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Abstract: Multicollinearity poses significant challenges to parameter estimation in regression models, 

often undermining the reliability of traditional methods like maximum likelihood estimation (MLE). 

This study addresses the issue by evaluating and enhancing regularization techniques, specifically the 

ridge-based regression (RBR), the Liu regression estimator (LRE), and a modified two-parameter ridge 

estimator (MTPRE) within the context of the Beta regression model (BRM). However, the selection 

of appropriate shrinkage parameters remains a persistent challenge. To address this limitation, we 

propose an MTPRE that eliminates the need for shrinkage parameter tuning, thereby improving 

estimation stability and accuracy. Through extensive simulation studies, the MTPRE consistently 

outperformed the MLE, RBR, and LRE under severe multicollinearity based on the mean squared 

error (MSE). The effectiveness of proposed estimators was further validated using a real-world 

gasoline yield dataset having multicollinearity issues, where the MTPRE demonstrated superior 

predictive accuracy and estimation precision. These results highlight the potential of the MTPRE as a 

practical and efficient method for handling multicollinearity in regression analysis. 

Keywords: multicollinearity; Beta regression model; ridge estimator; maximum likelihood method; 

monte Carlo simulation 
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1. Introduction 

The Beta regression model (BRM) is a powerful statistical tool, particularly well-suited for 

modeling data within the continuous interval (0,1). It has become widely used in disciplines such as 
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economics, ecology, and epidemiology, where the response variable typically represents proportions, 

rates, or percentages [1,2]. However, putting it into practice can be tricky, especially when choosing 

the right regularization method, like ridge regression, to handle problems like strong multicollinearity 

and overfitting [3]. 

In Beta regression, parameter estimation can be done using either maximum likelihood 

estimation (MLE) or a Bayesian approach. The MLE works by maximizing the likelihood of the 

observed data, providing efficient and consistent estimates. On the other hand, the Bayesian approach 

incorporates prior knowledge, combining it with the data to form a posterior distribution that integrates 

both sources of information [4–6]. For the large sample, the MLE provides efficient estimates as 

compared to Bayesian paradigm, which is often preferred for small samples parameter estimates. 

While linear and logistic regression models each have their unique strengths, they also come with 

limitations. The drawback of the BRM is its sensitivity to outliers, which can produce significantly 

unreliable parameter estimates and affect the overall model fit [7]. Moreover, the model’s performance 

is contingent upon the assumption that the predictor variables are independent. However, in practical 

applications, this assumption is often violated, as most predictor variables are dependent, so this results 

in multicollinearity issues. When predictor variables are strongly correlated, it can cause standard 

errors to increase and lead to unstable, and unreliable coefficient estimates, as highlighted in recent 

studies [8–10]. 

To address these challenges, ridge estimators are widely used to mitigate multicollinearity issues 

in regression models. In ridge regression, a penalty term or shrinkage parameter is controlled by a 

biasing parameter (𝑘), which helps reduce the risk of overfitting and obtains more reliable parameter 

estimates of the regression model in the presence of severe multicollinearity [11]. Amin et al. [12] 

highlighted the significant challenge that multicollinearity poses in logistic regression models, which 

can undermine the predictive accuracy of the model. 

To mitigate these issues, numerous studies have proposed strategies for selecting the optimal 

values of 𝑘 and 𝑞 to obtain reliable estimates and minimize the estimated mean squared error (MSE) 

(see [13–15]). Most recently, Hammad et al. [16] modified the two-parameter ridge estimators for 

severe multicollinearity data. However, the literature indicates that no single estimator consistently 

performs well across all levels of collinearity. Choosing the best shrinkage parameter is still a tough 

challenge and an active area of research, especially in Beta regression models. These models are more 

complex because their likelihood structure is different from that of basic linear models. 

To address this gap, we introduced a new modified two-parameter ridge estimator (MTPRE) for 

the BRM to improve handling of multicoolinearity issues. This new estimator builds on existing 

regularization methods by adding extra shrinkage parameters. This helps to better handle problems of 

severe multicollinearity. The MTPRE improves both the flexibility and accuracy of parameter 

estimation, making Beta regression more stable and reliable, particularly when multicollinearity is a 

significant issue. This paper is structured as follows: Section 2 introduces the proposed estimator and 

explains the shrinkage parameter selection; Section 3 presents Monte Carlo simulation results; 

Section 4 applies the method to real data; and finally, Section 5 concludes the study. 

2. Materials and methods 

In this section, we discuss the BRM, the ridge and Liu estimators, two-parameter estimators, and 

the newly proposed estimators (𝑘 and 𝑞). 
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2.1. Beta regression model 

The BRM relies on MLE for parameter estimation, which, while offering good asymptotic 

properties, is highly sensitive to multicollinearity. When predictor variables are highly correlated, the 

model’s likelihood function flattens, leading to unstable parameter estimates with large standard errors. 

