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Abstract: This study examines the characteristics of the Maxwell model under the influence of
magnetohydrodynamics (MHD). Due to its inherent viscosity and elasticity, this model has significant
applications in both industrial and biological contexts. The core innovation of this work lies in the
development and application of a soft computational approach, specifically, the design and
implementation of layered supervised recurrent neural networks optimized via the
Levenberg—Marquardt (LSRNNs-LMO) technique, to predict the thermodynamic properties of the
Maxwell model over a sheet, with particular focus on melting heat and zero mass flux boundary
conditions, as inspired by the Cattaneo-Christov heat flux formulation and Lorentz force effects
(TMS-MHZCL) model. The LSRNNs-LMO model is trained using data generated through a reliable
numerical scheme. Simulation outcomes from the proposed LSRNNs-LMO method show excellent
agreement with numerical results across multiple test cases, exhibiting minimal errors and high
robustness. The accuracy of the proposed technique is thoroughly validated using error histograms,
optimization control curves (mean squared error), root-mean-square error, autocorrelation analysis,
regression evaluation, and the Nash—Sutcliffe efficiency (NSE) metric for the TMS-MHZCL model.
These assessments provide strong evidence of the predictive validity and precision of the developed
LSRNNs-LMO approach.
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Nomenclature

fs Solid temperature (u,v) Velocity parameters
13 Thermal conductivity f m Melting temperature
éw Free stream concentration és Heat capacity
0 Temperature Yo, Fluid density

1 Relaxation time (x,7) Cartesian coordinate

éo Magnetic field 74 Stream function

Aw Free stream temperature bB Mass diffusion

U Velocity of the sheet f Dimensionless stream function
ﬁA Fluid parameter 1) Dimensionless concentration
O Viscosity (kinematic) yoi Viscosity (dynamic)
/{1 Latent heat é Concentration
M Hartmann number a Positive constant
o Electrical conductivity éw Wall Concentration
n Similarity variable Sc Schmidt number
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1. Introduction

Computational investigation has progressed across various phases, transitioning from scientific
methods to model-based cognitive and mathematical analytical systems. We currently possess an
overwhelming amount of data from many methodologies. The data-driven fourth approach has
established novel methods and strategies to address the deficiencies of its conventional predecessors
by formulating precise, discovery-oriented data mining techniques for extensive datasets. Current
developments in computing technology, artificial intelligence (Al), data mining, and mathematical
concepts have enhanced several traditional methods used in scientific advancements, including
computer simulations, computational experimentation, and mathematical modeling.

In recent years, advances in computational methods for fluid studies have emerged from the
integration of large datasets obtained from dynamic modeling, laboratory experiments, and field data.
Numerous domains within computing, mathematics, and science are poised to standardize Al and its
associated discipline, machine learning, by providing diverse methodologies for transforming data into
knowledge through readily implementable software solutions. Numerous researchers have studied
multiple fluid models using Al schemes. Thus, recurrent neural networks (RNNs) have diverse
applications across numerous engineering and industrial domains [1-3].

Rapid advances in computing technology have led to greater computational power and speed. Al
is increasingly influencing everyday life. Consequently, contemporary researchers and engineers are
focusing more closely on Al. Deep neural networks are a practical approach to addressing poorly
structured or unstructured work outcomes and are used worldwide. A powerful Al is predicated on the
hypothesis that machines can embody prospective human conceptions through their capacity for
reasoning. As a result, strong Al asserts that, in the near future, we will be surrounded by computers
that exhibit human-like behavior and possess cognitive capabilities comparable to those of humans.
This means these computers will be able to reason, think, and perform tasks that humans can. The
debate over the feasibility of developing advanced artificial intelligence persists, despite current
research being far from that goal.

Various forms of neural networks (NNs) can be used for distinct data formats, necessitating a
selection based on the application. Long short-term memory (LSTM) models can learn and exploit
temporal dependencies in the data. Furthermore, LSTMs leverage their internal memory, ensuring that
forecasts depend on the most recent state of the input sequence rather than solely on the immediately
supplied input. However, LSTM cannot be used in the proposed model because our simulation data
lacks the long-range spatial information for which it is designed. Machine learning approaches have a
notable ability to handle complex data trends, facilitating the efficient retrieval of relevant data and
thereby accelerating the simulation process. Diverse computational and analytical techniques exist for
addressing laminar boundary-layer flow problems; yet, the use of machine learning has significantly
improved the examination and forecasting of boundary-layer flow by incorporating data-driven
methods within the framework of fluid dynamics. That is why numerous investigations have focused
on applying machine learning techniques to boundary-layer flow research.

Recently, RNNs have gained prominence as effective models for classification, pattern
recognition, and forecasting across various fields. A large number of scientists and individuals are
involved in diverse facets of the Al field, offering novel solutions. RNNs are proficient, productive,
and effective at delivering high capacity for addressing complex problems across various domains.
RNNs are skilled in addressing challenges across multiple sectors, including agriculture, healthcare,
education, banking, administration, security, engineering, commodities trading, and the arts.
Encompassing issues in manufacturing, transportation, cybersecurity, finance, insurance, property
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management, advertisement, power, and obstacles that exceed the computing capacity of established
methodologies and conventional mathematics. The combination of RNNs with stochastic numerical
solvers yields an efficient tool for addressing numerous complex problems, particularly those
associated with differential equations. Recent developments in addressing flow problems through the
integration of multiple domains and methodologies have been investigated in [4—6].

Fluid properties are crucial in numerous applications, including industrial processes, medical
applications, polymer manufacturing, lubrication, and natural phenomena such as lava flows and blood
circulation. Nanotechnology is increasingly significant across industries due to its numerous
applications in the manufacture of power-control devices, automobiles, and healthcare products.
Specifically, cooling mechanisms in microelectronic devices, hybrid fuel cells, solid-state lighting,
high-powered engines, and biopharmaceutical processes. Numerous sectors require the rapid
implementation of efficient cooling methods, owing to rapid advances in semiconductors in electronic
and power transmission systems, as well as the need to dissipate heat from sources such as automotive
engines. In several industrial applications, cooling is a paramount necessity and a challenging
technological endeavor for engineers, due to the reliability and efficiency requirements of the diverse
range of items that rely on it. The technology industry continues to face challenges in developing
energy-efficient heat-transfer fluids for refrigeration because of their inherently low thermal
conductivity. To address this issue and achieve improved thermal properties compared with
conventional fluids such as oil, methyl ether, and water, nanoliquids are fabricated by incorporating
nanoscale metallic particles to enhance the thermal and energy transport properties of energy-transfer
fluids. When nanoscale particles are firmly maintained and uniformly dispersed in base liquids, their
thermal characteristics are superior to those of conventional fluids. These liquids serve as advanced
coolants, facilitating effective heat dissipation and mitigating thermal accumulation. Investigations
into the application perspective, multiple domains, and parametric effects have been reported in the
studies [7-9].

