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Abstract: This study introduces a novel and adaptable bimodal class of two-piece skew-normal
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comprehensively examines the analytical attributes of the suggested model, encompassing its
cumulative distribution function, moments, moment generating function, Rényi entropy, reliability
metrics with aging intensity, and other critical statistical properties. The model effectively captures
asymmetric behavior, accommodating both negative and positive skewness, and is particularly well
suited for leptokurtic data characterized by an increasing hazard rate. Furthermore, it adeptly manages
both over- and under-dispersed data, enhancing its relevance across many domains. To improve its
adaptability, extensions of the distribution concerning location and scale are also devised. Parameter
estimation is conducted using the maximum likelihood approach. A detailed simulation study
assesses the performance of the estimators, illustrating their asymptotic consistency and efficiency.
The practical utility of the suggested distribution is demonstrated through applications to real-world
datasets, where it regularly outperforms multiple existing rival models in goodness-of-fit. Finally, a
likelihood ratio test is utilized to statistically validate the superiority of the presented model compared
to its nested alternatives.
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1. Introduction

Statistics and the applied sciences have long relied on the normal (N) distribution as a fundamental
probability model due to its mathematical tractability and its frequent emergence in real-world
phenomena; see [1,2]. It underpins a wide range of methodologies, including regression modeling,
measurement error theory, and classical statistical inference. Nevertheless, in fields such as reliability
analysis, environmental sciences, economics, and biology, empirical data often display skewness or
asymmetry. Because the N distribution is inherently symmetric, it is generally inadequate for modeling
such asymmetric data structures. In 1985, Azzalini and colleagues expanded the N model with the
skew-normal (SN) distribution, which has a shape parameter that adjusts the degree and direction of
skewness, in order to circumvent this constraint [3]. There is a probability density function (PDF) for
the SN distribution that is given by

f(x; ) = 2¢0(x)D(Ax), xeR,1€R, (1.1)

where ¢(-) represents the standard N distribution’s PDF, and ®(-) stands for its cumulative distribution
function (CDF). The asymmetry parameter, which controls the distribution’s asymmetry, is another
name for the additional parameter A(¢ R). Modern statistical modeling relies heavily on the SN
distribution, which has been extensively expanded since its inception to account for more nuanced
properties, including bimodality, kurtosis fluctuations, and thicker tails. Many skewed families have
been suggested since the SN distribution was introduced, as previously mentioned. The skewed
distribution families proposed in [4, 5] are particularly noteworthy. For further details, see [6, 7].
These models extend the classical framework by incorporating additional parameters that allow greater
flexibility in controlling skewness. Improving the flexibility of skewed model creation, [8] introduced a
new skew-logistic distribution that uses an innovative skew technique independent of a CDF. The tanh-
SN distribution, which incorporates the hyperbolic tangent function, was developed by Mahmoud [9]
as a more modern and significant variation of the SN distribution. A smooth and flexible type of
skewness can be achieved using the distribution while maintaining analytical tractability, thanks to
the hyperbolic tangent function. Although these models are quite flexible for asymmetric data, most
of them are made for unimodal distributions. In fact, however, many datasets in the real world have
bimodal or even multimodal features. There is a great deal of literature on this kind of data, such
as studies on metabolic rates [10], chemical and physical mixtures [11], precipitation and rainfall
data [12], hydrological measurements [13], environmental processes [14], and social or biological
phenomena [15, 16]. These examples show how important it is to build probability models that can
handle multimodal behavior in data. Recent research has focused on creating adaptable families of
distributions capable of modeling data with several modes. [17] introduced a category of symmetric and
asymmetric bimodal distributions by incorporating additional parameters into the Azzalini SN model.
In their study, they introduced an innovative two-parameter bimodal skew-normal (BSN) distribution
defined by the subsequent PDF as

1+«

2
Y 40 D(x), x€R, 1€R, a>0, (1.2)

ca, ) =2
fa,d) oo

which effectively represents data-sets that exhibit two separate modes. In a similar vein, [18] introduces
the bimodal tanh-skew-normal distribution, which extends the tanh-skew-normal distribution presented
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by [9]. Alongside the BSN distribution, various other families have been created to represent
bimodality and asymmetry through various methodologies. The list comprises the alpha-SN (ASN)
distribution introduced by [19], the alpha-SL distribution by [20,21], the generalized ASN distribution
by [22], and the generalized ASL distribution by [23]. The PDF of the ASN distribution as shown
in [19] is expressed as

