AIMS Mathematics, 11(1): 543-557.
AIMS Mathematics DOI: 10.3934/math.2026023

Received: 14 October 2025

Revised: 30 November 2025

Accepted: 10 December 2025

Published: 08 January 2026
https://www.aimspress.com/journal/Math

Research article

Modified two-parameter ridge estimator for the Beta logistic model to

mitigate multicollinearity

Asma Ahmad Alzahrani*
Department of Mathematics, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
*  Correspondence: Email: asmaalzahrani@bu.edu.sa.

Abstract: Multicollinearity poses significant challenges to parameter estimation in regression models,
often undermining the reliability of traditional methods like maximum likelihood estimation (MLE).
This study addresses the issue by evaluating and enhancing regularization techniques, specifically the
ridge-based regression (RBR), the Liu regression estimator (LRE), and a modified two-parameter ridge
estimator (MTPRE) within the context of the Beta regression model (BRM). However, the selection
of appropriate shrinkage parameters remains a persistent challenge. To address this limitation, we
propose an MTPRE that eliminates the need for shrinkage parameter tuning, thereby improving
estimation stability and accuracy. Through extensive simulation studies, the MTPRE consistently
outperformed the MLE, RBR, and LRE under severe multicollinearity based on the mean squared
error (MSE). The effectiveness of proposed estimators was further validated using a real-world
gasoline yield dataset having multicollinearity issues, where the MTPRE demonstrated superior
predictive accuracy and estimation precision. These results highlight the potential of the MTPRE as a
practical and efficient method for handling multicollinearity in regression analysis.
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1. Introduction

The Beta regression model (BRM) is a powerful statistical tool, particularly well-suited for
modeling data within the continuous interval (0,1). It has become widely used in disciplines such as
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economics, ecology, and epidemiology, where the response variable typically represents proportions,
rates, or percentages [1,2]. However, putting it into practice can be tricky, especially when choosing
the right regularization method, like ridge regression, to handle problems like strong multicollinearity
and overfitting [3].

In Beta regression, parameter estimation can be done using either maximum likelihood
estimation (MLE) or a Bayesian approach. The MLE works by maximizing the likelihood of the
observed data, providing efficient and consistent estimates. On the other hand, the Bayesian approach
incorporates prior knowledge, combining it with the data to form a posterior distribution that integrates
both sources of information [4-6]. For the large sample, the MLE provides efficient estimates as
compared to Bayesian paradigm, which is often preferred for small samples parameter estimates.
While linear and logistic regression models each have their unique strengths, they also come with
limitations. The drawback of the BRM is its sensitivity to outliers, which can produce significantly
unreliable parameter estimates and affect the overall model fit [7]. Moreover, the model’s performance
is contingent upon the assumption that the predictor variables are independent. However, in practical
applications, this assumption is often violated, as most predictor variables are dependent, so this results
in multicollinearity issues. When predictor variables are strongly correlated, it can cause standard
errors to increase and lead to unstable, and unreliable coefficient estimates, as highlighted in recent
studies [8-10].

To address these challenges, ridge estimators are widely used to mitigate multicollinearity issues
in regression models. In ridge regression, a penalty term or shrinkage parameter is controlled by a
biasing parameter (k), which helps reduce the risk of overfitting and obtains more reliable parameter
estimates of the regression model in the presence of severe multicollinearity [11]. Amin et al. [12]
highlighted the significant challenge that multicollinearity poses in logistic regression models, which
can undermine the predictive accuracy of the model.

To mitigate these issues, numerous studies have proposed strategies for selecting the optimal
values of k and g to obtain reliable estimates and minimize the estimated mean squared error (MSE)
(see [13-15]). Most recently, Hammad et al. [16] modified the two-parameter ridge estimators for
severe multicollinearity data. However, the literature indicates that no single estimator consistently
performs well across all levels of collinearity. Choosing the best shrinkage parameter is still a tough
challenge and an active area of research, especially in Beta regression models. These models are more
complex because their likelihood structure is different from that of basic linear models.

