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Abstract: This work investigates the inverse recovery of two time-dependent coefficients in a one-
dimensional parabolic initial–boundary value problem using two nonlocal measurements. Under
suitable regularity assumptions and a natural identifiability condition, we establish the existence
and uniqueness of the reconstructed coefficients. We further clarify the intrinsic ill-posedness of
the problem, noting that the reconstruction step inherently amplifies high-frequency noise, thereby
necessitating regularization. Building on these insights, we develop a Crank–Nicolson finite-difference
inversion method, which at each half time step reduces to solving a small linear system for the
two coefficients. To stabilize the measured data, we employ mollification. Numerical experiments
with synthetic data demonstrate accurate reconstructions under small noise levels and reveal that the
recovery of the first coefficient is more sensitive to noise than that of the second. The results highlight
the critical roles of identifiability and data smoothing in achieving stable performance.
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1. Introduction

Parabolic partial differential equations are fundamental tools for modeling diffusion and heat
transfer in science and engineering. In many practical applications, certain coefficients in these models
are not known a priori and must be inferred from measured data. This gives rise to inverse problems,
where the objective is to recover model coefficients from indirect observations of the solution. A
substantial body of research has focused on identifying a single unknown coefficient using boundary
or interior measurements, and numerous analytical and numerical techniques have been developed for
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this purpose; see, for example, [1, 2]. Nonlocal measurements and overdetermination conditions have
also been used to improve the information content of the data [3, 4]. In bioheat transfer, for example,
time-varying perfusion and source rates are of particular interest and have been investigated using
similar techniques [5–8]. Finite-difference schemes are widely adopted owing to their simplicity and
flexibility [9–11]. Inverse problems are inherently ill-posed and highly sensitive to noise, necessitating
regularization; discrete mollification provides a practical and effective remedy [12, 13]. Related
approaches have also been explored in time-fractional diffusion models [14–18].

A growing body of literature addresses the simultaneous recovery of multiple unknowns in
diffusion-type models. For classical parabolic equations, analytical and numerical strategies
for recovering two time-dependent coefficients demonstrate that overposed data, combined with
appropriate regularization, ensures identifiability and stable computation [19]. In transmission
problems, the joint identification of the initial value and source strength underscores the importance of
enriched interface measurements and yields stable reconstructions [20]. In higher-dimensional settings,
simultaneous recovery of a right-hand side and time-dependent coefficients has been established,
supported by convergent schemes robust to noise [21]. Parallel advances in fractional diffusion include
joint inversion of the fractional order with a space-dependent source [22, 23], uniqueness results
for multiple orders and parameters in multi-term models [24] and simultaneous identification of the
fractional order together with the diffusion coefficient [25]. Furthermore, multi-term identification
from nonlocal observations has been demonstrated for time-fractional diffusion with a symmetric
potential [26].

Motivated by this context, we address a challenging inverse problem: the simultaneous recovery
of two time-dependent coefficients in a one-dimensional parabolic problem from two nonlocal
measurements. Such problems are inherently difficult, as they raise fundamental questions about
whether the available data provide sufficient independent information and about the stability of
the reconstruction process. In response, we first establish existence and uniqueness under suitable
regularity assumptions and a natural identifiability (nondegeneracy) condition. We then design a
Crank–Nicolson finite-difference inversion scheme which, at each half time step, reduces the recovery
to solving a 2 × 2 linear system for the two coefficients. The inverse problem is formally described
below.
Problem formulation. Consider the following initial-boundary value problem of parabolic equation:

ut = uxx − p(t)u + q(t) f (x, t) , 0 < x < 1, 0 < t ≤ T,

u(x, 0) = φ(x), 0 < x < 1,
u(0, t) = a(t), u(1, t) = b(t), 0 < t ≤ T.

