests, being rank-based, displayed greater
robustness to nonlinearity but comparatively lower RP in such conditions. With increasing noise and
larger sample sizes, the RP values across all tests converged, suggesting that differences between linear
and rank-based correlations became negligible under higher variability or data-rich environments.

The real-data analysis supported the simulation findings. Smaller subsamples exhibited greater
variability and less stable reproducibility across the three correlation tests, whereas larger samples
produced more consistent and reliable outcomes. As the sample size increased, the RP values for
Pearson, Spearman, and Kendall became nearly identical, indicating that under practical data
conditions, reproducibility improves with sample size and the differences among the correlation
measures diminish. This demonstrates that RP provides a useful assessment of decision stability
beyond conventional p-values, both in simulated and real-world settings.

RP provides applied researchers with a valuable tool for assessing the stability of statistical
decisions beyond traditional probability values. By determining the probability of a statistically
significant observational outcome being repeated under identical conditions, RP helps distinguish
robust results from those highly sensitive to sample variance. Practitioners can use RP to prioritize
findings for further verification, guide study design choices such as sample size, and complement
effect size and power analyses to enhance scientific reliability. Integrating RP into standard analytical
workflows promotes transparent, evidence-based decision-making and reinforces reproducible
research practices.
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