Many scientists and analysts have been motivated to examine the MHD flow of viscous fluids
over a stretched surface due to their appealing thermo-physical properties, heat-transfer capabilities,
and significant practical applications in everyday life. Numerous astronomical and geophysical
phenomena have been investigated utilizing MHD. MHD examines the motion of a conducting fluid in
a magnetic field, which governs its heating. Applications of MHD may include controlling nuclear
power plants, MHD power sources, and metal sheet cooling, among others [10,11]. MHD has several
applications in the industrial, medicinal, and petroleum industries, attracting the attention of
researchers [12—14]. This discovery significantly enhanced our understanding of Maxwell fluid
behavior in various situations.

The existing literature indicates that Al-driven application of a tri-layered RNN scheme has not
yet been employed in the TMS-MHZCL model. The authors of the proposed study employed an
LSRNN-LMO strategy to investigate the TMS-MHZCL model, yielding a more effective solution.
This LSRNNs-LMO technique is unique and innovative, providing flexibility and efficient data
processing, thereby enabling advances in tackling complex challenges in engineering and related
domains. This enhances computational accuracy and allows the identification of viable solutions to
industrial and technological challenges. The statistical analysis underscores the effectiveness of the
LSRNN-LMO technique in addressing complex, nonlinear phenomena in fluid dynamics. The
accuracy and reliability of the TMS-MHZCL mathematical model’s outputs, together with the
concept’s clarity, robustness, seamless functionality, and adaptability, are essential characteristics.
The research reveals that key approaches of artificial intelligence are used across numerous scientific
and technical sectors. The unique features of the provided study are expressed as follows:
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e The TMS-MHZCL model has been investigated using an advanced machine learning strategy
designated layered supervised recurrent neural networks optimized by the Levenberg—Marquardt
networks (LSRNNs-LMO) technique.

e The TMS-MHZCL model solution is examined through comprehensive training, testing, and
validation processes.

e A sophisticated, intelligent computational approach, specifically the LSRNNs-LMO technique,
has been employed to attain enhanced accuracy in the TMS-MHZCL model.

e MATLAB is utilized to generate the synthetic dataset for the LSRNNs-LMO approach by using
the Lobatto-IIIA numerical method. The generated dataset has been used for the LSRNNs-LMO
technique, offering a predicted result that is compared with the conventional solution. The proposed
technique yields results consistent with the observed numerical outcomes and exhibits minimal error.
e The level of accuracy of the developed LSRNNs-LMO technique is meticulously verified through
the examination of the distribution of error histograms, mean squared error, root-mean-square error,
autocorrelation analysis, and regression analysis.

The remainder of the article is structured as follows: Section 2 presents the Mathematical
framework of the TMS-MHZCL model and describes the flow problem; Section 3 addresses solution
methodologies for the TMS-MHZCL model, emphasizing the numerical LSRNN-LMO strategy used
to solve the governing equations; Section 4 presents the research findings and evaluation of the
LSRNNs-LMO strategy, examining the impact of dimensionless factors on various flow parameters;
and Section 5 succinctly summarizes the investigation, highlighting significant findings and offering
closing observations on the system’s effectiveness.

2. Mathematical modeling

We considered the thermodynamic properties of the Maxwell model, focusing on MHD and the
Cattaneo—Christov model. The configuration is considered for a sheet in Cartesian coordinates. This
involves a Maxwell fluid flowing and transferring energy within a continuous boundary layer toward a
stretched horizontal surface while steadily melting into a uniformly heated liquid of identical nature, as

A

illustrated in Figure 1. The velocity of the stretching surface is considered as # =U , = ax, where a

is a positive constant parameter associated with the stretching rate of the sheet. The surface
temperature is expressed as T,,, whereas the free stream temperature is defined as T.,, under the
condition T,, < T,. It is assumed that the fluid above the sheet possesses weak electrical conductivity
and is affected by a uniform transverse MHD field of strength B,. The coordinate measured along the
sheet’s stretching direction is denoted by X. Additional presumptions about the fluidic configuration
are as follows:

e The magnetic field is orthogonal to the surface.

e The sheet is extended homogeneously.

e The fluid flow is laminar.

e The fluid is incompressible.

e The model is appropriate for streamlining flow.

e It does not apply to a turbulent flow region.
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Figure 1. Problem geometry and flow.
Equation of continuity:

i+, =0, (M

X y

where the variables #_ and v, represent the derivatives of the velocity parameters @ and v with

respect tothe x and p directions, respectively. The momentum equation is defined as:

A AN
A A A A AT A2 A AR A2 A _,UA O-BO A
uux+vuy+l[u U, +2vu,, +v uyy]—zuyy— 5 u, 2)

where relaxation time is denoted byﬂ: , fluid density by o, kinematic viscosity by 0, electrical
conductivity by &, and magnetic field by B, .

A non-dimensional equation is obtained, as proposed by Yacob et al. [15], using the given
similarity transformations and dimensionless measures.

A

i = axf'(&), §=&[§j . v==Wafe,

5 3)
~ D2
ﬁ:dio M:G’foa l/}:_\/%f(é:))’e

The momentum equation describes fluid motion in Maxwell fluids, including the MHD effect, on
a stretched sheet. It also accounts for magnetic field forces, viscosity, and elasticity. This formula is
essential for comprehending how the stretched sheet changes fluid distribution and velocity.

FEOLE) -M(E) - 7 (E)+Mf(E)+

. 4
B[-F O™+ 2SO+ (&) =0. @
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In this case, f represents a non-dimensional stream function, and the prlme notation represents
differentiation with respect to ¢, M represents the magnetic field, and B signifies the Deborah
number. References [16,17] provide details on the application of dimensional boundary conditions.