(1.1)

Given the functions p(t), q(t), f (x, t), φ(x), a(t), and b(t), determining the distribution u(x, t) constitutes
the direct problem. In contrast, our focus is on the inverse problem of reconstructing p(t) and q(t) from
the following nonlocal conditions:

E1(t) =
∫ 1

0
w1(x)u(x, t) dx, t ∈ [0,T ], (1.2)

and

E2(t) =
∫ 1

0
w2(x)u(x, t) dx, t ∈ [0,T ], (1.3)
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where w1(x) and w2(x) are prescribed weight functions. In practical applications, however, the
data appearing in these nonlocal conditions—namely E1(t) and E2(t)—are typically contaminated by
random measurement noise errors. Consequently, one only has access to the noisy observations Eδ1(t)
and Eδ2(t), which satisfy

∥Eδ1(t) − E1(t)∥ ≤ δ, ∥Eδ2(t) − E2(t)∥ ≤ δ, (1.4)

where δ denotes the noise level.
The structure of the paper is organized as follows: Section 2 establishes existence and uniqueness

results for recovering the time-dependent coefficients p(t) and q(t) from two nonlocal measurements.
Section 3 develops a Crank–Nicolson–based numerical algorithm for the simultaneous inversion of
these coefficients. Section 4 presents numerical experiments that demonstrate feasibility and robustness
under noisy data. Section 5 offers a brief conclusion.

2. Existence and uniqueness for recovering p(t) and q(t)

The main objective of this section is to establish the existence and uniqueness of recovering the pair
(p, q) under suitable regularity and identifiability conditions. To this end, we begin by introducing a set
of assumptions on the data and coefficients. These assumptions guarantee the well-posedness of the
associated direct problem and provide the analytical framework required to prove the ensuing existence
and uniqueness results for the inverse reconstruction.

Assumptions

(A1) Regularity: φ ∈ L2(0, 1), a, b ∈ H1/2(0,T ), f ∈ C
(
[0,T ]; L2(0, 1)

)
, and w j ∈ H2(0, 1) with

w j(0) = w j(1) = 0 for j = 1, 2. In particular, w′j has well-defined endpoint traces.

(A2) Observation regularity and compatibility: E j(t) ∈ W1,1(0,T ) and E j(0) =
∫ 1

0
w j(x)φ(x) dx for

j = 1, 2.

(A3) Identifiability (nondegeneracy): with F j(t) :=
∫ 1

0
w j(x) f (x, t) dx,

∆(t) := E2(t)F1(t) − E1(t)F2(t) satisfies |∆(t)| ≥ Θ > 0 for all t ∈ [0,T ].

Theorem 1 (Existence and Uniqueness). Under assumptions (A1)–(A3), there exists τ ∈ (0,T ] such
that there is a unique pair

(p, q) ∈ L∞(0, τ) × L∞(0, τ)

for which the corresponding weak solution u of (1.1) satisfies the given nonlocal conditions

E j(t) =
∫ 1

0
w j(x) u(x, t) dx, j = 1, 2, for a.e. t ∈ [0, τ].

Moreover, if |∆(t)| ≥ Θ > 0 holds on the entire interval [0,T ], then the above construction can be
continued in finitely many steps to the whole time range, and one obtains a unique recovery (p, q) ∈
L∞(0,T ) × L∞(0,T ). That is, given the exact data {E1(t), E2(t)} on [0,T ], the coefficients p and q are
uniquely determined.
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Proof. Under (A1), for any p, q ∈ L∞(0,T ) the forward problem admits a unique weak solution

u ∈ C
(
[0,T ]; L2(0, 1)

)
∩ L2(0,T ; H1(0, 1)

)
, ut ∈ L2(0,T ; H−1(0, 1)

)
.

This is standard for one-dimensional parabolic equations with Dirichlet boundary conditions. From
the definitions of E j(t) for j = 1, 2, differentiating with respect to t and applying equation (1.1) yields

E′j(t) =
∫ 1

0
w j ut dx =

∫ 1

0
w j uxx dx − p(t)

∫ 1

0
w j u dx + q(t)

∫ 1

0
w j f dx.

Integrating by parts twice and using w j(0) = w j(1) = 0 yields∫ 1

0
w juxx dx =

∫ 1

0
w′′j u dx −

(
w′j(1)b(t) − w′j(0)a(t)

)
.

Hence, for j = 1, 2,

−p(t)E j(t) + q(t)F j(t) = E′j(t) +
(
w′j(1)b(t) − w′j(0)a(t)

)
−

∫ 1

0
w′′j u dx. (2.1)

Set

B j(t) :=
[
w′j(1) b(t) − w′j(0) a(t)

]
, J j[u](t) :=

∫ 1

0
w′′j (x) u(x, t) dx,

and define the right-hand side

R j[u](t) := E′j(t) + B j(t) − J j[u](t), j = 1, 2.

