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Abstract: Persistent homology is a key tool in topological data analysis, used to capture the
topological features of data across multiple scales. To accurately capture the topology of data with
varying geometric structures, one should construct suitable simplicial complexes. In this paper, we
propose wing complexes as a novel method for finite sets of points sampled from a smooth plane curve.
The key innovation of the wing complex lies in its ability to stretch and shrink along the tangent and
normal directions based on a specific parameter, allowing it to adapt to the local curvature variations
of the data. We theoretically derive the topological properties of wing complexes and conduct related
experiments. The results demonstrate that, compared to traditional methods, wing complexes provide
more persistent and accurate topological features, particularly in regions with rapid local curvature
variations, whereas traditional methods often fail to capture the correct topological features.
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1. Introduction

Persistent homology is one of the most important tools in topological data analysis [1, 2]. It
tracks the evolution of topological features across multiple scales, effectively extracting the topological
features with significant persistence from the underlying structure of the data [3, 4]. Compared to
traditional methods, the advantage of persistent homology lies in its low dependence on specific
coordinates or metric information of the data [5, 6], which has led to its widespread attention. In
practical applications, persistent homology has been successfully applied in various fields, including
chemistry [7], medicine [8], and genomics [9]. In shape segmentation, Liu et al. proposed a topology-
aware segmentation module that imposes topological constraints on the segmentation of 3D point
clouds, thereby improving the performance of point cloud segmentation tasks [10]. He et al. introduced
persistent homology into the analysis of a fractional-order delay financial risk system. By capturing the
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dynamic evolution of the financial risk system from a topological perspective, this approach provides
new insights for financial regulation [11]. Moreover, persistent homology can be effectively combined
with deep learning frameworks, thereby improving the accuracy and efficiency of traditional analytical
methods [12]. For an in-depth introduction to persistent homology, see [13–15].

In persistent homology, constructing a simplicial complex is a key step in approximating the
underlying shape of a dataset. For unstructured data in the form of a point cloud, a common approach is
to build the Čech complex or the Vietoris–Rips complex [16,17]. The persistent homology algorithms
based on Čech complexes and Vietoris–Rips complexes have been well developed and are supported
by numerous libraries that are readily available for use [18, 19], making them highly effective for
most types of datasets. Moreover, for large-scale or high-dimensional point cloud data, alternative
constructions such as alpha complexes and witness complexes have been proposed to accelerate
persistent homology computations by reducing the size of the simplicial complex while preserving
essential topological information [20, 21].

However, in practical computations, when dealing with underlying spaces that are manifolds or have
bottlenecks (see Subsection 2.1.2), using isotropic balls centered at sample points may cause premature
connections in the bottleneck regions, resulting in the capture of incorrect topological structures in the
original data [22]. In fact, for such data, simplicial complexes that adapt to curvature variations offer
a more accurate fit. In 2024, Kališnik et al. introduced ellipsoid complexes, which are composed of a
set of ellipsoids that can stretch along tangent directions [23, 24]. Compared to Čech complexes and
Vietoris–Rips complexes, ellipsoid complexes can capture more persistent topological features when
applied to such data.

In this paper, we introduce wing complexes for finite sets of points sampled from a smooth plane
curve. First, we formally define the wing complex for general point clouds and explain its construction.
Second, we reveal the relationship between wing complexes and their angular parameters, derive
certain topological properties of wing complexes, and provide rigorous proofs. Finally, we compare
wing complexes with Rips complexes through experimental analysis. The experiments show that,
when dealing with certain types of curves, wing complexes can better adapt to irregular local curvature
variations, thereby capturing more accurate topological features.

The rest of the paper is organized as follows. In Section 2, we provide a brief review of the
definitions of the Čech complex, the Vietoris–Rips complex, and the ellipsoid complex. In Section 3,
we present the definition of wing complexes and establish related theorems. In Section 4, we analyze
and provide a detailed discussion of the topological properties of wing complexes. The proofs of the
main results will be given in Section 5.

2. Persistent homology

Persistent homology is a method in topological data analysis for computing the topological features
of data at different scales. In this section, we provide a brief overview of the fundamental concepts in
persistent homology.

2.1. Simplicial complexes

Definition 1. ( [25]) An abstract simplicial complex K is a finite collection of nonempty finite sets
(called simplexes) which satisfies the subset-closure property: if a simplex σ ∈ K, then all of its
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subsets (called subsimplexes) also belong to K.

A filtered simplicial complex K = {Kε} is a collection of simplicial complexes for 0 ≤ ε ∈ R such
that Kε ⊂ Kε′ if ε ≤ ε′. Applying the homology functor to a filtered simplicial complex, we can get
persistence modules, which can be decomposed as the direct sums of interval modules, by using the
decomposition theorem in representation theory (see [14, 26]).

2.1.1. Čech and Vietoris–Rips complexes

Čech complexes and Vietoris–Rips complexes are two of the most widely used simplicial complexes
in topological data analysis [16, 17]. For any x ∈ Rn, denote by Bε(x) = {x′ ∈ Rn | ∥x − x′∥ ≤ ε} the
closed ball of radius ε centered at x.