A

u=U_ =ax at p=0,
g (5)
u—0 at y— oo.
So, the non-dimensional boundary conditions are:
f=1a &£=0,
(6)

f'=0 at &—oo.

The energy equations illustrate the transmission and distribution of thermal energy inside a fluidic
system, which is crucial for fluid movement analysis. The Maxwell fluid, characterized by its
distinctive viscoelastic properties, is described by the energy equation, which makes it particularly
important. Usually, the equation includes parameters for heat sources or sinks, convection, and heat
transport.

A

a(f )+ 5T =L (7). ™)
pe

P

Using non-dimensional quantities and similarity transformations, we will get a dimensionless
equation:

9:15_7:3 p=—af(&), i=aif(£). Pr=

0

(8)

Q>|<>

3

where a is the thermal diffusivity, 6 represents the temperature profile, Pr is the dimensionless
Prandtl number, and 7T is the temperature.

The internal thermal energy balance of the fluid is accounted for in the energy equation for the
motion of a Maxwell fluid. It illustrates how heat is generated, transferred, and released as a fluid
moves and interacts with its surrounding environment. The equation also accounts for the Maxwell
fluid’s viscoelastic nature, which has both elastic and viscous characteristics.

0"(&)+ Prf(£)0'(5) =0. ©)

Subject to the following boundary conditions:

T=T at $=0,
A (10)
T—>T, at y—>oo.
So, the non-dimensional boundary conditions are:
=0 at &£=0,
y (11)

0—>1 at & — .
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The continuity equation, often called the mass conservation equation, is a fundamental principle
of fluid mechanics and a mathematical expression of the law of conservation of mass. It describes how
the fluid’s density remains constant as it moves across a stretched sheet, thereby preserving mass
conservation within the system.

4C. +9C =D,C, , (12)

where D, stands for mass diffusion and C for concentration. Using the non-dimensional values and

similarity transformations given below, we will derive a dimensionless equation.

p=—Ce se=L, (13)
Cw_Coo DB

where Sc is the dimensionless Schmidt number, and ¢ is the dimensionless concentration profile.
P"(&)=Scf(&e'($) =0. (14)

The boundary conditions for zero mass flux are in effect when there is no transfer of mass across
a barrier. The condition states that, if the total mass entering the border equals the mass leaving the
border, the net mass transfer is zero, which can be expressed as follows.
The boundary conditions can be modeled as

C=0 at §=0,
" (15)
C—>C, at y—>oo.
After applying similarity transformations, we are left with:
=0 at =0,
@ S (16)

o' > at &— oo,

3. Solution methodology: employ Al-driven, innovative computational techniques that
integrate the LSRNNs-LMO strategy

The layered supervised recurrent neural networks optimized by the Levenberg-Marquardt method
(LSRNN-LMO) concept has been developed as a novel approach for simulating and interpreting
complex nonlinear fluid dynamics. The primary aim of this research is to optimize and simulate a
hysteresis model of actuators using layered supervised recurrent neural networks (LSRNNSs) in
combination with local search Levenberg-Marquardt (LM) optimization.

The mathematical framework of recurrent neural networks is a nonlinear state-space model of the
inherent dynamic behaviors. This characteristic of RNNs makes them well-suited to handling
nonlinear and unstable flows. The proposed LSRNN-LMO technique captures the spatial and temporal
aspects of the unstable fluid environment independently. The mathematical architecture of a nonlinear
state-space standard recurrent neural network is represented as follows:

ly = S(lt—lrlt +b),
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lt = ReLU(Wlllt_l + W”It + b),
Y, = Wyl,. (17)

Let t stand for the time interval, [, signify the currently visible hidden state, [;_; indicate the
previous hidden state, I; indicate the most recent input vector at time step t, s refer to the analogous
(recurring) operation for every input, b represents the bias term during sequential computation of data,
W), serve as the weight that existed at the prior hidden state, W,,, signify the weight at the currently
visible input state, and Y; signify the output.

The dimension of the vector from hidden to hidden is Wj; € R™", and W,; € R™™ is the input
dimension of the weight vector. The bias component is b € R™. The proposed technique employs a
nonlinear activation function known as rectified linear unit (ReLU). A linear transformation is applied
on I; to determine the output Y; at each time step.

We have presented supervised deep-layered recurrent neural networks. This network can learn
more complex patterns using deep RNNs, which enhance the fundamental architecture by stacking
multiple recurrent layers. To improve the model’s ability to accurately represent topological
characteristics, the hidden states of each layer are passed to the next layer. The following is the most
recent update of the hidden states at layer [ and time step t for a deep LSRNN-LMO with [ layers:

lt(l) — RBLU(WU(Dlt_l(l) + Vl/”(l)lt(l—l) + bl(l))’ (18)

© =,

where [; denotes the input of the first layer. The procedure for computing the output at the

highest level is identical to that of fundamental RNNs:
Y, = ReLU(W; I,V + b, ). (19)

Compared with shallow RNNs, deep RNNs can capture long-range dependencies and model
complex patterns. We employed the ReLU nonlinear activation function for computational
simulations of the (TMS-MHZCL) model. The network’s ability to learn and comprehend sequences
affects how it operates on specific tasks to achieve desired outcomes. The system (19) exemplifies a
prototype of an LSRNN-LMO technique, featuring a feedback mechanism that demonstrates its
capacity to learn from both contemporary and historical data.

RNNs are crucial for tasks that require modeling sequential data. RNNs are adept at processing
large datasets with recurrent dependencies, leveraging sequential information from previous units. The
RNN employs the number of initial function elements at the corresponding time step. The hidden
phase is an inner status present in each of these elements. The hidden memory represents data from
prior periods that the unit previously handled and stored at that specific time step. This initial state data
is updated often at each time step, so it reflects the most current intelligence.

Multi-layer neural networks have been applied in learning frameworks because they can address
nonlinear and complex decision-making problems. The design of the LSRNN-LMO strategy, which
integrates 10 neurons in each hidden layer with a ReLU activation function, is illustrated in Figure
2(a). The TMS-MHZCL model’s sequential dataset is generated using 100 input grids in the range [0,
1] for the LSRNN-LMO technique. Figure 2(b) illustrates the sequential workflow of the proposed
LSRNN-LMO approach. The LSRNN-LMO output is generated using the MATLAB framework for
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a triple-layer recurrent neural network with LM optimization with backpropagation, as also described
in Figure 2(b).

