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1. Introduction

The mathematical modeling of complex physical processes often leads to nonlinear dynamical
systems (NDSs) [1], which are found in various areas such as mechanical systems, biological systems,
control systems [2, 3], shallow water wave models [4, 5], and multi-agent systems [6]. Among these, a
vital class of hybrid systems is made up of switched systems, which include several subsystems and a
governing law for switching between them [7]. For decades, the stability problem of switched systems,
which refers to their ability to return to a normal state when an external disturbance ceases, has garnered
considerable attention [8, 9]. In particular, numerous results on the stability of switched nonlinear
systems (SNSs) have been widely investigated [10–12]. Furthermore, there exists a considerable body
of literature on stability of stochastic (switched) systems which are in the form of linear systems [13,14]
and nonlinear systems [15, 16].

There exists a special class of positive systems whose initial states and long-term state trajectories
always remain nonnegative; these are called switched positive systems (SPSs). Examples of SPSs
applications can be found extensively, such as in nonnegative dynamics of biochemical reaction
networks [17], wireless power control [18], water-quality model [19], consensus of multi-agent
systems [20], and delayed neural networks (DNNs) model [21]. It is worth noting that the
aforementioned works analyze both the switching techniques and the types of subsystems. A common
strategy used to study switching signals involves time-dependent switching techniques, such as dwell
time (DT) and mode-dependent dwell time (MDDT) methods. There are three major conceptual
frameworks for analyzing the stability of SPSs based on the specific characteristics of their subsystems.
First is the stability analysis of SPSs when all subsystems are stable; most of the research in this field
is aimed at solving this problem [22–24]. Second is when partial subsystems are unstable [25–27].
Third, a challenging problem that arises in this domain is how all unstable subsystems (AUSs) interact
and whether the entire switched system can control its trajectory behavior to remain stable over a
long period. This problem has received substantial interest and serves as the initial inspiration for
this research. As mentioned in [28], a practical example of a switching system consisting entirely of
unstable subsystems that work together to achieve overall stability is a highly maneuverable aircraft
technology flight control system. The aircraft’s natural aerodynamic subsystems are all unstable due to
it being designed for high agility. The stability of the aircraft is achieved through a fast-acting, switched
flight control system by employing techniques like state-dependent or DT switching. By carefully
designing the switching strategy, the overall aircraft system remains stable and controllable, allowing
the pilot to safely fly. However, without active control, they would quickly become uncontrollable and
crash. Moreover, in real-world systems, unavoidable time delays often occur, which can cause poor
system performance and instability [29, 30]. In practice, the existence of uncertainties that may arise
from modeling errors, external perturbations, and parameter fluctuations can also directly affect the
system and cause instability [31–33]. Thus, it is necessary and meaningful to further investigate the
robust stability of SPSs with delays and uncertainties, which further motivates our research. With these
inspirations, we have therefore investigated the global robust stability (GRS) and global asymptotic
stability (GAS) for SPSs, including delays, uncertainties, and AUSs. Related research articles will be
briefly reviewed below.

For linear switched systems with AUSs, Feng et al. [34] utilized the MDDT switching approach
to examine both GRS and GAS of linear SPSs with interval uncertainties, but the existence of time-
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delay was not considered. Meanwhile, Liu et al. [35] showed that the DT switching law was applied
to stabilize linear SPSs with time-varying delay. The problem of GRS for linear SPSs with time-
varying delay and interval uncertainties was studied by employing the MDDT switching technique in
the context of continuous-time systems [36] and discrete-time systems [37]. Recently, Zhang et al. [38]
derived stability conditions of linear SPSs with delays using the DT switching scheme. However, the
linear SPSs studied in [35, 38] did not take into account interval uncertainties or the MDDT switching
rule. More recently, Zhang et al. [39] established sufficient conditions for stability and L1-gain analysis
of time-varying linear impulsive SPSs by employing interval DT and mode-dependent interval DT
switching laws. It is essential to highlight that NDSs are often considered more applicable and general
than linear systems. Therefore, the issue of stability analysis for SNSs has received much attention,
and its literature review is summarized as follows. In [40], the stabilization for SNSs with AUSs
using DT switching was addressed, but this result did not study time-delay or interval uncertainties.
Adequacy criteria to guarantee exponential stability of nonlinear SPSs with time-delays and partially
unstable subsystems for continuous-time systems [21] and discrete-time systems [27] were obtained.
As far as we know, no previous research has analyzed the GRS and GAS for nonlinear SPSs containing
time-varying delays and interval uncertainties where all subsystems are allowed to be unstable.

For this study, it was of interest to investigate the stability analysis of SNSs with time-varying delay
as below ẋ(t) = Aσ(t)g(x(t)) + Bσ(t)g(x(t − β(t))) + Cσ(t)x(t), t ≥ 0,

x(t) = ψ(t), t ∈ [−β, 0],
(1.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn, and g(x(t)) = (g1(x1(t)), g2(x2(t)), ..., gn(xn(t)))T ∈ Rn are the
system state, and nonlinear function, respectively. σ(t) is a piecewise constant function defining the
switching signal, σ(t) : [0,+∞) → N = {1, 2, ...,N}, where N stands for the number of subsystems
or modes of the switched system and N > 1. Also, it is assumed to be continuous from the right
everywhere for a switching sequence 0 = t0 < t1 < t2 < · · · < tl−1 < tl < · · · < +∞, where tl represents
the lth switching instant, and l belongs to the set of all nonnegative integers (l ∈ N0). For the switching
mechanism, at instant tl, the σ(tl)th (or ith) subsystem is activated for t ∈ [tl, tl+1). Consequently,
the system (1.1) switches from the σ(tl−1)th (or jth) subsystem to the ith subsystem, where i, j ∈ N
and i , j. As in [34, 36], we assume that the state of system (1.1) dose not jump at each switching
instant. Ai, Bi, and Ci are constant matrices with appropriate dimensions for each i ∈ N. The time-
varying delay function β(t) satisfies 0 ≤ β(t) ≤ β and β̇(t) ≤ d < 1, where β and d are known constants.
In addition, ψ(t) : [−β, 0] → Rn is a vector-valued initial function with ‖ψ‖β = sup−β≤t≤0 ‖ψ(t)‖2. The
main contributions of this work are as follows:

1. Both the positivity and novel nonlinear multiple discretized copositive Lyapunov-Krasovskii
functionals for system (1.1), including interval uncertainties and AUSs, are proved and
established, respectively. The MDDT switching approach is applied to formulate adequacy
criteria for the GRS of system (1.1) with interval uncertainties and for the GAS of system (1.1)
without interval uncertainties. Moreover, it is worth noting that system (1.1) incorporating interval
uncertainties and AUSs is positive. Thus, in this paper, its “global” stability refers to stability in
the nonnegative quadrant Rn

+ (Rn
+ = {ν ∈ Rn : ν is the nonnegative vector and ν , 0}) rather than

the entire Rn space.
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2. Unlike [21, 41], where the studied subsystems are all stable and partially unstable, respectively,
we assume that all subsystems are unstable. It should be pointed out that the structure of
system zhijie (1.1) represents a large class of SNSs and is much more general than the switched
linear systems studied in [35, 38, 39].

