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Abstract: This study examines the characteristics of the Maxwell model under the influence of 

magnetohydrodynamics (MHD). Due to its inherent viscosity and elasticity, this model has significant 

applications in both industrial and biological contexts. The core innovation of this work lies in the 

development and application of a soft computational approach, specifically, the design and 

implementation of layered supervised recurrent neural networks optimized via the 

Levenberg–Marquardt (LSRNNs-LMO) technique, to predict the thermodynamic properties of the 

Maxwell model over a sheet, with particular focus on melting heat and zero mass flux boundary 

conditions, as inspired by the Cattaneo-Christov heat flux formulation and Lorentz force effects 

(TMS-MHZCL) model. The LSRNNs-LMO model is trained using data generated through a reliable 

numerical scheme. Simulation outcomes from the proposed LSRNNs-LMO method show excellent 

agreement with numerical results across multiple test cases, exhibiting minimal errors and high 

robustness. The accuracy of the proposed technique is thoroughly validated using error histograms, 

optimization control curves (mean squared error), root-mean-square error, autocorrelation analysis, 

regression evaluation, and the Nash–Sutcliffe efficiency (NSE) metric for the TMS-MHZCL model. 

These assessments provide strong evidence of the predictive validity and precision of the developed 

LSRNNs-LMO approach. 
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Nomenclature 

ˆ
sT  Solid temperature ˆ ˆ( , )u v  Velocity parameters 

k̂  Thermal conductivity ˆ
mT  Melting temperature 

Ĉ  Free stream concentration ˆ
sC  Heat capacity 

𝜃 Temperature ̂  Fluid density 

̂  Relaxation time ˆ ˆ( , )x y  Cartesian coordinate 

0B̂  Magnetic field ̂  Stream function 

T̂  Free stream temperature  ˆ
BD  Mass diffusion 

Û  Velocity of the sheet 𝑓 Dimensionless stream function 

̂  Fluid parameter 𝜑 Dimensionless concentration 

̂  Viscosity (kinematic) ̂  Viscosity (dynamic) 

1̂  Latent heat Ĉ  Concentration 

M̂  Hartmann number â  Positive constant 

̂  Electrical conductivity ˆ
wC  Wall Concentration 

̂  Similarity variable 𝑆𝑐 Schmidt number 
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1. Introduction 

Computational investigation has progressed across various phases, transitioning from scientific 

methods to model-based cognitive and mathematical analytical systems. We currently possess an 

overwhelming amount of data from many methodologies. The data-driven fourth approach has 

established novel methods and strategies to address the deficiencies of its conventional predecessors 

by formulating precise, discovery-oriented data mining techniques for extensive datasets. Current 

developments in computing technology, artificial intelligence (AI), data mining, and mathematical 

concepts have enhanced several traditional methods used in scientific advancements, including 

computer simulations, computational experimentation, and mathematical modeling. 

In recent years, advances in computational methods for fluid studies have emerged from the 

integration of large datasets obtained from dynamic modeling, laboratory experiments, and field data. 

Numerous domains within computing, mathematics, and science are poised to standardize AI and its 

associated discipline, machine learning, by providing diverse methodologies for transforming data into 

knowledge through readily implementable software solutions. Numerous researchers have studied 

multiple fluid models using AI schemes. Thus, recurrent neural networks (RNNs) have diverse 

applications across numerous engineering and industrial domains [1–3]. 

Rapid advances in computing technology have led to greater computational power and speed. AI 

is increasingly influencing everyday life. Consequently, contemporary researchers and engineers are 

focusing more closely on AI. Deep neural networks are a practical approach to addressing poorly 

structured or unstructured work outcomes and are used worldwide. A powerful AI is predicated on the 

hypothesis that machines can embody prospective human conceptions through their capacity for 

reasoning. As a result, strong AI asserts that, in the near future, we will be surrounded by computers 

that exhibit human-like behavior and possess cognitive capabilities comparable to those of humans. 

This means these computers will be able to reason, think, and perform tasks that humans can. The 

debate over the feasibility of developing advanced artificial intelligence persists, despite current 

research being far from that goal. 

Various forms of neural networks (NNs) can be used for distinct data formats, necessitating a 

selection based on the application. Long short-term memory (LSTM) models can learn and exploit 

temporal dependencies in the data. Furthermore, LSTMs leverage their internal memory, ensuring that 

forecasts depend on the most recent state of the input sequence rather than solely on the immediately 

supplied input. However, LSTM cannot be used in the proposed model because our simulation data 

lacks the long-range spatial information for which it is designed. Machine learning approaches have a 

notable ability to handle complex data trends, facilitating the efficient retrieval of relevant data and 

thereby accelerating the simulation process. Diverse computational and analytical techniques exist for 

addressing laminar boundary-layer flow problems; yet, the use of machine learning has significantly 

improved the examination and forecasting of boundary-layer flow by incorporating data-driven 

methods within the framework of fluid dynamics. That is why numerous investigations have focused 

on applying machine learning techniques to boundary-layer flow research. 

Recently, RNNs have gained prominence as effective models for classification, pattern 

recognition, and forecasting across various fields. A large number of scientists and individuals are 

involved in diverse facets of the AI field, offering novel solutions. RNNs are proficient, productive, 

and effective at delivering high capacity for addressing complex problems across various domains. 

RNNs are skilled in addressing challenges across multiple sectors, including agriculture, healthcare, 

education, banking, administration, security, engineering, commodities trading, and the arts. 

Encompassing issues in manufacturing, transportation, cybersecurity, finance, insurance, property 



884 

AIMS Mathematics  Volume 11, Issue 1, 881–906. 

management, advertisement, power, and obstacles that exceed the computing capacity of established 

methodologies and conventional mathematics. The combination of RNNs with stochastic numerical 

solvers yields an efficient tool for addressing numerous complex problems, particularly those 

associated with differential equations. Recent developments in addressing flow problems through the 

integration of multiple domains and methodologies have been investigated in [4–6]. 

Fluid properties are crucial in numerous applications, including industrial processes, medical 

applications, polymer manufacturing, lubrication, and natural phenomena such as lava flows and blood 

circulation. Nanotechnology is increasingly significant across industries due to its numerous 

applications in the manufacture of power-control devices, automobiles, and healthcare products. 

Specifically, cooling mechanisms in microelectronic devices, hybrid fuel cells, solid-state lighting, 

high-powered engines, and biopharmaceutical processes. Numerous sectors require the rapid 

implementation of efficient cooling methods, owing to rapid advances in semiconductors in electronic 

and power transmission systems, as well as the need to dissipate heat from sources such as automotive 

engines. In several industrial applications, cooling is a paramount necessity and a challenging 

technological endeavor for engineers, due to the reliability and efficiency requirements of the diverse 

range of items that rely on it. The technology industry continues to face challenges in developing 

energy-efficient heat-transfer fluids for refrigeration because of their inherently low thermal 

conductivity. To address this issue and achieve improved thermal properties compared with 

conventional fluids such as oil, methyl ether, and water, nanoliquids are fabricated by incorporating 

nanoscale metallic particles to enhance the thermal and energy transport properties of energy-transfer 

fluids. When nanoscale particles are firmly maintained and uniformly dispersed in base liquids, their 

thermal characteristics are superior to those of conventional fluids. These liquids serve as advanced 

coolants, facilitating effective heat dissipation and mitigating thermal accumulation. Investigations 

into the application perspective, multiple domains, and parametric effects have been reported in the 

studies [7–9]. 