Definition 2. Given a finite set of points X ⊂ Rn, σ is a set of points in X forming a simplex; the Čech
complex of X at scale ε is the simplicial complex

Čε(X) = {σ ⊂ X |
⋂
x∈σ

Bε(x) , ∅}. (2.1)

Remark 1. It is important to note that the union of the balls {Bε(x)}x∈X forms an open cover of the
topological space represented by the Čech complex Čε(X).

Definition 3. Given a finite set of points X ⊂ Rn, the Vietoris–Rips complex of X at scale ε is the
simplicial complex

VRε(X) = {σ ⊂ X | d(x, y) ≤ 2ϵ for any x, y ∈ σ}, (2.2)

where d(·, ·) is the Euclidean distance.

It is worth noting that the Čech complex is based on the common intersection of balls centered
at data points, while the Vietoris–Rips complex relies on pairwise distances between points. On one
hand, the Čech complex provides a more accurate representation of the underlying topology, because
it is homotopy equivalent to the union of balls grown around the points with radius ε according to the
Nerve Theorem [27]. On the other hand, under mild conditions in Euclidean space, it can be proved
that

Čε(X) ⊆ VRε(X) ⊆ Č√2ε(X), (2.3)

which means that the Vietoris–Rips complex serves as a computational approximation to the Čech
complex [26]. In practical computations, the Vietoris–Rips complex is often preferred, particularly in
high dimensions, due to its lower computational complexity.

Figure 1 shows an increasing sequence of Vietoris–Rips complexes in the plane [2]. We can observe
that at time 0, there are four 0-dimensional simplices (vertices) a, b, c, and d. As the parameter
ε increases, 1-dimensional simplices ab, bc, cd, and ad (edges) as well as 2-dimensional simplices
abc and acd (triangles) are successively formed. Ultimately, at time 7, a 2-dimensional simplicial
complex composed of two 2-dimensional simplices is formed. Throughout the process, each time
step corresponds to a simplicial complex constructed at a given scale parameter ε, and each complex
encodes a set of topological features. For instance, during time 0 to time 1, due to the enclosing ε-balls
centered at a and b first intersect, the connected component a, b that existed at time 0 merges at time 1.
This indicates that a 0-dimensional topological feature dies. Similarly, the connected component c
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merges with ab at time 2, and d merges with the connected components ab and bc at time 3. It is
noteworthy that at time 4, due to the connection between points a and d, a one-dimensional hole is
born. At time 5, due to the connection between points a and c, a new connected component abc is
formed. Finally, at time 6, due to the connection between points b and c, the one-dimensional hole that
was born at time 4 disappears (gets filled).
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d
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b

cd

a
b

cd

a
b

cd

, , ,a b c d0 ab1 bc2 cd3
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Figure 1. A filtered simplicial complex with newly added simplices.

The birth and death of these topological features mentioned above are recorded in the persistence
diagram shown in Figure 2, where the horizontal coordinate represents the birth of the corresponding
topological feature, and the vertical coordinate represents its death. As a result, all points in the
persistence diagram lie above the diagonal y = x. It is important to note that points near the diagonal
represent features that appear and disappear quickly and are usually regarded as noise. In contrast,
points far from the diagonal are considered to be more persistent and are often interpreted as more
meaningful topological features in point clouds.
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Figure 2. The persistence diagram corresponding to the filtered simplicial complex in
Figure 1. The red points represent the birth and death of connected components (dimension
0), while the blue point represents the birth and death of a hole (dimension 1).
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2.1.2. Ellipsoid complexes

Let M be a C1-submanifold of Rn; the tangent-normal q-ellipsoid at scale ε at a point x ∈ M
is the closed ellipsoid Eq

ε(x) in Rn with the center in x, the tangent semi-axes of length ε, and normal
semi-axes of length ε/q. Assume that at point x ∈ M, there is a tangent-normal coordinate system
where the tangent semi-axes are aligned with the tangent space, and the normal semi-axes are aligned
with the normal space. Let m denote the dimension of M at x; the tangent-normal q-ellipsoids at
scale ε at point x ∈ M are given by ( [24]):

Eq
ε(x) :=

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣∣∣ x2
1 + · · · + x2

m

ε2 +
x2

m+1 + · · · + x2
n

(ε/q)2 ≤ 1
}
. (2.4)

Definition 4. ( [24]) Let M be a C1-submanifold of Rn and X a finite subset of M. The q-ellipsoid
complex of X at scale ε is the simplicial complex

Eq
ε(X) = {σ ⊂ X | Eq

ε(x) ∩ Eq
ε(y) , ∅ for any x, y ∈ σ}. (2.5)

Remark 2. Note that when q = 1, the ellipsoid Eq
ε(x) becomes a Euclidean ball centered at x with

radius ε. Therefore, the Čech complex can be regarded as a special case of the ellipsoid complex.
Furthermore, although Definitions 3 and 4 share a similar structure, they differ conceptually. The
Vietoris–Rips complex is defined based on pairwise distances between points, whereas the ellipsoid
complex is constructed by considering when the enclosing ellipsoids of the points intersect.
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Figure 3. Comparison of the Rips complex and the ellipsoid complex on points sampled
from a smooth curve. Top left: Rips complex at ε = 0.6. Bottom left: The ellipsoid complex
for q = 4 at scale ε = 0.6. Top right: Rips-barcode. Bottom Right: Ellipsoid-barcode.