Hence, for the prescribed functions E j(t) and F j(t) for j = 1, 2, the inverse problem under consideration
reduces to solving the following nonlinear system of equations:(

−E1(t) F1(t)
−E2(t) F2(t)

) (
p(t)
q(t)

)
=

(
R1[u](t)
R2[u](t)

)
. (2.2)

By |∆(t)| ≥ Θ > 0, (2.2) is invertible and yields

p(t) =
R1[u](t) F2(t) − R2[u](t) F1(t)

∆(t)
, q(t) =

E2(t) R1[u](t) − E1(t) R2[u](t)
∆(t)

. (2.3)

Fix τ > 0 (to be chosen) and consider X := L∞(0, τ) × L∞(0, τ) with norm ∥(p, q)∥X = ∥p∥L∞(0,τ) +

∥q∥L∞(0,τ). Given (p, q) ∈ X, the forward problem admits a unique weak solution

u ∈ C
(
[0, τ]; L2(0, 1)

)
∩ L2(0, τ; H1(0, 1)

)
, ut ∈ L2(0, τ; H−1(0, 1)

)
.

Therefore, we can define a map Φ : X → X by

Φ(p, q) := ( p̃, q̃), where (p̃, q̃) are given by (2.3) with u = u[p, q].

Let (pk, qk) ∈ X with solutions uk = u[pk, qk] for k = 1, 2, and set v := u1 − u2. Thenvt = vxx − p1 v −
(
p1 − p2

)
u2 +

(
q1 − q2

)
f ,

v(·, 0) = 0, v(0, t) = v(1, t) = 0.
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Parabolic energy estimates and Grönwall’s inequality yield a constant C > 0 such that

∥v∥C([0,τ];L2) ≤ C τ (∥p1 − p2∥∞ + ∥q1 − q2∥∞) , (2.4)

hence ∥∥∥J j[u1] − J j[u2]
∥∥∥
∞
≤ ∥w′′j ∥L2 ∥v∥C([0,τ];L2) ≤ C τ (∥p1 − p2∥∞ + ∥q1 − q2∥∞) .

Unless otherwise specified, throughout this paper, C denotes a generic constant whose value may
change from line to line. Since (pk, qk) depend linearly on R j[uk], we obtain

∥Φ(p1, q1) − Φ(p2, q2)∥∞ ≤
C
Θ
∥J j[u1] − J j[u2]∥∞ ≤

C
Θ
τ (∥p1 − p2∥∞ + ∥q1 − q2∥∞) .

Choose τ0 > 0 so that C
Θ
τ0 < 1. Then for any τ ≤ τ0, Φ is a contraction on X. By Banach’s fixed point

theorem, Φ has a unique fixed point (p, q) ∈ X, and the Picard iteration (p(k+1), q(k+1)) = Φ(p(k), q(k))
converges to it.

Next, we verify that the unique solution obtained from Banach’s fixed-point theorem indeed satisfies
the prescribed nonlocal conditions. Let (p∗, q∗) ∈ X denote the unique fixed point of the mapping Φ,
i.e.,

Φ(p∗, q∗) = (p∗, q∗).

Denote by u∗ the corresponding unique solution of the forward problem associated with (p∗, q∗). Then,
for each j = 1, 2, one has

−E j p∗ + F jq∗ = E′j + B j − J j[u∗]. (2.5)

On the other hand, multiplying the equation satisfied by u∗ by w j and integrating over (0, 1) gives

d
dt

(∫ 1

0
w ju∗ dx

)
= B j + J j[u∗] − p∗

∫ 1

0
w ju∗ dx + q∗F j. (2.6)

Hence, define

G j(t) :=
∫ 1

0
w j(x) u∗(x, t) dx.

Combining (2.5) and (2.6), we obtain for j = 1, 2 the initial-value problem(G j − E j)′(t) = − p∗(t) (G j − E j)(t),
(G j − E j)(0) = 0.

It follows that G j(t) ≡ E j(t) for almost every t ∈ [0, τ], and thus the fixed-point solution (p∗, q∗) indeed
satisfies the prescribed nonlocal conditions.

