L AIMS Mathematics, 11(1): 734-766.
DOI:10.3934/math.2026032
AIMS Mathematics Received: 06 October 2025

Revised: 22 December 2025
Accepted: 25 December 2025
https://www.aimspress.com/journal/Math Published: 09 January 2026

Research article

Adaptive dimension-wise Cauchy perturbation for enhanced differential
evolution optimization

Tae Jong Choi! and Yeji An>*

' Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of
Korea

2 Department of Lifelong Education, Kyungil University, Gyeongsangbuk-do 38428, Republic of
Korea

* Correspondence: Email: yejijoyan@kiu.kr; Tel: +82-53-600-5709; Fax: +82-53-600-5709.

Abstract: We propose an adaptive dimension-wise Cauchy perturbation mechanism to enhance the
performance of differential evolution (DE). While traditional Cauchy perturbation improves solution
diversity, it uses a fixed jumping rate and fails to address dimension-specific premature convergence.
To overcome these limitations, the proposed method dynamically estimates the convergence level
of each dimension in every generation and adaptively adjusts the jumping rate accordingly. This
dimension-specific adaptive perturbation, applied during the crossover phase, mitigates premature
convergence and strengthens the algorithm’s ability to locate high-quality solutions. The proposed
method was embedded into the Linear population size reduction Success RaTe-based Differential
Evolution (L-SRTDE) algorithm, winner of the Institute of Electrical and Electronics Engineers
Congress on Evolutionary Computation (IEEE CEC) 2024 competition. Extensive experiments on
challenging benchmark optimization problems from the IEEE CEC 2017 test suite demonstrate that
our method significantly outperforms the original L-SRTDE and several state-of-the-art DE variants in
both convergence speed and solution accuracy.

Keywords: artificial intelligence; evolutionary algorithms; evolutionary computation; differential
evolution; mathematical optimization
Mathematics Subject Classification: 68T01, 68W50

1. Introduction

Differential evolution (DE) [1] is a widely adopted evolutionary algorithm (EA) known for its
effectiveness in solving continuous optimization problems. DE maintains a population of candidate
solutions and iteratively improves them by generating new candidates through simple combinational
operations. The best-performing candidates are selected and retained for subsequent generations.

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2026032

735

An essential factor influencing the performance of EAs is the balance between exploration and
exploitation. Matej et al. [2] defined exploration as “the process of visiting entirely new regions of a
search space” and exploitation as “the process of visiting regions within the neighborhood of previously
visited points”. An imbalance in favor of exploration could cause the algorithm to insufficiently
leverage promising solutions [3]. Conversely, excessive exploitation may reduce the probability of
discovering the global optimum by restricting diversity [3].

A significant limitation of DE and other EAs is premature convergence [4], which occurs when
excessive exploitation traps the algorithm in suboptimal solutions, significantly reducing exploration
capabilities and thus restricting the potential to locate global optima, limiting algorithm performance.

A notable strategy to address premature convergence is the use of Cauchy perturbation [5]. This
approach perturbs the target vector using a Cauchy distribution with a fixed jumping rate. The
distribution’s long-tailed property promotes diversity among trial vectors, enhancing the ability of
DE to escape local optima. Cauchy perturbation has been effectively integrated into numerous DE
variants, including representative approaches such as Best-Worst individuals driven multiple-layered
Differential Evolution (BWDE) [6], Dynamic Population Structures-based Differential Evolution
(DPSDE) [7], and Fractional Order Differential Evolution (FODE) [8]. However, the conventional
Cauchy perturbation method faces two critical limitations:

e The method does not consider dimension-specific levels of premature convergence.
e The method employs a fixed jumping rate, reducing adaptability and potentially compromising
performance.

To overcome these issues, this study introduces an adaptive, dimension-wise Cauchy perturbation
mechanism. Our proposed method calculates convergence levels for each dimension at every
generation, dynamically adjusting the jumping rates accordingly. These adaptive rates then guide
the perturbation during crossover, enabling targeted and efficient exploration of the search space. We
integrated this mechanism into the Linear population size reduction Success RaTe-based Differential
Evolution (L-SRTDE) algorithm [9], the winner of the Institute of Electrical and Electronics Engineers
Congress on Evolutionary Computation (IEEE CEC) 2024 competition. Extensive experiments on 29
benchmark problems [10] demonstrate that our approach significantly outperforms both the original L-
SRTDE and several state-of-the-art DE variants in terms of convergence speed and solution accuracy.

In summary, the main contributions of this study are as follows:

e We analyze the limitations of traditional Cauchy perturbation in DE, showing that the existing
approach typically (i) uses a single global jumping rate and (ii) ignores the heterogeneous
convergence behavior of individual dimensions, which can lead to a waste of function evaluations.

e We propose an adaptive dimension-wise Cauchy perturbation (ADCP) mechanism that computes
a convergence level for each dimension in every generation and maps it to a dimension-specific
jumping rate via an exponential scaling function.

e We integrate ADCP into the L-SRTDE algorithm and conduct an extensive experimental study
on the 29 functions of the IEEE CEC 2017 benchmark suite in 30, 50, and 100 dimensions,
comparing the proposed algorithm with 11 recent and competitive DE variants.

The rest of this paper is organized as follows: Section 2 introduces preliminary concepts. In Section
3, we review relevant literature, with a particular focus on Linear population size reduction Success-
History Adaptation Differential Evolution (L-SHADE) variants. Section 4 describes the proposed

AIMS Mathematics Volume 11, Issue 1, 734-766.

736

algorithm in detail. Section 5 presents the experimental setup and discusses the results. Finally, Section
6 concludes the paper.

2. Preliminaries

2.1. Differential evolution

DE [1] is a population-based evolutionary algorithm widely recognized for its simplicity,
robustness, and efficiency in solving continuous optimization problems. It maintains a population
of candidate solutions, each represented as a real-valued vector in a multidimensional search space,
and iteratively evolves these solutions through its mutation, crossover, and selection operators.

During mutation, DE generates a mutant vector by perturbing existing solutions through vector
differences. The classic mutation strategy DE/rand/1 constructs mutant vectors by combining randomly
selected individuals from the current population

B= 4 F- (-2, 2.1)

where X, X, X%, are distinct randomly chosen vectors, and F denotes the scaling factor controlling

the perturbation amplitude.

Following mutation, the crossover operator blends each mutant vector with its corresponding
candidate solution to produce a trial vector. The most common method is the binomial crossover,
defined as

(2.2)

i,j

g . ..
{vi,j’ lf l’Cll’ld,"j < CR Or J = Jrand»

x‘?']., otherwise,

L,
where CR is the crossover probability, and j,.,; ensures that at least one parameter from the mutant
vector is inherited. Here, v} ; and xli"j denote the jth components of Vi and Xi¢, respectively, and
rand; j ~ U(0, 1).

Finally, the selection operator compares the fitness values of each trial vector and its corresponding
candidate solution, retaining the solution with equal or better fitness for the next generation

2.3
X}, otherwise, 2-3)

ot _ {u if £ < f(),

where f(7) represents the objective function being minimized.

This evolutionary process continues until a predefined termination criterion is met, converging
toward optimal or near-optimal solutions for complex optimization tasks. The DE algorithm is
highly flexible for optimizing continuous problems and can integrate various techniques to enhance
performance, such as adaptive parameter control [11], population size control [12], advanced mutation
strategies [13], opposition-based learning [14], eigenvector-based crossover [15], and hybridization
with chaotic neural networks and quality-diversity frameworks [16, 17]. Moreover, DE has been
successfully applied to training neural networks [18] and multi-objective feature selection [19]. For a
more comprehensive description of recent advancements in DE, please refer to survey papers [20-22].

AIMS Mathematics Volume 11, Issue 1, 734-766.

737

2.2. Analysis of Cauchy distribution

The Cauchy distribution is a continuous probability distribution with a distinctively sharp peak
and notably heavy tails compared to the Gaussian and other common distributions. It is defined by two
parameters: the location parameter x,, which specifies the distribution’s center, and the scale parameter
v, which determines the peak’s height and spread. A larger y produces a lower peak and broader spread,
whereas a smaller y yields a taller, narrower peak.

Mathematically, the probability density function (PDF) is

1 1 y
S (x5 x0,7) = == [— - (2.4)
mf[l ' (x-_;o)z] 7| (= x0)? + 5
The cumulative distribution function (CDF) is
1 - 1
F(x; x9,7v) = — arctan (x xo) + —. (2.5)
m 0% 2

The most distinctive feature of the Cauchy distribution is its heavy-tailed nature, which increases the
probability of generating extreme values. This makes it particularly effective in stochastic optimization
processes such as perturbation mechanisms in evolutionary algorithms by enabling broader exploration
of the search space and improving the chances of escaping local optima [23].

Figure 1 illustrates the PDF of the Cauchy distribution for several y values, highlighting its effect
on the distribution’s shape and spread.

- x0=0.0, y=0.5
0.6 Xo=0.0, y=1.0
- x0=0.0, y=2.0
0.5 =+ X0=2.0, y=2.0
0.4 A
[F
£ 0.3
0.2
0.1 b‘—‘——/"):k/\‘\:‘\‘:\;_\‘\-g
0.0
-4 -2 0 2 4

Figure 1. Probability density function of the Cauchy distribution for several y values.

3. Literature review

DE has been extensively refined over the last decade, mainly by introducing adaptive mechanisms
that balance exploration and exploitation more effectively. Among these contributions, the L-SHADE
framework has become a central baseline: many recent state-of-the-art algorithms can be interpreted
as L-SHADE variants that enhance parameter control, population management, or hybrid search
strategies. In this section, we organize the literature around four main directions: success-history-based

AIMS Mathematics Volume 11, Issue 1, 734-766.

738

parameter adaptation, population-size and selective-pressure mechanisms, dual- or multi-population
and ensemble schemes, and success-rate-based control. We then position the proposed method within
this landscape.

3.1. Success-history—based adaptation in L-SHADE

JADE [24] is a seminal adaptive DE variant that introduced the widely used
DE/current-to-pbest/1 mutation. Each target vector is perturbed toward one of the top p-
percent best individuals while also adding a scaled difference between two randomly selected
individuals. This mutation simultaneously exploits good solutions and maintains diversity. JADE also
keeps an external archive of recently replaced parents and occasionally uses differences involving
these archived vectors to further diversify the search. Control parameters F' and CR are generated from
Cauchy/normal distributions whose means are updated from successful offspring, so the algorithm
gradually steers parameter values toward problem-dependent effective regions.

SHADE [25] generalizes JADE’s adaptation scheme by storing a memory of successful parameter
values rather than a single running mean. It keeps H pairs of historical (F, CR) values and, for each trial,
samples from a distribution centered at one randomly chosen memory entry. After each generation,
the memory is updated with weighted averages of the F' and CR values that produced successful
offspring. This success-history mechanism improves robustness and reduces the risk that one bad
update permanently misguides the parameter means.