As shown in Figure 3, we consider a set of points sampled from a smooth curve resembling a dog
bone [24]. From the left part of the figure, we observe that near the central part of the shape, the use
of Rips complexes may lead to the enclosing balls intersecting too early, which results in the capture

AIMS Mathematics Volume 11, Issue 1, 785–809.



790

of incorrect topological features. In contrast, ellipsoids offer anisotropic flexibility: their tangent axes
can be stretched or contracted along tangent directions, and their normal axes can be adjusted along
normal directions. Therefore, by tuning the shape parameters, ellipsoid complexes can adapt to rapid
local geometric variations, thereby avoiding the premature formation of complexes and providing a
more accurate approximation of the underlying structure.

The right half of Figure 3 shows the persistence barcodes corresponding to the two complexes;
red intervals represent the persistence of connected components during the evolution of the simplicial
complexes, and the blue intervals correspond to the persistence of one-dimensional holes. Notably,
the barcode for the Rips complex contains two long blue intervals, indicating two persistence holes.
However, for this shape, we would prefer to capture a single persistent hole rather than two. Therefore,
using the ellipsoid complex is a better choice.

3. Wing complexes

In this section, we will introduce the wing complex for a finite set of points from a smooth plane
curve.

3.1. Wing complexes

Let C be a smooth curve in R2 and X ⊂ C a finite set of points such that the curvature in x ∈ X is
nonzero. For any x ∈ X, let

αx = −
−→
xO

|−→xO|
(3.1)

be the normal vector in x, where O is the center of curvature for x (see Figure 4).

C

αx

O

x

Figure 4. The normal vector αx at a point x ∈ C.

Fix real numbers 0 ≤ ε, 0 ≤ q ≤ 1, and 0 ≤ θ ≤ π/2. For any x ∈ X, the q, θ-wing at scale ε at the
point x (see Figure 5) is defined as

Wq,θ
ε (x) = P(A, B,C,D) ∪ P(A, B′,C′,D), (3.2)

where

1)
−→
xA = qεαx and

−−→
xD = −qεαx,

2) P(A, B,C,D) is the parallelogram with vertices A, B,C,D such that

||−−→AB|| = ||−−→CD|| = ε, (3.3)
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and the angle between
−−→
AB and

−−→
AD is θ,

3) P(A, B′,C′,D) is the parallelogram with vertices A, B′,C′,D such that

||−−→AB′|| = ||−−−→C′D|| = ε, (3.4)

and the angle between
−−→
AB′ and

−−→
AD is θ.

A

B

C

D

B′

C′
xε
θ

q

Figure 5. The q, θ-wing at scale ε at point x.

Definition 5. Let C be a smooth curve in R2 and X ⊂ C a finite set of points such that the curvature in
x ∈ X is nonzero. The q, θ-wing complex of X at scale ε is defined as

Wq,θ
ε (X) = {σ ⊂ X |Wq,θ

ε (x) ∩Wq,θ
ε (y) , ∅ for any x, y ∈ σ}. (3.5)

Note that E1/q
ε (x) ⊂ Wq,π/2

ε (x) ⊂ E1/q
ε′ (x), where ε′ =

√
2ε. Hence, we have

E1/q
ε (X) ⊂ Wq,π/2

ε (X) ⊂ E1/q
ε′ (X), (3.6)

if q = 0, we also have E∞ε (x) = W0,π/2
ε (x) and E∞ε (X) = W0,π/2

ε (X).
To more intuitively illustrate the wing complex and its advantages over the Rips complex

on some special curves, we use the framework for computing persistent homology proposed by
Kališnik et al. [24], within which we incorporate the algorithm for computing persistent homology
via the wing complex. As shown in Figure 6, consider a point cloud obtained by exact sampling from
a smooth curve resembling a dog bone, where the exact normal vector of each sampled point can be
derived from the second derivative of the original function. Figure 6 illustrates wing complexes at
different scales (ε = 0.1, 0.2, 0.3, 0.4) when ε/q = 3 and the angle between the parallelogram wings
and the symmetry axis θ = π/4.

When constructing wing complexes, the orientation of each wing is determined by the normal
vectors of the sampled points. For the type of data illustrated in Figure 6, in the bottleneck region
where the normals point inward, increasing ε drives the wings to extend outward, thereby preventing
premature intersections of the complexes associated with points in this region. As shown in Figure 7,
the wing-barcode exhibits a single long bar in the 1-dimensional homology, whereas the Rips-barcode
incorrectly reveals two features. This result demonstrates that the wing complex can more accurately
capture the fundamental topological structure of some special curves.
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Figure 6. Wing complexes for ε/q = 3 and θ = π/4 at scales ε = 0.1, ε = 0.2, ε = 0.3 and
ε = 0.4 for a point cloud sampled from a smooth curve resembling a dog bone.
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Figure 7. Top left: The Rips complex at scale ε = 0.6. Bottom left: The wing complex for
ε/q = 3 and θ = π/3 at scale ε = 0.6. Top right: Rips-barcode. Bottom Right: Wing-barcode.

