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1. Introduction

General topology represents the foundational branch of topology concerned with the study of
fundamental set-theoretic principles and methodologies that underpin the discipline. It serves as the
theoretical basis for most other subfields of topology, including algebraic, geometric, and differential
topology. The field attained maturity through the continual development of various classes of
topological spaces, their properties, examples, and interrelationships. As a result, mathematicians
began to explore possible extensions and generalizations of the classical notion of a topological space.
The extension of the standard concept of a topological space is not a recent innovation. Pre-topologies
were first introduced by Choquet [1] in the 1940s. Subsequently, in the 1960s, Levine identified
several families of sets with weaker properties than regular open sets, including α-, semi-, pre-, b-,
and β-open sets; see [2]. During the 1980s, Masshour [3] proposed the concept of supra-topological
spaces. In the decade that followed, Császár [2] was among the first to conduct a systematic analysis
of families closed under arbitrary unions, marking a significant step in the formal development of
topological generalizations. This line of inquiry attracted considerable attention from researchers
worldwide and has experienced substantial growth over the past two decades. Contemporary studies
have introduced a variety of generalized structures, including weak structures, peri-topologies,
minimal structures, reduced topologies, and generalized weak structures. As reported in [4], the latter
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can be characterized simply as an arbitrary family of subsets. Foundational topological concepts such
as continuity, convergence, filtering, density, compactness, connectedness, and even topological
groups have been reformulated within these generalized frameworks, thereby extending the
applicability and scope of classical topology. The notion of infra-topological spaces was first
introduced and formalized by Al-Odhari [5]. Subsequently, Al-Shami et al. [6] developed the
concepts of continuity and separation axioms within this framework. Furthermore, Al-Shami et al. [7]
employed fixed-point theorems to establish new notions of connectedness and covering properties in
the context of infra-topologies. Reference [8] addresses the concept of fixed soft points within the
framework of infra soft topological spaces and presents the fundamental properties of this concept. It
also examines the transfer of fixed soft points between infra soft topology and classical infra topology
in both directions. This work aims to pave the way for further studies in the field of fixed point theory.

In a later contribution, Al-Shami et al. [9] utilized infra-topological structures to define novel
approximation operators and address specific problems arising in medical applications. Collectively,
these studies highlight the significance of topological generalizations in modeling and interpreting
various real-world phenomena. They have also paved the way for continued research in this evolving
field. Subsequent contributions by other authors have further expanded this area of study (see, for
example, [10–13]). Notably, authors in [14] also adopted the term “infra-topology” in their
investigations, underscoring its growing relevance in contemporary topological research.

Husain [15] introduced the concept of infra-topological spaces with respect to a subset U of a
universe X. Building upon this foundational idea, the present study investigates the relationships
among various types of near-infra open sets within infra-topological spaces. By exploring these
interconnections, we aim to deepen the understanding of the structural behavior of such sets and their
implications for the broader theory of generalized topologies.

In this paper, we introduce a new structural concept in topology, namely co-infra-open sets and
co-infra-closed sets. The proposed framework employs the class of co-infra-open sets within an
infra-topological space to define an associated topological structure. This construction provides a new
approach to studying generalized topologies through the lens of infra-topological systems.

Infra-topology itself represents one of the weak structural frameworks that can be further extended
and interpreted in various mathematical contexts. It has meaningful connections with simplicial
complexes [16] and matroids associated with rough set theory [17]. Moreover, a new form of
betweenness relation can be derived within this framework [18], and its concepts can also be
effectively applied in nano-topology [19–22]. Over the past two decades, research on generalizations
of topology has significantly expanded, with potential applications in computer science and related
fields. These generalized structures incorporate concepts analogous to continuity, connectedness,
Lindelöfness and compactness. This manuscript is prepared to contribute to this ongoing line of
research.

2. Preliminaries

This section collects the definitions, properties, and results that will be used throughout the paper.

Definition 1. [15] The structure (X,F) constitutes an infra-topological space (abbreviated as ITS) if:

(1) X, ∅ ∈ F.
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(2) IfH1 andH2 are members of F, thenH1 ∩H2 ∈ F.

IfH ∈ F, we say that a setH is infra-open, whereas its complementH c is referred to as infra-closed.