Finally, by partitioning [0,T ] into finitely many sub-intervals of length ≤ τ and iterating the
above construction, using u(·, tm) as the initial condition on each sub-interval, this yields existence
and uniqueness of (p, q) on [0,T ]. □
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Assumptions

(A4) Dirichlet eigenfunction weights: for j = 1, 2, the weight w j(x) is a Dirichlet eigenfunction on
(0, 1), i.e.,

w′′j + λ jw j = 0, w j(0) = w j(1) = 0, λ j > 0,

where λ j is a Dirichlet eigenvalue of the one-dimensional Laplacian on (0, 1).

Corollary 1. Under (A1)–(A4), there exists a unique pair (p, q) ∈ L∞(0,T ) × L∞(0,T ) and a unique
solution u of (1.1) corresponding to the data (1.2)–(1.3). Moreover, the coefficients admit the explicit
representations

p(t) =
R1(t)F2(t) − R2(t)F1(t)

∆(t)
, q(t) =

E2(t)R1(t) − E1(t)R2(t)
∆(t)

, (2.7)

where
R j(t) := E′j(t) + B j(t) + λ jE j(t), B j(t) := w′j(1) b(t) − w′j(0) a(t), j = 1, 2,

and ∆(t) = E2(t)F1(t) − E1(t)F2(t).

Remark 1. In view of w′′j = −λ jw j on (0, 1), we have

J j[u](t) =
∫ 1

0
w′′j (x) u(x, t) dx = −λ j

∫ 1

0
w j(x) u(x, t) dx = −λ jE j(t),

hence R j(t) = E′j(t)+B j(t)− J j[u](t) = E′j(t)+B j(t)+λ jE j(t). Therefore, all quantities on the right-hand
sides of (2.7) depend only on the prescribed data and known functions; in particular, the formulas for
p(t) and q(t) are explicit and do not depend (recursively) on (p, q). This is different from (2.3), where
R j[u] depends on u and thus on (p, q).

Although the reconstruction is well posed in the sense of existence and uniqueness, it is unstable
with respect to perturbations in the data. The explicit formulas (2.3) involve time derivatives of the
nonlocal observations through R j[u] = E′j(t) + B j(t) − J j[u](t), and differentiation is an unbounded
operator on the natural data spaces. Consequently, high-frequency noise in E j is strongly amplified in
E′j [18]: if Eδj = E j + η j with ∥η j∥L∞(0,T ) ≤ δ and, say, η j(t) = δ sin(nt), then ∥Eδj

′
−E′j∥L∞(0,T ) ≈ nδ. Even

under the uniform nondegeneracy |∆(t)| ≥ Θ > 0, the reconstruction error is of order nδ/Θ and can
be arbitrarily large as n → ∞. This is a classical Hadamard-type ill-posedness: small perturbations of
the data may induce large errors in (p, q). In practice, regularization is indispensable,for instance,
by smoothing or low-pass filtering of E j prior to differentiation, by employing integral (Volterra)
formulations that avoid explicit time derivatives, or by adding Tikhonov-type penalties on p and q.

As an illustration based on the explicit representations (2.7), we demonstrate that the recovery of
p(t) is typically more ill-conditioned (i.e., more sensitive to noise) than that of q(t). Assume that E j(t)
and F j(t) are exact and satisfy |∆(t)| ≥ Θ > 0 on [0,T ]. Let the differentiated quantities be contaminated
as

Rδj(t) = R j(t) + η j(t), j = 1, 2,

where η j may be large due to the numerical differentiation contained in R j. Define pδ, qδ by substituting
Rδj into (2.7). A direct calculation yields

pδ(t) − p(t) =
η1(t) F2(t) − η2(t) F1(t)

∆(t)
, qδ(t) − q(t) =

E2(t) η1(t) − E1(t) η2(t)
∆(t)

.
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Hence, taking the supremum over t and using |∆(t)| ≥ Θ gives the uniform bounds

∥pδ − p∥L∞(0,T ) ≤
2 ∥F∥∞
Θ

∥η∥∞, ∥qδ − q∥L∞(0,T ) ≤
2 ∥E∥∞
Θ

∥η∥∞,

where ∥F∥∞ = max{∥F1∥L∞(0,T ), ∥F2∥L∞(0,T )}, ∥E∥∞ = max{∥E1∥L∞(0,T ), ∥E2∥L∞(0,T )}, ∥η∥∞ =

max{∥η1∥L∞(0,T ), ∥η2∥L∞(0,T )}. In many practical settings one observes ∥F∥∞ ≫ ∥E∥∞ (due to parabolic
smoothing of u, whereas F j are direct projections of the source). Consequently, the reconstruction
error for p(t) is amplified by a larger factor than that for q(t). Thus, even when E j and F j are exact, the
differentiated-data noise in R j typically affects p more strongly than q, a behavior that is corroborated
by our numerical experiments.