Many scientists and analysts have been motivated to examine the MHD flow of viscous fluids 

over a stretched surface due to their appealing thermo-physical properties, heat-transfer capabilities, 

and significant practical applications in everyday life. Numerous astronomical and geophysical 

phenomena have been investigated utilizing MHD. MHD examines the motion of a conducting fluid in 

a magnetic field, which governs its heating. Applications of MHD may include controlling nuclear 

power plants, MHD power sources, and metal sheet cooling, among others [10,11]. MHD has several 

applications in the industrial, medicinal, and petroleum industries, attracting the attention of 

researchers [12–14]. This discovery significantly enhanced our understanding of Maxwell fluid 

behavior in various situations. 

The existing literature indicates that AI-driven application of a tri-layered RNN scheme has not 

yet been employed in the TMS-MHZCL model. The authors of the proposed study employed an 

LSRNN-LMO strategy to investigate the TMS-MHZCL model, yielding a more effective solution. 

This LSRNNs-LMO technique is unique and innovative, providing flexibility and efficient data 

processing, thereby enabling advances in tackling complex challenges in engineering and related 

domains. This enhances computational accuracy and allows the identification of viable solutions to 

industrial and technological challenges. The statistical analysis underscores the effectiveness of the 

LSRNN-LMO technique in addressing complex, nonlinear phenomena in fluid dynamics. The 

accuracy and reliability of the TMS-MHZCL mathematical model’s outputs, together with the 

concept’s clarity, robustness, seamless functionality, and adaptability, are essential characteristics. 

The research reveals that key approaches of artificial intelligence are used across numerous scientific 

and technical sectors. The unique features of the provided study are expressed as follows: 
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• The TMS-MHZCL model has been investigated using an advanced machine learning strategy 

designated layered supervised recurrent neural networks optimized by the Levenberg–Marquardt 

networks (LSRNNs-LMO) technique. 

• The TMS-MHZCL model solution is examined through comprehensive training, testing, and 

validation processes. 

• A sophisticated, intelligent computational approach, specifically the LSRNNs-LMO technique, 

has been employed to attain enhanced accuracy in the TMS-MHZCL model. 

• MATLAB is utilized to generate the synthetic dataset for the LSRNNs-LMO approach by using 

the Lobatto-IIIA numerical method. The generated dataset has been used for the LSRNNs-LMO 

technique, offering a predicted result that is compared with the conventional solution. The proposed 

technique yields results consistent with the observed numerical outcomes and exhibits minimal error. 

• The level of accuracy of the developed LSRNNs-LMO technique is meticulously verified through 

the examination of the distribution of error histograms, mean squared error, root-mean-square error, 

autocorrelation analysis, and regression analysis. 

The remainder of the article is structured as follows: Section 2 presents the Mathematical 

framework of the TMS-MHZCL model and describes the flow problem; Section 3 addresses solution 

methodologies for the TMS-MHZCL model, emphasizing the numerical LSRNN-LMO strategy used 

to solve the governing equations; Section 4 presents the research findings and evaluation of the 

LSRNNs-LMO strategy, examining the impact of dimensionless factors on various flow parameters; 

and Section 5 succinctly summarizes the investigation, highlighting significant findings and offering 

closing observations on the system’s effectiveness. 

2. Mathematical modeling 

We considered the thermodynamic properties of the Maxwell model, focusing on MHD and the 

Cattaneo–Christov model. The configuration is considered for a sheet in Cartesian coordinates. This 

involves a Maxwell fluid flowing and transferring energy within a continuous boundary layer toward a 

stretched horizontal surface while steadily melting into a uniformly heated liquid of identical nature, as 

illustrated in Figure 1. The velocity of the stretching surface is considered as ˆˆ ˆ ˆ
wu U ax= = , where â  

is a positive constant parameter associated with the stretching rate of the sheet. The surface 

temperature is expressed as 𝑇̂𝑤, whereas the free stream temperature is defined as 𝑇̂∞, under the 

condition 𝑇̂𝑤 < 𝑇̂∞. It is assumed that the fluid above the sheet possesses weak electrical conductivity 

and is affected by a uniform transverse MHD field of strength 𝐵0. The coordinate measured along the 

sheet’s stretching direction is denoted by 𝑥̂. Additional presumptions about the fluidic configuration 

are as follows: 

• The magnetic field is orthogonal to the surface. 

• The sheet is extended homogeneously. 

• The fluid flow is laminar. 

• The fluid is incompressible. 

• The model is appropriate for streamlining flow. 

• It does not apply to a turbulent flow region. 
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Figure 1. Problem geometry and flow. 

Equation of continuity: 

ˆ ˆ 0,x yu v+ =                                    (1) 

where the variables ˆ
xu  and ˆ

yv  represent the derivatives of the velocity parameters û  and v̂  with 

respect to the x̂  and ŷ  directions, respectively. The momentum equation is defined as: 

2

2 2 0
ˆˆˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,

ˆ ˆ
x y xx xy yy yy

B
uu vu u u vu v u u u




 
 + + + + = −                 (2) 

where relaxation time is denoted by ̂ , fluid density by ̂ , kinematic viscosity by ̂ , electrical 

conductivity by ̂ , and magnetic field by 0B . 

A non-dimensional equation is obtained, as proposed by Yacob et al. [15], using the given 

similarity transformations and dimensionless measures. 

1/2

2

0

ˆ
ˆˆ ˆ ˆ ˆ ˆ ˆ( ), , ( ) ,

ˆ

ˆˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ( ) .
ˆ

a
u axf y v a f

B
a M a f x

   



    



 
= = = − 

 

= = = −

           (3) 

The momentum equation describes fluid motion in Maxwell fluids, including the MHD effect, on 

a stretched sheet. It also accounts for magnetic field forces, viscosity, and elasticity. This formula is 

essential for comprehending how the stretched sheet changes fluid distribution and velocity. 

2

2

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) 2 ( ) ( ) ( ) ( ) 0.

f f Mf f Mf

f f f f f f

    

      

   − − + +

    − + + = 

           (4) 
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In this case, f represents a non-dimensional stream function, and the prime notation represents 

differentiation with respect to 𝜉, M̂  represents the magnetic field, and ̂  signifies the Deborah 

number. References [16,17] provide details on the application of dimensional boundary conditions. 