3. The derived theoretical results can be applied to the DNNs modeling in [42] and compared
with [36] to show that less conservative results can be obtained by our method.

The rest of this paper is organized as follows. Section 2 presents the system descriptions and
preliminaries. Main theoretical achievements are shown in Section 3. Numerical examples are
demonstrated in Section 4. Finally, Section 5 concludes this paper.
Notations: The following notations are used throughout this article. N denotes the set of positive
integers. For any K ∈ N, K0 = {0, 1, 2, ...,K}. 0n is the n-dimensional column vector with all entries
being 0. Let ν ∈ Rn. A nonnegative vector and a positive vector are denoted by ν � 0 and ν � 0,
respectively. For a given ν ∈ Rn, its 1−norm and Euclidean norm are defined by ‖ν‖1 =

∑n
i=1 |νi|

and ‖ν‖2 =
(∑n

i=1 ν
2
i

) 1
2 , respectively. ω(ν) stands for the minimal elements of ν ∈ Rn. In is the n × n

dimensional identity matrix, and AT is the transpose of matrix A. The notation A � 0 indicates
that all entries of matrix A ∈ Rn×n are nonnegative. A matrix is said to be a Metzler matrix if its
off-diagonal elements are all nonnegative. The notation diag{...} is a block-diagonal matrix. For a
function ϕ(t) defined on [0,+∞), ϕ(t−) = limt→t− ϕ(t) and ϕ(t+) = limt→t+ ϕ(t). Furthermore, D+ f (x) =

lim suph→0+
f (x+h)− f (x)

h , where D+ represents the upper right Dini derivative of the function f (x).

2. System descriptions and preliminaries

First, we introduce some definitions and assumptions, which play a significant role in obtaining our
theoretical results in this paper.

Definition 2.1. [35] System (1.1) is said to be positive if for any initial condition ψ(t) � 0, t ∈ [−β, 0]
and any switching signal σ(t), the corresponding trajectory x(t) � 0 holds for all t ≥ 0.

Assumption 2.2. The nonlinear function g(x) lies in sector fields satisfying

ε1x2
p ≤ gp(xp)xp ≤ ε2x2

p,

for xp ∈ R and p = 1, 2, ..., n, where 0 < ε1 ≤ ε2, and gp(0) = 0.

Remark 2.3. According to the proof in [41] and the remark in [21], system (1.1) with ψ(t) � 0,
t ∈ [−β, 0] and any switching signal is positive under Assumption 2.2 if and only if Ai and Ci are
Metzler matrices, and Bi � 0 for all i ∈ N. Moreover, without loss of generality, it can be referred
to Assumption 2.2 and xp ≥ 0 as ε1xp ≤ gp(xp) ≤ ε2xp for p = 1, 2, ..., n, where 0 < ε1 ≤ ε2,
and gp(0) = 0.

Definition 2.4. [35] For any admissible sector nonlinearities satisfying Assumption 2.2 and arbitrary
switching signal, system (1.1) under σ(t) is said to be

1. uniformly stable (US) with respect to σ(t) if ∀ε > 0, ∃ δ(ε) > 0 such that ‖x(t)‖2 < ε, ∀t ∈ [0,+∞)
whenever ‖ψ‖β < δ;
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2. globally uniformly stable (GUS) with respect to σ(t) if ∀ε > 0, ∀δ > 0 such that ‖x(t)‖2 < ε,
∀t ∈ [0,+∞) whenever ‖ψ‖β < δ;

3. globally uniformly asymptotically stable (GUAS) with respect to σ(t) if system (1.1) is GUS and
satisfies limt→+∞ x(t) = 0.

In general, actual systems can be modeled by NDSs in the form of interval uncertainties. Therefore,
the definition and assumption of the interval uncertainties for studying the GRS of system (1.1) is
stated as follows:

Definition 2.5. [34, 36] For system (1.1), Ai and Di are supposed to be interval uncertain; namely,

Ai � Ai � Ai,

Bi � Bi � Bi,

and
Ci � Ci � Ci,

where Ai, Bi, Ci, Ai, Bi, and Ci are the given constant system matrices with appropriate dimensions
for all i ∈ N.

Assumption 2.6. For each Ai, Bi, and Ci in system (1.1), there are known Metzler matrices Ai, Ci and
matrices Bi � 0 such that Ai ∈ [Ai, Ai], Ci ∈ [Ci,Ci] and Bi ∈ [Bi, Bi], where Ai, Ci, Bi, Ai, Ci, Bi are
the given constant system matrices with appropriate dimensions for all i ∈ N.

To analyze the GRS of switched nonlinear positive time-varying delay systems with interval
uncertainties, both DT and MDDT switching laws are typically applied. Specifically, when all unstable
subsystems are active, we aim to use these switching laws to ensure the overall system operates stably
over a long period. However, the MDDT switching rule is generally less conservative and more general
than the DT switching rule. Therefore, the MDDT switching strategy is utilized in this article.

Definition 2.7. [32, 34] For the length between successive switching moments during which the ith
mode of system (1.1) is activated, if there exists a constant τi,l > 0 such that τi,l = tl+1 − tl holds for
any i ∈ N, l ∈ N0, then the constant τi,l is called MDDT of system (1.1).

To avoid system instability owing to too small or too large DT switching, the MDDT switching
technique is confined by a pair of upper and lower bounds defined in the next definition.

Definition 2.8. [34] τi,l ∈ [τi,min, τi,max], where τi,min = infl∈N0 τi,l, τi,max = supl∈N0
τi,l, 0 < τi,min ≤

τi,max, i ∈ N, l ∈ N0. In addition, the notation Λ[τi,min,τi,max] is the set of all switching techniques
with MDDT τi,l ∈ [τi,min, τi,max], i ∈ N, l ∈ N0.