In the next section, we introduce a finite-difference inversion scheme that reconstructs the
coefficients p and q without explicitly computing numerical time derivatives. Nevertheless, despite
circumventing numerical differentiation. This reconstruction remains computationally unstable; this
instability is intrinsic to the inverse problem itself, rather than a consequence of the discretization.

3. Numerical algorithm for coefficients inversion

This section develops a numerical scheme for recovering the time-dependent coefficients p(t)
and q(t) using a Crank–Nicolson finite-difference discretization, combined with composite numerical
quadrature to enforce the nonlocal constraints. The space–time domain [0, 1] × [0,T ] is uniformly
partitioned with spatial step h = 1/M and time step τ = T/N. Grid points are (xm, tn) with xm = mh
(m = 0, 1, . . . ,M) and tn = nτ (n = 0, 1, . . . ,N). We set the mesh ratio r = τ/h2 and define

tn+ 1
2
= (n + 1

2 )τ, pn+ 1
2 = p(tn+ 1

2
), qn+ 1

2 = q(tn+ 1
2
), un

m = u(xm, tn), f n+ 1
2

m = f (xm, tn+ 1
2
).

The corresponding finite-difference approximations of u(xm, tn), p(tn+ 1
2
) and q(tn+ 1

2
) are denoted by Un

m,

Pn+ 1
2 , and Qn+ 1

2 , respectively.
By the Crank-Nicolson scheme, equation (1.1) is discretized for 1 ≤ m ≤ M − 1 as

un+1
m −un

m

τ
=

(un
m+1−2un

m+un
m−1)+(un+1

m+1−2un+1
m +un+1

m−1)
2h2 −pn+1

2
un

m+un+1
m

2
+qn+1

2 f n+1
2

m +Rmn, (3.1)

where Rmn denotes the local truncation error. Under standard smoothness, there exists a constant d1 > 0
such that

|Rmn| ≤ d1(τ2 + h2).

The boundary and initial conditions are discretized by

un
0 = a(tn), un

M = b(tn), u0
m = φ(xm). (3.2)

The nonlocal conditions (1.2)–(1.3) at tn+1 are approximated by the composite trapezoidal rule:

h
2

w10 un+1
0 + h

M−1∑
m=1

w1m un+1
m +

h
2

w1M un+1
M + Q1,n+1 = En+1

1 , (3.3)

h
2

w20 un+1
0 + h

M−1∑
m=1

w2m un+1
m +

h
2

w2M un+1
M + Q2,n+1 = En+1

2 , (3.4)
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where w jm = w j(xm), and suppose that for each n there exists d2 > 0 such that

|Q j,n+1| ≤ d2h2, j = 1, 2.

Neglecting the consistency remainders Rmn and Q j,n+1 in (3.1), (3.3), and (3.4), and replacing
(un

m, p
n+ 1

2 , qn+ 1
2 ) with the discrete unknowns (Un

m, P
n+ 1

2 ,Qn+ 1
2 ), we obtain

(
1+r+ τ2 Pn+1

2
)
Un+1

m −
r
2
(
Un+1

m+1+Un+1
m−1

)
=
(
1−r−

τ

2
Pn+1

2
)
Un

m+
r
2
(
Un

m+1+Un
m−1

)
+ τQn+1

2 f n+1
2

m , (3.5)

Un
0 = a(tn), Un

M = b(tn), U0
m = φ(xm), (3.6)

h
2

w10 Un+1
0 + h

M−1∑
m=1

w1m Un+1
m +

h
2

w1M Un+1
M = En+1

1 , (3.7)

h
2

w20 Un+1
0 + h

M−1∑
m=1

w2m Un+1
m +

h
2

w2M Un+1
M = En+1

2 . (3.8)

Next, we rewrite (3.5)–(3.8) in matrix form. Let Un = [Un
1 , . . . ,U

n
M−1]T , W j = [w j1, . . . ,w j,M−1]T for

j = 1, 2. Define the tridiagonal matrices A(Pn+ 1
2 ), B ∈ R(M−1)×(M−1) by

A(Pn+ 1
2 ) =


d − r

2

− r
2 d . . .
. . .