To address this gap, we introduced a new modified two-parameter ridge estimator (MTPRE) for
the BRM to improve handling of multicoolinearity issues. This new estimator builds on existing
regularization methods by adding extra shrinkage parameters. This helps to better handle problems of
severe multicollinearity. The MTPRE improves both the flexibility and accuracy of parameter
estimation, making Beta regression more stable and reliable, particularly when multicollinearity is a
significant issue. This paper is structured as follows: Section 2 introduces the proposed estimator and
explains the shrinkage parameter selection; Section 3 presents Monte Carlo simulation results;
Section 4 applies the method to real data; and finally, Section 5 concludes the study.

2. Materials and methods

In this section, we discuss the BRM, the ridge and Liu estimators, two-parameter estimators, and
the newly proposed estimators (k and q).
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2.1. Beta regression model

The BRM relies on MLE for parameter estimation, which, while offering good asymptotic
properties, is highly sensitive to multicollinearity. When predictor variables are highly correlated, the
model’s likelihood function flattens, leading to unstable parameter estimates with large standard errors.
Furthermore, due to the nonlinear link function and the bounded nature of the dependent variable in
Beta regression, multicollinearity poses even more severe challenges within this framework. Within
the framework of the BRM, a functional relationship between the mean of the dependent variable and
a set of covariates can be established by specifying an appropriate link function [2]. The model also
introduces a precision parameter, which represents the inverse of the variance term.

Suppose Y is a random variable with independent observations Yy, yy, ..., ¥, and it is assumed to
follow a Beta distribution with two parameters g > 0 and h > 0, denoted as Beta(g, h):

figh) = —B0)

g-1 _ h-1
= rorm” 1-y"1, 0<y<1. 2.1)

The Gamma function denoted by I'(.) with the mean and variance of Gamma distribution is
given by

g . gh
Mean = — and Variance = ————.
g+h (g+h)2(g+h+1)

The provided reparameterization approach for constructing a model with Beta distribution
responses based on Eq (2.1) is as follows:

-8 —
0 =i and u(g+h) =g.

By re-parameterizing the Beta distribution parameters, where 8z =g and z— 60z = h, the
probability distribution of Beta can be written as

. _L 0z-1 _ z—-0z-1
f(yl H,Z) - F(QZ)F(].—G)y (1 Y) . (2'2)

In Beta regression, the outcome variable y is restricted to lie within the range 0 < y < 1.The
model incorporates two key parameters: a scaling factor y, constrained to the interval (0,1), and a
precision parameter z, which must be positive. The value of z is derived using the Gamma function
['(+). The precision parameter z plays a central role in adjusting model variability and is defined as

The Beta distribution has the following mean and variance:
Mean = 0, Variance = 8(1 — ) = o2.

The regression coefficient y, which depends on the covariates, and the logit link function are
commonly used. It can be written as

i
gk = log (g) =Xin=n, (2.3)
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T .
where uz(uil, ”iZ""'uip) , WERY™P is the vector of unknown parameters, and x; =

(xi1, Xi2, -, Xip) represents the vector of explanatory variables for the it" observation. The linear

component of the regression model is 7;. The log-likelihood function of the model is given below:

L(6;,z;;y:) = Xt {logT'(2) — logl(6;(2)) —log((1 — 6,) (2)) + (6:(2) — 1) log(y,) +

(1-6)() + (1 - 6)(2) — 1) log(1 — y)}. (24)
Parameter estimates differentiating w.r.t. y, as shown in Eq (2.3):
S =ZX"A(y' - 6%), (2.5)
where A =( 1 1 L ) =01y, 2, 8" = (61,05 6,) is a diagonal
O A R A AR Y1 Y2reeer Inds bF2rme T &

matrix, y* is the vector of transformed response variables, and 8" is the transformed vector of
predicted values. y; is the logit of y;, and 6; represents the transformed predictions:

y.*:log( i )
' 1=y

and
6; = (6:,) — (1 - 6)z.

Here, Y(-) is the Digamma function. The u is calculated using optimization techniques, such as
weighted regression updates or the Fisher algorithm. The update rule is as follows:

-1
WD = 4 (10,) " + 507 (.