L-SHADE [26] combines SHADE’s success-history adaptation with linear population size
reduction (LPSR). The algorithm starts with a relatively large population to support broad exploration
and then gradually shrinks the population in a linear fashion as the run progresses, pruning the worst
individuals. This simple deterministic schedule typically accelerates convergence while still preserving
early diversity, and L-SHADE has therefore become a standard reference in DE competitions and
subsequent research.

3.2. Population control and selective pressure in L-SHADE variants

Several L-SHADE variants refine how the population is resized and how selection pressure is
imposed. The jSO algorithm [27] builds directly on L-SHADE and improved L-SHADE (iL-SHADE).
It keeps the current-to-pbest/1 mutation but modifies the way F and CR are sampled over time.
Large CR values are deliberately propagated in early generations, while restrictions on F are used to
avoid overly aggressive steps in the initial phase. As the number of function evaluations increases, jSO
gradually shifts to more exploitative settings. Combined with L-SHADE’s population reduction, these
stage-dependent rules yield a very competitive DE on the CEC 2017 benchmark.

L-SHADE with Rank-based Selective Pressure (LSHADE-RSP) [28] augments L-SHADE with
rank-based selective pressure. Individuals are sorted by fitness, and the probability that a candidate
is selected as a partner in mutation depends on its rank. The modified current-to-pbest strategy
therefore uses fitter individuals more often when forming difference vectors, biasing search directions
toward promising regions while still allowing weaker individuals to contribute. To further control the
search dynamics, LSHADE-RSP also couples L-SHADE-style parameter adaptation with jSO-inspired
rules on F and CR, including a weighted scaling factor and time-varying p for the pbest set.

Non-Linear SHADE with Rank-based Selective Pressure (NL-SHADE-RSP) [29] extends
LSHADE-RSP in two ways. First, it replaces linear population size reduction with a non-linear

AIMS Mathematics Volume 11, Issue 1, 734-766.

739

schedule, so the rate of population shrinkage can be slower or faster at different stages of the run.
Second, it refines archive usage and crossover control: the algorithm adaptively adjusts the probability
of drawing partners from the archive, and it sorts individuals by crossover rates when updating the
success-history memory. These modifications aim to maintain an effective balance between exploration
and exploitation throughout the run.

Non-Linear SHADE with Linear Bias Change (NL-SHADE-LBC) [30] focuses more directly on
parameter adaptation. It uses a generalized Lehmer mean with a linearly changing bias when updating
the historical (¥, CR) memories. At early stages it biases F toward relatively large values to encourage
exploration, then gradually shifts toward more moderate values as the search progresses. A similar bias
is applied to CR so that recombination becomes more conservative or more aggressive depending on the
phase of the search. Together with non-linear population reduction and improved archive management,
this linear-bias change further stabilizes and strengthens the self-adaptation process.

3.3. Dual-population and ensemble L-SHADE extensions

Another line of work restructures the population or enriches the set of search operators. Linear
population size reduction Newest and Top Adaptive Differential Evolution (L-NTADE) [31] introduces
a dual-population scheme consisting of a “newest” population and a “top” population. The newest
population stores the most recently generated individuals, whereas the top population maintains the
best solutions found so far. A variant of current-to-pbest mutation combines information from
both populations, and successful offspring are inserted into the newest population immediately so
that improvements can influence subsequent offspring within the same generation. L-NTADE also
uses SHADE-style parameter adaptation and linear population reduction. This design emulates an
effectively unbounded population while keeping the actual population size finite, improving diversity
and reducing stagnation on difficult multimodal problems.

Multi-operator ensemble LSHADE with Restart and Local search (mLSHADE-RL) [32] represents
a more hybrid, ensemble-style extension of LSHADE with ensemble sinusoidal differential covariance
matrix adaptation with Euclidean neighborhood (LSHADE-cnEpSin). It employs several mutation
strategies (including weighted current-to-pbest and ordered-pbest variants) and assigns them
adaptively according to their recent success. The algorithm also includes a restart mechanism: when
stagnation is detected, part of the population is reinitialized or diversified to escape local optima. In
the later stages, mLSHADE-RL invokes a local search procedure around high-quality solutions to
intensify exploitation. This combination of multi-operator search, restart, local search, and success-
history adaptation makes mLSHADE-RL a representative example of highly hybridized L-SHADE
descendants.

3.4. Success-rate—based parameter control

While success-history—based schemes infer good parameter values from the distribution of
successful offspring, another family of methods uses the success rate itself as a feedback signal. L-
SRTDE [9] is a recent representative of this class. L-SRTDE starts from the dual-population design
of L-NTADE (newest and top populations) but replaces the success-history adaptation of F with a
success-rate—driven update. In each generation, the algorithm computes the fraction SR of offspring
that successfully replace their parents and then sets the mean scaling factor my via a smooth function
of SR (for example, a tanh-shaped curve). Individual F values are sampled from a narrow normal

AIMS Mathematics Volume 11, Issue 1, 734-766.

740

distribution around m. In addition, the greediness parameter p, that determines the size of the top-p,
elite set is also expressed as a function of S R, shrinking toward very small values when the algorithm is
already making frequent improvements. In this way, L-SRTDE automatically shifts from exploratory
behavior (moderate F', large p;) to strongly exploitative behavior (larger F', very small p,) as the search
becomes more successful, while still using L-SHADE’s linear population size reduction. Empirical
evaluations on several CEC benchmark suites show that this success-rate feedback yields performance
comparable to or better than many strong L-SHADE variants.

3.5. Summary

To summarize, modern DE research has largely evolved within the L-SHADE framework. Success-
history—based methods such as SHADE and L-SHADE provide robust automatic tuning of F and
CR. Subsequent variants refine population size reduction and selective pressure mechanisms (jSO,
LSHADE-RSP, NL-SHADE-RSP, NL-SHADE-LBC) introduce dual-population designs and ensemble
search operators (L-NTADE, mLSHADE-RL) and exploit global performance signals such as success
rate (L-SRTDE).

4. Proposed algorithm

This section introduces the adaptive dimension-wise Cauchy perturbation (ADCP) method and
its integration into the L-SRTDE algorithm [9]. We first review the traditional Cauchy perturbation
strategy [5] and highlight its limitations. We then present the ADCP method, which dynamically
adjusts perturbation strengths according to dimension-specific convergence levels. Finally, we describe
how ADCP is integrated into the L-SRTDE algorithm [9], detailing the initialization, mutation,
crossover, and selection phases.

4.1. Review of Cauchy perturbation

Cauchy perturbation [5] is a strategy for enhancing the exploration capability of DE algorithms
by exploiting the long-tailed property of the Cauchy distribution. Compared with other probability
distributions, such as the Gaussian, the Cauchy distribution’s heavier tail facilitates occasional large
jumps in the search space, enabling algorithms to escape local optima and conduct a more diverse
search [33]. Unlike Cauchy mutation [34], which perturbs a mutant vector, Cauchy perturbation
modifies a target vector during the crossover operation. This technique has been successfully applied
to DE algorithms, including representative approaches such as BWDE [6], DPSDE [7], and FODE [8],
significantly improving their performance.

The Cauchy perturbation approach alternates between two recombination operators according to
a jumping rate (JR). When generating a trial vector, the algorithm uses the original operator if a
randomly generated number exceeds JR; otherwise, it employs the modified operator

8

Vi if randl(.’lj) < CROI j = jrands
uf; = rndc(x‘ij,o.l), if rand; > CR and rand” < JR, 4.1
x otherwise.

0’

While traditional Cauchy perturbation improves exploration and robustness, its reliance on a fixed

AIMS Mathematics Volume 11, Issue 1, 734-766.

741

jumping rate limits adaptability during premature convergence. This can lead to either excessive
randomness or insufficient exploration. Overcoming this limitation is the motivation for the adaptive
dimension-wise Cauchy perturbation (ADCP) method proposed in this paper.

Figure 2 illustrates the influence of the Cauchy perturbation operator on the offspring distribution.

X2

0

(@)

.

.

xTz .9

@ Target vector
@ Doror vector
¥ Trial vector

= Xy T Xrg
= P (X~ %)

X159

X2

X129

.

@ Target vector
@® Donor vector
WV Trial vector

= Xrg T Xryg
= P (%~ *r)

Xrs.9

DE/rand/1/bin

X1

without

0

X1

Cauchy (b) DE/rand/1/bin with Cauchy perturbation

perturbation

Figure 2. Cauchy perturbation can enlarge the exploration capability by perturbing the target
vector, thus significantly expanding the feasible region accessible to the trial vectors.

4.2. Adaptive dimension-wise Cauchy perturbation (ADCP)

Traditional Cauchy perturbation applies a uniform jumping rate across all dimensions regardless
of their diversity levels. However, premature convergence can vary significantly between dimensions;
some may already have sufficient exploration, and others require stronger perturbation to escape local
optima. Applying the same jumping rate to all dimensions may therefore degrade performance by
introducing unnecessary exploration in dimensions that already maintain high diversity.

To overcome this limitation, we propose the adaptive dimension-wise Cauchy perturbation (ADCP)
method. ADCP dynamically adjusts the jumping rate for each dimension based on its convergence
level (C Lﬁ), defined as

g

CLS=1- (4.2)

2
O’
g;

where 0'5 and 0'? are the current and initial standard deviations of the population in dimension j,
respectively. A higher C L§ indicates stronger convergence (lower diversity), signaling stagnation and
the need for increased exploration.

The dimension-specific jumping rate JR; is updated using an exponential scaling function,

ek-CLf. |
JRj = JRyin + (JRypax — JRpin) - k—l, 4.3)
e —
where JR,;, and JR,,. are the predefined minimum and maximum jumping rates, and k = 10

controls the steepness of the exponential growth. This formulation increases JR; for highly converged
dimensions, encouraging exploration while keeping JR; lower for diverse dimensions to preserve
existing variability.

AIMS Mathematics Volume 11, Issue 1, 734-766.

742

The modified recombination operation applies the adaptive jumping rate per dimension:

g . 1) ..
L if rand; i S CRor j = jrand,

uf ;= rndc(xij, 0.1) , if randg’lj) > CR and randfj) <JR,, (4.4)

Vv

P otherwise.

By tailoring perturbation strength dimension-wise, ADCP adapts to the evolving population
distribution, improving the algorithm’s ability to overcome premature convergence without disrupting
dimensions that already exhibit sufficient diversity.