3.2. Properties

In this section, the relations between W0,θ
ε (X) and W0,π/2

ε (X) will be studied.
For any two points x, y ∈ X, denote by εq,θ(x, y) the minimal ε such that

Wq,α
ε (x) ∩Wq,α

ε (y) , ∅. (3.7)
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Hence, we have
Wq,θ
ε (X) = {σ ⊂ X | εq,θ(x, y) ≤ ε for any x, y ∈ σ}. (3.8)

Let Lx (resp. Ly) be the tangent in x (resp. y). Denote by z the intersection of Lx and Ly. Let lx (resp.
ly) be the distance between x (resp. y) and z. Note that

ε0,π/2(x, y) = max {lx, ly}. (3.9)

Let Lx(θ) (resp. Ly(θ)) be the rays with endpoint x (resp. y) such that the angle between Lx(θ) (resp.
Ly(θ)) and αx (resp. αy) is π − θ. Denote by z(θ) the intersection of Lx(θ) and Ly(θ). Let lx(θ) (resp.
ly(θ)) be the distance between x (resp. y) and z(θ). Note that

ε0,θ(x, y) = max {lx(θ), ly(θ)}. (3.10)

Let φx,y be the angle from αx to −→xy along αy and αx,y the angle between αx and αy.

Theorem 1. For any two points x and y in X, we have

ε0,θ(x, y) < ε0,π/2(x, y) (3.11)

if one of the following conditions is satisfied:

1) αx,y < π/2, φx,y ∈ (αx,y/2, αx,y), θ ∈ (0, φx,y − αx,y/2),
2) αx,y < π/2, φx,y ∈ (π/2, π/2 + αx,y), θ ∈ (0, αx,y),
3) αx,y < π/2, φx,y ∈ (π, π + αx,y/2), θ ∈ (0, π + αx,y/2 − φx,y),
4) αx,y < π/2, φx,y ∈ (π + αx,y, 3π/2), θ ∈ (0, 3π/2 − φx,y),
5) αx,y < π/2, φx,y ∈ (3π/2 + αx,y, 2π), θ ∈ (0, φx,y − 3π/2 − αx,y),
6) αx,y > π/2, φx,y ∈ (αx,y/2, π/2), θ ∈ (0, φx,y − αx,y/2),
7) αx,y > π/2, φx,y ∈ (π/2, π/2 + αx,y), θ ∈ (0, αx,y),
8) αx,y > π/2, φx,y ∈ (π/2 + αx,y, π + αx,y/2), θ ∈ (0, π + αx,y/2 − φx,y).

Theorem 2. For any two points x and y in X, we have

ε0,θ(x, y) > ε0,π/2(x, y) (3.12)

if one of the following conditions is satisfied:

1) αx,y < π/2, φx,y ∈ (0, αx,y/2), θ ∈ (0, φx,y),
2) αx,y < π/2, φx,y ∈ (αx,y, π/2), θ ∈ (0, φx,y − αx,y),
3) αx,y < π/2, φx,y ∈ (π/2 + αx,y, π), θ ∈ (0, π − φx,y),
4) αx,y < π/2, φx,y ∈ (π + αx,y/2, π + αx,y), θ ∈ (0, π + αx,y − φx,y),
5) αx,y < π/2, φx,y ∈ (3π/2, 3π/2 + αx,y), θx,y ∈ (0, π/2 − αx,y/2),
6) αx,y > π/2, φx,y ∈ (αx,y − π/2, αx,y/2), θ ∈ (0, π/2 + φx,y − αx,y),
7) αx,y > π/2, φx,y ∈ (π + αx,y/2, 3π/2), θ ∈ (0, 3π/2 − φx,y),
8) αx,y > π/2, φx,y ∈ (3π/2, 3π/2 + αx,y), θ ∈ (0, π/2 − αx,y/2).

Remark 3. Assume that αx,y < π/2.

If the angle from αx to −→xz is π/2, let A0, A1, A2 be three points in Ly such that
−−→
xA0 is orthogonal to

Lx, |−→zx| = |−−→zA1|, and
−−→
xA2 is orthogonal to Ly (see Figure 8). In this case, we denote z by z1.
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xz1
Lx

LyA0A1A2

Figure 8. The case where αx,y < π/2, and the angle from αx to x⃗z is π/2.

x z2 Lx

Ly

B2B1B0

Figure 9. The case where αx,y < π/2, and the angle from αx to x⃗z is 3π/2.

If the angle from αx to −→xz is 3π/2, let B0, B1, B2 be three points in Ly such that
−−→
xB0 is orthogonal to

Lx, |−→zx| = |−−→zB1|, and
−−→
xB2 is orthogonal to Ly (see Figure 9). In this case, we denote z by z2.

Then, we have the following correspondences:

1) φx,y ∈ (0, αx,y/2) if and only if y is between A0 and A1,
2) φx,y ∈ (αx,y/2, αx,y) if and only if y is between A1 and A2,
3) φx,y ∈ (αx,y, π/2) if and only if y is between A2 and z1,
4) φx,y ∈ (π/2, π/2 + αx,y) if and only if y is in the outside of z1,
5) φx,y ∈ (π/2 + αx,y, π), if and only if y is in the outside of B0,
6) φx,y ∈ (π, π + αx,y/2) if and only if y is between B0 and B1,
7) φx,y ∈ (π + αx,y/2, π + αx,y) if and only if y is between B1 and B2,
8) φx,y ∈ (π + αx,y, 3π/2) if and only if y is between B2 and z2,
9) φx,y ∈ (3π/2, 3π/2 + αx,y) if and only if y is in the outside of z2,

10) φx,y ∈ (3π/2 + αx,y, 2π) if and only if y is in the outside of A0.