3. Main results

For convenience, we first define important symbols used in our main theorem as follows:

B̃ =
(
brs

)
∈ Rn×n, brs = max

i∈N

{
B

(rs)
i

}
, (3.1)

where B
(rs)
i refers to the rth row and sth column element of system matrices Bi, for all i ∈ N.
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Theorem 3.1. Consider system (1.1) with AUSs satisfying Assumption 2.2 and Assumption 2.6. Given
constants 0 < ε1 ≤ ε2, 0 < µi < 1, 0 < ξi, 0 < τi,min, i ∈ N, and K ∈ N. System (1.1) containing AUSs
is positive and GUAS with respect to σ(t) ∈ Λ[τi,min,τi,max] if there exists constants τi,max ≥ τi,min

and νi,q � 0, i ∈ N, q ∈ K0 satisfying the following conditions:

1
ε1

∆i,q +

[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,q ≺ 0, (3.2)

1
ε1

∆i,q +

[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,q+1 ≺ 0, (3.3)

B̃T
(
∆i,q − νi,q

)
≺ 0, (3.4)

B̃T
(
∆i,q − νi,q+1

)
≺ 0, (3.5)[

A
T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,K ≺ 0, (3.6)

νi,0 − µiν j,K � 0, (3.7)

ln µi + ξ jτ j,max < 0, (3.8)

for any q = 0, 1, ...,K − 1, and for any i, j ∈ N, i , j, where

∆i,q =

(
νi,q+1 − νi,q

)
K

τi,min
, (3.9)

and B̃ is mentioned in (3.1).

Proof. We divide the proof process into the following two steps.
Step 1. We will prove that system (1.1) is positive.

By Assumption 2.6, we obtain that there exist Metzler matrices Ai, Ci, and matrices Bi � 0. These
satisfy Ai ∈ [Ai, Ai], Ci ∈ [Ci,Ci], and Bi ∈ [Bi, Bi] for all i ∈ N. This implies that Ai and Ci are
also Metzler matrices, and Bi � 0 for all i ∈ N. For any t ∈ [−β, 0], let ψ(t) be the vector-valued
initial function with ψ(t) � 0. By Assumption 2.2, according to the proof in [41, Lemma 2] and the
detail in [21, Remark 1], the trajectory of system (1.1) satisfies x(t) � 0 for all t ≥ 0 and for any
switching signal σ(t). Therefore, system (1.1) with ψ(t) � 0, t ∈ [−β, 0], and any switching signal σ(t)
is positive.
Step 2. We will prove that system (1.1) is GUAS under the MDDT switching strategy satisfying
condition (3.8).

In the literature [21, 41], switched nonlinear positive time-varying delay systems with all stable
subsystems and partially unstable subsystems, respectively, are studied. These works employed the
nonlinear Lyapunov-Krasovskii functional to analyze system stability. Nevertheless, this approach
does not apply when all subsystems are unstable. In this paper, we establish the nonlinear multiple
discretized copositive Lyapunov-Krasovskii functional described in the form of

Vi(t, x(t)) = (1 − d)xT (t)νi(t) +

∫ t

t−β(t)
gT (x(α))B̃Tνi(t)dα +

∫ 0

−β

∫ t

t+w
gT (x(α))B̃Tνi(α)dαdw, (3.10)
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for any i ∈ N, and combine the MDDT switching rule to stabilize system (1.1) including AUSs.
In (3.10), the vector function νi(t), i ∈ N is constructed by assuming that t ∈ [tl, tl+1) = [tl, tl +

τi,min) ∪ [tl + τi,min, tl+1), l ∈ N0, for any t > 0, and τi,min, i ∈ N defined as in Definition 2.8. The
interval [tl, tl + τi,min) is divided into K segments with equal length hi =

τi,min

K . Furthermore, Ωi
l,q =

[tl + qhi, tl + (q + 1)hi), q = 0, 1, ...,K − 1 and [tl, tl + τi,min) =
⋃K−1

q=0 Ω
i
l,q are also denoted. Namely, for

any i ∈ N,

νi(t) = νi(tl + qhi + γ(t)hi)

=

(1 − γ(t))νi,q + γ(t)νi,q+1, t ∈ Ωi
l,q, q = 0, 1, ...,K − 1,

νi,K , t ∈ [tl + τi,min, tl+1),
(3.11)

where l ∈ N0, γ(t) =
t−tl−qhi

hi
with 0 ≤ γ(t) ≤ 1, and νi,q are positive vectors for i ∈ N, q ∈ K0. Based

on the apportionment of the defined time interval for (3.10) and (3.11), we split the proof into the
following two cases.
Case (i). When t ∈ Ωi

l,q ⊂ [tl, tl + τi,min), it follows that

D+νi(t) =
νi,q+1 − νi,q

hi
,

namely,
D+νi(t) = ∆i,q,

where ∆i,q is defined as in (3.9). According to (3.10), (3.11), and along the trajectory of system (1.1),
we get

D+Vi(t, x(t)) = (1 − d)
[
xT (t)∆i,q + gT (x(t))AT

i νi(t) + gT (x(t − β(t)))BT
i νi(t) + xT (t)CT

i νi(t)
]

+

∫ t

t−β(t)
gT (x(α))B̃T ∆i,qdα + gT (x(t))B̃Tνi(t) − gT (x(t − β(t)))B̃Tνi(t)(1 − β̇(t))

+ βgT (x(t))B̃Tνi(t) −
∫ t

t−β
gT (x(α))B̃Tνi(α)dα,

for all i ∈ N. By Assumption 2.6, we obtain

D+Vi(t, x(t)) ≤ (1 − d)
[
xT (t)∆i,q + gT (x(t))A

T
i νi(t) + gT (x(t − β(t)))B

T
i νi(t) + xT (t)C

T
i νi(t)

]
+

∫ t

t−β(t)
gT (x(α))B̃T ∆i,qdα + gT (x(t))B̃Tνi(t) − gT (x(t − β(t)))B̃Tνi(t)(1 − β̇(t))

+ βgT (x(t))B̃Tνi(t) −
∫ t

t−β
gT (x(α))B̃Tνi(α)dα,

for all i ∈ N. From β̇(t) ≤ d and Bi � B̃ mentioned as in (3.1) for all i ∈ N, one has

D+Vi(t, x(t)) ≤ (1 − d)
[
xT (t)∆i,q + gT (x(t))A

T
i νi(t) + xT (t)C

T
i νi(t)

]
+

∫ t

t−β(t)
gT (x(α))B̃T ∆i,qdα

+ gT (x(t))B̃Tνi(t) + βgT (x(t))B̃Tνi(t) −
∫ t

t−β
gT (x(α))B̃Tνi(α)dα.
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We observe that

D+Vi(t, x(t)) − ξiVi(t, x(t)) ≤ (1 − d)
[
xT (t)∆i,q + gT (x(t))A

T
i νi(t) + xT (t)C

T
i νi(t)