Furthermore, due to the nonlinear link function and the bounded nature of the dependent variable in 

Beta regression, multicollinearity poses even more severe challenges within this framework. Within 

the framework of the BRM, a functional relationship between the mean of the dependent variable and 

a set of covariates can be established by specifying an appropriate link function [2]. The model also 

introduces a precision parameter, which represents the inverse of the variance term. 

Suppose Y is a random variable with independent observations 𝑦1, 𝑦2, … , 𝑦𝑛, and it is assumed to 

follow a Beta distribution with two parameters g > 0 and ℎ > 0, denoted as Beta(g, ℎ): 

𝑓(𝑦; 𝑔, ℎ) =
Γ(g+h)

Γ(g)Γ(h)
𝑦𝑔−1(1 − 𝑦)ℎ−1 ,   0 < 𝑦 < 1.     (2.1) 

The Gamma function denoted by Γ(. ) with the mean and variance of Gamma distribution is 

given by 

Mean =
g

g+h
 and Variance =

g h

(g+h)2(g+ℎ+1)
. 

The provided reparameterization approach for constructing a model with Beta distribution 

responses based on Eq (2.1) is as follows: 

𝜃 =
g

g+h
 and 𝜇(g + ℎ) = g. 

By re-parameterizing the Beta distribution parameters, where 𝜃𝑧 = g  and 𝑧 − 𝜃𝑧 = ℎ , the 

probability distribution of Beta can be written as 

𝑓(𝑦; 𝜃, 𝑧) =
Γ(z)

Γ(𝜃𝑧)Γ(1−𝜃)
𝑦𝜃𝑧−1(1 − 𝑦)𝑧−𝜃𝑧−1.      (2.2) 

In Beta regression, the outcome variable 𝑦 is restricted to lie within the range 0 <  𝑦 <  1. The 

model incorporates two key parameters: a scaling factor 𝜇, constrained to the interval (0,1), and a 

precision parameter 𝑧, which must be positive. The value of 𝑧 is derived using the Gamma function 

Γ(·). The precision parameter 𝑧 plays a central role in adjusting model variability and is defined as 

𝑧 =
1−𝜃

𝜎2 . 

The Beta distribution has the following mean and variance: 

Mean = 𝜃, Variance = 𝜃(1 − 𝜃) = 𝜎2. 

The regression coefficient 𝜇, which depends on the covariates, and the logit link function are 

commonly used. It can be written as 

g(μ𝑖) = log (
𝜃𝑖

1−𝜃𝑖
) = 𝑿𝒊

𝑻𝛍 = ηI,       (2.3) 
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where  𝛍 = (μ𝑖1, μ𝑖2, … , μ𝑖𝑝)
𝑇

, 𝛍 ∈ 𝑅1×𝑝  is the vector of unknown parameters, and 𝑥𝑖 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) represents the vector of explanatory variables for the 𝑖𝑡ℎ  observation. The linear 

component of the regression model is 𝜂𝑖. The log-likelihood function of the model is given below: 

            𝐿(𝜃𝑖 , 𝑧𝑖; 𝑦𝑖) = ∑ {log Γ(𝑧) − 𝑙𝑜gΓ(𝜃𝑖(𝑧)) − log((1 − 𝜃𝑖) (𝑧)) + (𝜃𝑖(𝑧) − 1) log(𝑦𝑖) +𝑛
𝑖=1

                                                 (1 − 𝜃𝑖)(𝑧) + ((1 − 𝜃𝑖)(𝑧) − 1) log(1 − 𝑦𝑖)}.      (2.4) 

Parameter estimates differentiating w.r.t. μ, as shown in Eq (2.3): 

𝑆(μ) = 𝒁𝑿𝑻𝚲 (𝐲∗ −  𝜽∗),         (2.5) 

where 𝚲 = (
1

gT(𝜃1)
,

1

gT(𝜃2)
, . . . ,

1

gT(𝜃𝑛)
) ,  𝒚∗ = (𝑦1

∗, 𝑦2
∗, . . . , 𝑦𝑛

∗),  𝜽∗ = (𝜃1
∗, 𝜃2

∗, . . . , 𝜃𝑛
∗)  is a diagonal 

matrix, 𝒚∗  is the vector of transformed response variables, and 𝜃∗  is the transformed vector of 

predicted values. 𝑦𝑖
∗ is the logit of 𝑦𝑖, and 𝜃𝑖

∗ represents the transformed predictions: 

𝑦𝑖
∗ = 𝑙𝑜𝑔 (

𝑦𝑖

1 − 𝑦𝑖
) 

and 

𝜃𝑖
∗ = ψ(𝜃𝑖𝑧) − ψ(1 − 𝜃𝑖)𝑧. 

Here, ψ(⋅) is the Digamma function. The 𝜇  is calculated using optimization techniques, such as 

weighted regression updates or the Fisher algorithm. The update rule is as follows: 

μ(r+1) = μr + (𝐼μμ
𝑟 )

−1
+ 𝑆μ

(𝑟)
(μ). 