Here, S ﬁr) represents the score function at iteration r, and Ij,,, is the information matrix at the same

iteration, as defined in Eq (2.4). The least-squares method is usually applied to compute the initial
values for the parameter u, while the precision parameters are initialized as follows:

A gl.l_él
Z; = (&iz ) (2.6)

The estimates 6,; and 67 are obtained through linear regression. The iteration process continues

until the changes between consecutive estimates are smaller than the small predefined threshold,
indicating that the algorithm has converged, with X € R™P. The final step is to calculate the MLE
of parameter .

i‘IMLE = (XTWX)_leW2, (27)

W = diag(Wll Wz, saey Wn),
z=0+WTAQY" -6,
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where

w; = @{LPT ((9{(1_32)) 4T ((1—9i)(1—32))} 1

a2 62 62 CHChIE

The MLE for p follows an asymptotically normal distribution. Under regularity conditions, the
expected value of the estimator satisfies

E(fiyre) = 1 as n — oo.

Furthermore, the asymptotic covariance matrix of p,,; ; is expressed as
Cov(fime) = - (X"WX) . (2.8)
Accordingly, the asymptotic trace of the MSE w5 1s given by

Cov(fie) = tr=|(XTWX) ™" 2.9)

2.2. Ridge-type biased regression estimators

In the BRM, explanatory variables are assumed to be uncorrelated, similar to linear regression.
When this assumption is violated, multicollinearity occurs, indicating strong dependencies among
predictors. Although multicollinearity does not bias coefficient estimates, it inflates their variances,
widens confidence intervals, and can cause statistically significant variables to appear non-significant.
This study builds on the foundational work of [11], who introduced penalty term for linear models.
Recently, the researchers in [8] and [17] modified the ridge-based regression (RBR) estimator to a
ridge-type biased estimator used to address multicollinearity and improve estimation in weighted linear
regression models. It is given by

firsr = (XTWX + kI) ' X™W2, k > 0. (2.10)
The bias introduced due to the shrinkage parameter k in the RBR is given by
- T -1
lrpr = —k(XTWX + kI) "fipe. (2.11)
Suppose the matrix XWX is symmetric and positive semi-definite. Let Q = matrix of

orthonormal eigenvectors and A = diag(44,4,, ..., A,) diagonal matrix of eigenvalues, ordered
/11 = Az = e = Ap > 0. Then

Q"XTWXQ =A and pn=Q7y.

The MSE of the RBR estimator, incorporated with both variance and bias term, is given by

~ ~ , ~ T .
MSE (figgr) = Cov(figgr) + (BlaS(HRBR)) (Mrpr)

1 — - - —
=~ (QAL"AAL'QT + K2Q A nTAL'QT). (2.12)
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Construct (Ay) with (A); = 4; + k, and (Ay);; for i # j.
Trace-based calculation for the MSE is provided in the following expression:
TMSE (Rgpr) = tr(MSE (Wzpr)),

. 1 Aj w3
tr(MSE (gpr)) = - 11?=1(,1jik) ’ ((Ajik)z'

(2.13)

In Eq (2.11), the first term reflects the asymptotic variance component, whereas the second term
reflects bias contribution.

2.3. Liu regression estimator

Liu [18] introduced a Liu estimator to obtain stable parameter estimates in the presence of severe
multicollinear predictors within linear regression.

fire = (XTWX + 1) (XTWX + qI) fiygg, 0<q<1, (2.14)

where q is the Liu parameter. Additionally, the biasing parameter g, as mathematically defined in
Eq (2.15), is adopted from the approach proposed by Ménsson et al. [19]. The Liu estimator is
expressed as follows:

~ — -1 R
Are = (XTWX +1) " (q — Ditye. (2.15)
The MSE is expressed as follows:

MSE (fiyrg) = Cov(fiigre) + (Apre)Bias(firp)”
= i [QA;! AqA_1Aq AT1QTI(1 — @)? @ AptpnTA T, (2.16)

where A; = diag(4, + 1,4, +1,...,4, + 1) and A, =diag(h +q,4; +q, .., 4, +q).
The MSE corresponds to the trace of Liu regression estimator, as shown below:

TMSE (W gg) = tr(MSE (i gg)),

o 1$p (Aj*'Q)z p H? z(1-q)? 1@p (Aj+q)2 u? z(1-q)?
MSE =lyp U ye WETE_lye @l
tT( \) (HLRE)) z le/lj (Aj+1)2 + j=1 ((/1j+1)2 ZZ]:l /1j (A]-+1)2 + ((/1]_+1)2 ( 7)