From the definition, every topological space is an ITS. The converse implication does not generally
apply, as evidenced by the following example:

Example 2. Let X = R; where R denotes the collection of all real numbers. Define

F = {R, ∅} ∪ {{x} | x ∈ R}.

Then, (R,F) is an ITS but it doesn’t form a topological space on R.

Definition 3. [6] Let (X,F) be an ITS and let S ⊆ X. We define the infra-interior of S, which is
denoted by iInt(S), and infra-closure of S, denoted by iCl(S), as follows:

(1) iInt(S) =
⋃
{H : H ∈ F, H ⊆ S}.

(2) iCl(S) =
⋂
{F : F is an infra-closed set, S ⊆ F}.

Proposition 4. [6] Let (X,F) be an ITS and let L,S be any subsets of X. Hence, the following
properties are valid:

(1) iInt(X) = X;
(2) If L ∈ F, then iInt(L) = L;
(3) If S is an infra-closed set, then iCl(S) = S;
(4) l ∈ iInt(L) iff there existsH ∈ F such that l ∈ H ⊆ L;
(5) s ∈ iCl(S) iff for eachH ∈ F such that s ∈ H ,H ∩ S , ∅;
(6) iInt(X −H) = X − iCl(H);
(7) iCl(X − S) = X − iInt(S);
(8) iInt(H) ⊆ H ⊆ iCl(H);
(9) IfH ⊆ S, then iInt(H) ⊆ iInt(S);

(10) iInt(iInt(H)) = iInt(H);
(11) iInt(H ∩ S) = iInt(H) ∩ iInt(S);
(12) iCl(∅) = ∅;
(13) IfH ⊆ S, then iCl(H) ⊆ iCl(S);
(14) iCl(iCl(H)) = iCl(H);
(15) iCl(H ∪ S) = iCl(H) ∪ iCl(S).

Definition 5. [6] Let (X,F) and (Y,G) be two ITSs and let g: (X,F) → (Y,G) be a function. Then, g
is called:

(1) Infra-continuous function if for everyH ∈ G we get g−1(H) ∈ F.
(2) Infra-open function if for everyH ∈ F we get g(H) ∈ G.
(3) Infra-closed function if for every infra-closed set S ⊆ X we get that g(S) ⊆ Y is an infra-closed

set in (Y,G).
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Definition 6. [7] Let (X,F) be an ITS. Then,

(1) A collection {Vβ ⊆ X : β ∈ ∆} is an infra-open cover of X if

X =
⋃
β∈∆

Vβ,

and Vβ ∈ F for each β ∈ ∆.
(2) X is called an infra-Lindelöf if every infra-open cover of X has a countable subcover.
(3) A set H ⊆ X is said to be an infra-Lindelöf subspace of F if every infra-open cover of H has a

countable subcover.

3. Co-infra-topological spaces

In this section, we present a new topological structure derived from co-infra-open sets in an infra-
topological space (ITS).

Definition 7. Let (X,F) be an ITS. A subset Y ⊆ X is called co-infra-open if for each y ∈ Y, there
is an infra-open set Hy where y ∈ Hy and Hy − Y is a countable set. Moreover, X − Y is called
co-infra-closed set. We will denote the collection of all co-infra-open sets in (X,F) by F∗.

Remark 8. Observe that every infra-open set is a co-infra-open set. To show that, let (X,F) be an ITS
and letH ∈ F. Then, for every x ∈ H , pick

Hx = H .

The converse of Remark 8 is not, in general, valid, as illustrated by the following example:

Example 9. Consider the usual (Euclidean) topological space U on the set of the real numbers R.
Then, (R,U) is an ITS on R. The set of all irrational numbers I is a co-infra-open set but it is not an
infra-open set.

We conclude that in an ITS, any set that has a countable complement is a co-infra-open set.

Lemma 10. Let (X,F) be ITS. A subset Y ⊆ X is a co-infra-open set if and only if for each x ∈ Y,
there is a countable subset Cx ⊆ X and an infra-open set Ux where x ∈ Ux such that

Ux −Cx ⊆ Y.

Proof. Let Y be a co-infra-open set and let x ∈ Y. For each point x, there exists an infra-open set Ux

containing x where the difference Ux − Y is at most countable. Suppose

Cx = Ux − Y = Ux ∩ (X − Y).

