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1. Introduction

The impulse to study complex numbers as a subject in itself first arose in the 16th century with
the discovery of algebraic solutions for the roots of cubic and fourth-degree polynomials by Italian
mathematicians Tartaglia and Cardano (1501–1576). Even if only real solutions were of interest, it was
soon proved that these formulas sometimes required the treatment of square roots of negative numbers.
In fact, it was later proved that the use of complex numbers is inevitable when all three roots are real and
distinct. Gerolamo Cardano tried to solve the simpler form of the general cubic equation and found an
expression a +

√
−b, but had some misgivings about it. After Cardano, Rafael Bombelli (1526–1572)

was the first to explicitly consider paradoxical solutions of cubic equations in this regard and the
solution of these problems was developed in complex arithmetic. He defined a notation for

√
−1

and called it “piu’di meno”. In the 17th century, Leonard Euler used the notation i =
√
−1 and

visualized the complex numbers as points in rectangular coordinates. As Paul J. Nahin described in

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2026040


916

his work, An imaginary tale [1], the unit
√
−1 has long labored under a narrative of “unfathomable

mystery.” However, this mystery eventually evolved into a profound appreciation for the “power and
beauty” of complex functions. Nahin notes that while mathematicians were once perceived as gazing
from “high mountains whose summits are lost in the clouds,” the study of these systems has brought
this “thin air” down to sea-level pressure, making it both accessible and indispensable to modern
science. Since then, various people have modified the original definition of the product of complex
numbers. In the 19th century, the English geometer Clifford (1862–1930) added still another variant
to the complex products and invented a new number system by using the notation ε2 = 0, ε , 0. This
number system was called the dual number system. The ordinary, dual number is a particular member
of a two-parameter family of complex number systems often called a binary number or generalized
complex number, which is a two-component number of the form z = x + εy, where (x, y) ∈ R2 and ε
is a nilpotent number, i.e., ε2 = 0 and ε , 0 [2]. Thus, the dual numbers form a 2-dimensional
real algebra:

D = R [ε] =
{
z = x + εy | (x, y) ∈ R2, ε2 = 0 and ε , 0

}
.

Subsequently, Kotelnikov (1895) and Study (1903) generalized the first applications of dual numbers
to mechanics (see [3, 4]). Besides mechanics, this nice concept has a lot of applications in many
fields of fundamental sciences, such as algebraic geometry, Riemannian geometry, quantum mechanics,
astrophysics, kinematics, and quaternionic formulation of motion in the theory of relativity, see [5–7].
On the other hand, Majernik introduced multicomponent number systems in [8]. There are three types
of four-component number systems that were constructed by joining the complex, binary, and two-
component numbers. In light of Majernik’s study, in [9] Messelmi defined the concept of dual-complex
numbers and their holomorphic functions.

A dual-complex number w is an ordered pair of complex numbers (z, t) associated with the complex
unit 1 and dual unit ε, where ε is a nilpotent number, i.e., ε2 = 0 and ε , 0. A dual-complex number is
typically denoted as w = z + εt and the set of dual-complex numbers DC is defined as

DC =
{
w = z + εt | z, t ∈ C, where ε2 = 0, ε , 0, and ε0 = 1

}
.

Here, z and t are called the complex and dual parts, respectively, of the dual-complex number w.
If z = x1 + ix2 and t = y1 + iy2, then the dual-complex number w can be written as

w = x1 + ix2 + εy1 + iεy2,

where i2 = −1, ε , 0, ε2 = 0, iε = εi.
Dual-complex numbers form a commutative ring with characteristic 0. Moreover, the inherited

multiplication of these numbers gives dual-complex numbers the structure of 2-dimensional Clifford
algebra and 4-dimensional real Clifford algebra. The base elements of the dual-complex numbers
satisfy the following commutative multiplication scheme (Table 1):

Table 1. Multiplication scheme of dual-complex numbers.

× 1 i ε iε
1 1 i ε iε
i i −1 iε −ε

ε ε iε 0 0
iε iε −ε 0 0
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On the other hand, the idea of investigating number systems by writing the coefficients as elements
of complex numbers, dual numbers, hyperbolic numbers, etc. is a fascinating area for researchers.
Consequently, it is natural to study some well-known versions of integer sequences of the above-
mentioned type of numbers. In this sense, Horadam considered the complex-type Fibonacci and Lucas
numbers and proved some basic properties of these numbers in [10]. Karataş defined the complex
Leonardo numbers, see [11]. Additionally, there are many applications for the theory of dual-complex
numbers. In 2017, the dual-complex Fibonacci numbers and dual-complex Lucas numbers were
defined and some of their algebraic properties were given by Güngör and Azak [12]. Then in [13],
Aydın defined the dual-complex k-Fibonacci numbers and extended the algebraic properties of them to
dual-complex k-Fibonacci numbers. In 2024, Yılmaz and Saçlı examined the Leonardo sequence with
dual-generalized complex coefficients, see [14].

Motivated by the above-mentioned studies, we have defined complex and dual-complex Lucas-
Leonardo numbers. Then, Binet’s formula, D’Ocagne’s, Cassini’s, and Catalan’s identities, generating
functions, and some basic algebraic identities have been obtained for the Lucas-Leonardo sequence
in the complex and dual-complex number systems. Furthermore, some characteristic identities, the
addition, subtraction, and multiplication operations, and the definition of the j-modulus have been
presented for the dual-complex form of the Lucas-Leonardo numbers.

In this sense, the present paper is organized as follows. We begin by recalling some facts about
Fibonacci, Lucas, Leonardo, and Lucas-Leonardo sequences. Sections 3 and 4 are devoted to the
complex and dual-complex Lucas-Leonardo numbers, respectively. In these sections, complex Lucas-
Leonardo and dual-complex Lucas-Leonardo numbers are defined. Their basic algebraic properties,
Fibonacci-type identities, and some summation formulas are proven. Binet’s formula, negative
extensions, and generating functions are presented for the Lucas-Leonardo numbers in complex and
dual-complex number systems. Since the Lucas-Leonardo numbers are related to the well-known
integer sequences, the most famous identities such as Catalan, Cassini, and d’Ocagne are constructed
for complex and dual-complex Lucas-Leonardo numbers. In addition, conjugations which are crucial
for the algebraic and geometric properties of dual-complex numbers, operations, and the norm notion
are defined for dual-complex Lucas-Leonardo numbers. Moreover, some relations between Lucas-
Leonardo, Fibonacci, and Lucas numbers in the dual-complex number system are presented.

2. Background

Some of the sequences that have been extensively studied are Fibonacci and Lucas. Along with
these works, Leonardo numbers have a large place in literature. In this section, some basic notations
and results will be recalled related to Fibonacci, Lucas, Leonardo, and Lucas-Leonardo numbers, and
the complex and dual-complex forms of Fibonacci, Lucas, and Leonardo numbers.

The Fibonacci and Lucas sequences are constructed with the same second-order homogeneous
linear recurrence relation but their initial values differ. That is, the Fibonacci sequence satisfies the
recurrence relation

Fn = Fn−1 + Fn−2 , n ≥ 2 with F0 = 0, F1 = 1, (2.1)

whereas the Lucas sequence satisfies the recurrence relation

Ln = Ln−1 + Ln−2 , n ≥ 2 with L0 = 2, L1 = 1 (2.2)
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(see [15]). Another set of numbers related to Fibonacci and Lucas numbers is the Leonardo sequence,
which is one of several non-homogeneous extensions of the Fibonacci recurrence relation. These
numbers were first studied in 1981 by Dijkstra [16], who used these numbers as an integral part of his
smoothsort algorithm [17] and also analyzed them in some detail. Catarino and Borges defined the
Leonardo sequence in [18] by the following recurrence relation:

Len = Len−1 + Len−2 + 1 , n ≥ 2 with Le0 = Le1 = 1. (2.3)

On the other hand, a companion sequence of the Leonardo sequence, in Lucas-like form, is called
the Lucas-Leonardo sequence. Analogously, the Lucas-Leonardo sequence is defined by changing the
initial values in the Leonardo sequence and is written by

Rn = Rn−1 + Rn−2 + 1 , n ≥ 2 with R0 = 3, R1 = 1 (2.4)

(see [19]). In addition, the nth Lucas-Leonardo number is defined by the following homogeneous
recurrence relation for n ≥ 3:

Rn = 2Rn−1 − Rn−3, (2.5)

where R0 = 3, R1 = 1, R2 = 5 (see [20]). Moreover, it has been proven by induction that

Rn = 2Ln − 1. (2.6)

The Fibonacci, Lucas, Leonardo, and Lucas-Leonardo numbers verify the following
properties (see [15, 18, 20], respectively):

Binet’s formula:

Fn =
αn − βn

α − β
, Ln = αn + βn, (2.7)

Len = 2
(
αn+1 − βn+1

α − β

)
− 1, Rn = 2αn + 2βn − 1, (2.8)

where α = 1+
√

5
2 and β = 1−

√
5

2 .