2.4. Two-parameter Beta regression estimator

In this section, we present an extended discussion of the two-parameter estimator initially
proposed by Algamal and Abonazel [20]. The estimator is modified and reformulated to suit the
framework of the BRM. This modification is designed to mitigate the problem of multicollinearity and
to improve both robustness and estimation accuracy. The resulting approach is referred to as the two-
parameter regression estimator (TPRE), and the expression is
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firpre = (XTWX + k1) (XTWX — kql) iy, k>0 and 0 < q < 1. (2.18)

The TPRE bias is
. ~ — -1__
Bias(firpgp) = k(@ — 1)(XTWX + kI) iy (2.19)

The MSE of the TPRE can be derived as

MSE (firprg) = Cov(firpre) + Bias(Rrpre)Bias(Rrpre)
1 1 A _ _ _
=-[QAL" AT AL QT] + K2 Q At nTAL'QT, (2.20)

where Agq = diag(d: + kq, A2 + kq,..., 4, + kq).
The MSE of the TPRE is given below:

TMSE(Wrpgre) = tr(MSE (Rrpre)),

(4j+ka)®  n?zk? (1-q)°
Aj (A+k)° ((Aj+k)?

A 1
MSE (irpre) = 7 ?=1< (2.21)

2.5. Two-parameter ridge estimator

Although prior studies have introduced various basic shrinkage-based techniques, a critical
limitation remains in the selection of an optimal ridge parameter. Hoerl and Kennard [11] introduced
shrinkage parameter k for enhancing the severe multicollinearity and increasing the precision of the
estimator. It is mathematically defined as

82

kopt = ﬁz_’ (222)

max

- ~2 a2 ~2
where i« = max(fiy, 7,..., ) -

Equation (2.22) defines k,,; as a penalty term, chosen to balance bias and variance, thereby
improving the accuracy of the estimator.

Lukman et al. [21] introduced shrinkage parameter for Poisson distribution, mathematically
defined as below:

_ ; Aj
k; = max (0, min (1”]_?1?), (2.23)
ky = ki, (2.24)
~2 _
q =| 0,max <5L’121) ) (2.25)
Tmax Hmax
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Equation (2.23) defines k; to mitigate the impact of extreme eigenvalues, ensuring the estimator
remains stable in the presence of multicollinearity. In Eq (2.25), the second bias estimator reduces the
effects of severe multicollinearity while improving the estimator’s overall accuracy.

The selection of k and q, plays a crucial role in reducing the adverse effects of multicollinearity
while enhancing the precision and accuracy of the estimator.

We introduce a modified two-parameter ridge estimator for the TPRE, defined by the biasing
parameters k and g, within the BRM framework, referred to in this study as the MTPRE. The
selection of k follows the formulas in Eqs (2.26)—(2.28), while q is determined using Eq (2.25):

min (AD+3 5, 2

5= e ) (2.26)
k4— = (0, k3)9 (227)
ks = ks (2.28)

Equation (2.26) defines k3 based on minimum and average of the eigenvalues, applies balanced
shrinkage, and ensures reliable estimates. Equation (2.27) ensures the shrinkage and keeps within a
reasonable range to maintaining the stability of the models. In Eq (2.28), square root of k, fine-tunes
the shrinkage, helping to improve the precision of the estimates.

3. Simulation study

This section presents computational experiments carried out using random sampling techniques
to assess how the new proposed method compares with existing approaches. The evaluation of both
the maximum likelihood method and competing techniques was carried out using the MSE as the
criterion.

3.1. Simulation technique

Predictor variables x;; were formulated using the correlation-based structure in Eq (3.1):

Xij=JA=p®) -wijj+ p-wy, i=12,..,nandj=12,...,p. (3.1)

This method was used by researchers [22] and [23] to generate the predictor variables, where p =
(0.8,0.9,0.95,0.99) represents different levels of correlation between the predictors, and w;; are
independently drawn from a standard normal distribution N (0,1). The response variable y; follows a
Beta distribution:

y; ~ Beta(6;, z),
where 6; is defined by the logistic transformation of the linear predictor:

exp(x{ 1)