Then,
Ux −Cx ⊆ Y.

Conversely, let x ∈ Y. Then, there is a countable subset Cx and an infra-open set Ux for which x ∈ Ux

and
Ux −Cx ⊆ Y.
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Therefore,
Ux − Y ⊆ Cx,

which implies that Ux − Y is a countable set; hence, Y is a co-infra-open set. □

Lemma 11. Let (X,F) be an ITS and let A ⊆ X. If A is a co-infra-closed set, then

A ⊆ H ∪ V,

such that V ⊆ X is a countable set and H ⊆ X is an infra-closed set.

Proof. Let A be a co-infra-closed set. Then, X − A is a co-infra-open set which yields that for each
x ∈ X − A, there is a countable set V and an infra-open set U such that x ∈ U and

U − V ⊆ X − A.

Thus,
A ⊆ X − (U − V) = X − (U ∩ (X − V)) = (X − U) ∪ V.

Let
H = X − U;

hence, H is an infra-closed set and
A ⊆ H ∪ V.

This completes the proof. □

Lemma 12. Let (X,F) be an ITS. Then,
[F∗]∗ = F∗.

Proof. Since every infra-open set is a co-infra-open set, then we have F∗ ⊆ [F∗]∗. Let A ∈ [F∗]∗. By
Lemma 10, for each x ∈ A, there is a countable set Cx and Ux ∈ F

∗ for which x ∈ Ux and

Ux −Cx ⊆ A.

Furthermore, by Lemma 10, there is a countable set Dx and Vx ∈ F for which x ∈ Vx and

Vx − Dx ⊆ Ux.

Hence, we have
Vx − (Dx ∪Cx) = (Vx − Dx) −Cx ⊆ Ux −Cx ⊆ A.

Since Dx ∪Cx is a countable set, we obtain that A ∈ F∗; hence,

[F∗]∗ = F∗.

This completes the proof. □

The example below illustrates that a co-infra topological space is not equivalent to its corresponding
ITS.
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Example 13. Consider
X = R,

where R the collection of real numbers. Define F as follows:

F = {∅,H : H ⊆ R and
√

2 ∈ H}.

Then, (R,F) is an ITS. We can find the corresponding co-infra topological space F∗ on R as follows:
Let S ⊆ R be a nonempty set. Let s ∈ S .We have two cases:

• Case 1. s =
√

2. Then, pick {
√

2} ∈ F and {
√

2} − S = ∅ is countable.
• Case 2. s ,

√
2. Then, pick {

√
2, s} ∈ F and {

√
2, s} − S is countable.

Hence, for all S ⊆ R, we have S ∈ F∗ and thus, F∗ is the discrete topology.

Proposition 14. Let (X,F) be an ITS. If K ,H ⊆ X are both co-infra-open sets, then K ∩ H is a
co-infra-open set.

Proof. Let K and H be co-infra-open sets in X and x ∈ K ∩ H . Since K is a co-infra-open set,
there is an infra-open set VK for which x ∈ VK and VK − K is a countable set. Moreover, sinceH is a
co-infra-open set, then there exists an infra-open set VH where x ∈ VH and VH −H is a countable set.
Now, we have VK ∩ VH is an infra-open set where x ∈ VK ∩ UH ,

(VK ∩ VH ) − (K ∩H) = (VK ∩ VH ) ∩ [(X − K) ∪ (X −H)]
= [VK ∩ VH ∩ (X − K)] ∪ [VK ∩ VH ∩ (X −H)]
⊆ (VK ∩ (X − K)) ∪ (VH ∩ (X −H)).

Since
(VK ∩ (X − K)) ∪ (VH ∩ (X −H)) = [VK − K] ∪ [VH −H]

is a countable set, then (VK ∩ VH ) − (K ∩ H) is a countable set. This demonstrates that K ∩ H is a
co-infra-open set. □

The previous result can be generalized as follows: The finite intersection of co-infra-open sets is a
co-infra-open set.

Proposition 15. Let (X,F) be an ITS. The union of co-infra-open sets is a co-infra-open set.

Proof. Let {Hα : α ∈ ∆} be any family of co-infra-open sets in (X,F) and let

x ∈
⋃
α∈∆

Hα.