Negative extensions:

F−n = (−1)n+1 Fn, L−n = (−1)n Ln, (2.9)
Le−n = (−1)n (Len−2 + 1) − 1, R−n = (−1)n (Rn + 1) − 1.

Summation formulas: 

n∑
i=0

Fi = Fn+2 − 1,
n∑

i=0
F2i = F2n+1 − 1,

n∑
i=0

F2i−1 = F2n + 1,



n∑
i=0

Li = Ln+2 − 1,
n∑

i=0
L2i = L2n+1 + 1,

n∑
i=0

L2i−1 = L2n − 3,

(2.10)



n∑
i=0

Lei = Len+2 − (n + 2) ,
n∑

i=0
Le2i = Le2n+1 − n,

n∑
i=0

Le2i+1 = Le2n+2 − (n + 2) ,



n∑
i=0
Ri = Rn+2 − (n + 2) ,

n∑
i=0
R2i = R2n+1 − (n − 2) ,

n∑
i=0
R2i+1 = R2n+2 − 2 − (n + 2) .

(2.11)
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Some special relations:

Some relations between the Lucas and Lucas-Leonardo numbers are as indicated below:

Ln+r + Ln−r =

{
LnLr, r = 2k,

5FnFr, r = 2k + 1,
(2.12)

Ln+r − Ln−r =

{
5FnFr, r = 2k,

LnLr, r = 2k + 1,
(2.13)

Rn+m + Rn−m =

{ 1
2 (Rn + 1) (Rm + 1) − 2, m = 2k,

1
10 (Rn + 3) (Rm + 3) − 2, m = 2k + 1,

(2.14)

Rn+m − Rn−m =

{
10FnFm, m = 2k,

2LnLm, m = 2k + 1,
(2.15)

Rn+m + (−1)m
Rn−m = 2LmLn − (1 + (−1)m) , (2.16)

Rn+m − (−1)m
Rn−m = 10FmFn − (1 − (−1)m) , (2.17)

R
2
n + R2

n+1 = 20F2n+1 − 4 (Fn+3 + Fn+1) + 2, (2.18)
R

2
n − R

2
n+1 = 4Ln−1 (1 − Ln+2) , (2.19)

RnRn+1 = 4LnLn+1 − 2Ln+2 + 1, (2.20)
RnRn+2 + Rn+1Rn+3 = 20F2n+3 − 10Fn+3 + 2, (2.21)
RnRn+3 − Rn+1Rn+2 = 20 (−1)n

− 2 (Fn+1 + Fn−1) , (2.22)
Rn−kRn+k − R

2
n = (−1)n+k (Rk + 1)2

− 16 (−1)n + 2Rn − Rn−k − Rn+k, (2.23)
RmRn+1 − Rm+1Rn = Rm−1 − Rn−1 − 2 (−1)n [Rm−n+1 + Rm−n−1 + 2] . (2.24)

Two-dimensional number systems have been considered by many researchers over the last century.
One of these systems is the complex number system. In this manner, the complex forms of Fibonacci
and Lucas numbers are defined as follows:

CFn+1 = CFn + CFn−1 where CFn = Fn + iFn+1, (2.25)
CLn+1 = CLn + CLn−1 where CLn = Ln + iLn+1,

with n ≥ 0 (see [10]). In addition, complex Leonardo numbers are defined as

CLen+1 = CLen + CLen−1 + (1 + i) where CLen = Len + iLen+1, (2.26)

with n ≥ 0 (see [11]). Similarly, the complex form of the Francois numbers can defined as

CFn+1 = CFn + CFn−1 + (1 + i) where CFn = Fn + iFn+1,

with n ≥ 0.
On the other hand, by utilizing complex and dual numbers, it is natural to study Fibonacci and

Lucas’s versions of dual-complex numbers. In this sense, the dual-complex Fibonacci and Lucas
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numbers were defined and studied by Güngör and Azak (see [12]). The nth dual-complex Fibonacci
and Lucas numbers are of the forms

DCFn = Fn + iFn+1 + εFn+2 + iεFn+3 and DCLn = Ln + iLn+1 + εLn+2 + iεLn+3 (2.27)

and satisfy the recurrence relations

DCFn = DCFn−1 + DCFn−2 and DCLn = DCLn−1 + DCLn−2,

respectively. The Binet formula for these numbers is given by:

DCFn =
ααn − ββn

α − β
and DCLn = ααn + ββn, (2.28)

where α = 1 + αi + α2ε + α3iε and β = 1 + βi + β2ε + β3iε. Some of the algebraic properties of
dual-complex Lucas numbers are as follows:

DCLmDCLn+1 − DCLm+1DCLn =
[
5 (−1)n+1 Fm−n

]
(2 + i + 6ε + 3iε) , (2.29)

DCL−n = (−1)nDCLn − 5Fn (−1)n (i + ε + 2iε) , (2.30)
DCL2

n − DCLn+kDCLn−k = 5 (−1)n−k+1 F2
k (2 + i + 6ε + 3iε) . (2.31)

Then, dual-complex k-Fibonacci numbers were defined and Fibonacci-type identities were obtained by
Aydın in [13]. In 2022, the conclusions about dual-complex Fibonacci and Lucas numbers extended
to dual-generalized complex numbers (see [21]). Finally, Yılmaz and Saçlı defined the dual-complex
Leonardo sequence in [14] as follows:

DCLen = Len + iLen+1 + εLen+2 + iεLen+3.

Dual-complex Leonardo numbers satisfy the second-order non-homogeneous relation DCLen =

DCLen−1 + DCLen−2 + A, where A = 1 + i + ε + iε. Some of the sum identities of these numbers
necessary for this study are given as follows:

n∑
j=0

DCFk,s =
1
k
(
DCFk,n+1 + DCFk,n − DCFk,1 − DCFk,0

)
, (2.32)

n∑
j=0

DCL j = DCLn+2 − DCL1, (2.33)

n∑
j=0

DCLe j = DCLen+2 − (n + 2) + i(n + 3) + ε(n + 4) + iε(n + 5) − (i + 2ε + 5iε). (2.34)

3. The complex Lucas-Leonardo sequence

This section is devoted to the construction of the complex Lucas-Leonardo sequence. In this sense,
we will constitute Binet’s formula, the generating function, summation formulas, and some basic
algebraic and well-known properties of integer sequences such as Catalan, Cassini, and d’Ocagne
for the complex Lucas-Leonardo sequence and the properties defining the relationship between the
complex forms of well-known sequences and the Lucas-Leonardo sequence. The starting point of our
analysis is to define complex Lucas-Leonardo numbers.
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Definition 3.1. For n ≥ 1, the nth complex Lucas-Leonardo number is defined by

CRn = Rn + iRn+1,

where Rn is the nth Lucas-Leonardo number.

Note that, throughout this paper, we denote the nth complex Lucas-Leonardo number by CRn.

On the other hand, a non-homogeneous recurrence relation can be obtained from the recurrence
relation of Lucas-Leonardo numbers and the definition of complex Lucas-Leonardo numbers
as follows:

CRn = Rn + iRn+1 = (Rn−1 + Rn−2 + 1) + i (Rn + Rn−1 + 1) = CRn−1 + CRn−2 + ε, (3.1)

where n ≥ 2, ε = 1 + i, and also with the initial conditions CR0 = 3 + i and CR1 = 1 + 5i. Throughout
this paper, (1 + i) will be denoted by ε.

By considering the recurrence relation Rn = 2Rn−1 − Rn−3 and Definition 3.1, we obtain a different
recurrence relation for complex Lucas-Leonardo numbers. That is

CRn = (2Rn−1 − Rn−3) + i (2Rn − Rn−2) = 2CRn−1 −CRn−3, (3.2)

for n ≥ 2 with initial conditions CR0 = 3 + i and CR1 = 1 + 5i.
According to these definitions, some of the first complex Lucas-Leonardo numbers are

3 + i, 1 + 5i, 5 + 7i, 7 + 13i, 13 + 21i, 21 + 35i, 35 + 57i, 57 + 93i, 93 + 151i, ....

Furthermore, the complex Lucas-Leonardo numbers for negative indices can be expressed as follows.

Proposition 3.2. For n ≥ 1, the negative subscript of the nth complex Lucas-Leonardo number is given
as follows:

CR−n = (−1)n (Rn − iRn−1 − ε + 2) − ε,

where Rn is the nth Lucas-Leonardo number.

Proof. Considering Definition 3.1 and Eq (2.9), we obtain that

CRn = Rn + iRn+1

⇒ CR−n = R−n + iR−n+1

=
[
(−1)n (Rn + 1) − 1

]
+ i

[
(−1)n−1 (Rn−1 + 1) − 1

]
= (−1)n [(Rn + 1) − i (Rn−1 + 1) − (1 + i)]
= (−1)n (Rn − iRn−1 − ε + 2) − ε.