At generation g, 0'5 , CLﬁ , and JR; are computed once using the top population X°?, and the resulting
JR; values are reused for all i = 1,2, ..., N, within that generation. In both the traditional Cauchy
perturbation and ADCP, we fix the Cauchy scale parameter to 0.1. This value is widely used in DE
variants employing Cauchy perturbation: larger values tend to induce overly disruptive jumps, whereas
smaller values concentrate the perturbation too strongly and reduce the practical benefit of heavy-tailed
exploration.

4.3. Enhanced L-SRTDE with ADCP
4.3.1. Initialization

L-SRTDE begins by initializing a population of candidate solutions uniformly at random within the
search domain. Let N,,,, denote the initial population size. Each individual X/ for i = 1,2, ..., Nyax
is a D-dimensional vector of decision variables sampled between the lower and upper bounds of the
problem. An identical copy of this population is stored as the top population ¥°7; initially X7 = X"V
for all i and thus contains the same N, solutions. All individuals are evaluated on the objective
function f(-) to obtain their fitness values. Along with the main population, L-SRTDE maintains
a small memory of size H for certain strategy parameters (inherited from SHADE). For instance, the
memory entries M, are used to adapt the crossover rate as described later. Additionally, the enhanced
L-SRTDE algorithm initializes the standard deviations of the population (0'?) for each dimension j.

As the evolutionary process progresses, L-SRTDE employs linear population size reduction (LPSR)
to gradually shrink the population from N,,,, to a predetermined minimum size N,;, by the end of the
run. This is achieved by removing the worst individuals at certain intervals so that the population
decays roughly linearly over generations. For example, if FE's,,,, is the maximum number of function
evaluations, the allowed population size at a given point can be recalculated as

FE max — FE curren
Naiow = | Npin + (Nmax - Nmin) : Smax a t-‘,

4.5
FESmax ()

and any excess individuals are pruned from the population (based on worst fitness) to match this size.
In this way, the algorithm allocates more search agents in early stages for exploration and gradually
focuses resources as it nears termination. Throughout the run, L-SRTDE also tracks the success rate
(SR) of the algorithm on a per-generation basis. The success rate SR is defined as the fraction of
population members that were improved by offspring in a generation, thatis, SR = % where N's is the
number of successful replacements out of the current population of size N. This success rate is a key
driver for the adaptive strategies described below.

AIMS Mathematics Volume 11, Issue 1, 734-766.

743

4.3.2. Mutation

The mutation step remains unchanged in the enhanced L-SRTDE algorithm. Each generation of L-
SRTDE produces offspring via a tailored differential mutation strategy called r-new-to-ptop/n/t. This
strategy operates on two synchronized populations: the current population ¥** of size N and the elite
population X°? (also of size N) that stores the best solutions found so far. For each target individual X"
(where i = 1,2,...,N), a mutant vector V; is generated by mixing information from randomly chosen
individuals in both populations. In particular, L-SRTDE randomly selects one index r; from {1, ..., N}
to serve as a base from the new population and another index r; € {1, ..., N} to pick a vector from the
top population. It also selects a third index r, from the new population using a rank-based selection
(biased toward better-ranked individuals, with a pressure parameter k,). Additionally, a “greediness”
parameter p, € (0, 1] controls the choice of an elite target: an index pbest is uniformly sampled from
the top 100p,% fraction of the ¥°? population. Ensuring all chosen indices are distinct, the mutant
vector is then computed as

V=" +F- (fjj’;;” — M)+ F - (X - 30P). (4.6)

This mutation formula combines elements from the new population and the top population. The first

. 1
difference term xlf,i , — X drives the mutant toward one of the current elite solutions (introducing

an exploitative bias), while the second term ¥/ — %77 injects diversity by adding a scaled difference

between a random individual from the new population and a random elite individual.

Adaptive scaling factor (F) In L-SRTDE, the differential weight F for each trial is dynamically
adapted each generation based on the observed success rate. At the beginning of generation g, a target
mean my is calculated as a sigmoid-shaped function of the previous generation’s success rate:

mp = 0.4 +0.25 - tanh(5 - SR). 4.7)

Here, SR € [0, 1] is the ratio of successful offspring in the last generation. This formula was obtained
through a hyper-heuristic search and reflects that when the algorithm is performing well (high SR), a
slightly higher average F' is beneficial, whereas when progress is slow (low S R), a more moderate F
is preferred. For each mutant vector, an actual scaling factor F is then sampled from a narrow normal
distribution around this mean: F ~ N (mp, 0.02%). This self-adaptation mechanism causes F to increase
or decrease in response to the algorithm’s recent success: a higher success rate yields a larger F on
average (potentially allowing bigger exploratory jumps), whereas a low success rate keeps F closer to
a conservative baseline to maintain stability.

Adaptive elite fraction (p,) The parameter p, determining the fraction of top individuals eligible for
selection as pbest is likewise adjusted each generation according to the success rate. L-SRTDE uses
an exponential decay relationship,

pp = 0.7 - exp(—7- SR). (4.8)

When the SR is very low, p, approaches 0.7, meaning the pbest individual is chosen from roughly the
top 70% of ¥, essentially a wide selection, close to random among elites. This promotes exploration

AIMS Mathematics Volume 11, Issue 1, 734-766.

744

when improvements are scarce. However, as the algorithm starts succeeding more frequently, S R grows
and p, shrinks exponentially. For example, if SR = 0.5, then p, ~ 0.7¢73* ~ 0.03, focusing on only
the top 3% of solutions, effectively forcing selection of the absolute best individuals. By tightening
the elite group as success improves, the mutation strategy seamlessly transitions from exploration to
intense exploitation of the best solutions discovered.

4.4. Crossover

After mutation, each mutant vector V; is recombined with the current target ¥7* through a crossover
operator to produce a trial vector ;. The enhanced L-SRTDE algorithm calculates the convergence
level (CLf) for each dimension j and subsequently updates the jumping rate (JR;) according to Eqs
(4.2) and (4.3). Subsequently, the algorithm employs the ADCP method according to Eq (4.4). The
crossover rate Cr is adapted between generations using a success-history based mechanism but with a
critical modification to use the effective crossover rather than the nominal rate. Specifically, once i; is
formed, the algorithm computes the realized crossover rate Cr, as the fraction of components where i;
inherited genes from the mutant V;. The algorithm uses this Cr, value for learning and adjustment: if
the trial #Z; turns out to be successful (i.e., it yields an improvement in selection), then Cr, is recorded
into a set of successful crossover rates for that generation.

At the end of each generation, if there were any successful trials, the algorithm updates the stored
crossover-rate memory. Typically, this involves computing a weighted average of all recorded Cr,
values and then updating one of the memory entries M, (cycling through the H entries) with this
average. In implementation, new trial crossover rates are sampled from a normal distribution around
a randomly chosen memory mean: Cr ~ N(Mc,;,0.05%) for some index h € {1, ..., H}. By using a
relatively small standard deviation (0.05) for this sampling, the algorithm limits drastic fluctuations
in crossover rate, enabling a more stable search. This crossover scheme, together with the memory
mechanism, allows the algorithm to self-tune the balance between exploration (lower Cr tends to retain
more parent genes) and recombination (higher Cr produces more mixed offspring) based on what has
historically led to improvements.

4.5. Selection

The selection step remains unchanged in the enhanced L-SRTDE algorithm. L-SRTDE’s selection
compares the trial to the mutation base vector and uses a rotating index for replacement. For each
trial vector if; generated (with associated base index r), the algorithm identifies the fitness of the base
individual x7¢". If the trial is better or equal in fitness, then i; is considered a successful offspring.
Rather than replacing r| or the original target 7, the algorithm inserts this successful offspring into the
population at a position indicated by a running index nc. The value of nc starts at 1 and is incremented
by 1 each time an insertion occurs; if nc > N, it wraps around to 1, cycling through population
positions. Formally, the replacement can be described as

4.9)
X

)Z'new _ I’_l)i’ if f(l’_il) < f(f:lew)a
Xiev, otherwise,

after which nc is advanced by 1 (modulo N). If the trial is not better than the base, no replacement is
made for that trial.

AIMS Mathematics Volume 11, Issue 1, 734-766.

745

Algorithm 1: Enhanced L-SRTDE with ADCP
Require: D? FEsmax’ Nmax’ f(’)’ JRmina JRmax, k = 10
Ensure: 5,77, (%,

1: Initialize parameters: N = Nygps Nyin = 4, H = 5, Mc,, = 1

2: Set initial SR = 0.5, memory index k = 1, generation g = 0, counters nc = 1, kp = 3
3: Initialize populations (X", ..., ¥3""") randomly

4: Evaluate f(X"")

5. Copy X" to X', f(X"") to f(XP)

6: Compute initial standard deviations 0'(;., j=1,...,D

7. while FES . on; < FES;q, do

8: S¢r=0,Sar =0 {Initialize memory sets}

9: Sort and assign ranks for ¥ and (")

10: Compute standard deviations 0'5 from top solutions

11: Compute convergence levels CLﬁ (Eq4.2)

12z Compute jumping rates JR; (Eq 4.3)

13: Set successful offspring counter: Ns = 0

14: Set temporary storage index: m = 1

15: fori=1to N®do

16: Generate iI; and actual crossover rate Cr, by calling

ADCP_Recombination(:¢", X7, CL‘? ,JR;,SR)

17: Apply bound constraints and evaluate f(ii;)

18: if f(id;) < f(X}") then

19: Store Cr, into S ¢,
20: Store (f(X") — f(id;)) into S af
21: Store successful offspring: X" = ii;, f(X) = f(i;)
22: Also store into temporary population: ¥,"* = if;, increment m
23: Increment successful offspring counter: Ns = Ns + 1
24: Increment replacement index: nc = mod(nc + 1, N¥)
25: end if

26: end for

27: Compute success rate: SR = Ns/N¢

28: Update population size: N8™' = [N, + (Npax — Nmin)%ﬁf‘wm]
29: Combine ¥°7 and successful offspring from X*"”, sort by fitness

30: Retain best N¢*! individuals as updated @7

31: if N8 > N¢*! then

32: Remove worst solutions from current population ¥ accordingly
33: end if

34: Update crossover memory Mc,, using S ¢, and S ¢

35: Increment indices: k = mod(k + 1, H), generation g = g + 1

36: end while

37: return Best solution found X,” and its fitness f(x,”)

AIMS Mathematics Volume 11, Issue 1, 734-766.