Here, 𝑆μ
(𝑟)

 represents the score function at iteration 𝑟, and Iμμ
r  is the information matrix at the same 

iteration, as defined in Eq (2.4). The least-squares method is usually applied to compute the initial 

values for the parameter 𝜇, while the precision parameters are initialized as follows: 

𝑧̂𝑖 =
𝜃𝑖̂(1−𝜃𝑖̂)

𝜎̂𝑖
2 .          (2.6) 

The estimates 𝜃𝑖̂𝑖
 and 𝜎̂𝑖

2 are obtained through linear regression. The iteration process continues 

until the changes between consecutive estimates are smaller than the small predefined threshold, 

indicating that the algorithm has converged, with 𝑿 ∈ 𝑅𝑛×𝑝. The final step is to calculate the MLE 

of parameter μ. 

𝛍̂𝑴𝑳𝑬 = (𝑿𝑻𝑾̂𝑿)
−𝟏

𝑿𝑻𝑾̂𝒛̂,        (2.7) 

𝑾̂ = 𝑑𝑖𝑎𝑔(𝑊̂1, 𝑊̂2, . . . , 𝑊̂𝑛), 

𝒛̂ = 𝛈̂ + 𝐖̂−𝟏𝚲̂(𝒚∗ − 𝜽∗), 
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where 

𝑊̂𝑖 =
(1−𝜎̂2)

𝜎̂2 {ΨT (
(𝜃𝑖

𝑇(1−𝜎̂2)

𝜎̂2 ) + ΨT (
(1−𝜃𝑖)(1−𝜎̂2)

𝜎̂2 )}
1

{𝑔𝑇(𝜃̂𝑖)}2 . 

The MLE for μ follows an asymptotically normal distribution. Under regularity conditions, the 

expected value of the estimator satisfies 

𝐸(μ̂𝑀𝐿𝐸  ) → μ as 𝑛 → ∞. 

Furthermore, the asymptotic covariance matrix of μ𝑀𝐿𝐸 is expressed as 

Cov(𝛍̂MLE) =
1

𝑧
(𝑿𝑻𝑾̂𝑿)

−𝟏
.        (2.8) 

Accordingly, the asymptotic trace of the MSE μ𝑀𝐿𝐸 is given by 

Cov(𝛍̂MLE) = 𝑡𝑟
1

𝑧
[(𝑿𝑻𝑾̂𝑿)

−𝟏
].       (2.9) 

2.2. Ridge-type biased regression estimators 

In the BRM, explanatory variables are assumed to be uncorrelated, similar to linear regression. 

When this assumption is violated, multicollinearity occurs, indicating strong dependencies among 

predictors. Although multicollinearity does not bias coefficient estimates, it inflates their variances, 

widens confidence intervals, and can cause statistically significant variables to appear non-significant. 

This study builds on the foundational work of [11], who introduced penalty term for linear models. 

Recently, the researchers in [8] and [17] modified the ridge-based regression (RBR) estimator to a 

ridge-type biased estimator used to address multicollinearity and improve estimation in weighted linear 

regression models. It is given by 

𝛍̂𝑹𝑩𝑹 = (𝑿𝑻𝑾̂𝑿 + 𝒌𝑰)
−𝟏

𝑿𝑻𝑾̂𝒛̂, 𝑘 > 0.      (2.10) 

The bias introduced due to the shrinkage parameter 𝑘 in the RBR is given by 

𝛍̂𝑹𝑩𝑹 = −𝒌(𝑿𝑻𝑾̂𝑿 + 𝒌𝑰)
−𝟏

𝛍̂𝑴𝑳𝑬.      (2.11) 

Suppose the matrix 𝑿𝑻𝑾̂𝑿  is symmetric and positive semi-definite. Let 𝑸 = matrix of 

orthonormal eigenvectors and 𝜦 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑝) diagonal matrix of eigenvalues, ordered 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0. Then 

𝑸𝑻𝑿𝑻𝑾̂𝑿𝑸 = 𝜦 and  𝛍 = 𝑸⊤𝜸. 

The MSE of the RBR estimator, incorporated with both variance and bias term, is given by 

𝑀𝑆𝐸(μ̂𝑅𝐵𝑅) = 𝐶𝑜𝑣(μ̂𝑅𝐵𝑅) + (𝐵𝑖𝑎𝑠(μ̂𝑅𝐵𝑅))
𝑇

(μ̂𝑅𝐵𝑅) 

=
𝟏

𝒛
(𝑸𝚲𝒌

−𝟏𝚲 𝚲𝒌
−𝟏𝑸𝑻 + 𝒌𝟐𝑸 𝚲𝒌

−𝟏𝛍 𝛍𝑻𝚲𝒌
−𝟏𝑸𝑻).    (2.12) 
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Construct (𝜦𝒌)  with (𝜦𝒌)𝒊𝒊 = 𝜆𝑖 + 𝑘, and (𝜦𝒌)𝒊𝒋 for 𝑖 ≠ 𝑗. 