E™ texp Ty
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where z represents the precision parameter of the Beta distribution. For performance comparison, we

considered two values of z:0.5and 1.5. The true coefficient vector p = (ul, 15 ...,up)T was

constrained such that pTp = 1. Various sample sizes and numbers of predictors were evaluated with
n = 20,50,80,100 and p = 4,6,10, where n represents the sample size and p represents the
number of predictors. The MSE of the estimators was computed as

MSE(R) = 23, (1, — 1) (/) — ). (32)

Monte Carlo simulations with M = 1,000 replications were carried out in R to assess the MSE
across different values of p, n, and p. The results are summarized in Tables 1-4, which report the
MSEs for the proposed estimator alongside competing methods under these settings. All computations
were performed using R version 4.1.0. A detailed discussion of the findings is provided in the

subsequent section.

Table 1. The MSE of proposed, MLE, and other estimators (n = 20; varying p and p).

p p z MLE RBR LRE MTPRE
0.8 1.89337927  0.68874723  0.61263832 0.403636
0.9 0.5 6.60476849  1.6506358  1.17118708  0.43076697
0.95 ' 5.4875001 2.0688279 0.9716932  0.36646374
4 0.99 27.8779952  35.0360272  1.93396569  0.41355193
0.8 0.82360435 0.45041869  0.42965759  0.36360744
0.9 15 1.32971048  0.57949174  0.49230068  0.35198521
0.95 ' 2.89378272 1.31766411  0.70087545  0.35020277
0.99 13.4932132  12.4768994  0.97676757 0.36144394
0.8 6.05544531 1.1654949  0.90649226  0.47748835
0.9 0.5 11.7621962  4.13828861 2.14314128  0.4743637
0.95 ' 25.2808742  9.41112987  2.62505304  0.4091923
6 0.99 140.816216  209.390747  7.69295661  0.72743087
0.8 1.11371561  0.49784088  0.45495709  0.35731557
0.9 15 2.18292544  0.92230567 0.64376386 0.37356781
0.95 ' 4.77941975  2.04961351  0.85484047 0.35471643
0.99 28.6380008  36.6854303  1.50273537 0.37911
0.8 119969.198  178633.102 19449.90 14124.00
0.9 0.5 14366291.2  3960328.8 1576728 29807.02
0.95 ' 5568129.67 2656129.34 461092.8 127682.7
10 0.99 18414302.2 36023310 670961.13 26299.27
0.8 278272.3 16038.4 124912.6 33345.25
0.9 15 151992.3 53072.27 24836.27 24943.26
0.95 ' 6916927.23  1096728.1 269726.40 43486.24
0.99 194712902 1007830 675742.137 22998.26
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Table 2. The MSE of proposed, MLE, and other estimators (n = 50; varying p and p).

p p z MLE RBR LRE MTPRE
0.8 0.37530089  0.39796272  0.39641556  0.37040818
0.9 0.5 0.66600608  0.42991829  0.4206935  0.34325317
0.95 ' 1.39138414 0.610477 0.54818297  0.33976427
4 0.99 6.75443344  3.49531244  1.12329186  0.36065323
0.8 0.20200623  0.37717701  0.37631954 0.36125222
0.9 L5 0.41656468 0.42155962  0.41512719  0.35632064
0.95 ' 0.77260661  0.44895677  0.42508437  0.34138058
0.99 3.67338019  1.64883831 0.64287705  0.33840556
0.8 0.57995449  0.39857752  0.39616526  0.36281025
0.9 0.5 0.96186938  0.4819198  0.46627117  0.35076195
0.95 ' 1.98699333  0.79581885  0.68030995 0.34744211
6 0.99 9.36501563  5.46653292  1.42244086  0.34434936
0.8 0.28161166  0.37000208  0.36875896  0.35188949
0.9 15 0.49561963  0.40362481  0.39603953  0.34122005
0.95 ' 1.01214215  0.52992831 0.48178349  0.33848651
0.99 5.00873657  2.6296709 0.7971724  0.34983953
0.8 2.69036589 0.51721547  0.50899907  0.42534169
0.9 0.5 3.09378133  0.68623015  0.63226182  0.37590749
0.95 ' 4.99771177  1.17937098  0.91632546  0.36191942
10 0.99 233610857  14.1262585  2.59223146  0.35620088
0.8 0.46391046  0.3886185  0.38585499  0.35968497
0.9 15 0.808654 0.44221776  0.42657054 0.34547417
0.95 ' 1.6010262  0.61448474 0.51995144  0.33415129
0.99 7.7745318  4.28764085 1.00605329  0.33688014