�

Now, we will give the generating function for complex Lucas-Leonardo numbers.

Theorem 3.3. The generating function for complex Lucas-Leonardo numbers is

g (t) =
(3 + i) + t (−5 + 3i) + t2 (3 − 3i)

1 − 2t + t3 .
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Proof. From the formal power series representation of the generating function for {CRn}
∞
n=0, we

write g (t) =
∞∑

n=0
CRntn. That is,

g (t) = CR0 + CR1t + CR2t2 + ... + CRktk + ....

So,
2tg (t) = 2CR0t + 2CR1t2 + 2CR2t3 + ... + 2CRktk+1 + ...,

−t3g (t) = −t3CR0 −CR1t4 −CR2t5 − ... −CRktk+3 − ....

Considering the above equations,(
1 − 2t + t3

)
g (t) = CR0 + t (CR1 − 2CR0) + t2 (CR2 − 2CR1) +

t3 (CR3 − 2CR2 + CR0) + ... + tk+1 (CRk+1 − 2CRk + CRk−2) + ...

is written. In this step, by using Eq (3.2) and the initial conditions, we have

g (t) =
(3 + i) + t (−5 + 3i) + t2 (3 − 3i)

1 − 2t + t3 .

�

Theorem 3.4. For any integer n ≥ 0,
CRn = 2CLn − ε,

where CLn is the nth complex Lucas number.

Proof. Considering Eq (2.6), Relation 2.26, and Definition 3.1, we obtain that

CRn = Rn + iRn+1 = (2Ln − 1) + i (2Ln+1 − 1)

= 2 (Ln + iLn+1) − (1 + i) = 2CLn − ε.

�

Now, we will give Binet’s formula complex Lucas-Leonardo numbers.

Theorem 3.5. For any integer n ≥ 0, Binet’s formula for complex Lucas-Leonardo numbers CRn is

CRn = 2ααn + 2ββn − ε,

where α and β are roots of the characteristic equations of Lucas-Leonardo numbers, α = 1 + iα
and β = 1 + iβ.

Proof. It is known that Binet’s formula of Lucas-Leonardo numbers is

Rn = 2αn + 2βn − 1,

where Rn is the nth Lucas-Leonardo number in Eq (2.9). Considering Definition 3.1, the result is
obtained as follows:

CRn = Rn + iRn+1 = (2αn + 2βn − 1) + i
(
2αn+1 + 2βn+1 − 1

)
= 2αn (1 + iα) + 2βn (1 + iβ) − (1 + i) = 2ααn + 2ββn − ε.

�
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The next propositions will establish the complex Lucas-Leonardo sequence in terms of the known
integer sequences in complex number systems. Some basic connections between the complex
Lucas-Leonardo and complex Fibonacci, complex Lucas, complex Leonardo, and complex Francois
sequences are as follows.

Proposition 3.6. The complex Lucas-Leonardo numbers satisfy the following identities:

(i) CRn = 2CFn + 4CFn−1 − ε,

(ii) CRn = CFn + CFn−1,

(iii) CRn = 2CLen −CLen−1,

(iv) CRn = 2CFn −CLen,

(v) CRn = CLn −CFn + CLen,

(vi) CRn = CLen + CFn −CFn+2 + ε,

where n ∈ Z and CFn is the nth complex Fibonacci number.

Proof. To prove these identities, some known relations for Fibonacci, Lucas, Leonardo, and the
complex forms of these sequences will be used.

i. Considering Theorem 3.4, the fact Fn+1 + Fn−1 = Ln, and Eq (2.25),

CRn = 2CLn − ε = 2 (Ln + iLn+1) − ε
= 2 [(Fn+1 + Fn−1) + i (Fn+2 + Fn)] − ε
= 2 (Fn−1 + iFn) + 2 (Fn+1 + iFn+2) − ε
= 2CFn−1 + 2CFn+1 − ε

= 2CFn + 4CFn−1 − ε

is obtained. So the result follows.
ii. The conclusion can be deduced from the recurrence relation given with Definition 3.1 and the

equation Rn = Fn + Fn−1.
iii. The result can be readily observed by using Definition 3.1 and the fact that Rn = 2Len − Len−1.
iv. Considering Definition 3.1 and the fact that Rn = 2Fn − Len, the claim is clear.
v. From Definition 3.1 and the fact that Rn = Ln − Fn + Len, we have

CRn = Rn + iRn+1

= (Ln − Fn + Len) + i (Ln+1 − Fn+1 + Len+1)

= (Ln + iLn+1) − (Fn + iFn+1) + (Len + iLen+1)

= CLn −CFn + CLen.

vi. The result can be derived from Definition 3.1 and the fact that Rn = Len +Fn−Fn+2 +1 as follows:

CRn = Rn + iRn+1

= (Len + Fn − Fn+2 + 1) + i (Len+1 + Fn+1 − Fn+3 + 1)

= (Len + iLen+1) + (Fn + iFn+1) − (Fn+2 + Fn+3) + (1 + i)

= CLen + CFn −CFn+2 + ε. �
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These properties can be extended by utilizing the relations between sequences that were
previously introduced.

Some of the most famous identities for well-known integer sequences (Fibonacci, Lucas, Leonardo,
etc.) are Catalan’s, Cassini’s, and d’Ocagne’s identities. Since Lucas-Leonardo numbers are related
to these sequences, these identities also exist for Lucas-Leonardo numbers. So, we can obtain these
identities for complex Lucas-Leonardo numbers as follows.

Theorem 3.7. (Catalan’s Identity) For positive integers n and k, with n ≥ k, the following
identity holds:

CR2
n −CRn−kCRn+k = (8 + 4i) (−1)n

[
2 − (−1)k L2k

]
+ ε [CRn−k + CRn+k − 2CRn] ,

where Ln and Rn are the nth Lucas and Lucas-Leonardo numbers, respectively.

Proof. Considering the definitions α = (1 + iα), β = (1 + iβ), and the fact that α + β = 1, we have

αβ = (1 + iα) (1 + iβ) = 1 + iα + iβ − αβ = 2 + i,

and from the Binet formula for Lucas numbers, we get

α−kβk + αkβ−k =
(
α−1

)k
βk + αk

(
β−1

)k
= (−β)k βk + αk (−α)k = (−1)k

(
β2k + α2k

)
= (−1)k L2k.

By employing the results obtained above along with the Binet formula for complex Lucas-Leonardo
numbers, and through some algebraic manipulations,

LHS =
(
2ααn + 2ββn − ε

) (
2ααn + 2ββn − ε

)
−

(
2ααn−k + 2ββn−k − ε

) (
2ααn+k + 2ββn+k − ε

)
= 4αβ (−1)n

[
2 −

(
α−kβk + αkβ−k

)]
+ ε

[(
2ααn−k + 2ββn−k − ε

)
+

(
2ααn+k + 2ββn+k − ε

)
−

(
2ααn + 2ββn − ε

)
−

(
2ααn + 2ββn − ε

)]
= 4(2 + i) (−1)n

[
2 − (−1)k L2k

]
+ ε [CRn−k + CRn+k − 2CRn]

= (8 + 4i) (−1)n
[
2 − (−1)k L2k

]
+ ε [CRn−k + CRn+k − 2CRn]

is obtained. So the result follows.
�

Taking k = 1 in Proposition 3.7, we get Cassini’s identity for complex Lucas-Leonardo numbers
with the following corollary.

Corollary 3.8. (Cassini’s Identity) For positive integers n ≥ 2, the following identity holds:

CR2
n −CRn−1CRn+1 = (40 + 20i) (−1)n + ε [CRn−k + CRn+k − 2CRn] ,

where Rn is the nth Lucas-Leonardo number.

Another well-known identity for special integer sequences is d’Ocagne’s identity. Now we will
prove d’Ocagne’s identity for complex Lucas-Leonardo numbers.
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Theorem 3.9. (d’Ocagne’s Identity) For positive integers m and n, with m > n and n ≥ 1, the following
identity holds:

CRmCRn+1 −CRmCRn = (40 + 20i) (−1)n+1 Fm−n + ε [CRn + CRm+1 −CRn+1 −CRm] ,

where Fn and Rn are the nth Fibonacci and Lucas-Leonardo numbers, respectively.