Trace-based calculation for the MSE is provided in the following expression: 

𝑇𝑀𝑆𝐸(𝛍̂𝑅𝐵𝑅) = 𝑡𝑟(𝑀𝑆𝐸(𝛍̂𝑅𝐵𝑅)), 

𝑡𝑟(𝑀𝑆𝐸(𝛍̂𝑅𝐵𝑅)) =
1

𝑧
∑

𝜆𝑗

(𝜆𝑗+𝑘)
+ 𝑘2𝑝

𝑗=1

μ𝑗
2

((𝜆𝑗+𝑘)
2.     (2.13) 

In Eq (2.11), the first term reflects the asymptotic variance component, whereas the second term 

reflects bias contribution. 

2.3. Liu regression estimator 

Liu [18] introduced a Liu estimator to obtain stable parameter estimates in the presence of severe 

multicollinear predictors within linear regression. 

𝛍̂𝑳𝑹𝑬 = (𝑿𝑻𝑾̂𝑿 + 𝑰)
−𝟏

(𝑿𝑻𝑾̂𝑿 + 𝑞𝑰)
−𝟏

𝛍̂𝑴𝑳𝑬,    0 < 𝑞 < 1,    (2.14) 

where 𝑞 is the Liu parameter. Additionally, the biasing parameter 𝑞, as mathematically defined in 

Eq (2.15), is adopted from the approach proposed by Månsson et al. [19]. The Liu estimator is 

expressed as follows: 

𝛍̂𝑳𝑹𝑬 = (𝑿𝑻𝑾̂𝑿 + 𝑰)
−𝟏

(𝑞 − 1)𝛍̂𝑀𝐿𝐸.      (2.15) 

The MSE is expressed as follows: 

𝑀𝑆𝐸(μ̂𝐿𝑅𝐸) = 𝐶𝑜𝑣(𝛍̂𝐿𝑅𝐸) + (𝛍̂𝐿𝑅𝐸)𝐵𝑖𝑎𝑠(𝛍̂𝐿𝑅𝐸)𝑇 

=
1

𝑧
[𝑸𝚲𝑳

−𝟏 𝚲𝒒𝚲−𝟏𝚲𝐪 𝚲
−𝟏𝑸𝑻](1 − 𝑞)𝟐 𝑸 𝚲𝑳

−𝟏𝛍 𝛍𝑻𝚲𝑳
−𝟏𝑸𝑻,  (2.16) 

where 𝜦𝑳 = 𝑑𝑖𝑎𝑔(𝜆1 + 1, 𝜆2 + 1, … , 𝜆𝑝 + 1)  and 𝜦𝒒 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝑞, 𝜆2 + 𝑞, … , 𝜆𝑝 + 𝑞). 

The MSE corresponds to the trace of Liu regression estimator, as shown below: 

𝑇𝑀𝑆𝐸(𝛍̂𝐿𝑅𝐸) = 𝑡𝑟(𝑀𝑆𝐸(𝛍̂𝐿𝑅𝐸)), 

𝑡𝑟(𝑀𝑆𝐸(μ̂𝐿𝑅𝐸)) =
1

𝑧
∑

(𝜆𝑗+𝑞)
2

𝜆𝑗 (𝜆𝑗+1)
2 + ∑

μ𝑗
2 𝑧 (1−𝑞)2

((𝜆𝑗+1)
2

𝑝
𝑗=1

𝑝
𝑗=1 =

1

𝑧
∑ (

(𝜆𝑗+𝑞)
2

𝜆𝑗 (𝜆𝑗+1)
2 +

μ𝑗
2 𝑧 (1−𝑞)2

((𝜆𝑗+1)
2 ) .

𝑝
𝑗=1  (2.17) 

2.4. Two-parameter Beta regression estimator 

In this section, we present an extended discussion of the two-parameter estimator initially 

proposed by Algamal and Abonazel [20]. The estimator is modified and reformulated to suit the 

framework of the BRM. This modification is designed to mitigate the problem of multicollinearity and 

to improve both robustness and estimation accuracy. The resulting approach is referred to as the two-

parameter regression estimator (TPRE), and the expression is 
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𝛍̂𝑻𝑷𝑹𝑬 = (𝑿𝑻𝑾̂𝑿 + 𝒌𝑰)
−𝟏

(𝑿𝑻𝑾̂𝑿 − 𝑘𝑞𝑰)
−𝟏

𝛍̂𝑴𝑳𝑬, 𝑘 > 0  𝑎𝑛𝑑 0 < 𝑞 < 1.   (2.18) 

The TPRE bias is 

𝑩𝒊𝒂𝒔(𝛍̂𝑻𝑷𝑹𝑬) = 𝑘(𝑞 − 1)(𝑿𝑻𝑾̂𝑿 + 𝒌𝑰)
−𝟏

𝛍̂𝑴𝑳𝑬.     (2.19) 

The MSE of the TPRE can be derived as 

𝑀𝑆𝐸(𝛍̂𝑇𝑃𝑅𝐸) = 𝐶𝑜𝑣(𝛍̂𝑇𝑃𝑅𝐸) + 𝐵𝑖𝑎𝑠(𝛍̂𝑇𝑃𝑅𝐸)𝐵𝑖𝑎𝑠(𝛍̂𝑇𝑃𝑅𝐸) 

=
1

𝑧
[𝑸𝚲𝒌

−𝟏 𝚲−𝟏𝚲𝒌𝒅𝚲𝒌
−𝟏𝑸𝑻] + 𝑘2 𝑸 𝚲𝒌

−𝟏𝛍 𝛍𝑻𝚲𝒌
−𝟏𝑸𝑻,    (2.20) 

where 𝜦𝒌𝒒  =  diag(𝜆₁ +  𝑘𝑞, 𝜆₂ +  𝑘𝑞, … , 𝜆𝑝  +  𝑘𝑞). 