746

Algorithm 2: ADCP_Recombination (Mutation + Adaptive Crossover)
Require: Populations: ¥, ¥'°?, convergence levels CLf , jumping rates JR;, current S R
Ensure: Trial vector i;, actual crossover rate Cr,
1: Compute adaptive scaling factor mean: mF = 0.4 + 0.25 - tanh(5 - SR)

2: repeat

3. F; = randn(mF,0.02)

4. until F; € (0,1)

5: Choose memory index r = randi[l, H]

6: Sample and limit crossover rate: Cr; = randn(Mc,,,0.05), set Cr; = min(1, max(0, Cr;))
7: Randomly select base index r; = randi(1, N¥)

8: Set elite fraction pb = 0.7 - ¢ "5&

9: repeat

10: Select elite solution index pbest = randi(1, N$ - pb)

Generate index r, via rank-based selection
122 Randomly choose r; = randi(1, N¥)
13: until indices ry, r,, r3, and pbest differ
14: Compute mutant vector: V; = X" + F; (X3P
15: Randomly select j,q0 = randz(l, D)

16: Set countc, = 0

17: for j=1to D do

18: Generate random values randilj) ~ U(0,1)and randfj) ~ U(0,1)
19: if randf’lj) < CR;0r j = jyunq then

—_
—_

— B) + Fi R0~ 2

pbest

g8 _ .8
20: l/li’ iz vi,j
21: countc, = countc, + 1
22 else if rand(” > CR; and rand(z) < JR; then
23: = rndc(xg 0.1) (Cauchy perturbatlon)
24: else
) g _
25: u; ;= xf]
26: end if
27: end for

28: Calculate actual crossover rate: Cr, = countc,/D
29: return i, Cr,

Finally, L-SRTDE computes the success rate for the generation, SR = Ns/N. This value of SR is
then used to update the adaptive parameters for the next generation. In particular, the formulas for mg
and p,, are applied using the newly computed S R so that the mutation in the next iteration will adjust to
the algorithm’s recent performance. The memory for crossover rate is also updated at this point: if any
trials were successful, the stored mean(s) M, are recalculated based on the collected set of successful
Cr, values, and the index for memory update is advanced (cyclically). The evolutionary loop then
proceeds to the next generation (mutation, crossover, selection) with the reduced population size N’
and tuned parameters. This process repeats until a termination condition is met. The pseudocode of
the proposed algorithm is detailed in Algorithms 1 and 2.

AIMS Mathematics Volume 11, Issue 1, 734-766.

747

5. Experimental study

5.1. Experimental setup

We evaluated the proposed algorithm through comparative experiments against 11 robust DE
variants: L-SRTDE [9], BWDE [6], DPSDE [7], FODE [8], MultiSelection-based Differential
Evolution (MSDE) [35], Reconstructed Differential Evolution (RDE) [36], Ring Sub-population
architecture-based Differential Evolution (RSDE) [37], Serial Multilevel-Learned Differential
Evolution (SMLDE) [38], NL-SHADE-LBC [30], NL-SHADE-RSP [29], and iLSHADE-RSP [5].
Among these, L-SRTDE [9], NL-SHADE-LBC [30], and NL-SHADE-RSP [29] are the most effective
L-SHADE variants, having won the IEEE CEC competitions in 2024, 2022, and 2021, respectively.
The remaining eight—BWDE [6], DPSDE [7], FODE [8], MSDE [35], RDE [36], RSDE [37],
SMLDE [38], and iLSHADE-RSP [5]—are state-of-the-art DE methods that employ traditional
Cauchy perturbation. Control parameters for each variant followed the settings recommended in their
original publications. For the proposed algorithm, the minimum and maximum jumping rates were set
to 0.1 and 0.2, respectively. Table 1 summarizes the parameter configurations for all algorithms.

Table 1. Parameter configurations for all algorithms.

Algorithm Year Parameter settings
L-SRTDE-ADCP — Ninit = 20D, Nyyiy = 4,H =5,k = 1,nc = 1,kp =3, Mc,, = 1,SR = 0.5, JRyjn = 0.1, JR0 = 0.2
L-SRTDE 2024 Nuy =20D,Nyiy =4, H=5,k=1,nc=1,kp=3,Mc,, = 1,SR=0.5

NL-SHADE-LBC 2022 Ny = 23D, Nyin = 4, H = 20D,k = 1, NA = L.ONP,ny = 0.5, My, = 0.5, M¢,,, = 0.9
NL-SHADE-RSP 2021 N = 30D, Nyin = 4, H = 20D,k = 1, NA = 2.INP,ny = 0.5, My, = 0.2, M¢,,, = 0.2

BWDE 2024 Njy = 18D, Ny = 4,k =3,p=0.11,P; =0.2,g = 0.3,u = 0.5

DPSDE 2024 Niy = 18D, Ny = 4,k = 30,A = 0.3

FODE 2025 Ny = 18D, N,y =4,k =3,p=0.11,P; =0.2,0 = 0.995,r = 6

MSDE 2024 Niy = 18D, Ny = 4, H = 5,k =3,p = 0.11,P; = 0.2, NA = 1.0NP,6, = 10,6, = 25

RDE 2024 Niyy = 18D, Ny = 4, H = 5,k = 3,p = 0.25,P; = 0.2, NA = L.ONP, sty = 0.3, ¢, = 0.8,y = 05,7, = 0.5
RSDE 2024 Ny = 18D, Ny =4,k =3,p=0.11,P; =0.2,7 = 0.2,y = 0.15,x = 0.21

SMLDE 2024 Niy = 75D3, Ny = 4,k =3,p = 0.11,P; = 0.2,£ = 0.5

iLSHADE-RSP 2021 Ny = 75D3, Ny = 4,k = 3,p=10.085,0.17],P; = 0.2

The experiments used the IEEE CEC 2017 test suite [10], a widely adopted benchmark set
for evaluating optimization algorithms. The suite contains two unimodal functions, seven basic
multimodal functions, ten expanded multimodal functions, and ten hybrid composition functions.
Functions with a single global optimum and no local optima are classified as unimodal, whereas
functions with multiple local optima are classified as multimodal.

Each function was run independently 51 times, with the maximum number of function evaluations
defined as FEs,,,, = 10000-D. Performance was measured using the mean error and standard deviation
across the 51 runs. Errors below 10~ were recorded as zero for consistency. The best result for each
comparison is highlighted in bold. Statistical significance between two algorithms was tested using
the Wilcoxon rank-sum test [39], and comparisons among multiple algorithms employed the Friedman
test [40].

All experiments were conducted on an Ubuntu 20.04.5 LTS system with an AMD Ryzen
Threadripper 2990WX CPU and 64GB RAM. The algorithms were implemented in C++ and compiled
using GCC.

AIMS Mathematics Volume 11, Issue 1, 734-766.

748

5.2. Comparison with state-of-the-art DE variants

The proposed algorithm was compared with 11 well-known DE variants on 29 CEC 2017
benchmark functions to assess its overall performance. Detailed numerical results are provided in
the supplementary material. For each dimensionality setting, the Wilcoxon rank-sum test [39] was
used to assess pairwise performance differences, and the Friedman test [40] was employed to rank
all algorithms. Post-hoc analyses using the Bonferroni—-Dunn [41], Holm [42], and Hochberg [43]
procedures were then performed to verify statistical significance.

e 30-dimensional problems: As shown in Table 2, the proposed algorithm outperforms
the competing methods on most benchmark functions. Compared with the top CEC
competition winners, L-SRTDE, NL-SHADE-LBC, and NL-SHADE-RSP, it achieves significant
improvements on 11, 22, and 23 out of 29 functions, respectively. Conversely, these algorithms
outperform the proposed approach in at most 5, 2, and 3 functions. Against the other eight
algorithms, the number of functions where it performs significantly better is 22, 22, 22, 20, 23, 23,
22, and 22. Conversely, these algorithms surpass the proposed approach on only 2—4 functions.
The Friedman rankings (Table 3) place the proposed method first overall, and post hoc test results
(Table 4) confirm its superiority over all competitors except L-SRTDE. Although the post hoc
procedures do not detect a significant difference versus L-SRTDE, both the Wilcoxon outcomes
and the Friedman ranks favor the proposed algorithm.

Table 2. Wilcoxon rank-sum results vs. L-SRTDE-ADCP on 30-dimensional problems.

L-SRTDE-ADCP vs. + - ~
L-SRTDE 11 5 13
NL-SHADE-LBC 22 2 5
NL-SHADE-RSP 23 3 3
BWDE 22 2 5
DPSDE 22 2 5
FODE 22 2 5
MSDE 20 4 5
RDE 23 2 4
RSDE 23 2 4
SMLDE 22 3 4
iLSHADE-RSP 22 2 5

AIMS Mathematics Volume 11, Issue 1, 734-766.

749

Table 3. Algorithm rankings derived from Friedman test on 30-dimensional problems.

Algorithm Avg. Rank
L-SRTDE-ADCP 2.776
L-SRTDE 4.017
RDE 5.966
BWDE 6.052
SMLDE 6.224
FODE 6.276
DPSDE 6.500
RSDE 6.638
iLSHADE-RSP 7.034
MSDE 7.414
NL-SHADE-RSP 9.414
NL-SHADE-LBC 9.690

Table 4. Post Hoc p-values for compared DE algorithms on 30-dimensional problems.

L-SRTDE-ADCP vs. Z p Bonf. Holm Hoch.
L-SRTDE 1.311 0.190 1.000 0.190 0.190
NL-SHADE-LBC 7.302 0.000 0.000 0.000 0.000
NL-SHADE-RSP 7.010 0.000 0.000 0.000 0.000
BWDE 3.460 0.001 0.006 0.002 0.002
DPSDE 3.933 0.000 0.001 0.001 0.001
FODE 3.696 0.000 0.002 0.001 0.001
MSDE 4.898 0.000 0.000 0.000 0.000
RDE 3.369 0.001 0.008 0.002 0.002
RSDE 4.079 0.000 0.000 0.000 0.000
SMLDE 3.642 0.000 0.003 0.001 0.001
iLSHADE-RSP 4.498 0.000 0.000 0.000 0.000

¢ 50-pimensional problems: The results in Table 5 show consistent performance gains. The

proposed algorithm significantly outperforms L-SRTDE, NL-SHADE-LBC, and NL-SHADE-

RSP on 14, 26, and 28 functions, respectively. Conversely, these algorithms outperform the
For the other eight algorithms, the
corresponding counts are 24, 25, 23, 22, 24, 23, 23, and 24. Conversely, these algorithms surpass
the proposed approach on only 1-2 functions. The Friedman rankings (Table 6) again place
the proposed method first, and post hoc tests (Table 7) confirm its advantage; as in 30-D, no
significant difference is detected versus L-SRTDE, yet Wilcoxon outcomes and Friedman ranks
favor the proposed algorithm.

proposed approach in at most 7, 1, and O functions.

AIMS Mathematics

Volume 11, Issue 1, 734-766.

750

Table 5. Wilcoxon rank-sum results vs. L-SRTDE-ADCP on 50-dimensional problems.