Then, there exists β ∈ ∆ such that x ∈ Hβ which implies that there is an infra-open set V such that
x ∈ V and V −Hβ is a countable set. Since

V −

⋃
α∈∆

Hα

 ⊆ V −Hβ;

thus, V −

⋃
α∈∆

Hα

 is a countable set. Therefore,
⋃
α∈∆

Hα is a co-infra-open set. □
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Corollary 16. Let (X,F) be an ITS. Then, F∗ forms a topological space on X.

Remark 17. If X is a countable set, then F∗ is equivalent to the discrete topological space on X.

Example 18. Let X = R, where R represents the collection of all real numbers. Define F as follows:

F = {∅,H : H ⊆ R and R −H is finite}.

Then, (R,F) is an ITS. We can define F∗ on R as follows:

F∗ = {∅} ∪ {H : H ⊆ R and R −H is countable}.

Example 19. Let
X = R,

where R denotes the collection of all real numbers. Define F as follows:

F = {∅, R} ∪ {H :
√

2 ∈ H ,
√

3 < H and H ⊆ R}.

Then, (R,F) is an ITS. Let S ⊆ R be any nonempty set. Then, we have two cases:

Case 1.
√

3 ∈ S. Then, the only infra-open set that contains
√

3 is R. Then, S is a co-infra-open set if
and only if it has a countable complement.

Case 2.
√

3 < S. Then, S is a co-infra-open set. Indeed, let s ∈ S. Then, we have two cases:
(a) s =

√
2. LetH = {

√
2} ∈ F. Then,H − S is a countable set.

(b) s ,
√

2. LetH = {
√

2, s} ∈ F. Then,H − S is a countable set.

Hence,
F∗ = {S : such that either R − S is countable or

√
3 < S}.

Now, we are going to show that F∗ is a topology on R.

(1) • R − R = ∅ is a countable set which implies that R ∈ F∗.
•
√

3 < ∅ which implies that ∅ ∈ F∗.
(2) Let U,V ∈ F∗ we have two cases:

• Case 1. Suppose that R − U and R − V are both countable. Then,

R − (U ∩ V) = (R − U) ∪ (R − V),

is a countable set which yields that U ∩ V ∈ F∗.
• Case 2. Suppose that

√
3 < U or

√
3 < V . Then,

√
3 < U ∩ V . Hence, U ∩ V ∈ F∗.

(3) Let Uα ∈ F∗ for all α ∈ Λ. Then, we have two cases:

• Case 1. There exists β ∈ Λ such that R − Uβ is countable. Hence,

R −

⋃
α∈Λ

Uα

 =⋂
α∈Λ

(R − Uα) ⊆ R − Uβ,

which is countable; thus, R − (∪α∈ΛUα) is countable. Then,⋃
α∈Λ

Uα ∈ F∗.
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• Case 2. Suppose that
√

3 < Uα for all α ∈ Λ. Then,
√

3 <
⋃
α∈Λ

Uα,

which implies that ⋃
α∈Λ

Uα ∈ F∗.

Hence, F∗ is form a topology on R.

Example 20. Let (R,F) be defined as in Example 2. Let H ⊆ R be a nonempty set and let h ∈ H .
Hence, {h} ∈ τ and

{h} − H = ∅.

Then,H ∈ F∗ if and only ifH ⊆ R which yields that F∗ is equivalent to the discrete topological space
defined on R.

Definition 21. Let (X,F) be an ITS and let S ⊆ X. We define the co-infra-interior of S, denoted by
icInt(S), and denote the co-infra closure of S by icCl(S), as follows:

(1) icInt(S) =
⋃
{H : H ∈ Fc, H ⊆ S}.

(2) icCl(S) =
⋂
{F : F is a co-infra-closed set , S ⊆ F}.

Proposition 22. Let (X,F) be an ITS. LetH be any subset of X. Then,

(1) H ∈ F∗ if and only if icInt(H) = H ;
(2) H is a co-infra-closed set if and only if icCl(H) = H ;
(3) h ∈ icInt(H) if and only if there exists Y ∈ F∗ such that h ∈ Y ⊆ H ;
(4) h ∈ icCl(H) if and only ifH ∩Y , ∅ for each Y ∈ F∗ with h ∈ Y;
(5) icInt(X −H) = X − icCl(H);
(6) icCl(X −H) = X − icInt(H).