ˆˆ ˆ ˆ ˆat 0,

ˆ ˆ0 at .

wu U ax y

u y

= = =

→ →
                         (5) 

So, the non-dimensional boundary conditions are: 

1 at 0,

0 at .

f

f





= =

 = →
                             (6) 

The energy equations illustrate the transmission and distribution of thermal energy inside a fluidic 

system, which is crucial for fluid movement analysis. The Maxwell fluid, characterized by its 

distinctive viscoelastic properties, is described by the energy equation, which makes it particularly 

important. Usually, the equation includes parameters for heat sources or sinks, convection, and heat 

transport. 

ˆ
ˆ ˆ ˆˆ ˆ( ) ( ) ( ).

ˆ ˆ
x y yy

p

k
u T v T T

c
+ =                              (7) 

Using non-dimensional quantities and similarity transformations, we will get a dimensionless 

equation: 

ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ ˆ, ( ), ( ), ,

ˆ ˆ ˆ

m

m

T T
v a f u ax f Pr

aT T


   



−
= = − = =

−
                (8) 

where â  is the thermal diffusivity, θ represents the temperature profile, Pr is the dimensionless 

Prandtl number, and T̂  is the temperature. 

The internal thermal energy balance of the fluid is accounted for in the energy equation for the 

motion of a Maxwell fluid. It illustrates how heat is generated, transferred, and released as a fluid 

moves and interacts with its surrounding environment. The equation also accounts for the Maxwell 

fluid’s viscoelastic nature, which has both elastic and viscous characteristics. 

( ) ( ) ( ) 0.Pr f     + =                             (9) 

Subject to the following boundary conditions: 

ˆ ˆ ˆat 0,

ˆ ˆ ˆat .

mT T y

T T y

= =

→ →
                          (10) 

So, the non-dimensional boundary conditions are: 

0 at 0,

1 at .

 

 

= =

→ →
                           (11) 
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The continuity equation, often called the mass conservation equation, is a fundamental principle 

of fluid mechanics and a mathematical expression of the law of conservation of mass. It describes how 

the fluid’s density remains constant as it moves across a stretched sheet, thereby preserving mass 

conservation within the system. 

ˆ ,ˆ ˆˆˆ ˆ
x y B yyuC vC D C+ =                              (12) 

where ˆ
BD  stands for mass diffusion and Ĉ  for concentration. Using the non-dimensional values and 

similarity transformations given below, we will derive a dimensionless equation. 

ˆ ˆ ˆ
, ,

ˆ ˆ ˆ
Bw

C C
Sc

DC C


 



−
= =

−
                            (13) 

where Sc is the dimensionless Schmidt number, and φ is the dimensionless concentration profile. 

( ) ( ) ( ) 0.Sc f     − =                             (14) 

The boundary conditions for zero mass flux are in effect when there is no transfer of mass across 

a barrier. The condition states that, if the total mass entering the border equals the mass leaving the 

border, the net mass transfer is zero, which can be expressed as follows. 

The boundary conditions can be modeled as 

ˆ ˆ0 at 0,

ˆ ˆ ˆat .

C y

C C y

= =

→ →
                          (15) 

After applying similarity transformations, we are left with: 

0 at 0,

at .

 

 

= =

→ →
                            (16) 

3. Solution methodology: employ AI-driven, innovative computational techniques that 

integrate the LSRNNs-LMO strategy 

The layered supervised recurrent neural networks optimized by the Levenberg-Marquardt method 

(LSRNN-LMO) concept has been developed as a novel approach for simulating and interpreting 

complex nonlinear fluid dynamics. The primary aim of this research is to optimize and simulate a 

hysteresis model of actuators using layered supervised recurrent neural networks (LSRNNs) in 

combination with local search Levenberg-Marquardt (LM) optimization. 

The mathematical framework of recurrent neural networks is a nonlinear state-space model of the 

inherent dynamic behaviors. This characteristic of RNNs makes them well-suited to handling 

nonlinear and unstable flows. The proposed LSRNN-LMO technique captures the spatial and temporal 

aspects of the unstable fluid environment independently. The mathematical architecture of a nonlinear 

state-space standard recurrent neural network is represented as follows: 

𝑙𝑡 = 𝑠(𝑙𝑡−1, 𝐼𝑡 + 𝑏), 
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𝑙𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝑙𝑙𝑙𝑡−1 + 𝑊𝐼𝑙𝐼𝑡 + 𝑏), 

𝑌𝑡 = 𝑊𝑙𝑦𝐼𝑡.                                (17) 

Let 𝑡 stand for the time interval, 𝑙𝑡 signify the currently visible hidden state, 𝑙𝑡−1 indicate the 

previous hidden state, 𝐼𝑡 indicate the most recent input vector at time step 𝑡, s refer to the analogous 

(recurring) operation for every input, b represents the bias term during sequential computation of data, 

𝑊𝑙𝑙 serve as the weight that existed at the prior hidden state, 𝑊𝑙𝑦 signify the weight at the currently 

visible input state, and 𝑌𝑡 signify the output. 

The dimension of the vector from hidden to hidden is 𝑊𝑙𝑙 ∈ 𝑅𝑛×𝑛, and 𝑊𝐼𝑙 ∈ 𝑅𝑛×𝑚 is the input 

dimension of the weight vector. The bias component is 𝑏 ∈  𝑅𝑛. The proposed technique employs a 

nonlinear activation function known as rectified linear unit (ReLU). A linear transformation is applied 

on 𝐼𝑡 to determine the output 𝑌𝑡 at each time step. 

We have presented supervised deep-layered recurrent neural networks. This network can learn 

more complex patterns using deep RNNs, which enhance the fundamental architecture by stacking 

multiple recurrent layers. To improve the model’s ability to accurately represent topological 

characteristics, the hidden states of each layer are passed to the next layer. The following is the most 

recent update of the hidden states at layer 𝑙 and time step 𝑡 for a deep LSRNN-LMO with 𝑙 layers: 

𝑙𝑡
(𝑙)

= 𝑅𝑒𝐿𝑈(𝑊𝑙𝑙
(𝑙)𝑙𝑡−1

(𝑙)
+ 𝑊𝐼𝑙

(𝑙)𝐼𝑡
(𝑙−1) + 𝑏𝑙

(𝑙)
),                 (18) 

where 𝑙𝑡
(0)

=  𝐼𝑡 denotes the input of the first layer. The procedure for computing the output at the 

highest level is identical to that of fundamental RNNs: 

𝑌𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝐼𝑙𝐼𝑡
(𝑙) + 𝑏𝑦

(𝑙)
).                          (19) 

Compared with shallow RNNs, deep RNNs can capture long-range dependencies and model 

complex patterns. We employed the ReLU nonlinear activation function for computational 

simulations of the (TMS-MHZCL) model. The network’s ability to learn and comprehend sequences 

affects how it operates on specific tasks to achieve desired outcomes. The system (19) exemplifies a 

prototype of an LSRNN-LMO technique, featuring a feedback mechanism that demonstrates its 

capacity to learn from both contemporary and historical data. 