Hidden 1 Hidden 2 Hidden 3

(a)

( Flow Geometry )

Mathematical Formulation: 2 \
Modeling the PDEs for the f"f —W'—f' +W"fﬂ A

thermodynamic properties of the

Maxwell model on a sheet, with [— f 2 f "y 2 ﬁ ! f "] =+ f "=0

particular emphasis on melting heat and
zero mass flux at the boundary, as 0 "+ f Pr9 '=0

inspired by the Cattaneo—Christov heat "

flux and Lorentz forces (TMS- Q- S(:'f¢ =0 J

MHZCL) model.

Variable declaration

Evaluate
solution using
dval function

4 h

Domain
Discretization

Initialization . )
Reference dataset creation using

Lobatto-IITA:
The Lobatto IIIA numerical technique is
used to compute the reference dataset for
the desired BNN-ALM. The input spans
from 0 to 10 with a stepsize of 0.1 for
cach of the four scenarios of the
LSRNNs-LMO of TMS-MHZCL.

System of 1%- order
\. J

Boundary
conditions

Call Lobatto-lIIA

Numerical Solution

—— —

Implementation of
LSRNNs-LMO:

With the Rectified Linear
Unit (RELU) acting as an
activation function,
LSRNNs-LMO is trained on
the reference dataset for
TMS-MHZCL, which
comprises 80% of the
dataset for training, 10%
for validation, and 10%
for testing.

Inpua(t

LSRNNs-LMO Evaluation:
Performance plots, error
histograms, absolute error
plots, time series response
plots, and other visual and
statistical outputs are used to
evaluate LSRNNs-LMO

performance.
Comparison plot Error histogram

(b)

Figure 2. (a) Architecture of layered supervised recurrent neural networks; (b) Flow chart
topology of the layered supervised recurrent neural networks technique.
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An essential element in neural network development is selecting the activation function for
neurons across multiple layers. Activation functions introduce nonlinearity into the mathematical
representation of neural networks, enabling the network to gradually acquire improved feature
representations. A variety of activation functions have been used in the scientific literature.
Nonetheless, Tanh, linear, Sigmoid, and ReLU are among the most commonly used activation
functions, typically selected empirically during network construction rather than through a systematic,
data-driven approach. In this study, we employed the ReLU activation function. The ReLLU activation
function is defined as: f(§) = max (0, §). The ReLU activation function enables the network to learn
intricate relationships in the data, resulting in reliable performance and accurate predictions when
addressing complex problems. Figures 3—11 illustrate the remarkable efficacy of ReLU activation.

Different neural network architectures may operate on various types of data; therefore, it’s
essential to choose the right one for your needs. LSTMs can learn and exploit temporal dependencies
in the data. LSTMs successfully capture long-term dependencies in sequential data, making them
suitable for tasks such as speech recognition, language translation, and time-series forecasting.
Moreover, LSTMs use their internal memory, ensuring that predictions rely on the most recent context
in the input sequence rather than solely on the immediately preceding input. Unfortunately, LSTM
cannot be applied to the TMS-MHZCL model due to constraints in our simulation data, as LSTM is
designed for analyzing large-scale geographic data. Therefore, we implemented the SLSRNN-LMO
methodology to solve the TMS-MHZCL model.

We employed 30 neurons per recurrent layer, with ReLU activation, to investigate the behavior of
thermodynamic properties. Training is conducted utilizing the Adam optimizer with a learning rate of
0.001, a batch size of 64, and 1000 training epochs. The results were obtained using MATLAB
Version R2018b on a PC. The obtained numerical results closely align with the reference outcomes.
Computing simulation of the TMS-MHZCL model utilizing stochastic deep-layered recurrent neural
networks (LSRNN-LMO) has not yet been implemented. The current research indicates that the
TMS-MHZCL model has not been examined using the SLSRNN-LMO methodology. The uniqueness
of this endeavor is evidenced by the absence of this advanced technique in the current scientific
literature. This article introduces a novel method that integrates recent advances in SLSRNN-LMO
into the TMS-MHZCL model. It can be used to address modeling issues in computational fluid
mechanics applications, thereby improving the accuracy of flow and heat-transport predictions.

We employed a triple-layer recurrent neural network, utilizing LM optimization with
backpropagation, as an innovative method for simulating and analyzing the complex, nonlinear
dynamics of the TMS-MHZCL model. Investigations have revealed that deeper RNN architectures
improve sequence modeling by capturing increasingly abstract representations across layers. This
configuration demonstrated an effective balance between learning performance and computational
efficiency in our assessments.

This study also describes the comprehensive approach employed to achieve its scientific
objectives, including details on data collection and processing, the architectural design of
LSRNN-LMO, optimization methodologies, network training, the experimental setup, and outcome
evaluation metrics.
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3.1 Metrics evaluation

This section describes the mathematical framework for the evaluation measurements that validate
the accuracy of the layered supervised recurrent neural networks optimized by the
Levenberg-Marquardt method (LSRNN-LMO), designed to address the thermodynamic properties of
the Maxwell model on a sheet, with a specific focus on melting heat and zero mass flux at the boundary
and relying inspiration from the Cattaneo-Christov heat flux and Lorentz forces (TMS-MHZCL)
model. We rigorously analyze the efficacy of the proposed strategy using a range of statistical
indicators. Convergence-based visual learning curves illustrate the training process and exhibit the
model’s ability to learn from the generated synthetic dataset. The MSE, RMSE, MAE, MAPE, NSE,
and R? are statistical metrics that are used and presented as metrics used to evaluate cases of velocity,

i.e., original or exact f, (§ ) and approximated or predicted J} , (5 )

2

MSE:lZn‘,(fe(éj) -7,(&))

e = [1$(1(6) ~7,(6) )

MAEzéife(fj) A (20)
i(ﬂ(@)—iiﬂ(fj)](%(é)—iifp(é)]

R? = Jj=l Jj=1 j=1

=

Ji[ﬂ(a)—,ﬂﬁﬁ(f,)ﬂfp(é,)—;ifp(«:,)]

n—1

Here, n represents the number of points on the grid.