The MSE of the TPRE is given below: 

𝑇𝑀𝑆𝐸(𝛍̂𝑇𝑃𝑅𝐸) = 𝑡𝑟(𝑀𝑆𝐸(𝛍̂𝑇𝑃𝑅𝐸)), 

𝑀𝑆𝐸(μ̂𝑇𝑃𝑅𝐸) =
1

𝑧
∑ (

(𝜆𝑗+𝑘𝑑)
2

𝜆𝑗 (𝜆𝑗+𝑘)
2 +

μ𝑗
2 𝑧𝑘2 (1−𝑞)2

((𝜆𝑗+𝑘)
2 )

𝑝
𝑗=1 .     (2.21) 

2.5. Two-parameter ridge estimator 

Although prior studies have introduced various basic shrinkage-based techniques, a critical 

limitation remains in the selection of an optimal ridge parameter. Hoerl and Kennard [11] introduced 

shrinkage parameter 𝑘 for enhancing the severe multicollinearity and increasing the precision of the 

estimator. It is mathematically defined as 

𝑘𝑜𝑝𝑡 =
𝜎̂2

μ̂max
2 ,          (2.22) 

where  μ̂max
2 = 𝑚𝑎𝑥(μ̂1

2, μ̂2
2 , . . . , μ̂p

2) . 

Equation (2.22) defines 𝑘𝑜𝑝𝑡 as a penalty term, chosen to balance bias and variance, thereby 

improving the accuracy of the estimator. 

Lukman et al. [21] introduced shrinkage parameter for Poisson distribution, mathematically 

defined as below: 

𝑘1 = max (0, 𝑚𝑖𝑛 (
𝜆𝑗

1+𝜆𝑗μ̂j
2),       (2.23) 

𝑘2 = √𝑘1,           (2.24) 

𝑞 = (0, 𝑚𝑎𝑥 (
μ̂𝑚𝑎𝑥

2 −1
1

𝜆̂𝑚𝑎𝑥
+μ̂𝑚𝑎𝑥

2
)).       (2.25) 
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Equation (2.23) defines 𝑘1 to mitigate the impact of extreme eigenvalues, ensuring the estimator 

remains stable in the presence of multicollinearity. In Eq (2.25), the second bias estimator reduces the 

effects of severe multicollinearity while improving the estimator’s overall accuracy. 

The selection of 𝑘 and 𝑞, plays a crucial role in reducing the adverse effects of multicollinearity 

while enhancing the precision and accuracy of the estimator. 

We introduce a modified two-parameter ridge estimator for the TPRE, defined by the biasing 

parameters 𝑘  and 𝑞 , within the BRM framework, referred to in this study as the MTPRE. The 

selection of 𝑘 follows the formulas in Eqs (2.26)–(2.28), while 𝑞 is determined using Eq (2.25): 

𝑘3 =  
min (𝜆𝑗)+

1

𝑝
∑ 𝜆𝑗

𝑝
𝑖=1

1+exp (𝜆𝑗μ̂j
2)

,        (2.26) 

𝑘4 = (0, 𝑘3),          (2.27) 

𝑘5 = √𝑘4.           (2.28) 

Equation (2.26) defines 𝑘3 based on minimum and average of the eigenvalues, applies balanced 

shrinkage, and ensures reliable estimates. Equation (2.27) ensures the shrinkage and keeps within a 

reasonable range to maintaining the stability of the models. In Eq (2.28), square root of 𝑘4 fine-tunes 

the shrinkage, helping to improve the precision of the estimates. 

3. Simulation study 

This section presents computational experiments carried out using random sampling techniques 

to assess how the new proposed method compares with existing approaches. The evaluation of both 

the maximum likelihood method and competing techniques was carried out using the MSE as the 

criterion. 