RNNs are crucial for tasks that require modeling sequential data. RNNs are adept at processing 

large datasets with recurrent dependencies, leveraging sequential information from previous units. The 

RNN employs the number of initial function elements at the corresponding time step. The hidden 

phase is an inner status present in each of these elements. The hidden memory represents data from 

prior periods that the unit previously handled and stored at that specific time step. This initial state data 

is updated often at each time step, so it reflects the most current intelligence. 

Multi-layer neural networks have been applied in learning frameworks because they can address 

nonlinear and complex decision-making problems. The design of the LSRNN-LMO strategy, which 

integrates 10 neurons in each hidden layer with a ReLU activation function, is illustrated in Figure 

2(a). The TMS-MHZCL model’s sequential dataset is generated using 100 input grids in the range [0, 

1] for the LSRNN-LMO technique. Figure 2(b) illustrates the sequential workflow of the proposed 

LSRNN-LMO approach. The LSRNN-LMO output is generated using the MATLAB framework for 
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a triple-layer recurrent neural network with LM optimization with backpropagation, as also described 

in Figure 2(b). 

 

(a) 

Flow Geometry

Mathematical Formulation:
Modeling the PDEs for the 

thermodynamic properties of the 

Maxwell model on a sheet, with 

particular emphasis on melting heat and 

zero mass flux at the boundary, as 

inspired by the Cattaneo–Christov heat 

flux and Lorentz forces (TMS-

MHZCL) model.

2

2 '

''' ' '

[ 2 ''] ''' 0

'' Pr ' 0

''

'

'''

0

f f Mf f M f

f ff

f

f f

f
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f

f



 

 

 − − + +


− + + =


+ =
 − =

Reference dataset creation using 

Lobatto-IIIA:

The Lobatto IIIA numerical technique is 

used to compute the reference dataset for 

the desired BNN-ALM. The input spans 

from 0 to 10 with a stepsize of 0.1 for 

each of the four scenarios of the 

LSRNNs-LMO of TMS-MHZCL. 

InitializationVariable declaration
Domain 

Discretization

Call Lobatto-IIIA

System of 1st- order 
ODEs

Boundary 
conditions

Evaluate 
solution using 
dval function

Numerical Solution

Implementation of 
LSRNNs-LMO:

With the Rectified Linear 
Unit (RELU) acting as an 

activation function, 
LSRNNs-LMO is trained on 
the reference dataset for 

TMS-MHZCL, which 
comprises 80% of the 

dataset for training, 10% 
for validation, and 10% 

for testing.

LSRNNs-LMO Evaluation:
Performance plots, error 

histograms, absolute error 
plots, time series response 
plots, and other visual and 

statistical outputs are used to 
evaluate LSRNNs-LMO 

performance.
Comparison plot Error histogram

 

(b) 

Figure 2. (a) Architecture of layered supervised recurrent neural networks; (b) Flow chart 

topology of the layered supervised recurrent neural networks technique. 
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An essential element in neural network development is selecting the activation function for 

neurons across multiple layers. Activation functions introduce nonlinearity into the mathematical 

representation of neural networks, enabling the network to gradually acquire improved feature 

representations. A variety of activation functions have been used in the scientific literature. 

Nonetheless, Tanh, linear, Sigmoid, and ReLU are among the most commonly used activation 

functions, typically selected empirically during network construction rather than through a systematic, 

data-driven approach. In this study, we employed the ReLU activation function. The ReLU activation 

function is defined as: 𝑓(𝜉) = max (0, 𝜉). The ReLU activation function enables the network to learn 

intricate relationships in the data, resulting in reliable performance and accurate predictions when 

addressing complex problems. Figures 3–11 illustrate the remarkable efficacy of ReLU activation. 

Different neural network architectures may operate on various types of data; therefore, it’s 

essential to choose the right one for your needs. LSTMs can learn and exploit temporal dependencies 

in the data. LSTMs successfully capture long-term dependencies in sequential data, making them 

suitable for tasks such as speech recognition, language translation, and time-series forecasting. 

Moreover, LSTMs use their internal memory, ensuring that predictions rely on the most recent context 

in the input sequence rather than solely on the immediately preceding input. Unfortunately, LSTM 

cannot be applied to the TMS-MHZCL model due to constraints in our simulation data, as LSTM is 

designed for analyzing large-scale geographic data. Therefore, we implemented the SLSRNN-LMO 

methodology to solve the TMS-MHZCL model. 

We employed 30 neurons per recurrent layer, with ReLU activation, to investigate the behavior of 

thermodynamic properties. Training is conducted utilizing the Adam optimizer with a learning rate of 

0.001, a batch size of 64, and 1000 training epochs. The results were obtained using MATLAB 

Version R2018b on a PC. The obtained numerical results closely align with the reference outcomes. 

Computing simulation of the TMS-MHZCL model utilizing stochastic deep-layered recurrent neural 

networks (LSRNN-LMO) has not yet been implemented. The current research indicates that the 

TMS-MHZCL model has not been examined using the SLSRNN-LMO methodology. The uniqueness 

of this endeavor is evidenced by the absence of this advanced technique in the current scientific 

literature. This article introduces a novel method that integrates recent advances in SLSRNN-LMO 

into the TMS-MHZCL model. It can be used to address modeling issues in computational fluid 

mechanics applications, thereby improving the accuracy of flow and heat-transport predictions. 

We employed a triple-layer recurrent neural network, utilizing LM optimization with 

backpropagation, as an innovative method for simulating and analyzing the complex, nonlinear 

dynamics of the TMS-MHZCL model. Investigations have revealed that deeper RNN architectures 

improve sequence modeling by capturing increasingly abstract representations across layers. This 

configuration demonstrated an effective balance between learning performance and computational 

efficiency in our assessments. 

This study also describes the comprehensive approach employed to achieve its scientific 

objectives, including details on data collection and processing, the architectural design of 

LSRNN-LMO, optimization methodologies, network training, the experimental setup, and outcome 

evaluation metrics. 
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3.1 Metrics evaluation 

This section describes the mathematical framework for the evaluation measurements that validate 

the accuracy of the layered supervised recurrent neural networks optimized by the 

Levenberg-Marquardt method (LSRNN-LMO), designed to address the thermodynamic properties of 

the Maxwell model on a sheet, with a specific focus on melting heat and zero mass flux at the boundary 

and relying inspiration from the Cattaneo-Christov heat flux and Lorentz forces (TMS-MHZCL) 

model. We rigorously analyze the efficacy of the proposed strategy using a range of statistical 

indicators. Convergence-based visual learning curves illustrate the training process and exhibit the 

model’s ability to learn from the generated synthetic dataset. The MSE, RMSE, MAE, MAPE, NSE, 

and R² are statistical metrics that are used and presented as metrics used to evaluate cases of velocity, 

i.e., original or exact ( )ef  and approximated or predicted ( )ˆ . pf   
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        (20) 

Here, 𝑛 represents the number of points on the grid. 