Proof. From the Binet formula for complex Lucas-Leonardo numbers and some algebra, we find that:

LHS =
(
2ααm + 2ββm − ε

) (
2ααn+1 + 2ββn+1 − ε

)
−

(
2ααm + 2ββm − ε

) (
2ααn + 2ββn − ε

)
= 4αβ

(
αmβn+1 − αm+1βn + αn+1βm − αnβm+1

)
+ ε

[(
2ααn + 2ββn − ε

)
+

(
2ααm+1 + 2ββm+1 − ε

)
−

(
2ααn+1 + 2ββn+1 − ε

)
−

(
2ααm + 2ββm − ε

)]
= (8 + 4i)

[
αmβn (β − α) + αnβm (α − β)

]
+ ε [CRn + CRm+1 −CRn+1 −CRm]

= (8 + 4i)
[√

5 (αnβm − αmβn)
]

+ ε [CRn + CRm+1 −CRn+1 −CRm]

= (8 + 4i)
[√

5 (αβ)n (
βm−n − αm−n)] + ε [CRn + CRm+1 −CRn+1 −CRm]

= (8 + 4i)
[
−5 (−1)n Fm−n

]
+ ε [CRn + CRm+1 −CRn+1 −CRm]

is obtained for the left-hand side and the result follows. In this derivation, besides the Binet formula for
complex Lucas-Leonardo numbers, the following steps are performed: the third equality is obtained
by substituting αβ = 2 + i, the fourth by using α − β =

√
5, and the fifth by employing both αβ = −1

and the Binet formula for Fibonacci numbers. �

Now we will give some results concerning sums of terms of the complex Lucas-Leonardo sequence
by using some sums of Lucas-Leonardo numbers.

Theorem 3.10. For n ≥ 0, summation formulas of complex Lucas-Leonardo numbers are

n∑
k=0

CRk = CRn+2 − nε − (2 + 6i) ,

n∑
k=0

CR2k = CR2n+1 − nε + (2 − 4i) ,

n∑
k=0

CR2k+1 = CR2n+2 − nε − (4 + 2i) .

Also, for n ≥ 1,

n∑
k=0

(−1)k−1 CRk =

{
CRn−1 + 3ε − 8, n is odd,
−CRn−1 + 2ε − 8, n is even.

Proof. For the first summation formula, using the recurrence relation of complex Lucas-Leonardo
numbers, we have

n∑
k=0

CRk =

n∑
k=0

Rk + i
n∑

k=0

Rk+1.
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If we consider the first summation formula given with Eq (2.11) for Lucas-Leonardo numbers, the
result follows:

n∑
k=0

Rk + i
n∑

k=0

Rk+1 = [Rn+2 − (n + 2)] + i [Rn+3 − (n + 6)]

= CRn+2 − (n + 2) − i (n + 6) = CRn+2 − nε − (2 + 6i) .

For the second one, from Definition 3.1 and the second and third summation formulas given in
Eq (2.11) for Lucas-Leonardo numbers, the proof can be seen as follows:

n∑
k=0

CR2k =

n∑
k=0

R2k + i
n∑

k=0

R2k+1

= [R2n+1 − (n − 2)] + i [R2n+2 − (n + 4)] = CR2n+1 − nε + (2 − 4i) .

The third one can be shown similarly to the other items, considering Definition 3.1 and the suitable
summation formulas given with Eq (2.11) for Lucas-Leonardo numbers.

Finally, we will prove the last summation formula. Using Definitions 2.6 and 3.1, we have

n∑
k=0

(−1)k−1 CRk =

n∑
k=0

(−1)k−1
Rk + i

n∑
k=0

(−1)k−1
Rk+1

= 2
n∑

k=0

(−1)k−1 Lk + (1 + i)
n∑

k=0

(−1)k + 2i
n∑

k=0

(−1)k−1 Lk+1.

Herein, it should be taken into account whether n is an odd or even number:

• n is an odd number.
If we consider the second and third relations of (2.10) related to Lucas numbers and Definition 2.4,

2
n∑

k=0

(−1)k−1 Lk + (1 + i)
n∑

k=0

(−1)k + 2i
n∑

k=0

(−1)k−1 Lk+1

= 2 [− (L0 + Ln − 1) + (Ln+1 − 2)] + (1 + i) 0 + 2i [− (Ln+1 − 2) + (Ln+2 − 1)]
= [− (2Ln − 1) − 3 + (2Ln+1 − 1) − 3] + [−i (2Ln+1 − 1) + 3i + i (2Ln+2 − 1) − i]
= (−Rn + Rn+1 − 6) + (−iRn+1 + iRn+2 + 2i)

= − (Rn + iRn+1) + (Rn+1 + iRn+2) − 6 + 2i

= −CRn + CRn+1 − 6 + 2i

is obtained. In the last equation, by using Eq (3.1), the result follows.

• n is an even number.
Considering the same facts used in the case of n being an odd number, we get

2
n∑

k=0

(−1)k−1 Lk + (1 + i)
n∑

k=0

(−1)k + 2i
n∑

k=0

(−1)k−1 Lk+1

= 2 [− (L0 + Ln+1 − 1) + (Ln − 2)] + (1 + i) 1 + 2i [− (Ln+2 − 2) + (Ln+1 − 1)]
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= [− (2Ln+1 − 1) − 3 + (2Ln − 1) − 3] + [−i (2Ln+2 − 1) + 3i + i (2Ln+1 − 1) − i]
= (−Rn+1 + Rn − 6) + (−iRn+2 + iRn+1 + 2i)

= − (Rn+1 + iRn+2) + (Rn + iRn+1) − 5 + 3i

= −CRn+1 + CRn − 5 + 3i

= − (CRn + CRn−1 + ε) + CRn − 5 + 3i

= −CRn−1 + 2ε − 8.

So, the proof is complete. �

Theorem 3.11. For n ≥ 0, the following summation formulas hold true:

(i)
n∑

k=0
(CFk + CRk) = CFn+2 + CRn+2 − (n + 4) ε − 2i,

(ii)
n∑

k=0
(CLk + CRk) = CLn+2 + CRn+2 − (n + 3) ε − 6i,

(iii)
n∑

k=0
(CLek + CRk) = CLen+2 + CRn+2 − 2 (n + 2) ε − 6i,

where CFk,CLk,CLek, and CRk are the nth complex Fibonacci, complex Lucas, complex Leonardo,
and complex Lucas-Leonardo numbers, respectively.

Proof. To prove the first item, we will use the definition of complex Fibonacci numbers given in
Eq (2.25), Definition 3.1, and summation formulas in Eqs (2.10) and (2.11), for Fibonacci and Lucas-
Leonardo numbers, respectively, in the following way:

n∑
k=0

(CFk + CRk) =

n∑
k=0

(Fk + iFk+1) +

n∑
k=0

(Rk + iRk+1)

= (Fn+2 − 1) + i (Fn+3 − 1) + [Rn+2 − (n + 2)] + i [Rn+3 − (n + 2) − 4]
= (Fn+2 + iFn+3) − (1 + i) + [Rn+2 + iRn+3 − (n + 2) − i (n + 2) − 4i]
= CFn+2 + CRn+2 − (n + 3) ε − 4i.

The other identities can be proven using similar reasoning. �

Proposition 3.12. For n ≥ 1, the following identity holds:

CRn+1 + CRn−1 = 10CFn − 2ε,

where CFn is the nth complex Fibonacci number.

Proof. Using Theorem 3.4, Relation 2.25 for complex Lucas numbers, and Eq (2.12) for r = 1,

CRn+1 + CRn−1 = (2CLn+1 − ε) + (2CLn−1 − ε)

= 2 [(Ln+1 + Ln−1) + i (Ln+2 + Ln)] − 2ε
= 2 (5Fn + i5Fn+1) − 2ε = 10CFn − 2ε

is obtained. So, the result is obvious. �
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Proposition 3.13. For positive integers n and m, with n ≥ m, the following identites are true:

CRn+m + (−1)m CRn−m = 2LmCLn − ε (1 + (−1)m) , (3.3)

CRn+m − (−1)m CRn−m = 10FmCFn − ε (1 − (−1)m) , (3.4)

where Fn is the nth Fibonacci number, Ln is the nth Lucas number, and CFn, CLn, and CRn are the nth
complex Fibonacci, complex Lucas, and complex Lucas-Leonardo numbers, respectively.

Proof. For the proof of (3.3), using the recurrence relation given with Definition 3.1, and Eqs (2.25)
and (2.16) on the left-hand side, we obtain

LHS = [Rn+m + iRn+m+1] + (−1)m [Rn−m + iRn−m+1]
=

[
Rn+m + (−1)m

Rn−m
]
+ i

[
Rn+m+1 + (−1)m

Rn−m+1
]

=
[
2LmLn − (1 + (−1)m)

]
+ i

[
2LmLn+1 − (1 + (−1)m)

]
= [2LmLn + i2LmLn+1] − (1 + (−1)m) [1 + i]
= 2LmCLn − ε (1 + (−1)m) .

The proof of (3.4) can be seen similarly. �

4. Dual-complex Lucas-Leonardo numbers

The focus of this section is to define the Lucas-Leonardo numbers in the dual complex number
system and to conduct a subsequent investigation of their properties. Following the presentation of
dual-complex Lucas-Leonardo numbers and their alternative definitions, the definitions of their j-
modules and conjugates will be provided. This section also presents several new identities for
dual-complex Lucas-Leonardo numbers, which are established by utilizing their classical Lucas-
Leonardo counterparts.