]
+

∫ t

t−β(t)
gT (x(α))B̃T ∆i,qdα + gT (x(t))B̃Tνi(t) + βgT (x(t))B̃Tνi(t)

−

∫ t

t−β
gT (x(α))B̃Tνi(α)dα − ξi(1 − d)xT (t)νi(t),

when 0 < ξi for all i ∈ N. By Assumption 2.2, it is transformed into

D+Vi(t, x(t)) − ξiVi(t, x(t)) ≤ (1 − d)
[

1
ε1

gT (x(t))∆i,q + gT (x(t))A
T
i νi(t) +

1
ε1

gT (x(t))C
T
i νi(t)

]
+

∫ t

t−β(t)
gT (x(α))B̃T ∆i,qdα + gT (x(t))B̃Tνi(t) + βgT (x(t))B̃Tνi(t)

−

∫ t

t−β
gT (x(α))B̃Tνi(α)dα −

ξi(1 − d)
ε2

gT (x(t))νi(t),

then

D+Vi(t, x(t)) − ξiVi(t, x(t)) ≤ gT (x(t))
{(

1 − d
ε1

)
∆i,q + (1 − d)

[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi(t)

}
+

∫ t

t−β(t)
gT (x(α))B̃T

[
∆i,q − νi(α)

]
dα,

for all i ∈ N. It leads to(
1 − d
ε1

)
∆i,q + (1 − d)

[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi(t)

= (1 − γ(t))
{(

1 − d
ε1

)
∆i,q + (1 − d)

[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,q

}
+ γ(t)

{(
1 − d
ε1

)
∆i,q + (1 − d)

[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,q+1

}
,

and

B̃T [∆i,q − νi(α)] = (1 − γ(α))B̃T
(
∆i,q − νi,q

)
+ γ(α)B̃T

(
∆i,q − νi,q+1

)
,

for all i ∈ N and for any q = 0, 1, ...,K − 1. According to conditions (3.2)–(3.5), we obtain

D+Vi(t, x(t)) − ξiVi(t, x(t)) < 0,

t ∈ Ωi
l,q, which implies

D+Vi(t, x(t)) < ξiVi(t, x(t)), (3.12)

t ∈
⋃K−1

q=0 Ω
i
l,q = [tl, tl + τi,min).

Case (ii). When t ∈ [tl + τi,min, tl+1), it yields that

D+νi(t) = 0n.
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By Assumption 2.6, β̇(t) ≤ d, Bi � B̃, Assumption 2.2, and along the trajectory of system (1.1), we
have the following:

D+Vi(t, x(t)) − ξiVi(t, x(t)) ≤ (1 − d)gT (x(t))
[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi(t)

−

∫ t

t−β
gT (x(α))B̃Tνi(α)dα

= (1 − d)gT (x(t))
[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,K

−

∫ t

t−β
gT (x(α))B̃Tνi,Kdα

≤ (1 − d)gT (x(t))
[
A

T
i +

1
ε1

C
T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,K ,

when 0 < ξi for all i ∈ N. Utilizing condition (3.6), it is immediate that

D+Vi(t, x(t)) < ξiVi(t, x(t)), (3.13)

t ∈ [tl + τi,min, tl+1). Merging (3.12) with (3.13), it is obvious that

D+Vi(t, x(t)) < ξiVi(t, x(t)), (3.14)

t ∈ [tl, tl+1), l ∈ N0. Taking the integral of both sides of (3.14) over [tl, t) for t ∈ [tl, tl+1), l ∈ N0, it
follows that

Vi(t, x(t)) < eξi(t−tl)Vi(tl, x(tl)). (3.15)

Applying condition (3.7), it implies that

νi(tl) � µiν j(t−l ), (3.16)

for all i, j ∈ N, i , j. Blending (3.10) with (3.16), it can be seen that

Vi(tl, x(tl)) ≤ µiV j(t−l , x(t−l )), (3.17)

for all i, j ∈ N, i , j. Combining (3.15) with (3.17), we can derive

Vσ(tl)(t, x(t)) < eξσ(tl)(t−tl)Vσ(tl)(tl, x(tl))
≤ µσ(tl)e

ξσ(tl)(t−tl)Vσ(tl−1)(t−l , x(t−l ))
< µσ(tl)e

ξσ(tl)(t−tl)eξσ(tl−1)(tl−tl−1)Vσ(tl−1)(tl−1, x(tl−1))
...

< µσ(tl)µσ(tl−1) · · · µσ(t1)eξσ(tl)(t−tl)eξσ(tl−1)(tl−tl−1) · · · eξσ(t0)(t1−t0)Vσ(t0)(t0, x(t0))

= eξσ(tl)(t−tl)
(
µσ(tl)e

ξσ(tl−1)(tl−tl−1)
)
· · ·

(
µσ(t1)eξσ(t0)(t1−t0)

)
Vσ(t0)(t0, x(t0))

= eξσ(tl)(t−tl)

 l−1∏
k=0

µσ(tk+1)eξσ(tk )(tk+1−tk)

 Vσ(t0)(t0, x(t0))

≤ eξσ(tl)τσ(tl),max

 l−1∏
k=0

µσ(tk+1)eξσ(tk )τσ(tk ),max

 Vσ(t0)(t0, x(t0)).
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Employing condition (3.8), it is immediate that

µieξ jτ j,max < 1, (3.18)

for all i, j ∈ N, i , j. Therefore,

Vσ(tl)(t, x(t)) < eξσ(tl)τσ(tl),maxVσ(t0)(t0, x(t0)).

Let X = maxi∈N {ξi} and T = maxi∈N
{
τi,max

}
, then

Vσ(tl)(t, x(t)) < eXT Vσ(t0)(t0, x(t0)). (3.19)

Without loss of generality, we let Vσ(t0)(t0, x(t0)) = Vσ(0)(0, x(0)). Recalling the nonlinear multiple
discretized copositive Lyapunov-Krasovskii functional (3.10) and vector function (3.11), we can derive

Vσ(0)(0, x(0)) ≤ (1−d)‖xT (0)‖2‖νσ(0)(0)‖2+

∫ 0

−β

dαε2 sup
−β≤α≤0

‖xT (α)‖2‖B̃T ‖2‖νσ(0)(0)‖2

+

∫ 0

−β

∫ 0

w
‖νσ(0)(α)‖2dαdwε2 sup

−β≤α≤0
‖xT (α)‖2‖B̃T ‖2

≤ (1−d)
√

n‖ψ‖β
∑
ζ∈K0

‖νσ(0),ζ‖2 + βε2
√

n‖ψ‖β‖B̃
T ‖2

∑
ζ∈K0

‖νσ(0),ζ‖2

+
β2

2
ε2
√

n‖ψ‖β‖B̃
T ‖2

∑
ζ∈K0

‖νσ(0),ζ‖2

=

[
(1−d) + βε2

(
1 +

β

2

)
‖B̃T ‖2

] √
n
∑
ζ∈K0

‖νσ(0),ζ‖2‖ψ‖β, (3.20)

and

(1−d)ς‖x(t)‖2 ≤ Vσ(tl)(t, x(t)), (3.21)

where ς = min(a,b)∈N×K0

{
ω(νa,b)