3.1. Simulation technique 

Predictor variables 𝑥𝑖𝑗 were formulated using the correlation-based structure in Eq (3.1): 

𝑋𝑖𝑗 = √(1 − 𝜌2) ⋅ 𝑤𝑖𝑗 +  𝜌 ⋅ 𝑤𝑖𝑝 ,    𝑖 = 1, 2, . . . , 𝑛, 𝑎𝑛𝑑 𝑗 = 1, 2, . . . , 𝑝.   (3.1) 

This method was used by researchers [22] and [23] to generate the predictor variables, where 𝜌 =
(0.8, 0.9, 0.95, 0.99) represents different levels of correlation between the predictors, and 𝑤𝑖𝑗  are 

independently drawn from a standard normal distribution 𝑁(0,1). The response variable 𝑦𝑖 follows a 

Beta distribution: 

𝑦𝑖 ∼ Beta(𝜃𝑖, 𝑧), 

where 𝜃𝑖 is defined by the logistic transformation of the linear predictor: 

𝜃𝑖 =
exp(𝑥𝑖

𝑇μ)

1+exp (𝑥𝑖
𝑇μ)

, 
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where 𝑧 represents the precision parameter of the Beta distribution. For performance comparison, we 

considered two values of 𝑧: 0.5 and 1.5 . The true coefficient vector 𝛍 = (μ1, μ2 … , μ𝑝)
⊤

 was 

constrained such that 𝛍𝑻𝛍 = 𝟏. Various sample sizes and numbers of predictors were evaluated with 

𝑛 = 20, 50, 80, 100  and 𝑝 = 4,6,10 , where 𝑛  represents the sample size and 𝑝  represents the 

number of predictors. The MSE of the estimators was computed as 

MSE(𝛍̂) =
𝟏

𝑴
∑ (𝛍̂𝒋 − 𝛍)

𝐓
(𝛍̂𝒋 − 𝛍)𝑴

𝒋=𝟏 .       (3.2) 

Monte Carlo simulations with 𝑀 = 1,000 replications were carried out in R to assess the MSE 

across different values of 𝜌, 𝑛, and  𝑝. The results are summarized in Tables 1–4, which report the 

MSEs for the proposed estimator alongside competing methods under these settings. All computations 

were performed using R version 4.1.0. A detailed discussion of the findings is provided in the 

subsequent section. 

Table 1. The MSE of proposed, MLE, and other estimators (𝑛 = 20; varying 𝑝 and 𝜌). 

𝑝 𝜌 𝑧 𝑀𝐿𝐸 𝑅𝐵𝑅 𝐿𝑅𝐸 𝑀𝑇𝑃𝑅𝐸 

 0.8  1.89337927 0.68874723 0.61263832 0.403636 

 0.9 
0.5 

6.60476849 1.6506358 1.17118708 0.43076697 

 0.95 5.4875001 2.0688279 0.9716932 0.36646374 

4 
0.99  27.8779952 35.0360272 1.93396569 0.41355193 

0.8  0.82360435 0.45041869 0.42965759 0.36360744 

 0.9 
1.5 

1.32971048 0.57949174 0.49230068 0.35198521 

 0.95 2.89378272 1.31766411 0.70087545 0.35020277 

 0.99  13.4932132 12.4768994 0.97676757 0.36144394 

 0.8  6.05544531 1.1654949 0.90649226 0.47748835 

 0.9 
0.5 

11.7621962 4.13828861 2.14314128 0.4743637 

 0.95 25.2808742 9.41112987 2.62505304 0.4091923 

6 
0.99  140.816216 209.390747 7.69295661 0.72743087 

0.8  1.11371561 0.49784088 0.45495709 0.35731557 

 0.9 
1.5 

2.18292544 0.92230567 0.64376386 0.37356781 

 0.95 4.77941975 2.04961351 0.85484047 0.35471643 

 0.99  28.6380008 36.6854303 1.50273537 0.37911 

 0.8  119969.198 178633.102 19449.90 14124.00 

 0.9 
0.5 

14366291.2 3960328.8 1576728 29807.02 

 0.95 5568129.67 2656129.34 461092.8 127682.7 

10 
0.99  18414302.2 36023310 670961.13 26299.27 

0.8  278272.3 16038.4 124912.6 33345.25 

 0.9 
1.5 

151992.3 53072.27 24836.27 24943.26 

 0.95 6916927.23 1096728.1 269726.40 43486.24 

 0.99  194712902 1007830 675742.137 22998.26 

 



552 
 

AIMS Mathematics  Volume 11, Issue 1, 543–557. 

Table 2. The MSE of proposed, MLE, and other estimators (𝑛 = 50; varying 𝑝 and 𝜌). 