Definition 4.1. The dual-complex Lucas-Leonardo numbers are defined by using the basis {1, i, ε, iε},
where Rn is the nth Lucas-Leonardo number and

i → imaginary unit,

ε → pure dual unit,

iε → imaginary dual unit,

satisfy the conditions i2 = −1, ε , 0, ε2 = 0, and iε = εi as follows:

DCRn = (Rn + iRn+1) + ε (Rn+2 + iRn+3) = Rn + iRn+1 + εRn+2 + iεRn+3.

In here, Rn +iRn+1 andRn+2 +iRn+3 are, respectively, the complex part and the dual part of theDCRn

dual-complex Lucas-Leonardo number. Besides, the real part of the dual-complex Lucas-Leonardo
number DCRn is real (DCRn) = Rn.
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Lemma 4.2. Let DCRn be the nth dual-complex Lucas-Leonardo number. Then, for n ≥ 2, the
recurrence relation for dual-complex Lucas-Leonardo numbers is

DCRn = DCRn−1 + DCRn−2 + (1 + i + ε + iε) ,

with the initial conditions DCR0 = 3 + i + 5ε + 7iε and DCR1 = 1 + 5i + 7ε + 13iε.

Proof. From Definition 4.1 and Eq (2.4),

DCRn = Rn + iRn+1 + εRn+2 + iεRn+3

= (Rn−1 + Rn−2 + 1) + i (Rn + Rn−1 + 1)

+ ε (Rn+1 + Rn + 1) + iε (Rn+2 + Rn+1 + 1)

= (Rn−1 + iRn + εRn+1 + iεRn+2)

+ (Rn−2 + iRn−1 + εRn + iεRn+1) + (1 + i + ε + iε)

= DCRn−1 + DCRn−2 + (1 + i + ε + iε)

is obtained. �

Additionally, taking into account Definitions 3.1 and 4.1, we have the following recurrence relation
for dual-complex Lucas-Leonardo numbers in terms of complex Lucas-Leonardo numbers as follows:

DCRn = CRn + εCRn+2, (4.1)

where n ≥ 0.

Now, we will present a homogeneous recurrence relation for dual-complex Lucas-Leonardo
numbers with the following lemma.

Lemma 4.3. Let DCRn be the nth dual-complex Lucas-Leonardo number. Then, for n ≥ 3,{
DCRn = 2DCRn−1 − DCRn−3,

DCR0 = 3 + i + 5ε + 7iε, DCR1 = 1 + 5i + 7ε + 13iε, DCR2 = 5 + 7i + 13ε + 21iε.

Proof. Using Definition 4.1 and Eq (2.5), we have

DCRn = Rn + iRn+1 + εRn+2 + iεRn+3

= 2 (Rn−1 + iRn + εRn+1 + iεRn+2) − (Rn−3 + iRn−2 + εRn−1 + iεRn)

= 2DCRn−1 − DCRn−3.

�

According to these definitions, the first few terms of dual-complex Lucas-Leonardo numbers are

3 + i + 5ε+ 7iε, 1 + 5i + 7ε+ 13iε, 5 + 7i + 13ε+ 21iε, 7 + 13i + 21ε+ 35iε, 13 + 21i + 35ε+ 57iε, ....

On the other hand, by considering the operations that were defined for dual generalized
complex numbers:
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• The equality of any two dual-complex Lucas-Leonardo numbers is given by

DCRn = DCRm ⇔ n = m.

• The addition and subtraction of any two dual-complex Lucas-Leonardo numbers are given by

DCRn ± DCRm = (Rn + iRn+1 + εRn+2 + iεRn+3)

± (Rm + iRm+1 + εRm+2 + iεRm+3)

= (Rn ± Rm) + i (Rn+1 ± Rm+1)

+ ε (Rn+2 ± Rm+2) + iε (Rn+3 ± Rm+3) .

• The multiplication of any dual-complex Lucas-Leonardo number by a real λ scalar is given by

λDCRn = λRn + i (λRn+1) + ε (λRn+2) + iε (λRn+3) .

• The multiplication of any two dual-complex Lucas-Leonardo numbers is given

DCRn × DCRm = (Rn + iRn+1 + εRn+2 + iεRn+3)

× (Rm + iRm+1 + εRm+2 + iεRm+3)

= (RnRm − Rn+1Rm+1) + i (RnRm+1 + Rn+1Rm)

+ ε (RnRm+2 − Rn+1Rm+3 + Rn+2Rm − Rn+3Rm+1)

+ iε (RnRm+3 + Rn+1Rm+2 + Rn+2Rm+1 + Rn+3Rm)

= DCRm × DCRn.

Complex and dual conjugations have an important role in the algebraic and geometric properties of
dual-complex numbers. The conjugation of dual-complex Lucas-Leonardo numbers can be defined in
five different ways since five kinds of conjugations were defined for dual-complex numbers (see [9]):

Complex conjugation. DCR†1
n = (Rn − iRn+1) + ε (Rn+2 − iRn+3) .

Dual conjugation. DCR†2
n = (Rn + iRn+1) − ε (Rn+2 + iRn+3) .

Coupled conjugation. DCR†3
n = (Rn − iRn+1) − ε (Rn+2 − iRn+3) .

Dual-complex conjugation. DCR†4
n = (Rn − iRn+1)

(
1 − εRn+2+iRn+3

Rn+iRn+1

)
.

Anti-dual conjugation. DCR†5
n = (Rn+2 + iRn+3) − ε (Rn + iRn+1) .

In the following proposition, some properties related to the conjugations of dual-complex Lucas-
Leonardo numbers will be given.

Proposition 4.4. Let DCRn and Rn be, respectively, the nth dual-complex and complex Lucas-
Leonardo numbers. Then the following properties hold:

(i) DCRn + DCR†1
n = 2 (Rn + εRn+2) ∈ DR,

(ii) DCRn × DCR
†1
n = R2

n + R2
n+1 + 2ε (RnRn+2 + Rn+1Rn+3) ∈ DR,
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(iii) DCRn + DCR†2
n = 2 (Rn + iRn+1) ∈ CR,

(iv) DCRn × DCR
†2
n = R2

n − R
2
n+1 + 2i (RnRn+1) ∈ CR,

(v) DCRn + DCR†3
n = 2 (Rn + iεRn+3) ∈ DCR,

(vi) DCRn × DCR
†3
n = R2

n + R2
n+1 + 2iε (RnRn+3 − Rn+1Rn+2) ∈ DCR,

(vii) (Rn + iRn+1) × DCR†4
n = R2

n + R2
n+1 − ε (RnRn+2 + Rn+1Rn+3)

+ iε (Rn+1Rn+2 − RnRn+3) ∈ DCR,
(viii) DCRn × DCR

†4
n = R2

n + R2
n+1 ∈ R,

(ix) DCRn − εDCR
†5
n = Rn + iRn+1 ∈ CR,

(x) εDCRn + DCR†5
n = Rn+2 + iRn+3 ∈ CR,

(xi) DCRn×DCR
†5
n = (RnRn+2 − Rn+1Rn+3) + i (RnRn+3 + iRn+1Rn+2) + ε

(
R2

n+1 + R2
n+2 − R

2
n − R

2
n+3

)
+

2iε (Rn+2Rn+3 − RnRn+1) ∈ DCR,

where DCR†1
n ,DCR

†2
n ,DCR

†3
n ,DCR

†4
n , and DCR†5

n are five kinds of conjugations of the dual-complex
Lucas-Leonardo number and R, CR, DR, and DCR show the real, complex Lucas-Leonardo, dual
Lucas-Leonardo, and dual-complex Lucas-Leonardo numbers, respectively.

Proof. Taking into account the five types of conjugations:

(i) For the first item, using the definitions of the DCRn dual-complex Lucas-Leonardo numbers and
their complex conjugation, and the addition operation of any two dual-complex Lucas-Leonardo
numbers, the conclusion can be seen easily.

(ii) From the definitions of DCRn and its complex conjugation, the multiplication table for dual-
complex numbers, and the multiplication of any two dual-complex Lucas-Leonardo numbers,
we have

DCRn × DCR
†1
n = (Rn + iRn+1 + εRn+2 + iεRn+3)

× (Rn − iRn+1 + εRn+2 − iεRn+3)

= R
2
n + R2

n+1

+ ε (RnRn+2 + Rn+1Rn+3 + Rn+2Rn + Rn+3Rn+1)

= R
2
n + R2

n+1 + 2ε (RnRn+2 + Rn+1Rn+3) .

Moreover, if Eqs (2.18) and (2.21) are considered an equivalent relation, this item can be given as

DCRn × DCR
†1
n = [20F2n+1 − 4 (Fn+3 + Fn+1) + 2] + ε (40F2n+3 − 20Fn+3 + 4) ∈ DF,

where DF shows the dual Fibonacci numbers.
(iii) By applying the addition operation of any two dual-complex Lucas-Leonardo numbers to DCRn

and DCR†2
n , the result follows.