L-SRTDE-ADCP vs. + - ~
L-SRTDE 14 7 8
NL-SHADE-LBC 26 1 2
NL-SHADE-RSP 28 0 1
BWDE 24 2 3
DPSDE 25 1 3
FODE 23 2 4
MSDE 22 2 5
RDE 24 2 3
RSDE 23 2 4
SMLDE 23 2 4
iILSHADE-RSP 24 2 3

Table 6. Algorithm rankings derived from Friedman test on 50-dimensional problems.

Algorithm Avg. Rank
L-SRTDE-ADCP 2.569
L-SRTDE 3.328
RSDE 5.121
MSDE 5.810
RDE 5.983
FODE 6.190
iILSHADE-RSP 6.259
SMLDE 6.638
BWDE 6.776
DPSDE 7.190
NL-SHADE-LBC 10.241
NL-SHADE-RSP 11.897

AIMS Mathematics Volume 11, Issue 1, 734-766.

751

Table 7. Post Hoc p-values for compared DE algorithms on 50-dimensional problems.

L-SRTDE-ADCP vs. Z p Bonf. Holm Hoch.
L-SRTDE 0.801 0.423 1.000 0.423 0.423
NL-SHADE-LBC 8.103 0.000 0.000 0.000 0.000
NL-SHADE-RSP 9.851 0.000 0.000 0.000 0.000
BWDE 4.443 0.000 0.000 0.000 0.000
DPSDE 4.880 0.000 0.000 0.000 0.000
FODE 3.824 0.000 0.001 0.001 0.001
MSDE 3.423 0.001 0.007 0.002 0.002
RDE 3.605 0.000 0.003 0.001 0.001
RSDE 2.695 0.007 0.077 0.014 0.014
SMLDE 4.297 0.000 0.000 0.000 0.000
iLSHADE-RSP 3.897 0.000 0.001 0.001 0.001

e 100-dimensional problems: Table 8 shows that the proposed algorithm maintains strong
competitiveness even at higher dimensionalities. It significantly outperforms L-SRTDE, NL-
SHADE-LBC, and NL-SHADE-RSP on 7, 25, and 28 functions, respectively. Conversely, these
algorithms outperform the proposed approach in at most 4, 1, and O functions. Against the
remaining eight algorithms, it achieves superior results on 22, 22, 22, 22, 21, 22, 21, and 22
functions. Conversely, these algorithms surpass the proposed approach on only 4-5 functions.
The Friedman test results (Table 9) place the proposed algorithm first, and post hoc analyses
(Table 10) confirm a statistically significant advantage over all algorithms except L-SRTDE;
nonetheless, Wilcoxon outcomes and Friedman ranks consistently favor the proposed algorithm.

Table 8. Wilcoxon rank-sum results vs. L-SRTDE-ADCP on 100-dimensional problems.

L-SRTDE-ADCP vs. + — ~
L-SRTDE 7 4 18
NL-SHADE-LBC 25 1 3
NL-SHADE-RSP 28 0 1
BWDE 22 5 2
DPSDE 22 4 3
FODE 22 5 2
MSDE 22 5 2
RDE 21 4 4
RSDE 22 5 2
SMLDE 21 5 3
iILSHADE-RSP 22 5 2

AIMS Mathematics

Volume 11, Issue 1, 734-766.

752

Table 9. Algorithm rankings derived from Friedman test on 100-dimensional problems.

Algorithm Avg. Rank
L-SRTDE-ADCP 2.517
L-SRTDE 3414
MSDE 4.983
RDE 5.759
RSDE 5.983
iLSHADE-RSP 6.276
SMLDE 6.362
FODE 6.397
BWDE 6.707
DPSDE 7.638
NL-SHADE-LBC 10.207
NL-SHADE-RSP 11.759

Table 10. Post Hoc p-values for compared DE algorithms on 100-dimensional problems.

L-SRTDE-ADCP vs. Z p Bonf. Holm Hoch.
L-SRTDE 0.947 0.344 1.000 0.344 0.344
NL-SHADE-LBC 8.121 0.000 0.000 0.000 0.000
NL-SHADE-RSP 9.760 0.000 0.000 0.000 0.000
BWDE 4.425 0.000 0.000 0.000 0.000
DPSDE 5.408 0.000 0.000 0.000 0.000
FODE 4.097 0.000 0.000 0.000 0.000
MSDE 2.604 0.009 0.101 0.018 0.018
RDE 3.423 0.001 0.007 0.002 0.002
RSDE 3.660 0.000 0.003 0.001 0.001
SMLDE 4.061 0.000 0.001 0.000 0.000
iLSHADE-RSP 3.970 0.000 0.001 0.000 0.000

Across all dimensionalities, the statistical tests consistently demonstrate that the proposed algorithm
delivers the best overall performance among all compared DE variants, highlighting its robustness and
strong optimization capability.

From these results, several observations can be made. First, L-SRTDE-ADCP not only achieves
the best average Friedman rank in all dimensional settings but also exhibits a clear and statistically
significant advantage over almost all competing variants, including several recent CEC competition
winners. This indicates that the proposed dimension-wise perturbation mechanism provides a
performance gain that is robust across different problem sizes and algorithmic baselines. Second, the
superiority of L-SRTDE-ADCP is particularly pronounced when compared with advanced Cauchy-
based and population-structuring methods such as NL-SHADE-LBC, NL-SHADE-RSP, BWDE,
DPSDE, FODE, RSDE, and SMLDE. These algorithms already incorporate sophisticated parameter
adaptation and diversity-preservation strategies, yet the proposed method still yields significantly lower
objective values on the majority of benchmark functions. Third, the fact that the post hoc procedures

AIMS Mathematics Volume 11, Issue 1, 734-766.

753

do not detect a statistically significant difference between L-SRTDE-ADCP and its base algorithm
L-SRTDE, whereas the Wilcoxon outcomes and Friedman ranks consistently favor L-SRTDE-ADCP,
indicating that the proposed mechanism improves performance in a gradual and stable manner without
drastically altering the behavior of the underlying framework. In other words, ADCP refines the search
dynamics of L-SRTDE by reallocating perturbation strength toward over-converged dimensions and
attenuating unnecessary large jumps in less converged dimensions. This leads to better final solution
quality and more reliable convergence. Overall, these insights confirm that the proposed dimension-
wise adaptive Cauchy perturbation constitutes a meaningful enhancement of the L-SRTDE framework
rather than a marginal or problem-specific modification.

o
=]

10.04

>
=}

8.0

w
o

6.0 1

Ly Error (log)
Ly Error (log)

N
o

4.0 1

=
=)

- L-SRTDE-ADCP - RDE 2.0 —- L-SRTDE-ADCP -~ RDE
] -=- L-SRTDE BWDE -= L-SRTDE BWDE

o
=}

02 0.4 056 08 10 02 0.4 0.6 08 10

Fevals / Fevalsmax Fevals / Fevalsmax
(a) Fyi (b) Fi3

3.5
10.0

3.0
8.0 2.5
2.0
6.0

4.0 4

Ly Error (log)
Ly Error (log)
=
n

2.01

0.0
- L-SRTDE-ADCP RDE = L-SRTDE-ADCP RDE
0.0 = L-SRTDE BWDE 0.5] = L-SRTDE BWDE
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fevals / Fevalsmax Fevals / Fevalsmax
(©) Fis (d) Fa

4.0

3.81

3.51

3.29

Ly Error (log)
w
o

Ly Error (log)

3.01

2.8
1 - L-SRTDE-ADCP RDE ~e- L-SRTDE-ADCP RDE

264 -=- L-SRTDE BWDE 2.5 —= L-SRTDE BWDE
0:2 0?4 ofs 0:8 lfl) 0?2 0?4 0?6 0:8 1?0
Fevals / Fevalsmax Fevals / Fevalsmax
(e) Fau () Fas

Figure 3. Convergence plots depicting the median optimization errors of the proposed
algorithm compared to the top three best-performing competitors across six benchmark
functions in 30 dimensions.

AIMS Mathematics Volume 11, Issue 1, 734-766.

754

The convergence plots shown in Figures 3-5 illustrate the comparison of median optimization errors
between the proposed algorithm and the top three best-performing competitors. Six representative
benchmark functions (Fyy, Fi3, F1s, Fa, Fa4, and F,g) are selected for analysis. The results clearly
demonstrate that the proposed algorithm consistently achieves the lowest average error at the end of
execution, highlighting its superior search capability.

7.0
10.0
6.0
8.0
5 5.0 °
2 2
= T 6.0
g 4.0 s
t t
w w
E -
30 I 40
2.0 2.0
~e- L-SRTDE-ADCP RSDE ~e- L-SRTDE-ADCP RSDE
1.0 = L-SRTDE MSDE -= L-SRTDE MSDE
0.0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fevals / Fevalsmax Fevals / Fevalsmax
(@ Fny (b) Fis
10,01 331
8.0 3.0

Ly Error (log)
o
o

Ly Error (log)
~
o

&
o

2.04
2.0 1 -=- L-SRTDE-ADCP RSDE 154 L-SRTDE-ADCP RSDE
-=- L-SRTDE MSDE : -= L-SRTDE MSDE
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fevals / Fevalsmax Fevals / Fevalsmax
(©) Fis (d) Fao
3.6 1 4.5
4.2
344 4.0
° °
K<) S 3.8
T 3.2 =
2 235
S £ 3.
w w
I 3.04 I 3.2
3.04
2.8
—=— L-SRTDE-ADCP RSDE 281" L-SRTDE-ADCP RSDE
-= -SRTDE MSDE . -= L-SRTDE MSDE
ofz 0?4 O:6 0?8 1:0 ofz 0?4 0.‘6 0:8 1.‘0
Fevals / Fevalsmax Fevals / Fevalsmax
(e) Fa () Fas

Figure 4. Convergence plots depicting the median optimization errors of the proposed
algorithm compared to the top three best-performing competitors across six benchmark
functions in 50 dimensions.

AIMS Mathematics Volume 11, Issue 1, 734-766.