These performance evaluation metrics play a crucial role in identifying prevailing trends and 

patterns related to the model’s assessment accuracy, robustness, and predictive effectiveness under 

optimal conditions. The MSE, RMSE, MAE, MAPE, NSE, and R² effectively quantify the discrepancy 

between real and measured values. Optimal forecasting accuracy and its correspondence with real data 

are indicated by the predicted values of MAE, MSE, MAPE, RMSE, NSE, and R² at 0, 0, 0, and 1, 

respectively (see Tables 1 and 2 ), under optimal predictive conditions. Tables 1 and 2 illustrate the 

accuracy and efficiency of the proposed methodology. 
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Table 1. Results produced by the LSRNN-LMO procedure. 

S=Scenario, C=Case Performance (MSE) Gradient Time Final iteration 

S1/C1 

S1/C2 

S1/C3 

S1/C4 

S1/C5 

S2/C1 

S2/C2 

S2/C3 

S2/C4 

S2/C5 

S3/C1 

S3/C2 

S3/C3 

S3/C4 

S3/C5 

S4/C1 

S4/C2 

S4/C3 

S4/C4 

S4/C5 

2.25 × 10⁻¹³ 7.65× 10⁻5 35s 712 

3.20 × 10⁻¹² 4.12× 10⁻6 24s 620 

1.68 × 10⁻¹² 2.12× 10⁻6 28s 821 

1.15 × 10⁻¹² 

2.60 × 10⁻¹³ 

1.71 × 10⁻¹¹ 

3.12 × 10⁻¹³ 

1.15× 10⁻7 

5.21× 10⁻9 

2.16× 10⁻4 

9.81× 10⁻7 

31s 

25s 

30s 

25s 

715 

601 

412 

450 

5.57 × 10⁻¹¹ 

2.77 × 10⁻¹³ 

6.92 × 10⁻¹² 

3.77 × 10⁻¹³ 

2.36 × 10⁻¹¹ 

4.11 × 10⁻¹³ 

1.45 × 10⁻¹³ 

7.45 × 10⁻¹¹ 

7.71 × 10⁻¹⁰ 

1.45 × 10⁻¹¹ 

3.19 × 10⁻¹⁰ 

7.04 × 10⁻¹³ 

1.10 × 10⁻¹² 

1.89× 10⁻8 

3.32× 10⁻6 

6.16× 10⁻8 

2.4× 10⁻7 

3.30× 10⁻9 

5.21× 10⁻7 

9.66× 10⁻8 

1.14× 10⁻6 

4.08× 10⁻8 

5.44× 10⁻7 

2.10× 10⁻7 

8.18× 10⁻8 

7.75× 10⁻9 

27s 

20s 

28s 

28s 

20s 

32s 

35s 

30s 

25s 

21s 

30s 

18s 

20s 

412 

450 

550 

385 

412 

630 

725 

677 

1000 

880 

990 

752 

801 

Table 2. Outcomes obtained by the LSRNN-LMO technique. 

S=Scenario, C=Case RMSE MAE MAPE 𝑅2 1 − 𝑅2 

S1/C1 4.74 × 10⁻⁷ 2.13 × 10⁻⁷ 2.88 × 10⁻⁵ 0.99 1.66 × 10⁻¹³ 

S1/C2 1.79 × 10⁻⁶ 3.05 × 10⁻⁷ 1.71 × 10⁻⁴ 0.99 3.54 × 10⁻¹³ 

S1/C3 1.30 × 10⁻⁶ 1.28 × 10⁻⁶ 3.59 × 10⁻⁵ 0.99 2.95 × 10⁻¹² 

S1/C4 1.07 × 10⁻⁶ 1.02 × 10⁻⁶ 1.77 × 10⁻⁵ 0.99 1.50 × 10⁻¹² 

S1/C5 5.10 × 10⁻⁷ 2.98 × 10⁻⁷ 3.22 × 10⁻⁵ 0.99 5.90 × 10⁻¹² 

S2/C1 4.14 × 10⁻⁶ 1.23 × 10⁻⁷ 3.98 × 10⁻⁵ 0.99 2.22 × 10⁻¹³ 

S2/C2 5.59 × 10⁻⁷ 1.01 × 10⁻⁷ 2.75 × 10⁻⁵ 0.99 1.06 × 10⁻¹³ 

S2/C3 7.46 × 10⁻⁶ 1.17 × 10⁻⁶ 1.22 × 10⁻⁴ 0.99 5.19 × 10⁻¹² 

S2/C4 5.26 × 10⁻⁷ 1.57 × 10⁷ 1.22 × 10⁻⁵ 0.99 1.10 × 10⁻¹³ 

S2/C5 2.63 × 10⁻⁶ 1.33 × 10⁻⁶ 5.66 × 10⁻⁵ 0.99 8.88 × 10⁻¹¹ 

S3/C1 6.14 × 10⁻⁷ 1.12 × 10⁻⁷ 1.77 × 10⁻⁵ 0.99 5.44 × 10⁻¹³ 

S3/C2 4.86 × 10⁻⁶ 1.15 × 10⁻⁶ 2.70 × 10⁻⁴ 0.99 3.12 × 10⁻¹² 

S3/C3 6.41 × 10⁻⁷ 1.77 × 10⁻⁷ 1.12 × 10⁻⁵ 0.99 2.99 × 10⁻¹³ 

S3/C4 3.81 × 10⁻⁷ 2.00 × 10⁻⁷ 3.09 × 10⁻⁵ 0.99 7.52 × 10⁻¹³ 

S3/C5 8.63 × 10⁻⁶ 2.54 × 10⁻⁵ 1.14 × 10⁻⁵ 0.99 6.62 × 10⁻¹² 

S4/C1 2.77 × 10⁻⁵ 2.92 × 10⁻⁶ 3.88 × 10⁻⁴ 0.99 5.88 × 10⁻¹¹ 

S4/C2 3.81 × 10⁻⁶ 3.23 × 10⁻⁶ 1.50 × 10⁻⁴ 0.99 3.61 × 10⁻¹² 

Continued on next page 
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S=Scenario, C=Case RMSE MAE MAPE 𝑅2 1 − 𝑅2 

S4/C3 1.79 × 10⁻⁵ 1.22 × 10⁻⁶ 2.56 × 10⁻⁴ 0.99 2.33 × 10⁻¹¹ 

S4/C4 8.39 × 10⁻⁷ 1.25 × 10⁻⁶ 1.01 × 10⁻⁵ 0.99 6.11 × 10⁻¹³ 

S4/C5 1.05 × 10⁻⁶ 3.88 × 10⁻⁶ 3.02 × 10⁻⁵ 0.99 4.55 × 10⁻¹¹ 

4. Results and discussion 

This section is designed to clarify the results achieved through the application of the layered 

supervised recurrent neural networks with Levenberg-Marquardt optimization (LSRNNs-LMO) 

technique, to forecast the thermodynamic properties of the Maxwell model on a sheet, with particular 

emphasis on melting heat and zero mass flux at the boundary, as motivated by both the 

Cattaneo–Christov heat flux and the Lorentz force-based (TMS-MHZCL) models. This study presents 

four unique scenarios of the TMS-MHZCL model, focusing on the velocity and temperature profiles, 

as illustrated in Table 3. 