. . . − r
2

− r
2 d

 , B =


1 − r r

2
r
2 1 − r . . .

. . .
. . . r

2
r
2 1 − r

 , d = 1 + r +
τ

2
Pn+ 1

2 .

Let Fn+ 1
2 =

[
f (x1, tn+ 1

2
), . . . , f (xM−1, tn+ 1

2
)
]T

and define the boundary vector

Cn =
[ r
2
(
Un+1

0 + Un
0
)
, 0, . . . , 0,

r
2
(
Un+1

M + Un
M
)]T
,

where Un
0 = a(tn) and Un

M = b(tn) are known. Then (3.5) is equivalent to

A(Pn+ 1
2 )Un+1 = BUn −

τ

2
Pn+ 1

2 Un + τQn+ 1
2 Fn+ 1

2 +Cn. (3.9)

The nonlocal constraints (3.7)–(3.8) can be written as

h WT
1 Un+1 = En+1

1 −
h
2

w10Un+1
0 −

h
2

w1MUn+1
M , (3.10)

h WT
2 Un+1 = En+1

2 −
h
2

w20Un+1
0 −

h
2

w2MUn+1
M . (3.11)

From (3.9) we obtain

Un+1 = A−1(Pn+ 1
2 )
(
BUn +Cn) − τ

2
Pn+ 1

2 A−1(Pn+ 1
2 )Un + τQn+ 1

2 A−1(Pn+ 1
2 )Fn+ 1

2 . (3.12)
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Define

α j := En+1
j − h

2w j0Un+1
0 − h

2w jMUn+1
M − h WT

j A−1(Pn+ 1
2 )
(
BUn +Cn),

β j := −1
2 h WT

j A−1(Pn+ 1
2 )Un, γ j := h WT

j A−1(Pn+ 1
2 )Fn+ 1

2 , j = 1, 2.

Substituting (3.12) into (3.10)–(3.11) yields a 2 × 2 linear system for (Pn+ 1
2 ,Qn+ 1

2 ):τβ1 Pn+ 1
2 + τγ1 Qn+ 1

2 = α1,

τβ2 Pn+ 1
2 + τγ2 Qn+ 1

2 = α2,
(3.13)

and, provided β1γ2 − β2γ1 , 0, then

Pn+ 1
2 =

1
τ

α1γ2 − α2γ1

β1γ2 − β2γ1
, Qn+ 1

2 =
1
τ

β1α2 − β2α1

β1γ2 − β2γ1
. (3.14)

Based on (3.9)–(3.14), the time-marching inversion proceeds as Algorithm 1.

Algorithm 1 : Finite-difference inversion scheme for reconstructing p(t) and q(t)
for n = 0, 1, . . . ,N − 1 do

Step 1: Given the tolerance ε > 0, choose an initial guess Pn+ 1
2

0 for Pn+ 1
2 .

Step 2: Assemble the tridiagonal matrix A
(
Pn+ 1

2
k

)
and compute

YU = A−1
(
Pn+ 1

2
k

)
Un, YF = A−1

(
Pn+ 1

2
k

)
Fn+ 1

2 , YBF = A−1
(
Pn+ 1

2
k

) (
BUn +Cn).

Step 3: Using the data En+1
j , define

α j = En+1
j − hWT

j YBF −
h
2w j0Un+1

0 − h
2w jMUn+1

M ,

β j = −
1
2hWT

j YU , γ j = hWT
j YF , j = 1, 2.