755

= =
o o o g
o o o =3

Ly Error (log)

by
=}

~e L-SRTDE-ADCP
-=- -SRTDE

N
=}

MSDE
RDE

02

10.0

8.0 1

6.0

Ly Error (log)

4.01

~e— L-SRTDE-ADCP
2.0 1 —= L-SRTDE

0.4 0.6
Fevals / Fevalsmax

(a) Fi

MSDE

08

10

Ly Error (log)

Ly Error (log)

10.0 4

8.01

6.0 1

4.0

2.04

4.0

3.81

3.51

3.29

3.01

2.8

2.51

~e- L-SRTDE-ADCP MSDE

-=- L-SRTDE RDE
02 0.4 0.6 08 10
Fevals / Fevalsmax
(b) Fi3

~e— L-SRTDE-ADCP MSDE

RDE 2.2 { —= L-SRTDE RDE
O:Z 0?4 0:6 0?8 1:0 OtZ 0t4 0.‘6 0:8 1.'0
Fevals / Fevalsmax Fevals / Fevalsmax
(© Fis (d) Fa

Ly Error (log)
w
o

3.0 - L-SRTDE-ADCP
-=- L-SRTDE

MSDE
RDE

Ly Error (log)

5.0

4.5

4.0 1

3.04

~- L-SRTDE-ADCP MSDE

0.2

0.4 0.6
Fevals / Fevalsmax

(e) Fa

0.8

-= L-SRTDE RDE
0.2 0.4 0.6 0.8 1.0
Fevals / Fevalsmax
() Fas

Figure 5. Convergence plots depicting the median optimization errors of the proposed
algorithm compared to the top three best-performing competitors across six benchmark
functions in 100 dimensions.

5.3. Comparison with traditional Cauchy perturbation

This section summarizes the results comparing the performance of the proposed algorithm

against two variants:

L-SRTDE-CP (L-SRTDE with traditional Cauchy perturbation) and the

original L-SRTDE. The evaluations were conducted across 30-dimensional, 50-dimensional, and 100-
dimensional problems. Detailed numerical results are provided in the supplementary material. For
each dimensionality setting, the Wilcoxon rank-sum test [39] was used to assess pairwise performance

differences.

e 30-dimensional problems:

AIMS Mathematics

As shown in Table 11, the proposed algorithm achieves modest

Volume 11, Issue 1, 734-766.

756

improvements compared to L-SRTDE-CP and the original L-SRTDE. It significantly outperforms
L-SRTDE-CP and L-SRTDE on 7 and 11 functions, respectively. Conversely, it is outperformed
on only 5 functions in both comparisons. The number of comparable outcomes (ties) is relatively
high, indicating moderate differentiation among algorithms in this lower-dimensional setting.
Given that L-SRTDE-ADCP is an enhanced version of L-SRTDE-CP, these improvements are
attained without compromising overall performance.

e 50-dimensional problems: In Table 12, the advantages of L-SRTDE-ADCP become clearer. It
significantly outperforms L-SRTDE-CP and L-SRTDE on 13 and 14 functions, respectively, with
relatively fewer instances where it underperforms (5 and 7 functions, respectively). The reduced
number of ties suggests clearer algorithmic differentiation at this dimensionality, reinforcing the
effectiveness of the proposed method. Again, this highlights that the proposed enhancements
contribute positively without negatively impacting performance.

¢ 100-dimensional problems: Table 13 indicates diminished differentiation at higher dimensions.
L-SRTDE-ADCP significantly outperforms L-SRTDE-CP and L-SRTDE on only 5 and 7
functions, respectively. Comparable performances dominate (19 and 18 ties, respectively),
suggesting a limited relative advantage in higher-dimensional settings. Importantly, even in
the challenging high-dimensional scenario, the improvements in L-SRTDE-ADCP are realized
without performance degradation relative to its predecessor.

Table 11. Wilcoxon rank-sum test results comparing L-SRTDE-ADCP against L-SRTDE-
CP and L-SRTDE on 30-dimensional problems.

L-SRTDE-ADCP vs. + - ~
L-SRTDE-CP 7 5 17
L-SRTDE 11 5 13

Table 12. Wilcoxon rank-sum test results comparing L-SRTDE-ADCP against L-SRTDE-
CP and L-SRTDE on 50-dimensional problems.

L-SRTDE-ADCP vs. + ~
L-SRTDE-CP 13 5 11
L-SRTDE 14 7 8

Table 13. Wilcoxon rank-sum test results comparing L-SRTDE-ADCP against L-SRTDE-
CP and L-SRTDE on 100-dimensional problems.

L-SRTDE-ADCP vs. + - ~
L-SRTDE-CP 5 5 19
L-SRTDE 7 4 18

Overall, the proposed algorithm demonstrates notable performance advantages, particularly in
50-dimensional problems, with modest improvements in 30-dimensional problems and consistent
competitiveness in 100-dimensional problems. These consistent gains underline that the enhancements
introduced in L-SRTDE-ADCP contribute positively without compromising performance.

AIMS Mathematics Volume 11, Issue 1, 734-766.

757

These observations provide additional insight into why the proposed ADCP mechanism is effective
and how it differs from the traditional Cauchy perturbation. In the conventional scheme, a single
global jumping rate JR is applied uniformly to all dimensions, regardless of their convergence state.
This can lead to redundant or excessively large perturbations in coordinates that have not yet converged
while still being insufficient to rediversify dimensions where the population has already collapsed. In
contrast, L-SRTDE-ADCP uses the per-dimension convergence indicator CL§ in Eq (4.2) to modulate
the jumping rate JR; via Eq (4.3). This dimension-wise control focuses strong Cauchy perturbations
on over-converged coordinates, improving the ability to escape local optima while keeping the search
more stable in dimensions that remain diverse.

As shown in Tables 11-13, this targeted use of Cauchy noise yields a clear net benefit over both
the base algorithm L-SRTDE and its traditional Cauchy-perturbed variant L-SRTDE-CP in 30- and 50-
dimensional settings. In 100 dimensions, where all algorithms face a substantially more challenging
search landscape, the advantage of L-SRTDE-ADCP becomes less pronounced but remains non-
negative, indicating that the additional perturbation mechanism does not destabilize the search even
in high-dimensional settings. Taken together, these findings support the design rationale of ADCP: by
aligning the strength of Cauchy perturbations with the dimension-wise convergence state, the algorithm
achieves a more favorable balance between exploration and exploitation than is possible with a fixed,
global perturbation scheme.

5.4. Algorithm complexity

We measured the computational cost of the proposed method using the CEC 2017 benchmarking
protocol. The calibration unit time 7, was obtained by running the following micro-benchmark:

1 x=0.55;

2 fori=1; i <1000000; i=i+ 1do
3 X=X+X; X=X/2; X=X*X; x=sqrt(x);
4 x=log(x); x=exp(x); Xx=x/(x+2);
5 end

We denote by T the elapsed time to evaluate function fig for 200,000 calls (function-only cost).
The quantity 7, is the wall-clock time of an algorithm that performs 200,000 evaluations of the same
function; T, is the mean of five independent 7, measurements. Following the CEC convention, we
report the algorithmic overhead as the normalized quantity

T, —T,
T,

which expresses the extra computation (in units of the calibration loop) required by the algorithm
beyond pure function-evaluation time.

Table 14 presents these normalized overheads for L-SRTDE augmented with the proposed adaptive
Cauchy perturbation (L-SRTDE-ADCP), L-SRTDE with the traditional Cauchy perturbation (L-
SRTDE-CP), and the original L-SRTDE. For dimensions D € {10, 30,50}, L-SRTDE-ADCP yields
overheads of 13.712085 (10D), 25.189362 (30D), and 33.193663 (50D). These are of the same
magnitude as the corresponding values for L-SRTDE-CP and the original L-SRTDE, indicating that the
proposed ADCP extension introduces no substantive runtime penalty while delivering the performance

AIMS Mathematics Volume 11, Issue 1, 734-766.

758

improvements reported in Section 5.

Table 14. Algorithmic complexity results.

Algorithm D Ty T, T, TZT;OT‘
L-SRTDE-ADCP 10 0.016789 0.088241 0.318453 13.712085
30 0.441385 0.864289 25.189362
50 1.186522 1.743810 33.193663
L-SRTDE-CP 10 0.016789 0.088241 0.306227 12.983847
30 0.441385 0.841637 23.840145
50 1.186522 1.701841 30.693859
L-SRTDE 10 0.016789 0.088241 0.319467 13.772470
30 0.441385 0.861633 25.031163
50 1.186522 1.713155 31.367717

Time complexity: Let D denote the problem dimension and N, the population size in generation
g with N, < Ny = 20D. Let NiE£* be the evaluation budget and T the cost of a single objective
evaluation. For the baseline L-SRTDE algorithm, the cost of mutation, crossover, selection, and
ranking in one generation is

TLSRIDE — O(N,D + N, log Ny + N, T),

gen

so over the whole run, we obtain
Ty srroE = O(Ngg D) + O(Ngg™Ty).

The traditional Cauchy perturbation modifies only the recombination operator. In each generation,
for every individual and every coordinate the operator performs a constant number of random draws,
comparisons, and assignments according to (4.1), that is O(D) work per individual. Therefore, the
per-generation cost of the L-SRTDE-CP variant remains

TS = O(ND + Ny log N, + N, Ty),

gen

and the overall time complexity is
Tcp = O(Ngg D) + O(Ngg"T).

The proposed ADCP mechanism adds two ingredients: (i) the computation of the per-dimension
standard deviations 0'5 and convergence levels CLf together with the updated jumping rates JR;
via (4.2) and (4.3), and (i1) the dimension-wise Cauchy perturbation in (4.4). The first part requires a
single pass over the population for each dimension and thus O(N,D) time per generation. The second
part is again O(D) per individual because generating a uniform or Cauchy random variable is constant
time. Consequently, the per-generation cost of L-SRTDE-ADCP is

Tad® = O(N,D + N, log N, + N, T}),

gen

AIMS Mathematics Volume 11, Issue 1, 734-766.

759

and the overall time complexity satisfies

TADCP = O(NII:IIIE?‘XD) + O(N;PEXT}()

In other words, both the traditional Cauchy perturbation and the proposed ADCP mechanism
preserve the O(NE*D) algorithmic time complexity of L-SRTDE, incurring only a small constant-
factor overhead.

5.5. Analysis of parameter settings

This section presents experimental results evaluating the robustness of the proposed method. The
method involves three control parameters: JR,;,, JR,q, and k, which are used to calculate JR;.
Specifically, JR,,;, and JR,,,, define the minimum and maximum allowable values of JR;, respectively,
while the parameter k controls the steepness of the exponential growth in the scaling function used to
determine JR;.

The robustness evaluations were conducted on 29 50-dimensional CEC 2017 benchmark functions.
Two nonparametric statistical tests, Friedman’s test [40] and the Iman—Davenport test [44], were
utilized to analyze the sensitivity and robustness of the proposed algorithm.

5.5.1. Sensitivity of JRyx

We assessed the effect of JRx by fixing JRy;,, = 0.1 and £ = 10 and evaluating five values of
JRmax €{0.2,0.4,0.6,0.8, 1.0} across the benchmark suite. In the algorithm, JR ., is the probability of
applying a Cauchy perturbation once the per-dimension convergence level CL; reaches 1.0 (i.e., when
all individuals have collapsed to the same point on dimension j).