These performance evaluation metrics play a crucial role in identifying prevailing trends and
patterns related to the model’s assessment accuracy, robustness, and predictive effectiveness under
optimal conditions. The MSE, RMSE, MAE, MAPE, NSE, and R? effectively quantify the discrepancy
between real and measured values. Optimal forecasting accuracy and its correspondence with real data
are indicated by the predicted values of MAE, MSE, MAPE, RMSE, NSE, and R? at 0, 0, 0, and 1,
respectively (see Tables 1 and 2 ), under optimal predictive conditions. Tables 1 and 2 illustrate the
accuracy and efficiency of the proposed methodology.

AIMS Mathematics Volume 11, Issue 1, 881-906.



893

Table 1. Results produced by the LSRNN-LMO procedure.

S=Scenario, C=Case Performance (MSE) Gradient Time Final iteration
S1/C1 225 x 1071 7.65% 1073 35s 712
S1/C2 3.20x 10712 4.12x 107 24s 620
S1/C3 1.68 x 1072 2.12x 107 28s 821
S1/C4 1.15x 1072 1.15% 1077 31s 715
S1/C5 2.60 x 10713 5.21x 107 25s 601
S2/C1 1.71 x 10" 2.16x 107 30s 412
S2/C2 3.12x 1071 9.81x 1077 25s 450
S2/C3 5.57x 10 1.89% 1078 27s 412
S2/C4 2.77 x 10713 3.32x 10°° 20s 450
S2/C5 6.92 x 10712 6.16x 1078 28s 550
S3/C1 3.77x 10713 2.4x 1077 28s 385
S3/C2 2.36 x 10 3.30x 107 20s 412
S3/C3 411 %1071 5.21x 1077 32s 630
S3/C4 1.45 x 10713 9.66x 108 35s 725
S3/C5 7.45 x 101 1.14x10°° 30s 677
S4/C1 7.71 x 107'° 4.08% 1078 25s 1000
S4/C2 1.45 x 10" 5.44x 1077 21s 880
S4/C3 3.19 x 1071 2.10x 1077 30s 990
S4/C4 7.04 x 10713 8.18x 107% 18s 752
S4/C5 1.10 x 1072 7.75% 107 20s 801

Table 2. Outcomes obtained by the LSRNN-LMO technique.

S=Scenario, C=Case RMSE MAE MAPE R? 1 — R?

S1/C1 474 x 107 2.13 x 107 2.88 x 10 0.99 1.66 x 10713
S1/C2 1.79 x 1076 3.05 x 1077 1.71 x 10~ 0.99 3.54 x 101
S1/C3 1.30 x 10°¢ 1.28 x 106 3.59 x 107 0.99 2.95x 10712
S1/C4 1.07 x 1076 1.02 x 106 1.77 x 1073 0.99 1.50 x 10712
S1/C5 5.10 x 1077 2.98 x 1077 3.22 x10°° 0.99 5.90 x 10712
S2/Cl1 4.14 x10°¢ 1.23 x 1077 3.98 x 103 0.99 222 %1013
S2/C2 5.59 x 1077 1.01 x 1077 2.75 %107 0.99 1.06 x 10713
S2/C3 7.46 x 10°¢ 1.17 x 1076 1.22 x 10~ 0.99 5.19 x 10712
S2/C4 5.26 x 1077 1.57 x 107 1.22 x 107 0.99 1.10 x 1073
S2/C5 2.63 x10°¢ 1.33 x 10°¢ 5.66 x 1073 0.99 8.88 x 107
S3/Cl1 6.14 x 1077 1.12 x 1077 1.77 x 1073 0.99 5.44 x 10713
S3/C2 4.86 x 10°¢ 1.15 x10°¢ 2.70 x 10 0.99 3.12 x 10712
S3/C3 6.41 x 1077 1.77 x 1077 1.12 x 1073 0.99 2.99 x 10713
S3/C4 3.81 x 1077 2.00 x 1077 3.09 x 10 0.99 7.52 x 10713
S3/C5 8.63 x10°° 2.54 x 1073 1.14 x 107 0.99 6.62 x 10712
S4/C1 2.77 x 1075 2.92 x 106 3.88 x 10 0.99 5.88 x 1071
S4/C2 3.81 x 10 323 x10°® 1.50 x 10~ 0.99 3.61 x 10712

Continued on next page
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S=Scenario, C=Case RMSE MAE MAPE R? 1 — R?

S4/C3 1.79 x 1073 1.22 x 10 2.56 x 104 0.99 233 x 10
S4/C4 8.39 x 1077 1.25x10°¢ 1.01 x 103 0.99 6.11 x 10713
S4/C5 1.05 x10°¢ 3.88 x 10° 3.02 x 103 0.99 4.55x 10"

4. Results and discussion

This section is designed to clarify the results achieved through the application of the layered
supervised recurrent neural networks with Levenberg-Marquardt optimization (LSRNNs-LMO)
technique, to forecast the thermodynamic properties of the Maxwell model on a sheet, with particular
emphasis on melting heat and zero mass flux at the boundary, as motivated by both the
Cattaneo—Christov heat flux and the Lorentz force-based (TMS-MHZCL) models. This study presents
four unique scenarios of the TMS-MHZCL model, focusing on the velocity and temperature profiles,
as illustrated in Table 3.

Table 3. Fluctuations in physical parameters of TMS-MHZCL model.

S=Scenario, C=Case M M, B Pr
S1/C1 0.0 0.5 0.2 3.0
S1/C2 0.5 0.5 0.2 3.0
S1/C3 1.0 0.5 0.2 3.0
S1/C4 1.5 0.5 0.2 3.0
S1/C5 2.0 0.5 0.2 3.0
S2/C1 1.0 0.0 0.2 3.0
S2/C2 1.0 0.5 0.2 3.0
S2/C3 1.0 1.0 0.2 3.0
S2/C4 1.0 1.5 0.2 3.0
S2/C5 1.0 2.0 0.2 3.0
S3/C1 1.0 0.5 0.0 3.0
S3/C2 1.0 0.5 0.2 3.0
S3/C3 1.0 0.5 0.5 3.0
S3/C4 1.0 0.5 0.8 3.0
S3/C5 1.0 0.5 1.0 3.0
S4/C1 1.0 0.5 0.2 1.0
S4/C2 1.0 0.5 0.2 2.0
S4/C3 1.0 0.5 0.2 3.0
S4/C4 1.0 0.5 0.2 4.0
S4/C5 1.0 0.5 0.2 5.0