Remark 4. Assume that αx,y > π/2.

If the angle from αx to −→xz is π/2, let C be a point in Ly such that |−→zx| = |−→zC| (see Figure 10). In this
case, we denote z by z1.

xz1
Lx

Ly

C

Figure 10. The case where αx,y > π/2, and the angle from αx to x⃗z is π/2.
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If the angle from αx to −→xz is 3π/2, let D be a point in Ly such that |−→zx| = |−→zD| (see Figure 11). In this
case, we denote z by z2.

x
z2 Lx

Ly
D

Figure 11. The case where αx,y > π/2, and the angle from αx to x⃗z is 3π/2.

Then, we have the following correspondences:

1) φx,y ∈ (αx,y − π/2, αx,y/2) if and only if y is in the outside of C,
2) φx,y ∈ (αx,y/2, π/2) if and only if y is between C and z1,
3) φx,y ∈ (π/2, αx,y + π/2) if and only if y is in the outside of z1,
4) φx,y ∈ (αx,y + π/2, αx,y/2 + π) if and only if y is in the outside of D,
5) φx,y ∈ (αx,y/2 + π, 3π/2) if and only if y is between D and z2,
6) φx,y ∈ (3π/2, αx,y + 3π/2) if and only if y is in the outside of z2.

4. Topological properties of Wing complexes

In this section, we investigate the relationship between the wing complex and angular parameters for
certain types of special curves based on the theorems established earlier. As applications of Theorems 1
and 2, we have the following propositions for some special curves.

Proposition 1. Let C be a smooth curve such that it is the boundary of a convex domain in R2 and
X ⊂ C a finite set of points such that the curvature in x ∈ X is nonzero. Then,

W0,π/2
ε (X) ⊂ W0,θ

ε (X) (4.1)

for 0 < θ < π/2 such that π/2 − θ is small enough.

Proof. For any points x and y in X, they satisfy condition (2) or condition (7) in Theorem 1. Hence,

ε0,θ(x, y) < ε0,π/2(x, y), (4.2)

and we get the desired result. □

Although we have only discussed the properties of wing complexes when q = 0, through practical
computations of persistent homology for the case where q , 0, we found that these properties still
hold. Example 1 provides an intuitive explanation of the intersection between two wing complexes
when q , 0.

Example 1. Let X be a finite set from a circle with radius r and center O and x, y be two points in X
such that the angle between

−→
Ox and

−→
Oy is φ (see Figure 12). Then, we have

εq,θ(x, y) =
r sinφ/2

q sinφ/2 + sin(α + φ/2)
. (4.3)
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x y

O
Figure 12. The intersection of wing complexes corresponding to two points x and y sampled
from a circle. The left parallelogram represents the right half wing complex of point x, and
the right parallelogram represents the left half wing complex of point y.

Remark 5. Proposition 1 implies that the birth of each new topological feature in W0,θ
ε (X) is earlier

than that in W0,π/2
ε (X). For example, when the curve is a circle, as shown in Figure 13, the left endpoint

of the blue bar records the birth time of the 1-dimensional topological feature. It can be observed that
when π/2− θ is small enough, the birth time of the 1-dimensional feature corresponding to θ = 19π/40
is earlier than that for θ = π/2.
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Figure 13. Top: The wing complex for ε/q = 3 and θ = 19π/40 at scale ε = 0.6 for a point
cloud sampled from a circle. Bottom: The wing complex for ε/q = 3 and θ = π/2 at scale
ε = 0.6 for a point cloud sampled from a circle.

Proposition 2. Let C be a curve consisting of arcs and X ⊂ C a finite set of points such that the
curvature in x ∈ X is nonzero. For any two points x and y in X such that they are in the same arc or in
neighboring arcs, and the degrees from x and y to the intersection are both less than π/4, we have

ε0,θ(x, y) < ε0,π/2(x, y). (4.4)

Proof. The points x and y satisfy condition (7) or condition (8) in Theorem 1. Hence,

ε0,θ(x, y) < ε0,π/2(x, y), (4.5)
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and we get the desired result. □

Remark 6. Proposition 2 implies that the birth of the connectness in W0,θ
ε (X) is earlier than that in

W0,π/2
ε (X).

Proposition 3. Let C1 and C2 be two arcs such that they are on different sides of the tangent of each
x ∈ C1 ∪ C2. For points x ∈ C1 and y ∈ C2, we have

ε0,θ(x, y) > ε0,π/2(x, y). (4.6)

Proof. For points x ∈ C1 and y ∈ C2, they satisfy condition (5) or condition (8) in Theorem 2. Hence,

ε0,θ(x, y) > ε0,π/2(x, y), (4.7)

and we get the desired result. □
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Figure 14. Top: The wing complex for ε/q = 3 and θ = 19π/40 at scale ε = 0.6 for a point
cloud sampled from a smooth curve resembling a dog bone. Bottom: The wing complex
for ε/q = 3 and θ = π/2 at scale ε = 0.6 for a point cloud sampled from a smooth curve
resembling a dog bone.