𝑝 𝜌 𝑧 𝑀𝐿𝐸 𝑅𝐵𝑅 𝐿𝑅𝐸 𝑀𝑇𝑃𝑅𝐸 

 0.8  0.37530089 0.39796272 0.39641556 0.37040818 

 0.9 
0.5 

0.66600608 0.42991829 0.4206935 0.34325317 

 0.95 1.39138414 0.610477 0.54818297 0.33976427 

4 
0.99  6.75443344 3.49531244 1.12329186 0.36065323 

0.8  0.20200623 0.37717701 0.37631954 0.36125222 

 0.9 
1.5 

0.41656468 0.42155962 0.41512719 0.35632064 

 0.95 0.77260661 0.44895677 0.42508437 0.34138058 

 0.99  3.67338019 1.64883831 0.64287705 0.33840556 

 0.8  0.57995449 0.39857752 0.39616526 0.36281025 

 0.9 
0.5 

0.96186938 0.4819198 0.46627117 0.35076195 

 0.95 1.98699333 0.79581885 0.68030995 0.34744211 

6 
0.99  9.36501563 5.46653292 1.42244086 0.34434936 

0.8  0.28161166 0.37000208 0.36875896 0.35188949 

 0.9 
1.5 

0.49561963 0.40362481 0.39603953 0.34122005 

 0.95 1.01214215 0.52992831 0.48178349 0.33848651 

 0.99  5.00873657 2.6296709 0.7971724 0.34983953 

 0.8  2.69036589 0.51721547 0.50899907 0.42534169 

 0.9 
0.5 

3.09378133 0.68623015 0.63226182 0.37590749 

 0.95 4.99771177 1.17937098 0.91632546 0.36191942 

10 
0.99  23.3610857 14.1262585 2.59223146 0.35620088 

0.8  0.46391046 0.3886185 0.38585499 0.35968497 

 0.9 
1.5 

0.808654 0.44221776 0.42657054 0.34547417 

 0.95 1.6010262 0.61448474 0.51995144 0.33415129 

 0.99  7.7745318 4.28764085 1.00605329 0.33688014 

Table 3. The MSE of proposed, MLE, and other stimators (𝑛 = 80; varying 𝑝 and 𝜌). 

𝑝 𝜌 𝑧 𝑀𝐿𝐸 𝑅𝐵𝑅 𝐿𝑅𝐸 𝑀𝑇𝑃𝑅𝐸 

 0.8  0.22260502 0.37476892 0.37440858 0.36146085 

 0.9 
0.5 

0.37137154 0.38471557 0.38301261 0.34812563 

 0.95 0.7359284 0.43739645 0.42634099 0.33649565 

4 
0.99  3.96333983 1.83887135 0.96429088 0.36322992 

0.8  0.10502935 0.35341575 0.35323885 0.34645556 

 0.9 
1.5 

0.22579774 0.37071801 0.36954543 0.34440079 

 0.95 0.44653584 0.42090666 0.41273033 0.34521269 

 0.99  2.08362177 0.89627699 0.57193671 0.34388531 

 0.8  0.26186357 0.36653408 0.36613102 0.35329268 

6 
0.9 

0.5 
0.46544069 0.39765232 0.39510771 0.35071086 

0.95 0.99057811 0.5084249 0.48929845 0.35040366 

 0.99  4.54539868 1.95563911 0.97321437 0.34992413 

     

Continued on next page 
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𝑝 𝜌 𝑧 𝑀𝐿𝐸 𝑅𝐵𝑅 𝐿𝑅𝐸 𝑀𝑇𝑃𝑅𝐸 

 0.8  0.14112583 0.35459398 0.35433144 0.3460298 

6 
0.9 

1.5 
0.27715309 0.38407685 0.38235334 0.35267154 

0.95 0.54222944 0.42797836 0.41744324 0.34283269 

 0.99  2.75865622 1.16028156 0.66232048 0.34657035 

 0.8  0.41718717 0.37891103 0.37814471 0.35994101 

 0.9 
0.5 

0.83910061 0.43283971 0.42761476 0.35669988 

 0.95 1.51546087 0.55679443 0.52198017 0.3385074 

10 
0.99  8.2165454 3.7231466 1.47922649 0.33786217 

0.8  0.20414798 0.36330504 0.36288702 0.35313477 

 0.9 
1.5 

0.40840003 0.38757241 0.38486254 0.3481658 

 0.95 0.79909187 0.45359083 0.43574222 0.336994 

 0.99  3.8474832 1.59030405 0.74786225 0.33639902 

Table 4. The MSE of proposed, MLE, and other estimators (𝑛 = 100; varying 𝑝 and 𝜌). 

𝑝 𝜌 𝑧 𝑀𝐿𝐸 𝑅𝐵𝑅 𝐿𝑅𝐸 𝑀𝑇𝑃𝑅𝐸 

 0.8  0.15030191 0.35109827 0.35096469 0.34399569 

 0.9 
0.5 

0.30607083 0.39835357 0.39730275 0.36552374 

 0.95 0.59080558 0.43370148 0.42738169 0.34732612 

4 
0.99  2.64919779 1.0835372 0.72239963 0.33785071 

0.8  0.08304166 0.35463953 0.35454403 0.34969135 

 0.9 
1.5 

0.18368698 0.36575454 0.3652278 0.34934324 

 0.95 0.34019675 0.39248335 0.38869088 0.34100898 

 0.99  1.65934166 0.69480589 0.52189793 0.34053362 

 0.8  0.18991808 0.35881425 0.35860212 0.34922323 

 0.9 
0.5 

0.39316502 0.40061095 0.39922576 0.36312785 

 0.95 0.74982912 0.46410825 0.45424003 0.34786402 

6 
0.99  3.70107802 1.63102225 0.95825838 0.34156198 

0.8  0.11376439 0.3580375 0.35789435 0.35146892 

 0.9 
1.5 

0.21457824 0.36747128 0.36665259 0.34508626 

 0.95 0.43843102 0.40794434 0.4026904 0.34636058 

 0.99  2.06567986 0.84193828 0.57563338 0.33134479 

 0.8  0.2852229 0.36214458 0.36184414 0.35119063 

 0.9 
0.5 

0.55900374 0.39738078 0.39543622 0.35452892 

 0.95 1.07864837 0.49410747 0.4779846 0.34328554 

10 
0.99  5.41336219 2.10637724 1.07889904 0.33944774 

0.8  0.14558119 0.34798569 0.34780402 0.3412932 

 0.9 
1.5 

0.2859369 0.37825692 0.37696302 0.34923878 

 0.95 0.5826818 0.41894999 0.41036542 0.33827206 

 0.99  2.87696505 1.1413311 0.68494021 0.34441979 
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3.2. Discussion of simulation results 