Step 4: If |β1γ2 − β2γ1| < toldet, the system is ill-conditioned; stop. Otherwise, update

Pn+ 1
2

k+1 =
1
τ

α1γ2 − α2γ1

β1γ2 − β2γ1
,

Step 5: If
∣∣∣Pn+ 1

2
k+1 −Pn+ 1

2
k

∣∣∣≤ ε, set Pn+ 1
2 =Pn+ 1

2
k+1 and proceed to Step 6. Otherwise, set Pn+1

2
k ←Pn+1

2
k+1

and return to Step 2.
Step 6: Update

Qn+ 1
2 =

1
τ

β1α2 − β2α1

β1γ2 − β2γ1

and the state variable:
Un+1 = YBF −

τ
2 Pn+ 1

2 YU + τQn+ 1
2 YF .

Then move to the next time level n← n + 1.
end for
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Remark 2. From (3.9)–(3.12) and the definitions of α j, β j, γ j, the formula (3.14) shows that Pn+ 1
2

appears on both sides through the tridiagonal matrix A(Pn+ 1
2 ). Thus, the update in Steps 1-5 of

Algorithm 1 effectively solves a nonlinear equation for Pn+ 1
2 via an (approximate) fixed-point iteration

Pn+ 1
2

k+1 = G
(
Pn+ 1

2
k

)
, G(P) :=

1
τ

α1(P) γ2(P) − α2(P) γ1(P)
β1(P) γ2(P) − β2(P) γ1(P)

,

where α j(P), β j(P), γ j(P) are obtained by evaluating A−1(P) in their definitions. For admissible
P ≥ 0, the matrix A(P) is strictly diagonally dominant, so A−1(P) exists and depends smoothly on
P. Consequently, α j(P), β j(P), γ j(P) are locally Lipschitz in P; combined with the nondegeneracy
|β1γ2 − β2γ1| ≥ Θ > 0, this implies that G is a contraction for sufficiently small spatial step h,
ensuring convergence of the iteration. The detailed derivations are technical and omitted for brevity.
In computations, we employ an absolute stopping rule with tolerance ε = 10−8.

In applications, only noisy measurements Eδj(t) are available. Accordingly, in (3.10)–(3.11) the
exact samples En+1

j must be replaced by the discrete observations Eδ,n+1
j = Eδj(tn+1). Although the

inversion formulas do not explicitly differentiate the data, the recovered coefficients Pn+ 1
2 and Qn+ 1

2 are
obtained from ratios whose numerators contain the noisy data while the denominator is proportional
to τ (cf. (3.14)). Hence, a perturbation of size δ in the numerators is effectively amplified by a
factor of order 1/τ. This instability is therefore equivalent to the classical ill-posedness of numerical
differentiation [18]: as τ→ 0, the inversion deteriorates unless suitable regularization is employed.

A convenient stabilization is to mollify the noisy time series Eδj . Let ω > 0, p > 0, and Ap =∫ p

−p
e−s2

ds. Define the compactly supported Gaussian mollifier

ρω,p(t) =
1
ωAp

exp
(
−

t2

ω2

)
1{|t|≤pω},

and set (JωEδj)(t) = (ρω,p∗Eδj)(t), where ∗ denotes convolution. In practice we use the discrete analogue
on the samples Eδj(tn):

(JωEδj)(tn) =
⌊pω/τ⌋∑

m=−⌊pω/τ⌋

ρω,p(mτ) Eδj(tn−m),

with standard zero (or mirror) padding at the endpoints. Detailed error estimates for discrete
mollification are available in [12, 13] and are therefore omitted here. Following [12, 13], we fix the
truncation parameter at p = 3 and select the bandwidth ω using generalized cross-validation (GCV),
which automatically balances bias and variance for each time series. This choice is consistent with the
stability properties of discrete mollification and provides a robust, parameter-free denoising step for
the inversion.

Remark 3 (Implementation with noisy data). To obtain a finite-difference inversion algorithm based
on mollification regularization [12, 13, 27, 28], it suffices to modify Step 3 of Algorithm 1 by
replacing the raw inputs En+1

j with their mollified counterparts (JωEδj)(tn+1), computed via the MATLAB
implementation of the discrete mollification method (with bandwidth ω selected by GCV; see [12,13]).
This simple modification suppresses high-frequency noise while preserving the essential dynamics of
the measurements, thereby enhancing the stability and robustness of the recovered coefficients p(t) and
q(t).
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4. Numerical examples

This section presents two numerical examples designed to evaluate the feasibility and robustness of
the proposed reconstruction scheme. The nonlocal data are contaminated with relative uniform noise at
levels δ∗ ∈ {0, 0.005, 0.01, 0.03}. Given the exact discrete data E j(tn), we generate noisy observations
according to