Proposition 23. Let (X,F) be an ITS. LetH , S be any subsets of X. Then,

(1) icInt(X) = X;
(2) iInt(H) ⊆ icInt(H) ⊆ H ⊆ icCl(H) ⊆ iCl(H);
(3) IfH ⊆ S, then icInt(H) ⊆ icInt(S);
(4) icInt(icInt(H)) = icInt(H);
(5) icInt(H ∩ S) = icInt(H) ∩ icInt(S);
(6) icInt(∅) = ∅;
(7) IfH ⊆ S, then icCl(H) ⊆ icCl(S);
(8) icCl(icCl(H)) = icCl(H);
(9) icCl(H ∪ S) = icCl(H) ∪ icCl(S).

Proof. It follows immediately from Definition 21. □
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Theorem 24. Let (X,F) be an ITS such that all non-empty infra-open sets are uncountable. Then,

iCl(H) = icCl(H),

for allH ∈ F.

Proof. We know that
icCl(H) ⊆ iCl(H)

from Proposition 23. Conversely, let h ∈ iCl(H) and let K be a co-infra-open set where h ∈ K . By
Lemma 10, there is a countable set C and an infra-open set A such that h ∈ A and

A −C ⊆ K .

Thus,
(A −C) ∩H ⊆ K ∩H ,

which implies that
(A ∩H) −C ⊆ K ∩H .

Since h ∈ A and h ∈ iCl(H), then
A ∩H , ∅,

and A ∩ H is an infra-open set since A and H are both infra-open sets. According to the hypothesis
that all non-empty infra-open sets are uncountable; hence, (A ∩ H) − C is an uncountable set which
implies that

K ∩H , ∅;

hence, h ∈ icCl(H). Therefore,
iCl(H) = icCl(H).

This completes the proof. □

Corollary 25. Let (X,F) be an ITS such that every non-empty infra-open set is uncountable. Then,

iInt(H) = icInt(H),

for eachH ∈ F.

Definition 26. Let (X,F) and (Y,G) be two ITSs. A function g: (X,F) → (Y,G) is called a co-infra-
continuous function if for every k ∈ X and for every infra-open set H ⊆ Y for which g(k) ∈ H , there
is a co-infra-open set S ⊆ X where k ∈ S and g(S) ⊆ H .

Lemma 27. Let (X,F) and (Y,G) be two ITSs and let g: (X,F)→ (Y,G) be a function. It follows that
the following statements are equal in meaning:

(1) g: (X,F)→ (Y,G) is a co-infra-continuous function.
(2) g: (X,F∗)→ (Y,G) is an infra-continuous function.
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Proof. Let g: (X,F)→ (Y,G) be a co-infra-continuous function and let

S ∈ G ⊆ G∗.

Then, g−1(S) ∈ F∗ since every infra-open set is a co-infra-open set. Conversely, let g: (X,F∗)→ (Y,G)
be an infra-continuous function. Assume that s ∈ X and S ∈ G for which g(s) ∈ S. Hence,

s ∈ g−1(S) ∈ F∗,

as g is an infra-continuous and
g(g−1(S)) ⊆ S.

This completes the proof. □

Definition 28. Let (X,F) and (Y,G) be two ITSs. A function g: (X,F) → (Y,G) is called a co-infra-
closed function if for every co-infra-closed set S ⊆ X, g(S) is a co-infra-closed set.

Lemma 29. Let (X,F) and (Y,G) be two ITSs and let g: (X,F) → (Y,G) be a function. We conclude
that the following properties are equivalent:

(1) g is a co-infra-closed function.
(2) g : (X,F)→ (Y,Gc) is an infra-closed function.

Theorem 30. If g: (X,F) → (Y,G) is an infra-open function, then the image of a co-infra-open set of
X is a co-infra-open set in Y.

Proof. LetH ∈ Fc be a nonempty set and let h ∈ H . Then, there exists an infra-open set K ⊆ X where
h ∈ K and

K −H = C

is a countable set. Hence,
g(K) − g(H) ⊆ g(K −H) = g(C)

is a countable set and g(K) is an infra-open set since g is an infra-open function. Thus, g(H) is a
co-infra-open set. □

Theorem 31. If g: (X,F) → (Y,G) is a one to one infra-continuous function, then the inverse image
of a co-infra open set in Y is a co-infra open set in X.