}
. From (3.19)–(3.21), it implies that

‖x(t)‖2 ≤ Ξ‖ψ‖βe
XT , (3.22)

where Ξ =

[
(1−d)+βε2

(
1+

β
2

)
‖B̃T ‖2

(1−d)ς

]
√

n
∑
ζ∈K0
‖νσ(0),ζ‖2, for all t ≥ 0. Next, for ε > 0, we choose

‖ψ‖β < δ(ε) =
ε

ΞeXT .

Hence,
‖x(t)‖2 < ε,

for all t ≥ 0. This implies that system (1.1) with AUSs is US.
Next, we will show that limt→∞ x(t) = 0. From (3.17), it follows that

Vi(tl, x(tl)) < µieξ j(tl−tl−1)V j(tl−1, x(tl−1)) < µieξ jτ j,maxV j(tl−1, x(tl−1)),
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for all i, j ∈ N, i , j. Setting λ = maxi, j∈N, i, j

{
µieξ jτ j,max

}
and from (3.18), it leads to

Vi(tl, x(tl)) < λV j(tl−1, x(tl−1)),

and 0 < λ < 1, which implies that the sequence Vσ(tl)(tl, x(tl)), l ∈ N0 is strictly decreasing. Applying
an iterative reduction yields to

0 < Vσ(tl)(tl, x(tl)) < λVσ(tl−1)(tl−1, x(tl−1)) < · · · < λlVσ(0)(0, x(0)).

Thus,
lim
l→∞

Vσ(tl)(tl, x(tl)) = 0.

Because νσ(tl)(tl) = νσ(tl),0 and by assumption that there exist νi,q � 0, for any i ∈ N and q ∈ K0, it is
immediate that

νσ(tl)(tl) � 0.

Owing to the positivity of system (1.1), it can be seen that

lim
l→∞

x(tl) = 0 and lim
l→∞

g(x(tl)) = 0.

However, by Assumption 2.2 again, it implies that

lim
l→∞

x(tl) = 0.

Similarly to the proof in [34, Theorem 1], it can be concluded that limt→∞ x(t) = 0, which will be
omitted for the proof here. Consequently, system (1.1) with AUSs is GUAS with respect to switching
signal σ(t) ∈ Λ[τi,min,τi,max]. �

Remark 3.2. Unlike from the systems studied in [21, 41] (even under similar assumptions for
the nonlinear function), system (1.1) represents switched nonlinear positive time-varying delay
systems with interval uncertainties and AUSs. The systems investigated for stability analysis
in [21, 41] lack interval uncertainties, and their considered subsystems are all stable and partially
unstable, respectively.

Remark 3.3. Inspired by the idea in [34–36], the nonlinear multiple discretized copositive Lyapunov-
Krasovskii functional (3.10) and vector function (3.11) were constructed to analyze the GRS of
system (1.1). This system includes interval uncertainties and AUSs under the suitable MDDT switching
rule. The main idea of Vi, defined in (3.10), is that it can escalate with a bounded rate ξi > 0
for all i ∈ N. Specifically, when each unstable subsystem is activated, D+Vi(t, x(t)) < ξiVi(t, x(t))
where ξi > 0 for all i ∈ N and t ∈ [tl, tl+1), l ∈ N0. The value of Vi decreases according
to Vi(tl, x(tl)) ≤ µiV j(t−l , x(t−l )), where 0 < µi < 1 for all i, j ∈ N, i , j. As a result, robust stability
of system (1.1) can be achieved by switching behavior, even though all subsystems are unstable. Our
nonlinear multiple discretized copositive Lyapunov-Krasovskii functional, designed in Theorem 3.1,
differs from that in [34–36]. While those Lyapunov functionals are sums of positive terms depending
on x(t), ours depends on both x(t) and g(x(t)). Additionally, the nonlinear Lyapunov functional in [41]
is not time-varying, which sets ours apart.
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Remark 3.4. In this paper, we use the discretized Lyapunov function method to divide the domain of
definition of vector function νi(t) for all i ∈ N defined in (3.11) into finite smaller regions. When the
discretized Lyapunov function scheme is applied, the number of division segments K must be K ≥ 1.
And if K = 0, the discretized Lyapunov function is reduced to the multiple Lyapunov function, which
is not applicable when all unstable subsystems work together. It has been mentioned in [34–36] that
the number of discretized positive vectors νi,q for i ∈ N, q ∈ K0 is K + 1, and K must be imposed
in advance. When the larger K is selected, the denser division of [tl, tl + τi,min) for all i ∈ N, l ∈ N0

is produced.

Remark 3.5. As stated in Theorem 3.1, it is clear that the parameters ε1, ε2, K, µi, ξi and τi,min for
all i ∈ N are set in advance. Namely, we have to assign that 0 < ε1 ≤ ε2, K ∈ N, 0 < µi < 1,
ξi > 0 and τi,min > 0 for all i ∈ N. Meanwhile, the parameters τi,max for all i ∈ N are calculated
by conditions (3.2)–(3.8). One of the major aims of this work was to create the proper switching
signal law for control the trajectory behavior of system (1.1) containing time-varying delays, interval
uncertainties, and AUSs. These disturbances, which appear in various practical systems, may cause
poor performance and instability of the system over a long time. Especially, when all unstable
subsystems of system (1.1) work together, all conditions in Theorem 3.1 under suitable switching
behavior are validly derived to compensate for the increment of the Lyapunov function described by
condition 3.7 in Theorem 3.1. Thus, as stated in Theorem 3.1, we deal with the problem of GRS for
system (1.1) even if the system includes time-varying delays, interval uncertainties, and AUSs.

When Cσ(t) ≡ 0, σ(t) ∈ N, system (1.1) can be reduced into the SNSs of the form:ẋ(t) = Aσ(t)g(x(t)) + Bσ(t)g(x(t − β(t))), t ≥ 0,
x(t) = ψ(t), t ∈ [−β, 0],

(3.23)

Similarly with system (1.1), Ai are the given Metzler matrices and Bi � 0, for all i ∈ N. Both Ai

and Bi are supposed to be interval uncertainties for all i ∈ N. The assumptions of nonlinear function
and the MDDT switching law in system (3.23) are similar to system (1.1). Moreover, all modes of
system (3.23) are unstable.