Eδj(tn) = E j(tn)
(
1 + δ∗ ξ j,n

)
,

where ξ j,n = 2 rand(tn) − 1 and rand returns independent and identically distributed samples from the
standard uniform distribution on (0, 1). We then apply mollification regularization to obtain stabilized
inputs for the inversion. Throughout the experiments, we use the following weight functions

w1(x) = exp
(
−150 (x − 0.3)2), w2(x) = exp

(
−150 (x − 0.8)2),

and set T = 1.0, M = 200, N = 100. Reconstructions of p(t) and q(t) are displayed in Figures 1–2,
where the legends, δ∗ denotes the prescribed relative noise level. The discrete (Euclidean) relative
errors of the reconstructed coefficients for Example 1 and Example 2 are summarized in Table 1.
Example 1. Consider

ut = uxx − p(t) u + q(t)
(
20x3 − 2

)
, 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

u(x, 0) = x2(1 − x3), 0 < x ≤ 1,

with the exact coefficients and solution

p(t) = 1 − 3t + 3t2, q(t) = exp
(
−(t − 1.5t2 + t3)

)
, u(x, t) = x2(1 − x3) e−(t+ 1

2 t2).

Figure 1 displays the reconstructions of p and q with respect to different noise levels.
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recovered p for δ∗=0.03

(a) Reconstruction of p(t)
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(b) Reconstruction of q(t)

Figure 1. Reconstructed coefficients for noise levels δ∗ ∈ {0, 0.005, 0.01, 0.03} in Example 1.
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Table 1. Relative ℓ2 errors of reconstructed coefficients under different noise levels δ∗.

Example 1 Example 2
δ∗ ∥pδ

∗

− p∥2/∥p∥2 ∥qδ
∗

− q∥2/∥q∥2 ∥pδ
∗

− p∥2/∥p∥2 ∥qδ
∗

− q∥2/∥q∥2
0 1.193e-08 4.046e-11 6.685e-10 3.191e-11

0.005 6.413e-02 1.462e-03 4.682e-02 1.981e-02
0.01 1.114e-01 2.938e-03 5.667e-02 2.867e-02
0.03 1.373e-01 4.746e-03 1.350e-01 8.877e-02

Example 2. Consider
ut = uxx − p(t) u + q(t)

(
x2 − x + 2 + 100 t3(1 − t2)(x − x2)

)
, 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

u(x, 0) = x − x2, 0 < x ≤ 1,

with the exact coefficients and solution

p(t) = 100 t3(1 − t2), q(t) = e−t, u(x, t) = (x − x2) e−t.

Figure 2 reports the reconstructions of p and q with respect to different noise levels.
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(a) Reconstruction of p(t)
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0.9
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(b) Reconstruction of q(t)

Figure 2. Reconstructed coefficients for noise levels δ∗ ∈ {0, 0.005, 0.01, 0.03} in Example 2.

Discussion. The numerical results demonstrate that the proposed finite-difference inversion, combined
with mollification of the measured nonlocal data, yields stable and accurate reconstructions of the time-
dependent coefficients when the noise level is small. For noise-free data (δ∗ = 0), the recovered p and
q closely match the ground truth. As the relative noise level δ∗ increases, however, the reconstruction
quality degrades—an effect consistent with the intrinsic instability discussed earlier. In particular, the
recovery of p(t) is more sensitive to noise than that of q(t), exhibiting noticeable deterioration at higher
noise levels. While the smoothing step mitigates the amplification of measurement errors and improves
robustness, it cannot fully compensate for the loss of accuracy at large δ∗.
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5. Conclusions

We investigated the inverse identification of the time-dependent coefficients p(t) and q(t) in
a parabolic IBVP from two nonlocal measurements. Under suitable regularity assumptions and
the identifiability condition |∆(t)| ≥ Θ > 0, we established local existence and uniqueness and
derived an explicit reconstruction formula that motivates a Crank–Nicolson finite-difference algorithm.
The analysis highlights an intrinsic ill-posedness: although the scheme avoids explicit numerical
differentiation, the algebraic step remains noise-sensitive, necessitating regularization. Numerical
experiments with synthetic data confirm that the proposed scheme, combined with mollification of
the measured data, yields accurate reconstructions for small noise levels. As the noise increases, the
reconstruction quality degrades—particularly for p(t), which is more sensitive than q(t)— consistent
with the ill-posed nature of the problem.
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