(1 —ax)?®+1
2 +a?

f(x; ) = o(x), xeR, aeR. (1.3)

Additional significant advancements encompass the Balakrishnan ASN distribution [24], the
Balakrishnan ASL distribution [25,26], and the Balakrishnan log ASN distribution [27]. Additionally,
the bimodal skew-symmetric normal distribution proposed by [21] constitutes a significant
advancement in the examination of asymmetric bimodal models. Besides, [28, 29] also reflect
some significant results regarding the multimodality of some asymmetric normal distributions. In
addition, recent advancements in degradation modeling have emphasized robust Bayesian frameworks
for online state estimation under outliers and parameter uncertainty [30], as well as conjugate-
prior-based inference and online model prediction for homogeneous and heterogeneous Gamma
process models [31], further highlighting the growing interest in flexible and computationally efficient
reliability modeling approaches.

The two-piece normal (TPN) distribution was proposed by [32] as a versatile family of uni-
and bimodal distributions that extends the conventional normal model to accommodate asymmetry
while maintaining analytical manageability. This model partitions the real line into two parts, each
characterized by a normal distribution with varying scale parameters, thus facilitating divergent
behavior on either side of the mode. Formally, if a random variable X adheres to a TPN distribution
characterized by the shape parameter A, represented as X ~ TPN(A), its PDF is articulated as

g(x; ) = p(x) e cosh(lx),  x€R, 1> 0, (1.4)

where ¢(x) signifies the ordinary normal probability density function and cosh(-) denotes the hyperbolic
cosine function. The TPN distribution preserves the essential traits of the normal distribution, including
smoothness and unimodality, while incorporating an additional parameter A that regulates skewness
and tail features. Depending on the value of A, the model can generate symmetric, moderately skewed,
or heavy-tailed distributions, thus providing a compromise between interpretability and flexibility.
Due to these characteristics, the TPN distribution acts as a foundational baseline for developing more
broad asymmetric or bimodal distribution families. Recent developments in bimodal and asymmetric
modeling have introduced several flexible extensions of the skew-normal and related distributions.
However, many of these models still exhibit important limitations when applied to real-world data.
First, most existing bimodal families, such as the BSN, ASN, and Balakrishnan-type variants, allow
skewness control but do not provide independent regulation of skewness and bimodality, which
restricts their ability to flexibly tune the prominence and separation of the two modes. Second,
several bimodal transformations rely on complex stochastic constructions or nonlinear perturbations
that hinder analytical tractability, making it difficult to derive closed-form expressions for moments,
entropy, or reliability measures. Third, many classical bimodal extensions are limited in capturing
diverse hazard-rate shapes, which reduces their applicability in survival or reliability modeling.
Furthermore, in some cases, parameter estimation becomes unstable due to strong dependence between
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shape parameters or irregular likelihood surfaces. To address these limitations, this study enhances
the TPN distribution from [32] by incorporating an extra shape parameter to simultaneously account for
skewness and bimodality. This construction enables independent control of skewness and bimodality,
provides closed-form expressions for several key statistical and reliability properties, and supports a
wide range of hazard-rate behaviours. As demonstrated in later sections, the proposed model offers
both theoretical tractability and superior practical flexibility compared with existing bimodal models.
This new distribution is developed based on the ASN distribution outlined in [19]. Additionally,
real-life applications are performed to assess the efficacy of the new distribution in conjunction with
simulation studies.

The subsequent sections of this article are structured as follows. Section 2 presents the
newly proposed bimodal expansion of the TPN distribution. This section also includes graphical
representations to illustrate the impact of the shape parameters on the distribution’s structure and
dynamics. Section 3 delineates critical structural aspects of the NTPN distribution, encompassing
its cumulative distribution function, moment generating function, raw moments, mean deviation,
mode, Rényi entropy, and reliability qualities, thus providing a thorough theoretical framework.
Section 4 elaborates on the location and scale extensions of the NTPN model, subsequently
presenting the formulation of maximum likelihood estimation (MLE) processes. Section 5 presents
a comprehensive simulation analysis to evaluate the performance and consistency of the maximum
likelihood estimators across diverse parameter configurations and sample sizes. Section 6 presents
empirical data applications to assess the practical applicability and goodness-of-fit of the suggested
distribution relative to other models. Section 7 is accountable for the outcome of the likelihood ratio
test. Section 8 finishes the article by summarizing the principal findings, theoretical implications, and
prospective avenues for further research.