Table 3. Fluctuations in physical parameters of TMS-MHZCL model. 

S=Scenario, C=Case M 𝑀𝑒 𝛽 𝑃𝑟 

S1/C1 

S1/C2 

S1/C3 

S1/C4 

S1/C5 

S2/C1 

S2/C2 

S2/C3 

S2/C4 

S2/C5 

S3/C1 

S3/C2 

S3/C3 

S3/C4 

S3/C5 

S4/C1 

S4/C2 

S4/C3 

S4/C4 

S4/C5 

0.0 0.5 0.2 3.0 

0.5 0.5 0.2 3.0 

1.0 0.5 0.2 3.0 

1.5 

2.0 

1.0 

1.0 

0.5 

0.5 

0.0 

0.5 

0.2 

0.2 

0.2 

0.2 

3.0 

3.0 

3.0 

3.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.5 

2.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.2 

0.2 

0.2 

0.0 

0.2 

0.5 

0.8 

1.0 

0.2 

0.2 

0.2 

0.2 

0.2 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

1.0 

2.0 

3.0 

4.0 

5.0 

Four different scenarios have been identified utilizing the LSRNNs-LMO approach on the 

TMS-MHZCL model. This section also provides an in-depth overview of the outcomes obtained from 

applying the LSRNN-LMO technique. The assessment and interpretation component is essential to our 

research on LSRNNs-LMO, given its rigorous structure and data analysis. The proposed methodology 

elucidates the complexities of heat transfer, chemical reaction kinetics, and fluid dynamics, providing 

a foundation for a comprehensive study that yields precise predictions across diverse physical domains. 
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Maxwell fluids are crucial to numerous industries and biological processes due to their simultaneous 

viscous and elastic properties. The LSRNNs-LMO scheme has not been utilized to examine the 

TMS-MHZCL model. We applied the AI-driven LSRNNs-LMO scheme to TMS-MHZCL model. 

Figures 3–8 illustrate the LSRNNs-LMO solutions for each of the four scenarios, which encompass 

various circumstances as evaluated through performance metrics, mean square error, fitness functions, 

histogram graphs, input-error cross-correlation, and regression analysis. Tables 1 and 2 present the 

results of the LSRNNs-LMO approach using the metrics MSE, RMSE, MAE, MAPE, NSE, and R² for 

the TMS-MHZCL model. 

Figure 3 demonstrates the learning behavior (training state) of LSRNNs-LMO technique for the 

TMS-MHZCL model. Figures 3(a)–(d) highlights the best gradient values of 7.65× 10⁻5, 2.16× 10⁻4, 

2.4× 10⁻7, and 4.08× 10⁻8 across four different scenarios of the first case. The computed gradients 

validate the consistency and validity of the proposed LSRNNs-LMO technique. 

The MSE and RMSE are widely recognized metrics for model assessment. These metrics have 

been adopted as standard statistical measures to analyze the performance efficiency of the 

LSRNNs-LMO approach for the TMS-MHZCL model. MSE is a primary measure of model accuracy 

and is widely used as a comprehensive reference criterion, with smaller values near zero preferred. 

RMSE is another essential metric for quantifying the deviation between the estimator's predictions and 

the actual values. 

 

Figure 3. Learning-based training state (TS) configuration of LSRNNS-LMO for the 

TMS-MZCL model. 

A lower MSE signifies improved optimization performance. The optimal MSE training results 

are shown in Figure 4. Figures 4(a)–(d) presents the best MSE values of 2.25 × 10⁻¹³, 1.71 × 10⁻¹¹, 3.77 

× 10⁻¹³, and 7.71 × 10⁻¹⁰ across four different scenarios of the first case. These minimal and decreasing 

MSE trends confirm the robustness and stability of the proposed model. Likewise, the optimal RMSE 

values 4.74 × 10⁻⁷, 4.14 × 10⁻⁶, 6.14 × 10⁻⁷, and 2.77 × 10⁻⁵ obtained for the same cases, further 
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indicate the effectiveness of the proposed scheme. These outcomes collectively reflect a high degree of 

computational precision. 

 

Figure 4. Fitness-based MSE optimization using a configuration of LSRNNs-LMO for the 

TMS-MHZCL model. 

Figure 5 illustrates the input-error cross-correlation analysis, which further validates network 

performance by investigating the correlation between the input sequence and corresponding errors. 

The observed association suggests that increasing the number of lag terms in the tapped-delay lines 

may enhance prediction accuracy. In an ideal predictive framework, all correlations should approach 

zero. If the input shows a relationship with the error, improving prediction performance can be 

achieved by increasing the number of delay elements in the connected layers. In this study, nearly all 

correlations remain within the confidence limits around zero. Figure 6 presents the error 

autocorrelation function, which evaluates the performance of the developed network by illustrating the 

temporal relationships of forecasting errors. Autocorrelation analysis of errors is employed to examine 

the interrelationships between inputs and prediction errors by including multiple lag terms. A 

noticeable correlation was observed in the forecasting errors, with most trained networks lying within 

the red confidence limits, signifying potential for improvement, possibly by increasing the number of 

neurons or delay elements. When the network is trained correctly, the remaining lines become 

significantly shorter; otherwise, they remain confined within the red confidence intervals. 

For an ideal forecasting model, there must be a singular nonzero value of the autocorrelation 

function, which should manifest at zero latency (the mean squared error). This would imply that the 

forecasting errors were entirely independent of one another (white noise). If a strong correlation exists 

in the forecasting errors, it may be feasible to improve the estimation, potentially by increasing the 

number of lags in the tapping-delaying lines. In this instance, the correlations, except the one at zero 

lag, predominantly lie within the 95% confidence intervals around zero, indicating that the model 

appears satisfactory. 



897 

AIMS Mathematics  Volume 11, Issue 1, 881–906. 

Figures 5 and 6 highlight the efficiency and coherence of the proposed LSRNNs-LMO technique 

by showing correlations across all four cases that remain within the confidence limits and converge 

toward the zero reference point. 

 

Figure 5. Evaluations of the efficacy of LSRNNs-LMO for the TMS-MHZCL model. 

 

Figure 6. Evaluation of the LSRNNs-LMO results’ suitability for the TMS-MHZCL model. 
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Figure 7 presents an error histogram illustrating a normal distribution of errors. The histogram has 

20 bins, symmetrically distributed across the positive and negative ranges. This graphical 

representation aids in detecting outliers in the dataset, where outliers correspond to data points that 

exhibit a significantly poorer fit than the other data points. The errors close to zero are 2.8 × 10⁻⁸, -1, 2 

× 10⁻⁶, -2.9 × 10⁻⁷, and -4.5 × 10⁻⁶, which validate the reliability of the network. These negligible errors 

further confirm the stability and efficiency of the proposed scheme. 