Proof. Let S ∈ Gc be a co-infra-open set for which g−1(S ) , ∅. Let s ∈ g−1(S). Then, g(s) ∈ S which
implies that there is an infra-open setH where s ∈ H and

H − S = C

is a countable set. Thus,
g−1(H) − g−1(S) ⊆ g−1(H − S) = g−1(C)

is a countable set because g is one to one and g−1(H) is an infra-open set since g is an infra-continuous
function. Then, g−1(S) is a co-infra open set. □
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4. Infra-Lindelöf spaces

This section is dedicated to presenting the concept of infra-Lindelöf spaces, providing a new
characterization, and examining some of their fundamental properties.

Theorem 32. Let (X,F) be an ITS and let H ⊆ X. Then, H is an infra-Lindelöf subspace of F if and
only ifH is an infra-Lindelöf subspace of F∗.

Proof. Let us assume that
∅ , H ⊆ X

is an infra-Lindelöf subspace of F. Let {Aβ : β ∈ Λ} be a cover of H where Aβ ∈ F∗ for each β ∈ Λ.
Let x ∈ H which implies that there exists β(x) ∈ Λ for which x ∈ Aβ(x). SinceAβ(x) is a co-infra-open
set, there exists an infra-open set Bβ(x) ∈ F where x ∈ Bβ(x) and Bβ(x) − Aβ(x) is a countable set. Now,
the collection {Bβ(x) | x ∈ H} is a cover ofH by infra-open sets in X; hence, there is a countable subset,
say β(x1), β(x2), · · · β(xn), · · · , such that

H ⊆
⋃
i∈N

Bβ(xi).

Thus, we have

H ⊆
⋃
i∈N

[
(Bβ(xi) −Aβ(xi))

⋃
Aβ(xi)

]
=

⋃
i∈N

(Bβ(xi) −Aβ(xi))

⋃⋃
i∈N

Aβ(xi)

 .
Hence,

H ⊆

⋃
i∈N

(Bβ(xi) −Aβ(xi))
⋂
H

⋃⋃
i∈N

Aβ(xi)

 .
For each β(xi),

(Bβ(xi) −Aβ(xi)) ∩H

is a countable set; then, there exists a countable subset

Λβ(xi) ⊆ Λ,

for which
[Bβ(xi) −Aβ(xi)] ∩H ⊆

⋃
β∈Λβ(xi)

Aβ.

Therefore, we have

H ⊆

⋃
i∈N

 ⋃
β∈Λβ(xi)

Aβ


⋃
⋃

i∈N

Aβ(xi)

 .
Hence,H is an infra-Lindelöf subspace of F∗.

Let H be an infra-Lindelöf relative to Fc. Since every infra-open set is a co-infra open set, then H
is an infra-Lindelöf subspace of F. □

Corollary 33. Let (X,F) be an ITS. Then, (X,F) is an infra-Lindelöf space if and only if (X,F∗) is an
infra-Lindelöf space.
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Theorem 34. Let g: (X,F) → (Y,G) be a co-infra-continuous mapping. If (X,F) is an infra-Lindelöf
space, then the image space (Y,G) inherits the infra-Lindelöf property; that is, Y is infra-Lindelöf.

Proof. Let {Aα : α ∈ Λ} be an infra-open cover of Y. Then, {g−1(Aα) : α ∈ Λ} is a co-infra-open cover
of X. Since (X,F) is an infra-Lindelöf space, then (X,F∗) is an infra-Lindelöf space by Corollary 33.
Therefore,

X ⊆
∞⋃

i=1

g−1(Aαi),

which implies that

Y = g(X) ⊆ g

 ∞⋃
i=1

g−1(Aαi)

 ⊆ ∞⋃
i=1

Aαi.

Then, {Aαi}
∞
i=1 is a countable subcover of Y. Hence, (Y,G) is an infra-Lindelöf space.

This completes the proof. □

Theorem 35. Let (X,F) be an ITS and let H ,K ⊆ X. If H is an infra-Lindelöf and K is a co-infra-
closed set, thenH ∩K is an infra-Lindelöf subspace of X.