Table 3. The MSE of proposed, MLE, and other stimators (n = 80; varying p and p).

p p z MLE RBR LRE MTPRE
0.8 0.22260502  0.37476892  0.37440858  0.36146085
0.9 0.5 0.37137154 0.38471557 0.38301261  0.34812563
0.95 ' 0.7359284  0.43739645 0.42634099  0.33649565

4 0.99 3.96333983  1.83887135  0.96429088  0.36322992
0.8 0.10502935  0.35341575  0.35323885  0.34645556
0.9 L5 0.22579774 037071801  0.36954543  0.34440079
0.95 ' 0.44653584  0.42090666  0.41273033  0.34521269
0.99 2.08362177 0.89627699  0.57193671  0.34388531
0.8 0.26186357 0.36653408 0.36613102  0.35329268

6 0.9 0.5 0.46544069 0.39765232  0.39510771  0.35071086
0.95 0.99057811  0.5084249  0.48929845  0.35040366
0.99 4.54539868  1.95563911  0.97321437  0.34992413
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p p z MLE RBR LRE MTPRE
0.8 0.14112583  0.35459398 0.35433144  0.3460298
6 0.9 L5 0.27715309  0.38407685  0.38235334  0.35267154
0.95 ’ 0.54222944  0.42797836  0.41744324  0.34283269
0.99 2.75865622  1.16028156  0.66232048  0.34657035
0.8 0.41718717 0.37891103  0.37814471  0.35994101
0.9 0.5 0.83910061  0.43283971 0.42761476  0.35669988
0.95 ’ 1.51546087 0.55679443  0.52198017  0.3385074
10 0.99 8.2165454 3.7231466  1.47922649 0.33786217
0.8 0.20414798 0.36330504 0.36288702  0.35313477
0.9 L5 0.40840003  0.38757241 0.38486254  (0.3481658
0.95 ’ 0.79909187  0.45359083  0.43574222 0.336994
0.99 3.8474832  1.59030405 0.74786225 0.33639902
Table 4. The MSE of proposed, MLE, and other estimators (n = 100; varying p and p).
p p z MLE RBR LRE MTPRE
0.8 0.15030191  0.35109827  0.35096469  0.34399569
0.9 0.5 0.30607083  0.39835357  0.39730275 0.36552374
0.95 ' 0.59080558  0.43370148 0.42738169  0.34732612
4 0.99 2.64919779  1.0835372  0.72239963  0.33785071
0.8 0.08304166  0.35463953  0.35454403  0.34969135
0.9 15 0.18368698  0.36575454  0.3652278  0.34934324
0.95 ' 0.34019675  0.39248335  0.38869088  0.34100898
0.99 1.65934166  0.69480589  0.52189793  0.34053362
0.8 0.18991808  0.35881425 0.35860212  0.34922323
0.9 0.5 0.39316502  0.40061095  0.39922576  0.36312785
0.95 ' 0.74982912  0.46410825 0.45424003  0.34786402
6 0.99 3.70107802  1.63102225 0.95825838  0.34156198
0.8 0.11376439  0.3580375  0.35789435 0.35146892
0.9 15 0.21457824 0.36747128  0.36665259  0.34508626
0.95 ' 0.43843102  0.40794434  0.4026904  0.34636058
0.99 2.06567986  0.84193828  0.57563338  0.33134479
0.8 0.2852229  0.36214458 0.36184414  0.35119063
0.9 0.5 0.55900374  0.39738078  0.39543622  0.35452892
0.95 ' 1.07864837  0.49410747  0.4779846  0.34328554
10 0.99 5.41336219  2.10637724  1.07889904  0.33944774
0.8 0.14558119  0.34798569  0.34780402  0.3412932
0.9 L5 0.2859369  0.37825692  0.37696302  0.34923878
0.95 ' 0.5826818  0.41894999  0.41036542 0.33827206
0.99 2.87696505  1.1413311  0.68494021  0.34441979
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3.2. Discussion of simulation results