Next, another result guaranteeing the positivity and the GRS of system (3.23) containing AUSs will
be shown in the following corollary.

Corollary 3.6. Consider system (3.23) with AUSs. Given constants 0 < ε1 ≤ ε2, 0 < µi < 1, 0 < ξi,
0 < τi,min, i ∈ N, and K ∈ N. System (3.23) including AUSs is positive and GUAS with respect
to σ(t) ∈ Λ[τi,min,τi,max] if there exist constants τi,max ≥ τi,min and νi,q � 0, i ∈ N, q ∈ K0 satisfying the
following conditions:

1
ε1

∆i,q +

[
A

T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,q ≺ 0,

1
ε1

∆i,q +

[
A

T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,q+1 ≺ 0,

B̃T
(
∆i,q − νi,q

)
≺ 0,

B̃T
(
∆i,q − νi,q+1

)
≺ 0,
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A

T
i +

(
1 + β

1 − d

)
B̃T −

ξi

ε2
In

]
νi,K ≺ 0,

νi,0 − µiν j,K � 0,

ln µi + ξ jτ j,max < 0,

for any q = 0, 1, ...,K − 1, and for any i, j ∈ N, i , j, where ∆i,q and B̃ are defined in (3.9)
and (3.1), respectively.

Proof. Under the same symbols, nonlinear multiple discretized copositive Lyapunov-Krasovskii
functional (3.10), and vector function (3.11) in Theorem 3.1, this corollary can be easily proved. Hence,
we omit here. �

Remark 3.7. Compared with the systems studied in [34, 36] under the same MDDT switching rule,
our system (3.23) is a nonlinear system while the considered systems in [34, 36] are linear systems.
Besides, the switched system in [34] is also the delay-free case. It is worth noting that Corollary 3.6
covers the main theorem of both results, namely, when the given constants ε1 = ε2 = 1, all conditions in
Corollary 3.6 are the same as in [36, Theorem 1] and in [34, Theorem 2] with Bσ(t) ≡ 0 for all σ(t) ∈ N.
Thus, our theoretical results are more general than those results.

Sufficient criteria for GAS of system (1.1) with AUSs but without the interval uncertainties will be
presented in the last result.

Corollary 3.8. Consider system (1.1) with AUSs satisfying only Assumption 2.2. The matrices Ai

and Ci are the Metzler matrices, and Bi � 0, ∀i ∈ N. Let the following constants be given: 0 < ε1 ≤ ε2,
0 < µi < 1, 0 < ξi, 0 < τi,min, i ∈ N, and K ∈ N. Furthermore, let B = (brs) ∈ Rn×n be a matrix where
brs = maxi∈N

{
B(rs)

i

}
, and B(rs)

i denotes the rth row and sth column element of Bi. The term ∆i,q is defined
in (3.9). System (1.1), without its interval uncertainty but with AUSs, is positive and GUAS with respect
to σ(t) ∈ Λ[τi,min,τi,max] if there exist constants τi,max ≥ τi,min and matrices νi,q � 0, i ∈ N, q ∈ K0 satisfying
the following conditions:

1
ε1

∆i,q +

[
AT

i +
1
ε1

CT
i +

(
1 + β

1 − d

)
BT −

ξi

ε2
In

]
νi,q ≺ 0,

1
ε1

∆i,q +

[
AT

i +
1
ε1

CT
i +

(
1 + β

1 − d

)
BT −

ξi

ε2
In

]
νi,q+1 ≺ 0,

BT
(
∆i,q − νi,q

)
≺ 0,

BT
(
∆i,q − νi,q+1

)
≺ 0,[

AT
i +

1
ε1

CT
i +

(
1 + β

1 − d

)
BT −

ξi

ε2
In

]
νi,K ≺ 0,

νi,0 − µiν j,K � 0,

ln µi + ξ jτ j,max < 0,

for any q = 0, 1, ...,K − 1, and for any i, j ∈ N, i , j.
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Proof. Based on the same symbols and vector function (3.11) in Theorem 3.1, this corollary can be
proved by employing the nonlinear multiple discretized copositive Lyapunov-Krasovskii functional:

Vi(t, x(t)) = (1 − d)xT (t)νi(t) +

∫ t

t−β(t)
f T (x(α))BTνi(t)dα +

∫ 0

−β

∫ t

t+w
f T (x(α))BTνi(α)dαdw,

for any i ∈ N. Thus, the proof details of Corollary 3.8 are similar to that of Theorem 3.1, which will
be omitted here. �

The relationships between Theorem 3.1, Corollaries 3.6 and 3.8 are presented systematically in the
following Table 1.

Table 1. A summary table for our theoretical results.

system (1.1) system (1.1) system (1.1)
without Cσ(t), ∀σ(t) ∈ N without the interval uncertainties

Theorem 3.1 X
Corollary 3.6 X
Corollary 3.8 X

In Table 1, we have thoroughly summarized the theoretical results outlined in the article.

Remark 3.9. It is worth noting that the switching law employed in Corollary 3.8 is based on the MDDT,
where each subsystem has its own DT. In contrast, the switching technique used in [35] relies solely on
the (single) DT. Furthermore, if we set ε1 = ε2 = 1, µ = µi, ξ = ξi τmin = τi,min and all matrices Ci ≡ 0
for all i ∈ N in Corollary 3.8, then its criteria precisely match those of in [35, Theorem 3.1]. This
demonstrates that our theoretical result is more general and practical than the findings in [35].

4. Numerical simulations

In this section, we will present two numerical examples along with simulation results to demonstrate
the correctness and effectiveness of our theoretical analysis proposed in the previous section.

Example 4.1. Applied to delayed neural networks.
Neural networks have found numerous applications in fields such as image processing, signal

processing, industrial automation, and artificial intelligence. In particular, the stability of
switched DNNs, whose parameters are governed by the switching signal, has been analyzed. The
switched DNNs studied in [42] share properties similar to our system (1.1). Specifically, for i ∈ N, the
constant matrices Ci defined by C(·) ≡ diag{c1(·), c2(·), ..., cn(·)} in [42] are viewed as the Metzler
matrices Ci of system (1.1), with their off-diagonal elements being zero. For the switched DNNs
proposed in [42], x(t) and g(·) represent the neuron state vector and the nonlinear neuron activation
function, respectively. In addition, for i ∈ N, the constant matrices A(i) and Ad(i), as well as the
properties of both nonlinear and time-varying delay functions, are similarly defined to our system (1.1).
Thus, the GRS for switched DNNs can be studied and applied through system (1.1), even when its two
unstable subsystems operate together. The first subsystem parameters are given as follows:

A1 =

[
−0.26 0.065

0.6 −0.01

]
, A1 =

[
−0.24 0.075

0.6 −0.01

]
,
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B1 =

[
0.0003 0.0005
0.0002 0.0003

]
, B1 =

[
0.0005 0.0007
0.0002 0.0005

]
,

C1 =

[
−1.47 0

0 −0.01

]
, C1 =

[
−1.45 0

0 −0.01

]
.