(iv)

DCRn × DCR
†2
n = (Rn + iRn+1 + εRn+2 + iεRn+3)

× (Rn + iRn+1 − εRn+2 − iεRn+3)

= R
2
n + iRnRn+1 − εRnRn+2 − iεRnRn+3 + iRnRn+1

+ i2
R

2
n+1 − iεRn+1Rn+2 − i2εRn+1Rn+3 + εRnRn+2
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+ iεRn+1Rn+2 − ε
2
R

2
n+2 − iε2

Rn+2Rn+3 + iεRnRn+3

+ i2εRn+1Rn+3 − iε2
Rn+2Rn+3 − i2ε2

R
2
n+3

= R
2
n − R

2
n+1 + 2i (RnRn+1)

is obtained considering the definitions of DCRn and its dual conjugation and the multiplication
operation for any two dual-complex Lucas-Leonardo numbers. Furthermore, from Eqs (2.19)
and (2.20), an equivalent relation is
DCRn × DCR

†2
n = R2

n − R
2
n+1 + 2i (RnRn+1) = [4Ln−1 (1 − Ln+2)] + i [8LnLn+1 − 4Ln+2 + 2] ∈ CL.

(v) It can be seen similarly to options (i) and (iii).
(vi) Considering the definitions of DCRn and its coupled conjugation, the multiplication scheme,

and the multiplication operation for any two dual-complex Lucas-Leonardo numbers, the result
follows. On the other hand, by using Eqs (2.18) and (2.22), the following equivalent relation
is obtained:
DCRn × DCR

†3
n = [20F2n+1 − 4 (Fn+3 + Fn+1) + 2] + 2iε

[
20 (−1)n

− 2 (Fn+1 + Fn−1)
]
∈ DCF,

where DCF shows the dual-complex Fibonacci numbers.
(vii)

LHS = (Rn + iRn+1) × (Rn − iRn+1)
(
1 − ε

Rn+2 + iRn+3

Rn + iRn+1

)
= (Rn − iRn+1) (Rn + iRn+1 − εRn+2 − iεRn+3)

= R
2
n + R2

n+1 − ε (RnRn+2 + Rn+1Rn+3) + iε (Rn+1Rn+2 − Rn+3Rn)

is obtained from the multiplication operation and the definition of dual-complex conjugation for
dual-complex Lucas-Leonardo numbers. Moreover, in terms of Fibonacci numbers, the following
relation is obtained for this item by considering Eqs (2.18), (2.21), and (2.22):

(Rn + iRn+1) × DCR†4
n = [20F2n+1 − 4 (Fn+3 + Fn+1) + 2] − ε [20F2n+3 − 10Fn+3 + 2]

− iε
[
20 (−1)n

− 2 (Fn+1 + Fn−1)
]
∈ DCF.

(viii) Let z, t be z := Rn + iRn+1 and t := Rn+2 + iRn+3. From the definitions of dual-complex Lucas-
Leonardo numbers, their dual-complex conjugations, and the multiplication operation,

DCRn × DCR
†4
n = (z + εt) z

(
1 − ε

t
z

)
=

(
z − εt + εt − ε2 t2

z

)
z

= zz = R2
n + R2

n+1,

or equivalently from Eq (2.18),

DCRn × DCR
†4
n = 20F2n+1 − 4 (Fn+3 + Fn+1) + 2 ∈ F,

where Fn is the nth Fibonacci number.
(ix–xi) By considering Definition 3.1, its anti-dual conjugation, and the operations subtraction, addition,

and multiplication, respectively, the results follow. �
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Here, the equivalents of the above given properties can be found in different number systems, such
as dual-complex Lucas numbers, using some identities related to Lucas-Leonardo numbers.

The definition of the module for dual-complex Lucas-Leonardo numbers can be composed
analogously to the definition of the module in the standard complex space, too.

Definition 4.5. The j-modulus of DCRn dual-complex Lucas-Leonardo numbers is defined as follows,
with different types of conjugations:

• |DCRn|
2
†1

= DCRn × DCR
†1
n ,

• |DCRn|
2
†2

= DCRn × DCR
†2
n ,

• |DCRn|
2
†3

= DCRn × DCR
†3
n ,

• |DCRn|
2
†4

= DCRn × DCR
†4
n .

Now, we will prove some properties of dual-complex Lucas-Leonardo numbers with the
following theorem.

Theorem 4.6. Let DCRn be the nth dual-complex Lucas-Leonardo number. Then, for n,m ≥ 0, the
following relations hold:

(i) DCRn + DCRn+1 = DCRn+2 − A,
(ii) DCRn−1 + DCRn+1 = 10DCFn − 2A,

(iii) DCRn+2 − DCRn−2 = 10DCFn,

(iv) DCRn+1 − DCRn−1 = 2DCLn,

(v) DCRn+m + DCRn−m =

{
2LmDCLn − 2A, m = 2k,

10FmDCFn − 2A, m = 2k + 1,

(vi) DCRn+m − DCRn−m =

{
10FmDCFn, m = 2k,

2LmDCLn, m = 2k + 1,
(vii) DCR2

n+1 − DCR
2
n−1 = 4DCLn [5DCFn − A] ,

(viii) DCRn − iDCR†3
n+1 − εDCRn+2 − iεDCRn+3 = − (Rn+1 + 1) + 2εRn+4 ∈ DR,

where A = 1 + i + ε + iε.

Proof. (i) Considering Definitions 2.4 and 4.1, and the addition operation of any two dual-complex
Lucas-Leonardo numbers, the result is obtained as follows:

LHS = (Rn + Rn+1) + i (Rn+1 + Rn+2) + ε (Rn+2 + Rn+3) + iε (Rn+3 + Rn+4)

= (Rn+2 − 1) + i (Rn+3 − 1) + ε (Rn+4 − 1) + iε (Rn+5 − 1)

= (Rn+2 + iRn+3 + εRn+4 + iεRn+5) − (1 + i + ε + iε)

= DCRn+2 − A.

(ii) DCRn−1 +DCRn+1 = (Rn−1 + Rn+1) + i (Rn + Rn+2) + ε (Rn+1 + Rn+3) + iε (Rn+2 + Rn+4) is written
from Definition 4.1 and the addition operation for them. Here, by using Eq (2.14) for m = 1, for
the right-hand side of the above equation,

RHS = (10Fn − 2) + i (10Fn+1 − 2) + ε (10Fn+2 − 2) + iε (10Fn+3 − 2)

= 10 (Fn + iFn+1 + εFn+2 + iεFn+3) − 2 (1 + i + ε + iε)

= 10DCFn − 2A

is obtained. So, the result follows.

AIMS Mathematics Volume 11, Issue 1, 915–942.



934

(iii) By applying the subtraction operation to any two dual-complex Lucas-Leonardo numbers and
considering Eq (2.15),

LHS = (Rn+2 − Rn−2) + i (Rn+3 − Rn−1) + ε (Rn+4 − Rn) + iε (Rn+5 − Rn+1)

= 10 (Fn + iFn+1 + εFn+2 + iεFn+3) = 10DCFn

is obtained.
(iv) Using Definition 4.1, applying the subtraction operation for dual-complex Lucas-Leonardo

numbers, and from Eq (2.15) in the case where m = 1, we get the conclusion similar to item (i).
(v) From Definition 4.1, the addition operation for dual-complex Lucas-Leonardo numbers, and

Eq (2.14), the result follows as:

DCRn+m + DCRn−m = (Rn+m + Rn−m) + i (Rn+m+1 + Rn−m+1)

+ ε (Rn+m+2 + Rn−m+2) + iε (Rn+m+3 + Rn−m+3)

=

{
2 (LnLm − 1) + 2i (Ln+1Lm − 1) + 2ε (Ln+2Lm − 1) + 2iε (Ln+3Lm − 1) , m = 2k,

(10FnFm − 2) + i (10Fn+1Fm − 2) + ε (10Fn+2Fm − 2) + iε (10Fn+3Fm − 2) , m = 2k + 1,

=

{
2LmDCLn − 2A, m = 2k,

10FmDCFn − 2A, m = 2k + 1.
(vi) This item can be proven similarly to item (v), considering the definition of dual-complex Lucas-

Leonardo numbers, the subtraction operation for them, and Eq (2.15).
(vii) By using the items (ii), (iv), and considering the difference of two squares, the conclusion can

be seen.
(viii) From Definition 4.1, the subtraction operation for them, coupled with conjugation of these

numbers, considering the multiplication scheme (Table 1) and Eq (2.4), we have

LHS = (Rn + iRn+1 + εRn+2 + iεRn+3 − iRn+1 − Rn+2 + iεRn+3 + εRn+4 − εRn+2 − iεRn+3)

− ε2
Rn+4 − iε2

Rn+5 − iεRn+3 + εRn+4 − iε2
Rn+5 − i2ε2

Rn+6

= Rn − Rn+2 + 2εRn+4 = − (Rn+1 + 1) + 2εRn+4.