Four different scenarios have been identified utilizing the LSRNNs-LMO approach on the
TMS-MHZCL model. This section also provides an in-depth overview of the outcomes obtained from
applying the LSRNN-LMO technique. The assessment and interpretation component is essential to our
research on LSRNNs-LMO, given its rigorous structure and data analysis. The proposed methodology
elucidates the complexities of heat transfer, chemical reaction kinetics, and fluid dynamics, providing
a foundation for a comprehensive study that yields precise predictions across diverse physical domains.
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Maxwell fluids are crucial to numerous industries and biological processes due to their simultaneous
viscous and elastic properties. The LSRNNs-LMO scheme has not been utilized to examine the
TMS-MHZCL model. We applied the Al-driven LSRNNs-LMO scheme to TMS-MHZCL model.
Figures 3-8 illustrate the LSRNNs-LMO solutions for each of the four scenarios, which encompass
various circumstances as evaluated through performance metrics, mean square error, fitness functions,
histogram graphs, input-error cross-correlation, and regression analysis. Tables 1 and 2 present the
results of the LSRNNs-LMO approach using the metrics MSE, RMSE, MAE, MAPE, NSE, and R? for
the TMS-MHZCL model.

Figure 3 demonstrates the learning behavior (training state) of LSRNNs-LMO technique for the
TMS-MHZCL model. Figures 3(a)—(d) highlights the best gradient values of 7.65x 107>, 2.16x 1074,
2.4x 1077, and 4.08x 10-® across four different scenarios of the first case. The computed gradients
validate the consistency and validity of the proposed LSRNNs-LMO technique.

The MSE and RMSE are widely recognized metrics for model assessment. These metrics have
been adopted as standard statistical measures to analyze the performance efficiency of the
LSRNNs-LMO approach for the TMS-MHZCL model. MSE is a primary measure of model accuracy
and is widely used as a comprehensive reference criterion, with smaller values near zero preferred.
RMSE is another essential metric for quantifying the deviation between the estimator's predictions and
the actual values.

Mu = 10-08, st epoch 712 Mu = 1808, st apach 413

Valldation Cheeks. = 0, at spach Ti2

Validation Cheeks = 0, at spoch 412

() Training State (TS) of SICL.

Giradiant = 24007e-07, at spach 185

(b) Training State (TS) of SII'CL.

Gradisnt = 7.6530-05, at epoch 712

M = 1008, ot spoach 185 . MU = Te-0B, at apoch 712

(e) Training State (TS) of SIIL'CL. (d) Training State (TS) of SIV/CL.

Figure 3. Learning-based training state (TS) configuration of LSRNNS-LMO for the
TMS-MZCL model.

A lower MSE signifies improved optimization performance. The optimal MSE training results
are shown in Figure 4. Figures 4(a)—(d) presents the best MSE values of 2.25 x 10713, 1.71 x 107", 3.77
x 10713, and 7.71 x 107'° across four different scenarios of the first case. These minimal and decreasing
MSE trends confirm the robustness and stability of the proposed model. Likewise, the optimal RMSE
values 4.74 x 107, 4.14 x 107, 6.14 x 1077, and 2.77 x 1075 obtained for the same cases, further
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indicate the effectiveness of the proposed scheme. These outcomes collectively reflect a high degree of
computational precision.
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Figure 4. Fitness-based MSE optimization using a configuration of LSRNNs-LMO for the
TMS-MHZCL model.

Figure 5 illustrates the input-error cross-correlation analysis, which further validates network
performance by investigating the correlation between the input sequence and corresponding errors.
The observed association suggests that increasing the number of lag terms in the tapped-delay lines
may enhance prediction accuracy. In an ideal predictive framework, all correlations should approach
zero. If the input shows a relationship with the error, improving prediction performance can be
achieved by increasing the number of delay elements in the connected layers. In this study, nearly all
correlations remain within the confidence limits around zero. Figure 6 presents the error
autocorrelation function, which evaluates the performance of the developed network by illustrating the
temporal relationships of forecasting errors. Autocorrelation analysis of errors is employed to examine
the interrelationships between inputs and prediction errors by including multiple lag terms. A
noticeable correlation was observed in the forecasting errors, with most trained networks lying within
the red confidence limits, signifying potential for improvement, possibly by increasing the number of
neurons or delay elements. When the network is trained correctly, the remaining lines become
significantly shorter; otherwise, they remain confined within the red confidence intervals.

For an ideal forecasting model, there must be a singular nonzero value of the autocorrelation
function, which should manifest at zero latency (the mean squared error). This would imply that the
forecasting errors were entirely independent of one another (white noise). If a strong correlation exists
in the forecasting errors, it may be feasible to improve the estimation, potentially by increasing the
number of lags in the tapping-delaying lines. In this instance, the correlations, except the one at zero
lag, predominantly lie within the 95% confidence intervals around zero, indicating that the model
appears satisfactory.
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Figures 5 and 6 highlight the efficiency and coherence of the proposed LSRNNs-LMO technique
by showing correlations across all four cases that remain within the confidence limits and converge
toward the zero reference point.
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Figure 5. Evaluations of the efficacy of LSRNNs-LMO for the TMS-MHZCL model.
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Figure 6. Evaluation of the LSRNNs-LMO results’ suitability for the TMS-MHZCL model.

AIMS Mathematics

Volume 11, Issue 1, 881-906.



898

Figure 7 presents an error histogram illustrating a normal distribution of errors. The histogram has
20 bins, symmetrically distributed across the positive and negative ranges. This graphical
representation aids in detecting outliers in the dataset, where outliers correspond to data points that
exhibit a significantly poorer fit than the other data points. The errors close to zero are 2.8 x 1078, -1, 2
x1076,-2.9 x 1077, and -4.5 x 107¢, which validate the reliability of the network. These negligible errors

further confirm the stability and efficiency of the proposed scheme.
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Figure 7. Evaluation of the error histogram to demonstrate the LSRNNs-LMO results’
suitability for the TMS-MHZCL model.