Remark 7. For two sets X1 and X2 of points, define

ε0,θ(X1, X2) = min {ε0,θ(x1, x2) | x1 ∈ X1, x2 ∈ X2}. (4.8)

Then Proposition 3 implies that
ε0,θ(C1,C2) > ε0,π/2(C1,C2), (4.9)

and the moment that two connected components meet in W0,θ
ε (X) is later than that in W0,π/2

ε (X).
Propositions 2 and 3 can be illustrated using the same example (see Figure 14). For a smooth

curve resembling a dog bone, it can be observed that the curve has four inflection points where the
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curvature changes significantly. The arcs connected at the left and right sides of each inflection point
can be regarded as the curve C defined in Proposition 2, while the two inwardly convex arcs at the
top and bottom can be regarded as the curves C1 and C2 defined in Proposition 3. When the curve
is exactly sampled, the inflection points are excluded, and the precise normal vectors of the sampled
points are obtained from the second derivative of the original function, all of which are nonzero. From
the persistence barcodes shown on the right side of Figure 14, it can be observed that the birth time
of the 1-dimensional topological feature corresponding to θ = 19π/40 is earlier, and its death time is
later than that for θ = π/2. This indicates that the 1-dimensional topological feature corresponding to
θ = 19π/40 is more persistent.

Remark 8. If X is an accurate sample in C, then it is reasonable to let q = 0. But it is not reasonable
if X is not an accurate sample.

In addition to the experiments mentioned earlier, we also designed a comparative experiment
between the wing complex and the ellipsoid complex and discussed the computational cost of the
wing complex. We compared the wing complex and the ellipsoid complex on the aforementioned
dog-bone-shaped curve where the bottleneck region is narrower than before. As shown in Figure 15,
in the persistence barcodes, the first 1-dimensional barcode in the wing complex is born earlier, and
the second 1-dimensional barcode appears later than in the ellipsoid complex. This indicates that,
for this type of curve, the wing complex captures the one-dimensional hole earlier than the ellipsoid
complex while effectively preventing premature intersections across the narrow bottleneck region,
thereby leading to a more accurate topological feature.
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1

2
Ellipsoid-complex(q=3.0, ε=1.6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Filtration

Wing-barcode(ε/q=3.00, θ=1.18)

0
1

Figure 15. Top: The ellipsoid complex for q = 3 at scale ε = 0.6 for a point cloud sampled
from a smooth plane curve with mild geometric perturbations. Bottom: The wing complex
for ε/q = 3 and θ = 3π/8 at scale ε = 0.6 for a point cloud sampled from a smooth plane
curve with mild geometric perturbations.

To further validate the performance of the wing complex, in addition to the circle and dog-bone-
shaped curves, we also conducted experiments on some irregular curves containing narrow bottleneck
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regions. We found that, on these curves, the experimental results of the wing complex outperform
those of the Rips complex in most cases. Moreover, it is important to note that when θ = π/2, the
wing complex forms a rectangle with length 2ε and width q, and its topological properties are similar
to those of the ellipsoid complex. Therefore, under general conditions, by properly adjusting the
parameter θ, the experimental results of the wing complex and the ellipsoid complex on these irregular
curves exhibit a certain degree of similarity.

In terms of computational cost, we conducted tests on the curves discussed above. For the
purpose of accurately comparing the computational costs of Rips complexes, ellipsoid complexes,
and wing complexes, we integrated the wing complex into the code provided by Kališnik et al. for
unified computation [24]. For each number of sample points n, we took the average of ten repeated
computations and performed curve fitting for each complex type. As shown in Figure 16, the existing
method for computing persistent homology based on the Rips complex is well established, which
results in the fastest computation time. When the number of sample points is small, the computational
costs of wing complexes and ellipsoid complexes are similar. However, as the data size increases, the
computation time of wing complexes increases significantly. In addition, for different types of curves,
the wing complex requires additional adjustment of the angular parameter θ to ensure accuracy, which
incurs additional computational cost.
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Figure 16. Comparison of computational runtime for Rips complexes, ellipsoid complexes,
and wing complexes across varying numbers of sample points n.

In summary, based on the topological properties of the wing complex and the computational
experiments, the wing complex is particularly well suited for smooth plane curves with narrow
bottleneck regions. When dealing with such curves, the main advantage of the wing complex lies in its
ability to extend outward in the bottleneck region where the normal vectors point inward by increasing
the value of q, thus preventing the complexes associated with the points in that region from intersecting
prematurely. Furthermore, considering both the experimental results and computational cost, we can
conclude that the ellipsoid complex is more appropriate for curves that are precisely sampled, with
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a large number of sample points and narrow bottleneck regions, whereas the wing complex is more
suitable for curves with fewer sample points or curves with noise in the narrow bottleneck region.

5. Proofs of Theorems 1 and 2

In this section, we will check Theorems 1 and 2 together case by case.

Proof. To begin, assume that αx,y < π/2.

1) φx,y ∈ (0, αx,y/2) (see Figure 17). Now, lx < ly. Because the center of Cx,y,z (the circle that contains
x, y, and z) is in the interior of the triangle ∆xyz, we have

lx(θ) < lx, ly < ly(θ), lx(θ) < ly(θ), (5.1)

when θ ∈ (0, φx,y). Hence,
ε0,θ(x, y) = ly(θ) > ly = ε0,π/2(x, y). (5.2)

x

y

z

Figure 17. The case of αx,y < π/2 and φx,y ∈ (0, αx,y/2).