For equivalent conclusions in terms of Fibonacci and Lucas numbers, the relations between
Lucas-Leonardo and Lucas and Fibonacci numbers can be used.

�

Now, we will prove some interrelations related to the dual-complex forms of Lucas-Leonardo,
Lucas, Fibonacci, and Leonardo numbers.

Theorem 4.7. Let DCRn, DCFn, and DCLn be the dual-complex Lucas-Leonardo, dual-complex
Fibonacci, and dual-complex Lucas numbers, respectively. Then for all n ∈ Z, the following
identities hold:

(i) DCRn = 2DCLn − A,
(ii) DCRn = 3DCFn+1 − DCFn−2 − A,

(iii) DCRn = 2DCFn−1 + 2DCFn+1 − A,
(iv) DCRn = 6DCFn−1 − 2DCFn−2 − A,
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(v) DCRn = 4DCFn+2 − 6DCFn − A,
(vi) DCRn = 2DCLen − DCLen−1,

(vii) DCRn = DCLn − DCFn + DCLen,

where A = 1 + i + ε + iε.

Proof. We will prove only a few options. For the first one,

DCRn = Rn + iRn+1 + εRn+2 + iεRn+3

= 2 (Ln + iLn+1 + εLn+2 + iεLn+3) − (1 + i + ε + iε)

= 2DCLn − A

is obtained from Eqs (2.4), (2.6), and (2.27).
For the second item, considering Definition 4.1 and the fact that Rn = 3Fn+1 − Fn−2 − 1, we have

DCRn = Rn + iRn+1 + εRn+2 + iεRn+3

= (3Fn+1 − Fn−2 − 1) + i (3Fn+2 − Fn−1 − 1)

+ ε (3Fn+3 − Fn − 1) + iε (3Fn+4 − Fn+1 − 1)

= 3 (Fn+1 + iFn+2 + εFn+3 + iεFn+4)

− (Fn−2 + iFn−1 + εFn + iεFn+1) − (1 + i + ε + iε)

= 3DCFn+1 − DCFn−2 − A.

To prove the sixth option, let us consider Eq (4.1) and the third option of Proposition 3.6. Then

DCRn = CRn + εCRn+2

= (2CLen −CLen−1) + ε (2CLen+2 −CLen+1)

= 2 (CLen + εCLen+2) − (CLen−1 + εCLen+1)

is written. Here, since an analogue of Eq (4.1) also holds for the dual-complex Leonardo numbers, the
result is evident.

Using Eq (4.1) and item (v) of Proposition 3.6, the seventh property can be established like the
sixth case.

The proofs of the third, fourth, and fifth items follow analogously to the first and second by applying
Definition 4.1 and the relationships between the Lucas-Leonardo and Fibonacci sequences. �

Now, some important identities given for well-known integer sequences will be discussed based
on the fundamental theorem, which is given above. First, d’Ocagne’s identity, which is an example
of determinantial identities for Lucas-Leonardo numbers, will be given with respect to dual-complex
numbers in the following theorem.

Theorem 4.8. (d’Ocagne Identity) Let DCRn and DCRm be two dual-complex Lucas-Leonardo
numbers. Then the d’Ocagne identity is given by

DCRmDCRn+1 − DCRm+1DCRn = (−1)n [(Rm−n+1 + Rm−n−1 + 2) (−4 − 2i − 12ε − 6iε)]
+ A (DCRm−1 − DCRn−1) ,

where m > n, n ≥ 1.
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Proof. Considering Theorem 4.7, after some algebra, the following equation is obtained:

LHS = (2DCLm − A) (2DCLn+1 − A) − (2DCLm+1 − A) (2DCLn − A)

= 4 (DCLmDCLn+1 − DCLm+1DCLn) + A (2DCLm+1 + 2DCLn − 2DCLn+1 − 2DCLm) .

Here, by considering d’Ocagne’s identity for dual-complex Lucas-Leonardo numbers given in
Eq (2.29), we get

LHS = 4
[(

5 (−1)n+1 Fm−n

)
(2 + i + 6ε + 3iε)

]
+ A [2DCLm+1 + 2DCLn − 2DCLn+1 − 2DCLm] .

Then, using Fact 2.12 and Theorem 4.7,

LHS = 4
[(

(−1)n+1 (Lm−n+1 + Lm−n−1)
)

(2 + i + 6ε + 3iε)
]

+ A [DCRm+1 + DCRn − DCRn+1 − DCRm]

is written. Taking into account Eq (2.6) and Lemma 4.2, the following equation is obtained in the
last stage:

LHS = 4
[(

(−1)n+1
(
Rm−n+1 + Rm−n−1 + 2

2

))
(2 + i + 6ε + 3iε)

]
+ A [DCRm + DCRm−1 + A + DCRn − DCRn − DCRn−1 − A − DCRm]

= (−1)n [(Rm−n+1 + Rm−n−1 + 2) (−4 − 2i − 12ε − 6iε)] + A (DCRm−1 − DCRn−1) .

So, the result follows. �

Relation 2.9 has been presented for nega-Lucas-Leonardo numbers, i.e., the Lucas-Leonardo
numbers with negative indices. Similarly, the nega-dual-complex Lucas-Leonardo numbers, i.e., the
complex Lucas-Leonardo numbers with negative indices, are given with the next theorem.

Theorem 4.9. The negative subscript of the dual-complex Lucas-Leonardo numbers is given
as follows:

DCR−n = (−1)n [DCRn − (Rn+2 − Rn−2) (i + ε + 2iε) + A] − A,

where Rn is the nth Lucas-Leonardo number.

Proof. Considering item (i) of Theorem 4.7 and Eq (2.30), we have

DCR−n = 2DCL−n − A

= 2
[
(−1)nDCLn − 5Fn (−1)n (i + ε + 2iε)

]
− A

= 2 [(−1)n (DCLn − 5Fn (i + ε + 2iε))] − A.

Here, using additionally the Facts 2.6 and 2.13, the result follows as

DCR−n = 2(−1)n

[
DCRn + A

2
− (Ln+2 − Ln−2) (i + ε + 2iε)

]
− A

= 2(−1)n

[
DCRn + A − (Rn+2 − Rn−2 + 1 − 1) (i + ε + 2iε)

2

]
− A

= (−1)n [DCRn − (Rn+2 − Rn−2) (i + ε + 2iε) + A] − A.

�
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On the other hand, an equivalent equation for nega-dual-complex Lucas-Leonardo numbers can be
presented with the following equation by using Eq (2.15) in the case where m = 2:

DCR−n = (−1)n [DCRn − 10Fn (i + ε + 2iε) + A] − A.

Now, Binet’s formula, Catalan’s identity, and Cassini’s identity will be proven for dual-complex
Lucas-Leonardo numbers.

Theorem 4.10. (Binet’s Formula) For n ≥ 1, Binet’s formula for the dual-complex Lucas-Leonardo
numbers is stated as follows:

DCRn = 2ααn + 2ββn − A,

where α = 1+
√

5
2 , β = 1−

√
5

2 , α = 1 + αi + α2ε + α3iε, and β = 1 + βi + β2ε + β3iε.

Proof. From item (i) of Theorem 4.7 and considering Binet’s formula for dual-complex Lucas numbers
given with Eq (2.28),

DCRn = 2DCLn − A = 2
(
ααn + ββn

)
− A

is obtained. �

Theorem 4.11. (Catalan’s Identity) LetDCRn be the nth dual-complex Lucas-Leonardo number. Then,
for k ≥ 1 and n ≥ k, the Catalan identity is as follows:

DCR2
n − DCRn+kDCRn−k =

[
16 (−1)n

− (−1)n−k (Rk + 1)2
]

(2 + i + 6ε + 3iε)

+ A (DCRn+k + DCRn−k − 2DCRn) ,

where Rn is the nth Lucas-Leonardo number.

Proof. If item (i) of Theorem 4.7 is used, we get the following result for the left-hand side of
the equation:

LHS = (2DCLn − A)2
− (2DCLn+k − A) (2DCLn−k − A)

= 4
(
DCL2

n − DCLn+kDCLn−k

)
+ A (2DCLn+k + 2DCLn−k − 4DCLn) .

Here,

LHS = 4
[
5 (−1)n−k+1 F2

k (2 + i + 6ε + 3iε)
]

+ A [(2DCLn+k − A) + (2DCLn−k − A) − 2 (2DCLn − A)]

= 4
[
(−1)n−k+1

(
L2

k − 4 (−1)k
)

(2 + i + 6ε + 3iε)
]

+ A (DCRn+k + DCRn−k − 2DCRn)

= 4
[
(−1)n−k+1 L2

k − 16 (−1)n+1
]

(2 + i + 6ε + 3iε) + A (DCRn+k + DCRn−k − 2DCRn)

is written using [15, Theorem 5.8] and the Catalan identity given in Eq (2.31). After this step, by
considering Fact 2.6 with some algebra, we have

LHS = 4
(−1)n−k+1

(
Rk + 1

2

)2

− 16 (−1)n+1

 (2 + i + 6ε + 3iε) + A (DCRn+k + DCRn−k − 2DCRn)

=
[
16 (−1)n

− (−1)n−k (Rk + 1)2
]

(2 + i + 6ε + 3iε) + A (DCRn+k + DCRn−k − 2DCRn) .