In regression analysis, the primary focus is on assessing how well the data fit the model. When the
data points coincide with the linear target line, the curve fitting is considered optimal. A higher R?
value indicates that the data points align more closely with the regression line, reflecting a stronger
correlation between the predicted and actual values. A coefficient of variation equal to 1 indicates that
the total variability in the dependent variable is entirely due to the independent variable, confirming
ideal curve fitting. Conversely, an R? value approaching zero denotes the failure of the linear
relationship between the targets and outputs, whereas an R? value equal to 1 represents a perfect linear
association. Furthermore, Figure 8 presents the regression analysis, which shows that all data points lie
precisely along the solid regression line, confirming the best-fit model.
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Figure 8. Evaluation of the regression analysis to demonstrate the LSRNNs-LMO results’
suitability for the TMS-MHZCL model.

Our work investigates the steady-state flow of Maxwell fluids over a sheet-shaped domain,
focusing specifically on the influence of the melting temperature and the zero-mass-flux boundary
condition. A Maxwell fluid, distinguished by its viscosity and elasticity properties, is essential in
numerous industrial and biological applications. Our investigation of the TMS-MHZCL flow over a
stretching sheet yields valuable insights into the thermal transfer properties of nanofluids. The
LSRNN-LMO algorithm demonstrated exceptional accuracy, with error margins as minimal as 107,
These results include significant practical ramifications for numerous enterprises. In the electronic
refrigeration sector, the enhanced thermal properties of nanofluids can optimize liquid radiators for
exceptional durability in data centers and computing centers. Our methodology in healthcare
engineering can facilitate the development of microfluidic devices for efficient drug delivery.
Moreover, integrating nanofluids into automotive cooling systems enhances engine heat management,
while advancements in renewable energy can improve the effectiveness of solar thermal collectors.
This research advances a theoretical understanding and identifies practical opportunities to enhance
sustainability and effectiveness across sectors.

Figure 9(a) illustrates the effect of the MHD parameter on the velocity profile. As the MHD
parameter escalates, the velocity profile diminishes. The physical mechanism depicted in Figure 9(a),
in which an increased MHD value leads to a reduced velocity profile, arises from the interaction
between the magnetic field and fluid motion. This decline is primarily determined by the interaction
between parameter M and the complexity of the fluid flow. The magnetic field exerts stress on the fluid,
thereby restricting or weakening its motion. Increasing the MHD value, often indicative of a stronger
magnetic field, may yield several outcomes. The magnetic field generates a Lorentz force on the
charged particles within the fluid. This force may accelerate or oppose the fluid flow, depending on the
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direction of M and the orientation of the fluid’s current. The magnetic field can induce magnetic
tension in the fluid, thereby constraining or attenuating the flow. Intense magnetic forces can suppress
fluid turbulence, and reducing these effects promotes a more orderly, stable flow, consequently
diminishing the velocity profile, since turbulence generally enhances mixing and transport processes.
The observed behavior may vary depending on the system geometry, fluid properties, and the M
parameter. In certain instances, an elevated MHD parameter may improve the velocity profile,
particularly when the magnetic field is designed to promote flow; however, in many scenarios,
increasing the MHD parameter generally diminishes the velocity contours due to the effects described
above. Figure 9(b) presents the absolute error for the variation for the M parameter of the velocity
profile, showing approximately 10® minimal error. Figure 9(c) depicts the effect of melting heat (M,)
stimulation on the velocity profile, where a noticeable increase in velocity is observed with rising (M,)
influence. The physical structure underlying the behavior shown in Figure 9(c), in which an
escalating M, corresponds to an enhanced velocity profile, pertains to the latent heat of melting and its
impact on fluid dynamics, particularly in phase-change phenomena. The stronger melting supplies
additional liquid and latent heat at the interface, thereby weakening viscous resistance and accelerating
the fluid adjacent to the melting surface. Figure 9(d) shows the absolute error for variations in the M,
parameter of the velocity profile, exhibiting a negligible error close to 10, Figure 9(e) demonstrates
the influence of the MHD parameter (M) on the temperature distribution, where the temperature
profile displays a declining trend with increasing MHD intensity. The underlying physical mechanism
shown in Figure 9(e) indicates that an increasing MHD factor leads to a decline in the temperature
profile, which is fundamentally linked to the correlation between M and the fluid's thermal
characteristics. An increase in MHD parameter (M) typically indicates that the conducting fluid is
exposed to a stronger magnetic field.

An increase in MHD parameter (M) usually signifies a higher magnetic field produced by the
conductive fluid. The magnetic field present exerts forces on charged particles in the liquid, resulting
in the manifestation of the Lorentz force. These forces may subsequently result in magnetic restriction
or a compression of fluid in certain areas. As the magnetic field increasingly confines the fluid, it may
undergo reduced expansion due to heat, resulting in lower temperatures in those regions. The presence
of a robust MHD parameter (M) can impede heat conduction and transmission within the fluid. This
aids in the comprehensive decrease of the temperature profile. In certain instances, the relationship
between the MHD parameter (M) and the fluid can generate Alfven waves that transport energy
through the fluid. These electromagnetic waves may redistribute energy within the system, resulting in
temperature variations that frequently reduce the temperature contour.