The estimated MSEs of our proposed estimators MTPRE and MLE and other biased estimators 

RBR and LRE are shown in Tables 1–4. The conclusion based on Monte Carlo simulation results are 

as follows: 

i. The proposed MTPRE consistently demonstrates superior performance compared to the 

other methods (MLE, RBR, and LRE) across different scenarios. The proposed estimator 

has minimum MSE across all simulation scenarios. 

ii. To assess the impact of multicollinearity, we varied 𝜌 from 0.8 to 0.99. It was observed 

that the MSE values for the MLE, RBR, and LRE increased significantly with higher 𝜌. It 

was also observed that the MTPRE estimator remained stable, maintaining the lowest MSE 

across all levels of multicollinearity. 

iii. To assess the effect of sample size, we evaluated performance across 𝑛 =  20, 50, 80, and 

100.  It was found that increasing sample size led to improved performance for all 

estimators. However, it was particularly evident that MTPRE achieved the lowest the MSE 

across all sample sizes as compared to the MLE and other methods. 

iv. To assess the effect of the number of predictors 𝑝 , we compared results for 𝑝 =

 4, 6, and 10 . As the number of predictors increased, the newly proposed estimator 

continued to perform better than the MLE and other methods. So, we consistently observed 

that the MTPRE outperformed all other estimators, even in high-dimensional settings. 

v. Finally, the simulation results clearly show that the new MTPRE method performed better 

than the MLE, RBR, and LRE under varying levels of collinearity, predictor dimensions, 

and sample sizes. 

4. Gasoline yield dataset 

The gasoline yield dataset, which contains a total of 32 observations, was used by [24] and shows 

the proportion of crude oil remaining after the distillation process. The dependent variable is 

proportion, and the predictors include API gravity, vapor pressure, the temperature at which 10% of 

the crude vaporizes (temp10), and the temperature at which all gasoline components vaporize. The 

BRM offers a more appropriate fit, particularly due to the bounded nature of the response variable. 

To evaluate potential multicollinearity among the variables, we examined the correlation matrix 

and visualized it using a heatmap. Additionally, we calculated the condition number (CN) for 

multicollinearity measure in the gasoline dataset. 

Figure 1 shows pairwise correlations, indicating strong multicollinearity; the two independent 

variables, pressure and temp10, are highly negative correlated. The presence of multicollinearity is 

further supported by the high CN of approximately 11,280.5, which exceeds the commonly accepted 

threshold, indicating severe multicollinearity dataset. 
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Figure 1. Pairwise correlations display of dataset. 

We present the Beta regression estimates and their corresponding MSE for proposed and existing 

methods in Table 5. 

Table 5. Estimated MSE and coefficients. 

Coefficients MLE  RBR LRE   MTPRE   

MSE 123.9608 67.8025 23.2334 12.8740 

 𝜇̂0 -2.8646 -1.8696 -0.0941 -0.0971 

𝜇̂1 2.047 -0.0149 -0.0313 -0.0119 

𝜇̂2 1.0319 1.0044 -0.0122 -0.0423 

𝜇̂3 -0.0112 -0.0147 -0.0192 -0.0193 

𝜇̂4 0.3114 0.2114 0.1209 0.0110 

Table 5 shows the estimated MSE and coefficients for each estimator as well as the findings from 

the gasoline dataset with the simulation results. 

Figure 2 presents a comparison of MSE values, showing that the proposed MTPRE yields the 

best performance. 

 

Figure 2. MSE comparison of the MLE, RBR, LRE, and MTPRE. 
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5. Conclusions 

This study presents the MTPRE for the BRM as the alternative to the MLE to better handle the 

severe multicollinearity issues. The performance of the proposed estimator compares to the MLE and 

other biased estimators, including the RBR and LRE, through the Monte Carlo simulation results based 

on mean squared criterion. The findings show that multiple factors, sample size, number of predictors, 

and different level of correlations among the predictor variables the affect the effectiveness of the 

MTPRE and other estimators. The simulation results clearly show that the MTPRE consistently 

outperformed the MLE, RBR, and LRE, with lower MSE, particularly in cases of significant 

multicollinearity. Furthermore, practical applications demonstrated that the MTPRE has superior 

performance over the MLE and other biased estimators, highlighting its effectiveness and robustness 

in practical, real-world scenarios. 
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