The Friedman omnibus test shown in Table 15 indicated a significant difference among the five
configurations (Friedman X(24) = 9.899, p = 0.042); however, the effect size is small (Kendall’s W =
0.085). The Iman—Davenport correction yields Fy4 112 = 2.612, p ~ 0.039. Because the omnibus effect
1s modest, we followed up with pairwise post hoc tests against the reference configuration JR,.x = 0.2.

Pairwise Wilcoxon rank-sum tests versus the reference are summarized in Table 16. Table 17
lists the per-comparison z-statistics, raw p-values, and family-wise adjustments (Bonferroni, Holm,
Hochberg). After correction, only JR,.x = 1.0 differs from the reference at @ = 0.05 (raw p = 0.010;
Holm p = 0.040). The effect size for this comparison, computed as r = z/ VN, is r ~ 0.48, indicates a
moderate-to-large effect.

Average Friedman ranks (Table 18) show JR,.x = 0.2 has the best rank and JR,,,x = 1.0 the worst.
Taken together, the statistical evidence suggests that values of JR,x in the range 0.2-0.4 are preferable
for the proposed algorithm on these benchmarks.

Table 15. Friedman and Iman—Davenport test results for five JR,,,, configurations.

Friedman value x* value p-value Iman—Davenport value Fr value p-value
9.899 9.488 0.042 2.612 2.453 0.039

AIMS Mathematics Volume 11, Issue 1, 734-766.

760

Table 16. Wilcoxon rank-sum results vs. JR,,,, = 0.2 on 50-dimensional problems.

JRin = 0.1, JR,,0 = 0.2 vs. + - ~
JR,in = 0.1, JR, = 0.4 10 6 13
JRin = 0.1, JR,,.x = 0.6 11 5 13
JR,in = 0.1, JR,u = 0.8 13 3 13
JR,in = 0.1, JR,ux = 1.0 12 8 9

Table 17. Post Hoc p-values for five JR,,,, configurations on 50-dimensional problems.

JR,in = 0.1, JR,u = 0.2 vs. z p Bonf. Holm Hoch.
JR,in = 0.1, JRu = 0.4 0.249 0.803 1.000 0.803 0.803
JRin = 0.1, JR 1y = 0.6 1.080 0.280 1.000 0.561 0.561
JRin = 0.1, JR,ux = 0.8 1.910 0.056 0.225 0.168 0.168
JR,in = 0.1, JR,u, = 1.0 2.574 0.010 0.040 0.040 0.040

Table 18. Algorithm rankings derived from Friedman test with five JR,,,, configurations.

Algorithm Avg. Rank
JRin = 0.1, JRu = 0.2 2.517
JR,in = 0.1, JR,. = 0.4 2.621
JRyin = 0.1, JR 0 = 0.6 2.966
JRyin = 0.1, JRx = 0.8 3.310
JRyin = 0.1, JR,0 = 1.0 3.586

5.5.2. Sensitivity of k

We evaluated the effect of the parameter k by comparing five settings k € {0, 5, 10, 20, 30} across the
benchmark suite. In the algorithm, k controls the steepness of the exponential scaling function used to
compute JR;. Larger values of k produce a sharper, more rapid transition from JR,i, t0 JRyx as the
convergence level increases, while smaller values of k yield a smoother, more gradual rise. Figure 6
illustrates the effect of varying k on the shape of this scaling function for the fixed bounds JR;, = 0.1

and JR,.x = 1.0.

AIMS Mathematics

Volume 11, Issue 1, 734-766.

761

0.0 0.2 0.4 0.6 0.8 1.0
L

Figure 6. Comparison of jumping rate functions for different values of the scaling parameter
k. Lower k values yield a linear or gently curved relationship, whereas higher k values lead
to increasingly nonlinear, exponential adaptation behavior.

The Friedman omnibus statistic shown in Table 19 does not indicate a statistically significant
difference among the five configurations (Friedman)((24) = 7.299, p = 0.121). Consistent with
the Friedman result, the Iman—Davenport corrected test yields Fs;;, = 1.880, p =~ 0.119; that
is, the omnibus test fails to reach @« = 0.05. The associated effect size is very small: Kendall’s

W = 297;(259_91) ~ 0.063, indicating only a negligible degree of concordance among ranks across problems.

Table 19. Friedman and Iman—Davenport test results for five k configurations.

Friedman value x* value p-value Iman—Davenport value Fr value p-value
7.299 9.488 0.121 1.880 2.453 0.119

Because the omnibus test is not significant, strict inferential practice does not require pairwise
post hoc comparisons; nevertheless, the average Friedman ranks in Table 20 provide an informative
descriptive ordering. The configuration £ = 30 attains the best mean rank (2.448), and k = 0 is worst
(3.500), with the remaining settings lying close together (ranks ~ 2.95-3.07). Taken together, these
results indicate that any practical differences among the tested k values are small on this benchmark
set. Although k& = 30 yields the best average rank, we adopt k = 10 as the default because it
provides comparably strong performance while exhibiting slightly more robust run-to-run behavior
across functions (i.e., lower typical variability in the final error), and it corresponds to a less aggressive
mapping from CLf to JR; that reduces the risk of overly disruptive perturbations.

Table 20. Algorithm rankings derived from Friedman test with five k configurations.

Algorithm Avg. Rank
k =30 2.448
k=10 2.948
k=35 3.034
k =20 3.069
k=0 3.500

AIMS Mathematics Volume 11, Issue 1, 734-766.

762

6. Conclusions

We proposed an adaptive dimension-wise Cauchy perturbation (ADCP) that estimates the per-
dimension convergence level each generation and adjusts the perturbation probability accordingly.
Integrated into the L-SRTDE framework, ADCP targets dimensions that have prematurely converged
while preserving diversity where it already exists. Extensive experiments on the CEC 2017 test
suite across 30-, 50-, and 100-dimensional settings showed consistent improvements in convergence
speed and final solution quality over the original L-SRTDE and a range of recent DE variants. The
proposed method achieved top average ranks in Friedman analyses, with gains most pronounced in
50-dimensional problems, and introduced no substantive runtime overhead relative to strong baselines.
Sensitivity studies further indicated that ADCP is robust to its hyperparameters, with JR,,,, around 0.2
and k in the 10-30 range providing reliable performance.

Despite these encouraging results, the present study has several limitations. First, the evaluation
focused on unconstrained, single-objective, continuous optimization problems and on dimensions up
to 100. The behavior of ADCP on very high-dimensional problems, constrained or noisy optimization
tasks, or combinatorial search spaces remains to be systematically assessed. Second, ADCP was
studied in depth only within the L-SRTDE framework; although its design is modular, we have not
yet quantified how its benefits transfer to other metaheuristics.

These limitations naturally suggest several directions for future research. One avenue is to integrate
ADCP into other state-of-the-art swarm and evolutionary frameworks that suffer from premature
convergence and to benchmark them on more diverse suites (including large-scale, constrained,
and noisy problems) and higher-dimensional settings. It is also of interest to couple ADCP with
constraint-handling and multiobjective selection strategies and to evaluate its effectiveness on real-
world engineering and machine-learning applications, including finite-dimensional formulations of
impulsive differential systems [45] and other differential or integro-differential models arising in
practice.

Author contributions

Tae Jong Choi: Conceptualization, formal analysis, funding acquisition, investigation,
methodology, resources, software, visualization, writing—original draft; Yeji An: Data curation,
funding acquisition, investigation, project administration, supervision, validation, writing-review &
editing. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2023-00214326). This work was supported by the
Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-

2023S1A5A8079831).

AIMS Mathematics Volume 11, Issue 1, 734-766.

763

Contflict of interest

Authors Tae Jong Choi and Yeji An are spouses. The authors declare that they have no known
competing financial interests or personal relationships that could have appeared to influence the work
reported in this paper.

References

1. R. Storn, K. Price, Differential evolution—-A simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim., 11 (1997), 341-359.
https://doi.org/10.1023/a:1008202821328

2. M. Crepinsek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A
survey, ACM Comput. Surv., 45 (2013), 1-33. https://doi.org/10.1145/2480741.2480752

3. A. E. Eiben, C. A. Schippers, On evolutionary exploration and exploitation, Fund. Inform., 35
(1998), 35-50. https://doi.org/10.3233/fi-1998-35123403

4. K. A. D. Jong, An analysis of the behavior of a class of genetic adaptive systems, PhD Thesis,
University of Michigan, 1975.

5. . J. Choi, C. W. Ahn, An improved LSHADE-RSP algorithm with the
Cauchy perturbation: iLSHADE-RSP, Knowl.-Based Syst., 215 (2021), 106628.
https://doi.org/10.1016/j.knosys.2020.106628

6. Q. Y. Sui, Y. Yu, K Y Wang, L. Zhong, Z. Y. Lei, S. C. Gao, Best-worst
individuals driven multiple-layered differential evolution, Inform. Sciences, 655 (2024), 119889.
https://doi.org/10.1016/].ins.2023.119889

7. J. R. Yang, K. Y. Wang, Y. R. Wang, J. H. Wang, Z. Y. Lei, S. C. Gao, Dynamic population
structures-based differential evolution algorithm, IEEE Transactions on Emerging Topics in
Computational Intelligence, 8 (2024), 2493-2505. https://doi.org/10.1109/tetci.2024.3367809

8. K.Y. Wang, S. C. Gao, M. C. Zhou, Z.-H. Zhan, J. J. Cheng, Fractional order differential evolution,
IEEE T. Evolut. Comput, 29 (2025), 822-835. https://doi.org/10.1109/TEVC.2024.3382047

9. V. Stanovov, E. Semenkin, Success rate-based adaptive differential evolution L-SRTDE for CEC
2024 competition, 2024 IEEE Congress on Evolutionary Computation (CEC), Yokohama, Japan,
2024, 1-8. https://doi.org/10.1109/cec60901.2024.10611907

10. N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, P. N. Suganthan, Problem definitions and evaluation
criteria for the CEC 2017 special session and competition on single objective bound constrained
real-parameter numerical optimization, Technical Report, Singapore: Nanyang Technological
University, 2016, 1-34.

11. T. J. Choi, C. W. Ahn, J. An. An adaptive Cauchy differential evolution algorithm for global
numerical optimization, Sci. World J., 2013 (2013), 969734. https://doi.org/10.1155/2013/969734

12. T. J. Choi, C. W. Ahn, An adaptive population resizing scheme for differential evolution in
numerical optimization, J. Comput. Theor. Nanos., 12 (2015), 1336-1350.