Figure 9(f) illustrates the absolute error associated with the variation of the M parameter along the
temperature profile, showing a negligible deviation of approximately 1077. Figure 9(g) shows the
influence of melting heat (M,) on the temperature profile, highlighting the evident interdependence
between the two parameters. A noticeable drop in the temperature profile occurs as the influence of
melting heat becomes more dominant. This phenomenon arises from the fundamental principles of
thermodynamics that govern phase transitions, particularly the release of latent heat during the
solid-to-liquid transition. The escalation of the melting heat (M,) indicates a greater quantity of
thermal energy being released during the phase change from solid to liquid. As the substance melts,
more heat is released into the surrounding atmosphere. The expulsion of heat cools the surrounding
area, as the emitted heat extracts energy from the adjacent fluid or material, thereby lowering the
temperature. The more substantial melting at the surface is indicated by a larger melting parameter,
whereby more solid transforms into liquid. During melting, latent heat is absorbed at the interface,
extracting energy from the nearby fluid and thus lowering its temperature. Moreover, the fluid
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temperature within the boundary layer decreases with increasing of melting heat (M,), although all
profiles eventually approach the ambient temperature far from the surface. Figure 9(h) displays the
absolute error curve for the variation of the M, parameter with respect to the temperature profile,
exhibiting a minimal deviation of approximately 10®. Figure 9(i) demonstrates the effect of the
parameter on the temperature distribution. The temperature profile shows a significant rise as the 8
parameter increases. The physical mechanism illustrated in Figure 9(i), in which a growing [ factor
produces an elevated temperature profile, relates to the viscoelastic properties of materials and their
response to temporal thermal variations. A higher  parameter value implies that the elastic response
of the material dominates over its viscous behavior. The higher f reflects the stronger elastic
contribution relative to viscous effects in the fluid interaction response. This enhanced elasticity
enables the medium to store and release more thermal energy, thereby diminishing the rate of heat
diffusion away from the heated surface. The elevated f factor indicates a rapid, dominant elastic
response from the material. The material can exhibit more pronounced temperature fluctuations and an
overall increase in the temperature profile if it can quickly regulate its temperature in response to
thermal gradients. Figure 9(j) illustrates the absolute error associated with variations in the f8
parameter concerning the temperature profile, indicating minimal discrepancies on the order of 107.
Figure 9(k) shows the complex correlation between the Prandtl number (Pr) and the temperature
profile, revealing a significant link among these factors. A noticeable rise in the temperature trend is
observed as the Pr number increases. The governing mechanism for this phenomenon, depicted in
Figure 9(k), where an increasing Pr number corresponds to higher temperature behavior, arises from
the intricate coupling of heat transfer processes with varying momentum and heat diffusion
characteristics in the fluid. An increase in the Pr number indicates the fluid’s performance in
momentum transmission relative to its capability in heat transfer. A greater Pr value indicates that the
fluid is less efficient in momentum transfer compared to its proficiency in heat transport. The
discrepancies signify that thermal diffusion occurs at a faster rate than momentum diffusion inside the
fluid. Consequently, as the Pr number increases, the fluid has an enhanced ability to mix and transfer
heat effectively. As the Pr number rises, the fluid’s improved capacity for heat transmission becomes
evident, leading to a rise in the temperature profile. The intricate relationship between the Prandtl
number and temperature dynamics highlights the crucial influence of heat transfer properties and the
varying rates of momentum and thermal diffusion in defining the thermal behavior of fluids. This
complex interaction demonstrates that an increasing Prandtl number enhances the efficiency of
thermal energy transfer, leading to a significant increase in the system’s temperature profile. Figure 9(1)
depicts the absolute error corresponding to the variation of the Pr number on the temperature profile. It
indicates minimal errors within the range of 107 for the given temperature profile. Furthermore, Figure
9 presents the comparison results for the proposed scheme, which closely match the numerical
outcomes and exhibit minimal absolute errors.
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Figure 9. Comparative outcomes and assessments of the LSRNNs-LMO model with
f'(&)and 6(&) based on the reference dataset of the TMS-MHZCL model.
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5. Conclusions

This article presents a novel methodology to investigate the thermodynamic properties of the
Maxwell model on a sheet, with particular focus on melting heat and zero-mass-flux boundary
conditions, inspired by the Cattaneo-Christov heat flux formulation and the Lorentz force effects
(TMS-MHZCL) model, and employing advanced computational approaches. Maxwell fluids are
crucial in a variety of scientific and biological applications owing to their unique combination of
viscous and elastic properties. A soft computational LSRNN-LMO technique is designed and
implemented for forecasting the TMS-MHZCL flow. Maxwell fluids are crucial across numerous
economic and biomedical domains due to their distinctive viscoelastic properties. The TMS-MHZCL
model demonstrates applicability in scientific and industrial settings, particularly for enhancing
heat-transfer processes. The present work identifies numerical solutions using a sophisticated
computational method. Temperature, velocity, and many physical parameters are delineated, and their
effects are comprehensively analyzed using diverse graphical representations. The current study has
produced significant results, presented as follows:

e The investigation demonstrates the application of modern Al innovations, particularly
LSRNNs-LMO, to analyzing the TMS-MHZCL model.

e The proposed technique aims to achieve optimal outcomes and compare them with experimental
numerical findings to validate their precision within a small error margin.

e A graphical depiction of the outcomes obtained by the sophisticated, Al-powered application of
the LSRNNs-LMO technique is shown via a comparison analysis. Regression graphs, correlation plots,
error histograms, and error auto-regression analyses were employed to confirm the effectiveness of
measurement and comparison studies utilizing NSLRNNSs.

e The regression analysis, yielding a value close to 1, signifies the reliability and effectiveness of the
proposed technique.

e Asthe MHD factor M escalates, a notable decrease in the velocity profile is observed, signifying a
fall in the fluid's velocity.

e The temperature profile diminishes as the MHD factor M grows, signifying a declining tendency
in the system’s distribution of temperatures.

e The velocity profile notably rises with the amplification of the melting heat action. The physical
concepts related to the latent heat of melting and its influence on fluid dynamics, particularly during
phase transition processes, explain the occurrence.

e As the f parameter increases, the temperature profile significantly decreases. An increased f
factor value results in a stronger temperature dependence and is linked to the elastic properties of
materials and their responses to temporal changes in temperature.

e An evident escalation in the temperature trend occurs as the Pr number increases.

Limitations of the proposed technique and future work

The integration of layered supervised recurrent neural networks with the Levenberg-Marquardt
optimization (LSRNNs-LMO) technique in fluid mechanics holds considerable promise for complex
simulations and time-varying flow phenomena; yet, many limitations persist. A significant limitation of
the employed LSRNNs-LMO methodology is its reliance on highly specialized training data to capture
essential physical correlations and to produce accurate predictions. Incomplete or insufficient datasets
can lead to diminished model reliability and erroneous predictions. Furthermore, LSRNN-LMO is
highly sensitive to hyperparameter settings, and inappropriate settings may lead to overfitting or
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convergence issues. There exist auspicious prospects for forthcoming research in fluid mechanics.
Sophisticated investigations, including those that leverage RNNs and computational power [18,19],
have yielded promising results and facilitated the practical analysis of complex events. Advanced
machine architectures employing artificial recurrent neural networks are being developed to analyze
and better understand various fluid flow systems [20,21]. The extension of neural networks into
multiple domains and the transdisciplinary challenges they pose are notably promising. By employing
RNNs across domains, researchers can examine the complexities of social issues, propose novel
concepts, and devise innovative solutions. As a result, the effort will foster collaboration and
innovation that may lead to significant advances in technological and scientific fields.
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