Also the second subsystem data are given as follows:

A2 =

[
0.03 0.025

0.065 −2.6

]
, A2 =

[
0.03 0.035

0.075 −2.6

]
,

B2 =

[
0.0005 0.0004
0.0001 0.0002

]
, B2 =

[
0.0005 0.0006
0.0001 0.0004

]
,

C2 =

[
−0.01 0

0 −3.6

]
, C2 =

[
−0.01 0

0 −3.4

]
.

It can be seen that A1, A2, C1 and C2 are Metzler matrices. It is obvious that B1 � 0 and B2 � 0. The
time-varying delay function and nonlinear function of the underlying system are

β(t) = 0.15 + 0.05 sin(t),

and

gp(xp(t)) = xp(t) +
0.1xp(t)
x2

p(t) + 1
,

for p = 1, 2, respectively. Then, we can choose β = 0.2, d = 0.05 and set ε1 = 1, ε2 = 1.1.
By Assumptions 2.2 and 2.6, the studied system is positive. Let ψ = [5 8]T be the initial state for
numerical simulation in this system. We set system matrices

A1 =

[
−0.25 0.07

0.6 −0.01

]
, B1 =

[
0.0004 0.0006
0.0002 0.0004

]
, C1 =

[
−1.46 0

0 −0.01

]
,

for the first subsystem, and

A2 =

[
0.03 0.03
0.07 −2.6

]
, B2 =

[
0.0005 0.0005
0.0001 0.0003

]
, C2 =

[
−0.01 0

0 −3.5

]
,

for the second subsystem. We first present two figures for the corresponding state responses of two
subsystems. From Figures 1 and 2, it can be seen that two subsystems are positive and unstable.

Figure 1. The state trajectory of the first subsystem in Example 4.1.
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Figure 2. The state trajectory of the second subsystem in Example 4.1.

As defined in (3.1), we obtain that

B̃ =

[
0.0005 0.0007
0.0002 0.0005

]
.

As stated in Remarks 3.3–3.5, the selection of following parameters is valid. For given
parameters K = 1, µ1 = 0.58, µ2 = 0.36, ξ1 = 0.5, ξ2 = 0.53, τ1,min = 2 and τ2,min = 1, we can
get a set of feasible solutions for Theorem 3.1:

ν1,0 =

[
62.3296
68.2194

]
, ν1,1 =

[
241.8569
67.1340

]
, ν2,0 =

[
86.3039
23.2898

]
, ν2,1 =

[
111.0557
119.2610

]
,

τ1,max = 2.01 and τ2,max = 1.01. Thus, system (1.1), which serves as a model for switched DNNs,
achieves GUAS with the MDDT switching signal satisfying Λ[2,2.01][1,1.01]. The corresponding switching
signal σ(t) and the system’s state response are illustrated in Figures 3 and 4, respectively. Figure 3,
σ(t) is designed as

σ(t) =



1, t ∈ [1, 3) ∪ [4, 6) ∪ [7, 9) ∪ [10, 12) ∪ [13, 15) ∪ [16, 18) ∪ [19, 21)
∪ [22, 24) ∪ [25, 27) ∪ [28, 30) ∪ [31, 33) ∪ [34, 36) ∪ [37, 39)
∪ [40, 42) ∪ [43, 45) ∪ [46, 48) ∪ [49, 51) ∪ [52, 54) ∪ [55, 57) ∪ [58, 60],

2, t ∈ [0, 1) ∪ [3, 4) ∪ [6, 7) ∪ [9, 10) ∪ [12, 13) ∪ [15, 16) ∪ [18, 19)
∪ [21, 22) ∪ [24, 25) ∪ [27, 28) ∪ [30, 31) ∪ [33, 34) ∪ [36, 37)
∪ [39, 40) ∪ [42, 43) ∪ [45, 46) ∪ [48, 49) ∪ [51, 52) ∪ [54, 55) ∪ [57, 58).

This numerical simulation effectively confirms that the theoretical results ensure the positivity and GRS
of the considered system.
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Figure 3. The switching sequence for the switched nonlinear system in Example 4.1.
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Figure 4. The state response of the switched nonlinear system in Example 4.1.

Example 4.2. In this example, we will investigate the GRS problem for system (3.23) comprising of
two unstable subsystems. The first subsystem parameters are given as follows:

A1 =

[
0.06 0.29
0.1 −5

]
, A1 =

[
0.06 0.3
0.1 −5

]
, B1 =

[
0.0001 0.0002
0.0003 0.0002

]
, B1 =

[
0.0003 0.0002
0.0005 0.0004

]
.

And the second subsystem data are given as follows:

A2 =

[
−3 0.05

0.01 0.06

]
, A2 =

[
−3 0.05

0.012 0.06

]
, B2 =

[
0.0002 0.0002
0.0004 0.0001

]
, B2 =

[
0.0004 0.0002
0.0004 0.0003

]
.

The time-varying delay function and nonlinear function of the underlying system are

β(t) = 0.15 + 0.05 sin(t),

and

gp(xp(t)) = xp(t) +
0.2xp(t)
x2

p(t) + 1
,

for p = 1, 2, respectively. From the above, we can choose β = 0.2, d = 0.05 and set ε1 = 1, ε2 = 1.2.
It can be seen that A1 and A2 are Metzler matrices. Furthermore, it is obvious that B1 � 0 and B2 � 0.
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By Assumptions 2.2 and 2.6, the studied system is positive. For numerical simulation, let ψ = [6 3]T

be the initial state for this system. Let

A1 =

[
0.06 0.295
0.1 −5

]
, B1 =

[
0.0002 0.0002
0.0004 0.0003

]
,

and

A2 =

[
−3 0.05

0.011 0.06

]
, B2 =

[
0.0003 0.0002
0.0004 0.0002

]
,

be the system matrices for the first subsystem and the second subsystem, respectively. Then, we present
two figures for the corresponding state responses of two subsystems. From Figures 5 and 6, it can be
seen that two subsystems are positive and unstable.
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Figure 5. The state trajectory of the first subsystem in Example 4.2.
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Figure 6. The state trajectory of the second subsystem in Example 4.2.