So the result follows. �
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On the other hand, by taking k = 1 in Catalan’s identity, the following corollary is obtained for
dual-complex Lucas-Leonardo numbers.

Corollary 4.12. (Cassini’s Identity) Let DCRn be a dual-complex Lucas-Leonardo number. Then,
for n ≥ 1, the following identity holds:

DCR2
n − DCRn+1DCRn−1 = 20 (−1)n (2 + i + 6ε + 3iε) + A (DCRn−1 − DCRn−2) .

Now, we will give the generating function for dual-complex Lucas-Leonardo numbers. From the
definition of the generating function of a sequence, the generating associated function gDCR (t) is

defined by gDCR (t) =
∞∑

n=0
DCRntn.

Theorem 4.13. (Generating Function) The generating function for dual-complex Lucas-Leonardo
numbers is given by

gDCR (t) =
DCR0 + t (−5 + 3i − 3ε − iε) + t2 (3 − 3i − ε − 5iε)

1 − 2t + t3 ,

where 1 − 2t + t3 , 0.

Proof. By using the definition of a generating function and Lemma 4.3, the result follows as:

gDCR (t) =

∞∑
n=0

DCRntn = DCR0t0 + DCR1t1 + DCR2t2 +

∞∑
n=3

DCRntn

= (3 + i + 5ε + 7iε) + (1 + 5i + 7ε + 13iε) t + (5 + 7i + 13ε + 21iε) t2

+

∞∑
n=3

(2DCRn−1 − DCRn−3) tn

= (3 + i + 5ε + 7iε) + (1 + 5i + 7ε + 13iε) t + (5 + 7i + 13ε + 21iε) t2

+ 2t
∞∑

n=3

DCRn−1tn−1 − t3
∞∑

n=3

DCRn−3tn−3

= (3 + i + 5ε + 7iε) + (1 + 5i + 7ε + 13iε) t + (5 + 7i + 13ε + 21iε) t2

+ 2t

 ∞∑
n=0

DCRntn − DCR1t − DCR0

 − t3
∞∑

n=0

DCRntn

= (3 + i + 5ε + 7iε) + (1 + 5i + 7ε + 13iε) t + (5 + 7i + 13ε + 21iε) t2

+ 2t

 ∞∑
n=0

DCRntn

 − 2t2 (1 + 5i + 7ε + 13iε) − 2t (3 + i + 5ε + 7iε) − t3
∞∑

n=0

DCRntn

⇒ gDCR (t) = (3 + i + 5ε + 7iε) + (−5 + 3i − 3ε − iε) t

+ (3 − 3i − ε − 5iε) t2 +
(
2t − t3

)
gDCR (t)

⇒ gDCR (t) =
DCR0 + t (−5 + 3i − 3ε − iε) + t2 (3 − 3i − ε − 5iε)

1 − 2t + t3 .

�
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Now, we will present the summation formulas for dual-complex Lucas-Leonardo numbers.

Theorem 4.14. Let DCRn be a dual-complex Lucas-Leonardo number. Then the following
identities hold:

(i)
n∑

k=0
DCRk = DCRn+2 − (n + 2) A − (4i + 6ε + 12iε) ,

(ii)
n∑

k=0
DCR2k = DCR2n+1 − nA − (4i + 2ε + 6iε − 2) ,

(iii)
n∑

k=0
DCR2k+1 = DCR2n+2 − (n + 2) A − (2 + 4ε + 6iε) .

Proof. These identities can be seen by using the definition of dual-complex Lucas-Leonardo numbers
and summation formulas for Lucas-Leonardo numbers. We will only prove item (ii). So,

n∑
k=0

DCR2k =

n∑
k=0

(R2k + iR2k+1 + εR2k+2 + iεR2k+3)

=

n∑
k=0

R2k + i
n∑

k=0

R2k+1 + ε

n∑
k=0

R2k+2 + iε
n∑

k=0

R2k+3

= [R2n+1 − (n − 2)] + i [R2n+2 − (n + 2) − 2] + ε [R2n+3 − (n + 2)] + iε [R2n+4 − (n + 6)]
= [R2n+1 + iR2n+2 + εR2n+3 + iεR2n+4] − n (1 + i + ε + iε) − (4i + 2ε + 6iε − 2)

= DCR2n+1 − nA − (−2 + 4i + 2ε + 6iε) .

�

Theorem 4.15. Let DCRn, DCFn, DCLn, and DCLen be dual-complex Lucas-Leonardo, dual-
complex Fibonacci, dual-complex Lucas, and dual-complex Leonardo numbers, respectively. Then,
the following identities hold:

(i)
n∑

k=0
(DCRk + DCFk) = DCRn+2 + DCFn+2 − (n + 3) A − (4i + 7ε + 14iε) ,

(ii)
n∑

k=0
(DCRk + DCLk) = DCRn+2 + DCLn+2 − (n + 3) A − (6i + 9ε + 18iε) ,

(iii)
n∑

k=0
(DCRk + DCLk) = 3DCRn+2+1

2 − (n + 3) A − (6i + 9ε + 18iε) ,

(iv)
n∑

k=0
(DCRk + DCLek) = DCRn+2 + DCLen+2 − (2n + 4) A − (6i + 10ε + 20iε) .

Proof. To prove the first item, we will use item (i) of Theorem 4.14, Eq (2.32) in the case where k = 1,
and the recurrence relation of dual-complex Fibonacci numbers. Then,

n∑
k=0

(DCRk + DCFk) =

n∑
k=0

DCRk +

n∑
k=0

DCFk

= [DCRn+2 − (n + 2) A − (4i + 6ε + 12iε)] + [DCFn+1 + DCFn − DCF1 − DCF0]
= DCRn+2 + DCFn+2 − (n + 3) A − (4i + 7ε + 14iε) .

The other conclusions can be seen similarly by using Theorem 4.14 and Eqs (2.33) and (2.34). �
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5. Conclusions

This study extends the existing literature by constructing complex and dual-complex Lucas-
Leonardo numbers, building upon the established definitions of complex numbers, dual-complex
numbers, and Lucas-Leonardo sequences. Accordingly, the paper presents several significant results
concerning these numerical structures. Beyond theoretical interest, these systems offer robust modeling
tools for diverse applied sciences, including geometry, quantum physics, applied mathematics,
quantum mechanics, Lie groups, kinematics, and differential equations.

Specifically, in robotics and mechanics, dual-complex Lucas-Leonardo numbers provide a discrete
parameterization for rigid body motions within the framework of screw theory [22]. In this context, the
Rn sequence can represent incremental changes in a robot arm’s joint motion; for instance, the specific
rotation or extension at each n-th step can be encoded using the sequence’s coefficients, facilitating
automatic differential kinematics for serial manipulators through dual-number algebras [23].

Furthermore, in the study of quasicrystals, these sequences can be utilized to model atomic
arrangements in non-periodic but long-range ordered structures. The recursive properties of Lucas-
Leonardo numbers assist in characterizing hidden dimensions and the multifractal nature found in
such Fibonacci-type crystalline systems [24]. From a geometrical perspective, the dual-complex
framework serves as a compact and efficient algebraic tool for modeling 2D rigid transformations
within the S E(2) group [25], describing discrete spiral growth patterns in complex planes. Moreover,
the derived generating functions provide analytical solutions for non-homogeneous linear differential
and difference equations in dynamical systems and serve as transfer functions for designing recursive
digital filters in signal processing.

As another significant application, the dual-complex Lucas-Leonardo framework provides a
compact and efficient algebraic tool for modeling rigid body motions within the S E(2) group.
Unlike standard homogeneous sequences, the non-homogeneous recurrence of Lucas-Leonardo
numbers—characterized by their constant shift factor—offers a unique advantage in analyzing
trajectories subject to fixed external bias or mechanical offsets. The integration of these sequences
into dual-algebraic frameworks supports advanced programming with dual numbers for mechanism
design, enabling the systematic synthesis of complex motion trajectories [26]. The derived Binet
formulas and algebraic identities, such as Cassini’s and d’Ocagne’s, enable the direct calculation of
positional estimation and geometric stability in robotic systems. Consequently, this framework reduces
computational overhead by bypassing heavy matrix transformations, providing a robust analytical
bridge between discrete number theory and practical kinematic analysis.

In conclusion, the integration of Lucas-Leonardo sequences with complex and dual-complex
algebras provides a versatile mathematical toolkit, transforming pure number theory into a practical
modeling framework for non-homogeneous physical systems. This work lays a comprehensive
mathematical foundation for implementing Lucas-Leonardo variants in computational engineering and
materials science.
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