 

Figure 7. Evaluation of the error histogram to demonstrate the LSRNNs-LMO results’ 

suitability for the TMS-MHZCL model. 

In regression analysis, the primary focus is on assessing how well the data fit the model. When the 

data points coincide with the linear target line, the curve fitting is considered optimal. A higher R2 

value indicates that the data points align more closely with the regression line, reflecting a stronger 

correlation between the predicted and actual values. A coefficient of variation equal to 1 indicates that 

the total variability in the dependent variable is entirely due to the independent variable, confirming 

ideal curve fitting. Conversely, an R2 value approaching zero denotes the failure of the linear 

relationship between the targets and outputs, whereas an R2 value equal to 1 represents a perfect linear 

association. Furthermore, Figure 8 presents the regression analysis, which shows that all data points lie 

precisely along the solid regression line, confirming the best-fit model. 
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Figure 8. Evaluation of the regression analysis to demonstrate the LSRNNs-LMO results’ 

suitability for the TMS-MHZCL model. 

Our work investigates the steady-state flow of Maxwell fluids over a sheet-shaped domain, 

focusing specifically on the influence of the melting temperature and the zero-mass-flux boundary 

condition. A Maxwell fluid, distinguished by its viscosity and elasticity properties, is essential in 

numerous industrial and biological applications. Our investigation of the TMS-MHZCL flow over a 

stretching sheet yields valuable insights into the thermal transfer properties of nanofluids. The 

LSRNN-LMO algorithm demonstrated exceptional accuracy, with error margins as minimal as 10-9. 

These results include significant practical ramifications for numerous enterprises. In the electronic 

refrigeration sector, the enhanced thermal properties of nanofluids can optimize liquid radiators for 

exceptional durability in data centers and computing centers. Our methodology in healthcare 

engineering can facilitate the development of microfluidic devices for efficient drug delivery. 

Moreover, integrating nanofluids into automotive cooling systems enhances engine heat management, 

while advancements in renewable energy can improve the effectiveness of solar thermal collectors. 

This research advances a theoretical understanding and identifies practical opportunities to enhance 

sustainability and effectiveness across sectors. 

Figure 9(a) illustrates the effect of the MHD parameter on the velocity profile. As the MHD 

parameter escalates, the velocity profile diminishes. The physical mechanism depicted in Figure 9(a), 

in which an increased MHD value leads to a reduced velocity profile, arises from the interaction 

between the magnetic field and fluid motion. This decline is primarily determined by the interaction 

between parameter 𝑀 and the complexity of the fluid flow. The magnetic field exerts stress on the fluid, 

thereby restricting or weakening its motion. Increasing the MHD value, often indicative of a stronger 

magnetic field, may yield several outcomes. The magnetic field generates a Lorentz force on the 

charged particles within the fluid. This force may accelerate or oppose the fluid flow, depending on the 
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direction of M and the orientation of the fluid’s current. The magnetic field can induce magnetic 

tension in the fluid, thereby constraining or attenuating the flow. Intense magnetic forces can suppress 

fluid turbulence, and reducing these effects promotes a more orderly, stable flow, consequently 

diminishing the velocity profile, since turbulence generally enhances mixing and transport processes. 

The observed behavior may vary depending on the system geometry, fluid properties, and the 𝑀 

parameter. In certain instances, an elevated MHD parameter may improve the velocity profile, 

particularly when the magnetic field is designed to promote flow; however, in many scenarios, 

increasing the MHD parameter generally diminishes the velocity contours due to the effects described 

above. Figure 9(b) presents the absolute error for the variation for the M parameter of the velocity 

profile, showing approximately 10-8 minimal error. Figure 9(c) depicts the effect of melting heat (𝑀𝑒) 

stimulation on the velocity profile, where a noticeable increase in velocity is observed with rising (𝑀𝑒) 

influence. The physical structure underlying the behavior shown in Figure 9(c), in which an 

escalating 𝑀𝑒 corresponds to an enhanced velocity profile, pertains to the latent heat of melting and its 

impact on fluid dynamics, particularly in phase-change phenomena. The stronger melting supplies 

additional liquid and latent heat at the interface, thereby weakening viscous resistance and accelerating 

the fluid adjacent to the melting surface. Figure 9(d) shows the absolute error for variations in the 𝑀𝑒 

parameter of the velocity profile, exhibiting a negligible error close to 10-8. Figure 9(e) demonstrates 

the influence of the MHD parameter (𝑀) on the temperature distribution, where the temperature 

profile displays a declining trend with increasing MHD intensity. The underlying physical mechanism 

shown in Figure 9(e) indicates that an increasing MHD factor leads to a decline in the temperature 

profile, which is fundamentally linked to the correlation between 𝑀 and the fluid's thermal 

characteristics. An increase in MHD parameter (𝑀) typically indicates that the conducting fluid is 

exposed to a stronger magnetic field. 

An increase in MHD parameter (𝑀) usually signifies a higher magnetic field produced by the 

conductive fluid. The magnetic field present exerts forces on charged particles in the liquid, resulting 

in the manifestation of the Lorentz force. These forces may subsequently result in magnetic restriction 

or a compression of fluid in certain areas. As the magnetic field increasingly confines the fluid, it may 

undergo reduced expansion due to heat, resulting in lower temperatures in those regions. The presence 

of a robust MHD parameter (𝑀) can impede heat conduction and transmission within the fluid. This 

aids in the comprehensive decrease of the temperature profile. In certain instances, the relationship 

between the MHD parameter (𝑀) and the fluid can generate Alfven waves that transport energy 

through the fluid. These electromagnetic waves may redistribute energy within the system, resulting in 

temperature variations that frequently reduce the temperature contour. 

Figure 9(f) illustrates the absolute error associated with the variation of the 𝑀 parameter along the 

temperature profile, showing a negligible deviation of approximately 10-7. Figure 9(g) shows the 

influence of melting heat (𝑀𝑒) on the temperature profile, highlighting the evident interdependence 

between the two parameters. A noticeable drop in the temperature profile occurs as the influence of 

melting heat becomes more dominant. This phenomenon arises from the fundamental principles of 

thermodynamics that govern phase transitions, particularly the release of latent heat during the 

solid-to-liquid transition. The escalation of the melting heat (𝑀𝑒 ) indicates a greater quantity of 

thermal energy being released during the phase change from solid to liquid. As the substance melts, 

more heat is released into the surrounding atmosphere. The expulsion of heat cools the surrounding 

area, as the emitted heat extracts energy from the adjacent fluid or material, thereby lowering the 

temperature. The more substantial melting at the surface is indicated by a larger melting parameter, 

whereby more solid transforms into liquid. During melting, latent heat is absorbed at the interface, 

extracting energy from the nearby fluid and thus lowering its temperature. Moreover, the fluid 
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temperature within the boundary layer decreases with increasing of melting heat (𝑀𝑒), although all 