The estimated MSEs of our proposed estimators MTPRE and MLE and other biased estimators
RBR and LRE are shown in Tables 1-4. The conclusion based on Monte Carlo simulation results are
as follows:

i.  The proposed MTPRE consistently demonstrates superior performance compared to the
other methods (MLE, RBR, and LRE) across different scenarios. The proposed estimator
has minimum MSE across all simulation scenarios.

ii.  To assess the impact of multicollinearity, we varied p from 0.8 to 0.99. It was observed
that the MSE values for the MLE, RBR, and LRE increased significantly with higher p. It
was also observed that the MTPRE estimator remained stable, maintaining the lowest MSE
across all levels of multicollinearity.

iii.  To assess the effect of sample size, we evaluated performance across n = 20,50, 80, and
100. It was found that increasing sample size led to improved performance for all
estimators. However, it was particularly evident that MTPRE achieved the lowest the MSE
across all sample sizes as compared to the MLE and other methods.

iv.  To assess the effect of the number of predictors p, we compared results for p =
4,6,and 10. As the number of predictors increased, the newly proposed estimator
continued to perform better than the MLE and other methods. So, we consistently observed
that the MTPRE outperformed all other estimators, even in high-dimensional settings.

v.  Finally, the simulation results clearly show that the new MTPRE method performed better
than the MLE, RBR, and LRE under varying levels of collinearity, predictor dimensions,
and sample sizes.

4. Gasoline yield dataset

The gasoline yield dataset, which contains a total of 32 observations, was used by [24] and shows
the proportion of crude oil remaining after the distillation process. The dependent variable is
proportion, and the predictors include API gravity, vapor pressure, the temperature at which 10% of
the crude vaporizes (temp10), and the temperature at which all gasoline components vaporize. The
BRM offers a more appropriate fit, particularly due to the bounded nature of the response variable.

To evaluate potential multicollinearity among the variables, we examined the correlation matrix
and visualized it using a heatmap. Additionally, we calculated the condition number (CN) for
multicollinearity measure in the gasoline dataset.

Figure 1 shows pairwise correlations, indicating strong multicollinearity; the two independent
variables, pressure and temp10, are highly negative correlated. The presence of multicollinearity is
further supported by the high CN of approximately 11,280.5, which exceeds the commonly accepted
threshold, indicating severe multicollinearity dataset.
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Figure 1. Pairwise correlations display of dataset.

We present the Beta regression estimates and their corresponding MSE for proposed and existing
methods in Table 5.

Table 5. Estimated MSE and coefficients.

Coefficients MLE RBR LRE MTPRE
MSE 123.9608 67.8025 23.2334 12.8740

Ao -2.8646 -1.8696 -0.0941 -0.0971

fq 2.047 -0.0149 -0.0313 -0.0119

15 1.0319 1.0044 -0.0122 -0.0423

3 -0.0112 -0.0147 -0.0192 -0.0193

g 0.3114 0.2114 0.1209 0.0110

Table 5 shows the estimated MSE and coefficients for each estimator as well as the findings from
the gasoline dataset with the simulation results.

Figure 2 presents a comparison of MSE values, showing that the proposed MTPRE yields the
best performance.

>< Method
120 | >  MLE
> RBR
>< LRE
100 | > MTPRE
80 |-
=]
=] ><
60
a0
>0 ><
><
MLE RBR LRE MTPRE

Method

Figure 2. MSE comparison of the MLE, RBR, LRE, and MTPRE.
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5. Conclusions

This study presents the MTPRE for the BRM as the alternative to the MLE to better handle the
severe multicollinearity issues. The performance of the proposed estimator compares to the MLE and
other biased estimators, including the RBR and LRE, through the Monte Carlo simulation results based
on mean squared criterion. The findings show that multiple factors, sample size, number of predictors,
and different level of correlations among the predictor variables the affect the effectiveness of the
MTPRE and other estimators. The simulation results clearly show that the MTPRE consistently
outperformed the MLE, RBR, and LRE, with lower MSE, particularly in cases of significant
multicollinearity. Furthermore, practical applications demonstrated that the MTPRE has superior
performance over the MLE and other biased estimators, highlighting its effectiveness and robustness
in practical, real-world scenarios.
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