2) φx,y ∈ (αx,y/2, αx,y) (see Figure 18). Now, lx > ly. Because the center of Cx,y,z is in the interior of
the triangle ∆xyz, we have

ly < ly(θ) < lx(θ) < lx, (5.3)

when θ ∈ (0, φx,y − αx,y/2). Hence,

ε0,θ(x, y) = lx(θ) < lx = ε0,π/2(x, y). (5.4)

x

y

z

Figure 18. The case of αx,y < π/2 and φx,y ∈ (αx,y/2, αx,y).
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3) φx,y ∈ (αx,y, π/2) (see Figure 19). Now, lx > ly. Because the center of Cx,y,z is in the exterior of the
triangle ∆xyz, we have

lx < lx(θ), ly < ly(θ), ly(θ) < lx(θ), (5.5)

when θ ∈ (0, φx,y − αx,y). Hence,

ε0,θ(x, y) = lx(θ) > lx = ε0,π/2(x, y). (5.6)

x

y

z

Figure 19. The case of αx,y < π/2 and φx,y ∈ (αx,y, π/2).

4) φx,y ∈ (π/2, π/2 + αx,y) (see Figure 20). Now,

lx(θ) < max {lx, ly}, ly(θ) < max {lx, ly}, (5.7)

when θ ∈ (0, αx,y). Hence,

ε0,θ(x, y) = max {lx(θ), ly(θ)} < max {lx, ly} = ε0,π/2(x, y). (5.8)

x

y

z

Figure 20. The case of αx,y < π/2 and φx,y ∈ (π/2, π/2 + αx,y).

5) φx,y ∈ (π/2+ αx,y, π) (see Figure 21). Now, lx < ly. Because the center of Cx,y,z is in the exterior of
the triangle ∆xyz, we have

lx < lx(θ), ly < ly(θ), lx(θ) < ly(θ), (5.9)

when θ ∈ (0, π − φx,y). Hence,

ε0,θ(x, y) = ly(θ) > ly = ε0,π/2(x, y). (5.10)
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x

y

z

Figure 21. The case of αx,y < π/2 and φx,y ∈ (π/2 + αx,y, π).

6) φx,y ∈ (π, π + αx,y/2) (see Figure 22). Now, lx < ly. Because the center of Cx,y,z is in the interior of
the triangle ∆xyz, we have

lx < lx(θ) < ly(θ) < ly, (5.11)

when θ ∈ (0, π + αx,y/2 − φx,y). Hence,

ε0,θ(x, y) = ly(θ) < ly = ε0,π/2(x, y). (5.12)

x

y

z

Figure 22. The case of αx,y < π/2 and φx,y ∈ (π, π + αx,y/2).

7) φx,y ∈ (π + αx,y/2, π + αx,y) (see Figure 23). Now, lx > ly. Because the center of Cx,y,z is in the
interior of the triangle ∆xyz, we have

lx < lx(θ), ly(θ) < ly, ly(θ) < lx(θ), (5.13)

when θ ∈ (0, π + αx,y − φx,y). Hence,

ε0,θ(x, y) = lx(θ) > lx = ε0,π/2(x, y). (5.14)

x

y

z

Figure 23. The case of αx,y < π/2 and φx,y ∈ (π + αx,y/2, π + αx,y).
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8) φx,y ∈ (π + αx,y, 3π/2) (see Figure 24). Now, lx > ly. Because the center of Cx,y,z is in the exterior
of the triangle ∆xyz, we have

lx(θ) < lx, ly(θ) < ly, ly(θ) < lx(θ), (5.15)

when θ ∈ (0, 3π/2 − φx,y). Hence,

ε0,θ(x, y) = lx(θ) < lx = ε0,π/2(x, y). (5.16)

x

y

z

Figure 24. The case of αx,y < π/2 and φx,y ∈ (π + αx,y, 3π/2).

9) φx,y ∈ (3π/2, 3π/2 + αx,y) (see Figure 25). Now,

lx < lx(θ), ly < ly(θ), (5.17)

when θ ∈ (0, π/2 − αx,y/2). Hence,

ε0,θ(x, y) = max {lx(θ), ly(θ)} > max {lx, ly} = ε0,π/2(x, y). (5.18)

x
y

z

Figure 25. The case of αx,y < π/2 and φx,y ∈ (3π/2, 3π/2 + αx,y).

10) φx,y ∈ (3π/2 + αx,y, 2π) (see Figure 26). Now, lx < ly. Because the center of Cx,y,z is in the exterior
of the triangle ∆xyz, we have

lx(θ) < lx, ly(θ) < ly, lx(θ) < ly(θ), (5.19)

when θ ∈ (0, φx,y − 3π/2 − αx,y). Hence,

ε0,θ(x, y) = ly(θ) < ly = ε0,π/2(x, y). (5.20)
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x

y

z

Figure 26. The case of αx,y < π/2 and φx,y ∈ (3π/2 + αx,y, 2π).

Next, assume that αx,y > π/2.

1) φx,y ∈ (αx,y − π/2, αx,y/2) (see Figure 27). Now, lx < ly. Because the center of Cx,y,z is in the
exterior of the triangle ∆xyz, we have

lx(θ) < lx, ly < ly(θ), lx(θ) < ly(θ), (5.21)

when θ ∈ (0, φx,y + π/2 − αx,y). Hence,

ε0,θ(x, y) = ly(θ) > ly = ε0,π/2(x, y). (5.22)

x

y

z

Figure 27. The case of αx,y > π/2 and φx,y ∈ (αx,y − π/2, αx,y/2).