profiles eventually approach the ambient temperature far from the surface. Figure 9(h) displays the 

absolute error curve for the variation of the 𝑀𝑒 parameter with respect to the temperature profile, 

exhibiting a minimal deviation of approximately 10-8. Figure 9(i) demonstrates the effect of the 𝛽 

parameter on the temperature distribution. The temperature profile shows a significant rise as the 𝛽 

parameter increases. The physical mechanism illustrated in Figure 9(i), in which a growing 𝛽 factor 

produces an elevated temperature profile, relates to the viscoelastic properties of materials and their 

response to temporal thermal variations. A higher 𝛽 parameter value implies that the elastic response 

of the material dominates over its viscous behavior. The higher 𝛽  reflects the stronger elastic 

contribution relative to viscous effects in the fluid interaction response. This enhanced elasticity 

enables the medium to store and release more thermal energy, thereby diminishing the rate of heat 

diffusion away from the heated surface. The elevated 𝛽 factor indicates a rapid, dominant elastic 

response from the material. The material can exhibit more pronounced temperature fluctuations and an 

overall increase in the temperature profile if it can quickly regulate its temperature in response to 

thermal gradients. Figure 9(j) illustrates the absolute error associated with variations in the 𝛽 

parameter concerning the temperature profile, indicating minimal discrepancies on the order of 10-9. 

Figure 9(k) shows the complex correlation between the Prandtl number (Pr) and the temperature 

profile, revealing a significant link among these factors. A noticeable rise in the temperature trend is 

observed as the Pr number increases. The governing mechanism for this phenomenon, depicted in 

Figure 9(k), where an increasing Pr number corresponds to higher temperature behavior, arises from 

the intricate coupling of heat transfer processes with varying momentum and heat diffusion 

characteristics in the fluid. An increase in the Pr number indicates the fluid’s performance in 

momentum transmission relative to its capability in heat transfer. A greater Pr value indicates that the 

fluid is less efficient in momentum transfer compared to its proficiency in heat transport. The 

discrepancies signify that thermal diffusion occurs at a faster rate than momentum diffusion inside the 

fluid. Consequently, as the Pr number increases, the fluid has an enhanced ability to mix and transfer 

heat effectively. As the Pr number rises, the fluid’s improved capacity for heat transmission becomes 

evident, leading to a rise in the temperature profile. The intricate relationship between the Prandtl 

number and temperature dynamics highlights the crucial influence of heat transfer properties and the 

varying rates of momentum and thermal diffusion in defining the thermal behavior of fluids. This 

complex interaction demonstrates that an increasing Prandtl number enhances the efficiency of 

thermal energy transfer, leading to a significant increase in the system’s temperature profile. Figure 9(l) 

depicts the absolute error corresponding to the variation of the Pr number on the temperature profile. It 

indicates minimal errors within the range of 10-9 for the given temperature profile. Furthermore, Figure 

9 presents the comparison results for the proposed scheme, which closely match the numerical 

outcomes and exhibit minimal absolute errors. 
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Figure 9. Comparative outcomes and assessments of the LSRNNs-LMO model with 

𝑓′(𝜉)and 𝜃(𝜉) based on the reference dataset of the TMS-MHZCL model. 
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5. Conclusions 

This article presents a novel methodology to investigate the thermodynamic properties of the 

Maxwell model on a sheet, with particular focus on melting heat and zero-mass-flux boundary 

conditions, inspired by the Cattaneo-Christov heat flux formulation and the Lorentz force effects 

(TMS-MHZCL) model, and employing advanced computational approaches. Maxwell fluids are 

crucial in a variety of scientific and biological applications owing to their unique combination of 

viscous and elastic properties. A soft computational LSRNN-LMO technique is designed and 

implemented for forecasting the TMS-MHZCL flow. Maxwell fluids are crucial across numerous 

economic and biomedical domains due to their distinctive viscoelastic properties. The TMS-MHZCL 

model demonstrates applicability in scientific and industrial settings, particularly for enhancing 

heat-transfer processes. The present work identifies numerical solutions using a sophisticated 

computational method. Temperature, velocity, and many physical parameters are delineated, and their 

effects are comprehensively analyzed using diverse graphical representations. The current study has 

produced significant results, presented as follows: 

• The investigation demonstrates the application of modern AI innovations, particularly 

LSRNNs-LMO, to analyzing the TMS-MHZCL model. 

• The proposed technique aims to achieve optimal outcomes and compare them with experimental 

numerical findings to validate their precision within a small error margin. 

• A graphical depiction of the outcomes obtained by the sophisticated, AI-powered application of 

the LSRNNs-LMO technique is shown via a comparison analysis. Regression graphs, correlation plots, 

error histograms, and error auto-regression analyses were employed to confirm the effectiveness of 

measurement and comparison studies utilizing NSLRNNs. 

• The regression analysis, yielding a value close to 1, signifies the reliability and effectiveness of the 

proposed technique. 

• As the MHD factor M escalates, a notable decrease in the velocity profile is observed, signifying a 

fall in the fluid's velocity. 

• The temperature profile diminishes as the MHD factor M grows, signifying a declining tendency 

in the system’s distribution of temperatures. 

• The velocity profile notably rises with the amplification of the melting heat action. The physical 

concepts related to the latent heat of melting and its influence on fluid dynamics, particularly during 

phase transition processes, explain the occurrence. 

• As the 𝛽 parameter increases, the temperature profile significantly decreases. An increased 𝛽 

factor value results in a stronger temperature dependence and is linked to the elastic properties of 

materials and their responses to temporal changes in temperature. 

• An evident escalation in the temperature trend occurs as the Pr number increases. 

Limitations of the proposed technique and future work 

The integration of layered supervised recurrent neural networks with the Levenberg-Marquardt 

optimization (LSRNNs-LMO) technique in fluid mechanics holds considerable promise for complex 

simulations and time-varying flow phenomena; yet, many limitations persist. A significant limitation of 

the employed LSRNNs-LMO methodology is its reliance on highly specialized training data to capture 

essential physical correlations and to produce accurate predictions. Incomplete or insufficient datasets 

can lead to diminished model reliability and erroneous predictions. Furthermore, LSRNN-LMO is 

highly sensitive to hyperparameter settings, and inappropriate settings may lead to overfitting or 
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convergence issues. There exist auspicious prospects for forthcoming research in fluid mechanics. 

Sophisticated investigations, including those that leverage RNNs and computational power [18,19], 

have yielded promising results and facilitated the practical analysis of complex events. Advanced 

machine architectures employing artificial recurrent neural networks are being developed to analyze 

and better understand various fluid flow systems [20,21]. The extension of neural networks into 

multiple domains and the transdisciplinary challenges they pose are notably promising. By employing 

RNNs across domains, researchers can examine the complexities of social issues, propose novel 

concepts, and devise innovative solutions. As a result, the effort will foster collaboration and 

innovation that may lead to significant advances in technological and scientific fields. 
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