Proof. Let {Aα : α ∈ Λ} be an infra-open cover of H ∩ K . Let x ∈ H − K . Then, x ∈ X − K which
implies that there exists an infra-open set Bx for which x ∈ Bx and Bx− (X−K) is a countable set since
K is a co-infra-closed set. Hence,

W = {Aα : α ∈ Λ}
⋃
{Bx : x ∈ H − K}

is an infra-open cover ofH . Thus,

H ⊆

⋃
i∈N

Aαi

⋃⋃
i∈N

Bxi

 ,
which is a countable subcover ofW sinceH is an infra-Lindelöf subspace of X. Therefore,

H ∩K ⊆

⋃
i∈N

Aαi

⋃⋃
i∈N

(Bxi ∩ K)

 .
Since ⋃

i∈N

(Bxi ∩ K)

is a countable set, then for each
x j ∈ ∪(Bx j ∩ K),

pickAα(x j) ∈ W such that x j ∈ Aα(x j) and j ∈ N. Then,

H ∩K ⊆

⋃
i∈N

Aαi

⋃
⋃

j∈N

Aα(x j)

 .
Hence,H ∩K is an infra-Lindelöf subspace of X. □
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Corollary 36. If (X,F) is an infra-Lindelöf space and H ⊆ X is a co-infra-closed set, then H is an
infra-Lindelöf subspace.

Corollary 37. Let (X,F) be an infra-Lindelöf space and H ⊆ X is an infra-closed set, then H is an
infra-Lindelöf subspace.

Corollary 38. Let (X,F) be an ITS. From this, we see that the following properties are equivalent:

(1) (X,F) is an infra-Lindelöf space.
(2) Every proper co-infra closed subset of X is an infra-Lindelöf subspace.
(3) Every proper infra closed subset of X is an infra-Lindelöf subspace.

Proof. (1) ⇒ (2): By Corollary 36, we know that every co-infra-closed subset of an infra-Lindelöf
space is an infra-Lindelöf subspace.

(2)⇒ (3): Since F ⊆ F∗, the proof is obvious.
(3)⇒ (1): Let {Aβ ⊆ X : β ∈ Λ} be a family of infra-open sets such that

X =
⋃
β∈Λ

Aβ.

Let β∗ ∈ Λ where X − Aβ∗ is a proper subset of X. Hence, {Aβ : β ∈ Λ − {β∗}} is an infra-open cover
of X −Aβ∗ . Since X −Aβ∗ is an infra-closed set, then there is a countable subset Λ0 ⊆ Λ for which

X −Aβ∗ ⊆
⋃
β∈Λ0

Aβ.

Hence,
X =

⋃
β∈Λ0∪{β∗}

Aβ,

which implies that (X,F) is an infra-Lindelöf space. □

The following example illustrates that an infra-closed subspace of a non infra-Lindelöf space may
not be an infra-Lindelöf subspace.

Example 39. Let F be defined on R as in Example 2. Then, {{x} | x ∈ R} is an infra-open cover that
has no countable subcover. Hence, (R,F) is not infra-Lindelöf space. Let S be a nonempty proper
infra-closed subspace. Then,

S = R − {s},

for some s ∈ R. Hence, {{x} | x ∈ R − {s}} is an infra-open cover of S that has no countable subcover
which implies that S is not an infra-Lindelöf subspace.

Theorem 40. If g: (X,F) → (Y,G) is a co-infra-continuous function and H ⊆ X is an infra-Lindelöf
subspace of X, then g(H) ⊆ G is an infra-Lindelöf subspace of G.

Proof. Let {Aβ : β ∈ Λ} be an infra-open cover of g(H). Then, {g−1(Aβ) : β ∈ Λ} is a co-infra-open
cover ofH . SinceH is an infra-Lindelöf subspace of (X,Fc) by Theorem 32, then there is a countable
subset Λ0 ⊆ Λ for which

H ⊆
⋃
β∈Λ0

g−1(Aβ).
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Therefore,
g(H) ⊆

⋃
β∈Λ0

Aβ.

Hence, g(H) is an infra-Lindelöf subspace of G. □

Corollary 41. If g: (X,F)→ (Y,G) is a surjective co-infra-continuous function and (X,F) is an infra-
Lindelöf space, then (Y,G) is an infra-Lindelöf space.