As defined in (3.1), we obtain that

B̃ =

[
0.0004 0.0002
0.0005 0.0004

]
.

For given scalars K = 1, µ1 = 0.36, µ2 = 0.58, ξ1 = 0.53, ξ2 = 0.5, τ1,min = 1 and τ2,min = 2, we can
get a set of feasible solutions for Corollary 3.6:

ν1,0 =

[
80.0450
18.8277

]
, ν1,1 =

[
78.9548
76.5135

]
, ν2,0 =

[
45.3070
43.2352

]
, ν2,1 =

[
227.9595
52.7598

]
,
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τ1,max = 1.01 and τ2,max = 2.01. Thus, system (3.23) achieves GUAS with the MDDT switching signal
satisfying Λ[1,1.01][2,2.01]. The corresponding switching signal σ(t) and the system’s state response are
illustrated in Figures 7 and 8, respectively. Figure 7, σ(t) is designed as

σ(t) =



1, t ∈ [0, 1) ∪ [3, 4) ∪ [6, 7) ∪ [9, 10) ∪ [12, 13) ∪ [15, 16) ∪ [18, 19)
∪ [21, 22) ∪ [24, 25) ∪ [27, 28) ∪ [30, 31) ∪ [33, 34) ∪ [36, 37)
∪ [39, 40) ∪ [42, 43) ∪ [45, 46) ∪ [48, 49) ∪ [51, 52) ∪ [54, 55) ∪ [57, 58),

2, t ∈ [1, 3) ∪ [4, 6) ∪ [7, 9) ∪ [10, 12) ∪ [13, 15) ∪ [16, 18) ∪ [19, 21)
∪ [22, 24) ∪ [25, 27) ∪ [28, 30) ∪ [31, 33) ∪ [34, 36) ∪ [37, 39)
∪ [40, 42) ∪ [43, 45) ∪ [46, 48) ∪ [49, 51) ∪ [52, 54) ∪ [55, 57) ∪ [58, 60].

It should be pointed out that even though the considered system comprises nonlinear SPSs with AUSs,
our designed switching signal can still stabilize the system. When comparing our results to those
of earlier studies, it is important to note that the GRS problem of system (3.23) with AUSs can
also be effectively solved by the method presented in Corollary 3.6. Specifically, when ε1 =

ε2 = 1, all conditions in Corollary 3.6 become equivalent to in [36, Theorem 1] and in [34,
Theorem 2] (with Bσ(t) ≡ 0 for all σ(t) ∈ N). Consequently, our theoretical results are more general
and applicable than those previous findings.

Figure 7. The switching sequence for the switched nonlinear system in Example 4.2.
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Figure 8. The state response of the switched nonlinear system in Example 4.2.
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Example 4.3. To show that our theoretical results are less conservative than the existing results, we
conduct a thorough comparison of our proposed scheme with the method of Rojsiraphisal et al. [36].
The studied system in [36, Example 1] is a switched linear positive time-varying delay system with
interval uncertainties and two unstable subsystems, as shown below.

A1 =

[
−3 0.04

0.03 0.1

]
, A1 =

[
−2.5 0.06
0.06 0.2

]
, B1 =

[
0 0.0001

0.0004 0

]
, B1 =

[
0.0001 0.0001
0.0004 0.0001

]
,

A2 =

[
0.1 0.02

0.01 −2

]
, A2 =

[
0.1 0.05

0.05 −1.5

]
, B2 =

[
0 0.0001

0.0004 0

]
, B2 =

[
0 0.0001

0.0004 0.0001

]
.

And the bound of the studied system matrices in [36, Example 1] is

B̃ =

[
0.0001 0.0001
0.0004 0.0001

]
.

The considered time-varying delay is

β(t) = 0.1 − 0.1 sin(t),

and its constants are β = 0.2 and d = 0.1. For given scalars K = 1, µ1 = 0.55, µ2 = 0.56, ξ1 = 0.36,
ξ2 = 0.22, τ1,min = 1 and τ2,min = 2, we obtain a set of feasible solutions for [36, Theorem 1]:

ν1,0 =

[
47.1462
87.1190

]
, ν1,1 =

[
165.3132
91.0536

]
, ν2,0 =

[
90.1878
49.9822

]
, ν2,1 =

[
89.0055

160.1816

]
,

τ1,max = 1.1 and τ2,max = 2.1.
However, our system (3.23) studied in Corollary 3.6 is the switched nonlinear positive time-varying

delay system with interval uncertainties and AUSs by the nonlinear function

gp(xp(t)) = xp(t) +
0.1xp(t)
x2

p(t) + 1
,

for p = 1, 2. Thus, we can set ε1 = 1 and ε2 = 1.1. Under the same system matrices and the same
given constants in [36, Example 1], we get a set of feasible solutions for Corollary 3.6:

ν1,0 =

[
42.0688
71.4987

]
, ν1,1 =

[
146.0279
69.0954

]
, ν2,0 =

[
81.5949
38.0025

]
, ν2,1 =

[
77.3406

130.0713

]
,

τ1,max = 1.6 and τ2,max = 2.6. To facilitate comparison of the results obtained from the different
computational schemes above, the MDDT switching signals are presented in Table 2.

Table 2. Computational results for the system with two different schemes.

References Theoretical basis The MDDT switching signals
[36] Theorem 1 Λ[1,1.1][2,2.1]

Our present result Corollary 3.6 Λ[1,1.6][2,2.6]

As shown in Table 2, the maximal MDDT for subsystem 1 and subsystem 2 of [36] is τ1,max = 1.1
and τ2,max = 2.1, respectively. In contrast, the maximal MDDT for the first subsystem and the second
subsystem of our present result is extended to τ1,max = 1.6 and τ2,max = 2.6, respectively. Therefore, our
method yields less conservative results.
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5. Conclusions

The problems of both GRS and GAS have been investigated for switched nonlinear positive time-
varying delay systems, including AUSs. Novel nonlinear multiple discretized copositive Lyapunov-
Krasovskii functionals have been introduced. The theoretical results are based on the use of
these nonlinear multiple discretized copositive Lyapunov-Krasovskii functionals and the MDDT
switching approach. Sufficient conditions for GRS of the underlying systems have been obtained.
Moreover, GAS criteria have been derived for the considered systems with AUSs but without
interval uncertainty. Our theoretical results have been compared with previous results. Finally, the
effectiveness of the proposed theories has been demonstrated through three numerical examples, and
their applicability to switched DNNs has been shown. In future research, it will be interesting to
investigate the stability analysis of discrete-time switched positive nonlinear systems with delays
and AUSs.
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