2) φx,y ∈ (αx,y/2, π/2) (see Figure 28). Now, lx > ly. Because the center of Cx,y,z is in the exterior of
the triangle ∆xyz, we have

ly < ly(θ) < lx(θ) < lx, (5.23)

when θ ∈ (0, φx,y − αx,y/2). Hence,

ε0,θ(x, y) = lx(θ) < lx = ε0,π/2(x, y). (5.24)

x
y

z

Figure 28. The case of αx,y > π/2 and φx,y ∈ (αx,y/2, π/2).
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3) φx,y ∈ (π/2, αx,y + π/2) (see Figure 29). Now,

lx(θ) < max {lx, ly}, ly(θ) < max {lx, ly}, (5.25)

when θ ∈ (0, αx,y). Hence,

ε0,θ(x, y) = max {lx(θ), ly(θ)} < max {lx, ly} = ε0,π/2(x, y). (5.26)

x

y

z

Figure 29. The case of αx,y > π/2 and φx,y ∈ (π/2, αx,y + π/2).

4) φx,y ∈ (αx,y + π/2, αx,y/2 + π) (see Figure 30). Now, lx < ly. Because the center of Cx,y,z is in the
exterior of the triangle ∆xyz, we have

lx < lx(θ) < ly(θ) < ly, (5.27)

when θ ∈ (0, π + αx,y/2 − φx,y). Hence,

ε0,θ(x, y) = ly(θ) < ly = ε0,π/2(x, y). (5.28)

x

y

z

Figure 30. The case of αx,y > π/2 and φx,y ∈ (αx,y + π/2, αx,y/2 + π).

5) φx,y ∈ (αx,y/2+π, 3π/2) (see Figure 31). Now, lx > ly. Because the center of Cx,y,z is in the exterior
of the triangle ∆xyz, we have

lx < lx(θ), ly(θ) < ly, ly(θ) < lx(θ), (5.29)

when θ ∈ (0, 3π/2 − φx,y). Hence,

ε0,θ(x, y) = lx(θ) > lx = ε0,π/2(x, y). (5.30)
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x
y

z

Figure 31. The case of αx,y > π/2 and φx,y ∈ (αx,y/2 + π, 3π/2).

6) φx,y ∈ (3π/2, αx,y + 3π/2) (see Figure 32). Now,

lx < lx(θ), ly < ly(θ), (5.31)

when θ ∈ (0, π/2 − αx,y/2). Hence,

ε0,θ(x, y) = max {lx(θ), ly(θ)} > max {lx, ly} = ε0,π/2(x, y). (5.32)

x

y

z

Figure 32. The case of αx,y > π/2 and φx,y ∈ (3π/2, αx,y + 3π/2).

□

6. Discussion

While the wing complex exhibits some advantages, there are several questions left to be addressed:

1) We have focused on analyzing simple curves in R2, as the geometric structure of curves in
two dimensions is relatively simple, making them easier to analyze and validate. However, the
situation becomes much more complicated in higher dimensions. For example, in R3, we must not
only consider the curvature variations of points but also the local geometric features of surfaces.
Therefore, for the simplicity of theoretical proof, our current work is limited to R2.

2) For the sake of simplicity in the proof, the theoretical results in this paper are limited to the case
q = 0, and the framework for arbitrary values of q remains to be further developed. It should
be emphasized that, under accurate sampling, the conclusions regarding wing complexes when
q = 0 are reasonable. In future work, we aim to extend the theoretical proofs to arbitrary values
of q.

The introduction of the wing complex opens up new possibilities for persistent homology, especially
in data involving curves and manifolds, where local geometric features play a crucial role, making it
highly meaningful to capture them through wing complexes. In future work, we plan to focus on
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the following directions. First, we will explore the potential of wing complexes in machine learning
by designing a dynamic module capable of automatically adjusting the angular parameter θ based
on curvature changes, thereby enhancing the adaptability of the wing complex in various geometric
scenarios. Next, we plan to extend the concept of wing complexes to three-dimensional space and
apply them to 3D point cloud classification and segmentation tasks. Leveraging their ability to adapt
to variations in surface curvature, this approach aims to assist in the delineation of boundary regions.

7. Conclusions

In this paper, we introduce wing complexes as a novel method for persistent homology, particularly
suited for finite point sets sampled from smooth plane curves. Unlike Čech complexes, our complexes
are based on the intersection of wings instead of balls. The key innovation of the wing complex lies in
the adjustment of parameter q, which is tuned along the tangent and normal directions to adapt to the
local curvature changes of data.

The main contributions of this work are as follows. First, we formally define the wing complex as
a new type of simplicial complex and demonstrate its construction. Second, we establish a series
of theorems to investigate the relationship between the wing complex and its angular parameters.
Third, building on these theoretical results, we analyze the topological properties of wing complexes
associated with specific types of curves. Our experiments demonstrate that, compared to the traditional
Rips complex construction, the wing complex provides more persistent and accurate topological
features. Specifically, wing complexes excel in regions with rapidly changing curvatures, whereas
traditional methods may fail to capture the underlying topology correctly.
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