Corollary 42. If g: (X,F) → (Y,G) is a surjective infra-continuous function and (X,F) is an infra-
Lindelöf space, then (Y,G) is an infra-Lindelöf space.

Definition 43. Let (X,F) be an ITS. Then, the family F has property B if, for every countable collection
of elements in F, their union remains an element of F.

Theorem 44. Let g: (X,F)→ (Y,G) be a co-infra-closed function such that g−1(b) is an infra-Lindelöf
subspace of F for each b ∈ Y. Suppose that F satisfies the property B. IfH is an infra-Lindelöf subspace
of G, then g−1(H) is an infra-Lindelöf subspace of F.

Proof. Let {Aβ : β ∈ Λ} be an infra-open cover of g−1(H) and let b ∈ H . Since g−1(b) is an infra-
Lindelöf subspace of F, there is a countable set Λ1(b) ⊆ Λ for which

g−1(b) ⊆
⋃
β∈Λ1(b)

Aβ.

Let
A(b) =

⋃
β∈Λ1(b)

Aβ.

Then, since g is a co-infra closed function, there is a co-infra open set B(b) ⊆ Y and b ∈ B(b), where

g−1(B(b)) ⊆ A(b).

Since B(b) is a co-infra-open set, there is an infra-open-set C(b) such that b ∈ C(b) and C(b) − B(b) is
a countable set. Thus,

C(b) ⊆ (C(b) − B(b)) ∪ B(b);

hence,

g−1(C(b)) ⊆ g−1(C(b) − B(b)) ∪ g−1(B(b)) ⊆ g−1(C(b) − B(b)) ∪ A(b).

Since g−1(b) is an infra-Lindelöf subspace of F for every b ∈ Y and C(b) − B(b) is a countable set,
then there is a countable set Λ2(b) ⊆ Λ such that:

g−1[(C(b) − B(b)) ∩H] ⊆
⋃
β∈Λ2(b)Aβ.

Hence,

g−1(C(b) ∩H) ⊆
⋃
β∈Λ2(b)Aβ ∪ (A(b)).
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Since {C(b) : b ∈ H} is an infra-open coverH andH is an infra-Lindelöf subspace of G, then

H ⊆
⋃
i∈N

C(bi).

Therefore, we get

g−1(H) ⊆
⋃
i∈N

g−1(C(bi) ∩H)

⊆
⋃
i∈N


 ⋃
β∈Λ2(bi)

Aβ

⋃
 ⋃
β∈Λ1(bi)

Aβ




=
⋃
i∈N

 ⋃
β∈Λ1(bi)∪Λ2(bi)

Aβ

 .
Then, g−1(H) is an infra-Lindelöf subspace of F. □

Corollary 45. Let g: (X,F)→ (Y,G) be a co-infra-closed function and let g−1(b) be an infra-Lindelöf
subspace of F for every b ∈ Y. Suppose that F satisfies the property B. If (Y,G) is an infra-Lindelöf
space, then (X,F) is an infra-Lindelöf space .

Corollary 46. Let g: (X,F)→ (Y,G) be a surjective co-infra-continuous and co-infra-closed function
such that g−1(b) is an infra-Lindelöf subspace of F for every b ∈ Y. Suppose that F satisfies the property
B. If (X,F) is an infra-Lindelöf space, then (Y,G) is an infra-Lindelöf space.

5. Conclusions

In this work, we have explored the concept of co-infra topological spaces, providing a systematic
treatment of co-infra open and co-infra-closed sets and showing that their collection forms a
topological space. Through this approach, we established a bridge between infra-topological and
co-infra-topological spaces and demonstrated several classical properties. We proved that an ITS is an
infra-Lindelöf if and only if its corresponding co-infra-topology is infra-Lindelöf. Furthermore, we
examined the behavior of co-infra-continuous and co-infra-closed functions and showed that they
maintain the infra-Lindelöf property under suitable assumptions. The study thus provides a deeper
insight into the structural harmony between infra and co-infra systems, enriching the theory of
generalized topologies and paving the way for potential applications in mathematical modeling and
abstract analysis. In forthcoming papers, we intend to employ infra-open sets to formally define the
notion of infra-paracompact spaces and to investigate the properties of functional separation axioms,
including infra-second countability.
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