13. T. J. Choi, J. Togelius, Y.-G. Cheong, Advanced Cauchy mutation for differential
evolution in numerical optimization, IEEE Access, 8 (2020, 8720-8734.
https://doi.org/10.1109/access.2020.2964222

AIMS Mathematics Volume 11, Issue 1, 734-766.

https://dx.doi.org/https://doi.org/10.1023/a:1008202821328
https://dx.doi.org/https://doi.org/10.1145/2480741.2480752
https://dx.doi.org/https://doi.org/10.3233/fi-1998-35123403
https://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106628
https://dx.doi.org/https://doi.org/10.1016/j.ins.2023.119889
https://dx.doi.org/https://doi.org/10.1109/tetci.2024.3367809
https://dx.doi.org/https://doi.org/10.1109/TEVC.2024.3382047
https://dx.doi.org/https://doi.org/10.1109/cec60901.2024.10611907
https://dx.doi.org/https://doi.org/10.1155/2013/969734
https://dx.doi.org/https://doi.org/10.1109/access.2020.2964222

764

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

T. J. Choi, J. Togelius, Y.-G. Cheong, A fast and efficient stochastic opposition-based learning
for differential evolution in numerical optimization, Swarm Evol. Comput., 60 (2021), 100768.
https://doi.org/10.1016/j.swevo.2020.100768

T. J. Choi, An efficient eigenvector-based crossover for differential evolution:
Simplifying with rank-one updates, AIMS Mathematics, 10 (2025), 3500-3522.
https://doi.org/10.3934/math.2025162

T. J. Choi, C. W. Ahn, Artificial life based on boids model and evolutionary chaotic

neural networks for creating artworks, Swarm Evol. Comput., 47 (2019), 80-88.
https://doi.org/10.1016/j.swevo.2017.09.003

T. J. Choi, J. Togelius, Self-referential quality diversity through differential MAP-Elites. In:
Proceedings of the Genetic and Evolutionary Computation Conference, New York: Association
for Computing Machinery, 2021, 502-509. https://doi.org/10.1145/3449639.3459383

T.J. Choi, J.-H. Lee, H. Y. Youn, C. W. Ahn, Adaptive differential evolution with elite opposition-
based learning and its application to training artificial neural networks, Fund. Inform., 164 (2019),
227-242. https://doi.org/10.3233/£i-2019-1764

Y. Zhang, D.-W. Gong, X.-Z. Gao, T. Tian, X.-Y. Sun, Binary differential evolution with
self-learning for multi-objective feature selection, Inform. Sciences, 507 (2020), 67-85.
https://doi.org/10.1016/].ins.2019.08.040

S. Das, P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE T. Evolut.
Comput., 15 (2010), 4-31. https://doi.org/10.1109/tevc.2010.2059031

S. Das, S. S. Mullick, P. N. Suganthan, Recent advances in differential evolution—An updated
survey, Swarm Evol. Comput., 27 (2016), 1-30. https://doi.org/10.1016/j.swevo.2016.01.004

X. G. Ye, J. P. Li, P. Wang, P. N. Suganthan, A comprehensive survey of adaptive
strategies in differential evolutionary algorithms, Swarm Evol. Comput., 98 (2025), 10208]1.
https://doi.org/10.1016/j.swevo.2025.102081

M. Ali, M. Pant, Improving the performance of differential evolution algorithm using Cauchy
mutation, Soft Comput., 15 (2011), 991-1007. https://doi.org/10.1007/s00500-010-0655-2

J. Q. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional external archive,
IEEE T. Evolut. Comput., 13 (2009), 945-958. https://doi.org/10.1109/tevc.2009.2014613

R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution,
2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, 71-78.
https://doi.org/10.1109/cec.2013.6557555

R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE using linear population
size reduction, 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014,
1658-1665. https://doi.org/10.1109/cec.2014.6900380

J. Brest, M. S. Maucec, B. Boskovi¢, Single objective real-parameter optimization: Algorithm jSO,
2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 2017, 1311-1318.
https://doi.org/10.1109/cec.2017.7969456

V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE algorithm with rank-based selective pressure
strategy for solving CEC 2017 benchmark problems, 2018 IEEE Congress on Evolutionary
Computation (CEC), Rio de Janeiro, Brazil, 2018, 1-8. https://doi.org/10.1109/cec.2018.8477977

AIMS Mathematics Volume 11, Issue 1, 734-766.

https://dx.doi.org/https://doi.org/10.1016/j.swevo.2020.100768
https://dx.doi.org/https://doi.org/10.3934/math.2025162
https://dx.doi.org/https://doi.org/10.1016/j.swevo.2017.09.003
https://dx.doi.org/https://doi.org/10.1145/3449639.3459383
https://dx.doi.org/https://doi.org/10.3233/fi-2019-1764
https://dx.doi.org/https://doi.org/10.1016/j.ins.2019.08.040
https://dx.doi.org/https://doi.org/10.1109/tevc.2010.2059031
https://dx.doi.org/https://doi.org/10.1016/j.swevo.2016.01.004
https://dx.doi.org/https://doi.org/10.1016/j.swevo.2025.102081
https://dx.doi.org/https://doi.org/10.1007/s00500-010-0655-2
https://dx.doi.org/https://doi.org/10.1109/tevc.2009.2014613
https://dx.doi.org/https://doi.org/10.1109/cec.2013.6557555
https://dx.doi.org/https://doi.org/10.1109/cec.2014.6900380
https://dx.doi.org/https://doi.org/10.1109/cec.2017.7969456
https://dx.doi.org/https://doi.org/10.1109/cec.2018.8477977

765

29. V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-RSP algorithm with adaptive
archive and selective pressure for CEC 2021 numerical optimization, 202/ IEEE
Congress on Evolutionary Computation (CEC), Krakéw, Poland, 2021, 809-816.
https://doi.org/10.1109/cec45853.2021.9504959

30. V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-LBC algorithm with linear
parameter adaptation bias change for CEC 2022 numerical optimization, 2022
IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 2022, 1-8.
https://doi.org/10.1109/cec55065.2022.9870295

31. V. Stanovov, S. Akhmedova, E. Semenkin, Dual-population adaptive differential evolution
algorithm L-NTADE, Mathematics, 10 (2022), 4666. https://doi.org/10.3390/math10244666

32.D. Chauhan, A. Trivedi, Shivani, A multi-operator ensemble LSHADE with restart

and local search mechanisms for single-objective optimization, 2024, arXiv:2409.15994.
https://doi.org/10.48550/arXiv.2409.15994

33. A. Stacey, M. Jancic, I. Grundy, Particle swarm optimization with mutation, The 2003
Congress on Evolutionary Computation (CEC’03), Canberra, ACT, Australia, 2003, 1425-1430.
https://doi.org/10.1109/CEC.2003.1299838

34.T. J. Choi, C. W. Ahn, Accelerating differential evolution using multiple exponential
Cauchy mutation, In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, New York: Association for Computing Machinery, 2018, 207-208.
https://doi.org/10.1145/3205651.3205689

35.7Z. H. Cai, S. C. Gao, X. Yang, M. C. Zhou, Multiselection-based differential evolution,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54 (2024), 7318-7330.
https://doi.org/10.1109/tsmc.2024.3447051

36. S. C. Tao, R. H. Zhao, K. Y. Wang, S. C. Gao, An efficient reconstructed differential evolution
variant by some of the current state-of-the-art strategies for solving single objective bound
constrained problems, 2024, arXiv:2404.16280. https://doi.org/10.48550/arXiv.2404.16280

37.7Z. Li, K. Y. Wang, C. X. Xue, H. T. Li, Y. Todo, Z. Y. Lei, et al., Differential evolution
with ring sub-population architecture for optimization, Knowl.-Based Syst., 305 (2024), 112590.
https://doi.org/10.1016/j.knosys.2024.112590

38.J. T. Y. Yu, K. Y. Wang, Z. Y. Lei, J. J. Cheng, S. C. Gao, Serial multilevel-learned differential
evolution with adaptive guidance of exploration and exploitation, Expert Syst. Appl., 255 (2024),
124646. https://doi.org/10.1016/j.eswa.2024.124646

39. F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, 1 (1945), 80-83.
https://doi.org/10.2307/3001968

40. M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of
variance, J. Am. Stat. Assoc., 32 (1937), 675-701. https://doi.org/10.2307/2279372

41. O. J. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc., 56 (1961), 52-64.
https://doi.org/10.2307/2282330

42. S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Statist., 6 (1979), 65-70.

43. Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance, Biometrika, 75
(1988), 800—802. https://doi.org/10.2307/2336325

AIMS Mathematics Volume 11, Issue 1, 734-766.

https://dx.doi.org/https://doi.org/10.1109/cec45853.2021.9504959
https://dx.doi.org/https://doi.org/10.1109/cec55065.2022.9870295
https://dx.doi.org/https://doi.org/10.3390/math10244666
https://dx.doi.org/https://doi.org/10.48550/arXiv.2409.15994
https://dx.doi.org/https://doi.org/10.1109/CEC.2003.1299838
https://dx.doi.org/https://doi.org/10.1145/3205651.3205689
https://dx.doi.org/https://doi.org/10.1109/tsmc.2024.3447051
https://dx.doi.org/https://doi.org/10.48550/arXiv.2404.16280
https://dx.doi.org/https://doi.org/10.1016/j.knosys.2024.112590
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2024.124646
https://dx.doi.org/https://doi.org/10.2307/3001968
https://dx.doi.org/https://doi.org/10.2307/2279372
https://dx.doi.org/https://doi.org/10.2307/2282330
https://dx.doi.org/https://doi.org/10.2307/2336325

766

44. R. L. Iman, J. M. Davenport, Approximations of the critical region of the friedman statistic,
Commun. Stat.-Theor. M., 9 (1980), 571-595. https://doi.org/10.1080/03610928008827904

45.B. Hu, Y. T. Qiu, W. T. Zhou, L. Y. Zhu, Existence of solution for an impulsive differential
system with improved boundary value conditions, AIMS Mathematics, 8 (2023), 17197-17207.
https://doi.org/10.3934/math.2023878

% AIMS Press

AIMS Mathematics

©2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 11, Issue 1, 734-766.

https://dx.doi.org/https://doi.org/10.1080/03610928008827904
https://dx.doi.org/https://doi.org/10.3934/math.2023878
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Differential evolution
	Analysis of Cauchy distribution

	Literature review
	Success-history–based adaptation in L-SHADE
	Population control and selective pressure in L-SHADE variants
	Dual-population and ensemble L-SHADE extensions
	Success-rate–based parameter control
	Summary

	Proposed algorithm
	Review of Cauchy perturbation
	Adaptive dimension-wise Cauchy perturbation (ADCP)
	Enhanced L-SRTDE with ADCP
	Initialization
	Mutation

	Crossover
	Selection

	Experimental study
	Experimental setup
	Comparison with state-of-the-art DE variants
	Comparison with traditional Cauchy perturbation
	Algorithm complexity
	Analysis of parameter settings
	Sensitivity of JRmax
	Sensitivity of k

	Conclusions