2. Mathematical framework and visualization: NTPN model

A continuous random variable X is said to adhere to the NTPN distribution if its PDF is specified as

1—ax)*+1
Fran= 9o . xeRA>0.0¢eR, @.1)
C(a, )
where g(x; A) denotes the PDF of the TPN distribution as specified in Eq (1.4) and C(a, 1) denotes the
normalizing constant, where

amﬂﬁi[ ((1-ax)® + 1) g(x; ) dx = o? (2 +1) +2.
For simplicity, C(a, 1) is denoted by C. The new distribution is referred to as NT PN(«a, ) or simply
the NTPN distribution. The graphical presentation of the PDF of NTPN distribution is depicted in
Figure 1 for different values of the parameters.

From Figure 1(a), it can be observed that with A fixed at 1.38 and « varying 1.52 to 3.52, the
distribution exhibits a distinct bimodal structure. Increasing « results in a noticeable shift of the right-
hand peak toward higher x-values, accompanied by a reduction in its height. This indicates that «
primarily influences the skewness and the relative prominence of the two peaks. Again, Figure 1(b)
shows that for a fixed @ = 1.25 and varying A from 0.24 to 0.95, the bimodal structure is preserved,
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but changes in A alter the height and separation of the peaks. Larger A values reduce the height of
the left-hand peak while slightly shifting the density mass toward the right. This suggests that A4
regulates the spread and balance of the two modes. Again, from Figure 1(c) it can be established that
if both the two parameters are considered to be zero, then the NTPN distribution reduces to a normal
distribution (with a unimodal symmetric shape). Again, when A is considered to be zero, the NTPN
distribution reduces to an ASN distribution of [19]. Similarly, from Figure 1(d) it can be observed that
the NTPN distribution reduces to a TPN distribution of [32] when « is considered to be zero.

fx(x;a A) fx(x;a A)

04r

— a-152 1-1.38 a-=252 1-1.38 - a—>3.52,A-51.38 — a-1.25,A-0.24 a-1.25A-5061 — a—1.25A-0.95
(b)
fx (x;a A)

030

— a50A>139 — a-009A>139 — a-030A>139
() (d)
Figure 1. The PDF of the NTPN distribution.

The parameter-dependent properties examined here emphasize the interpretability and flexibility of
the NTPN distribution and reveal its structural connections with previously studied asymmetric and
bimodal distributional families. The functional form of the NTPN density satisfies the identity,

(1+ax)? =1 -a(-x),

which directly implies
fx—a, ) = f(=x;a, D).
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Integrating both sides with respect to x yields the following relationship between the
corresponding CDF:
F(x;—a, ) =1-F(—x;a,A). (2.2)

Equation (2.2) shows that reversing the sign of the skewness parameter @ produces a mirror-image
distribution about the origin. Consequently, the parameter @ governs the direction of skewness in
a manner consistent with other skewed distributional families, such as the ASN and BSN models.
Moreover, the proposed NTPN distribution encompasses several prominent models as special or
limiting cases. Specifically,

F(x;0,2) = Fpn(x; ), F(x;a,0) = Fasn(x; @),

and
F(x;0,0) = O(x),

where Frpy denotes the cumulative distribution function of the TPN distribution [32], Fasn represents
the cumulative distribution function of the ASN distribution [19], and ®(-) is the standard normal
cumulative distribution function. These relationships clarify the distinct roles of the model parameters:
The parameter a controls directional skewness, whereas the parameter A regulates tail behavior,
multimodality, and peakedness. In particular, setting @ = 0 removes skewness, while setting 4 = 0
eliminates the two-piece structure of the distribution. The CDF of the NTPN distribution is obtained
by integrating its PDF given in Eq (2.1). Thus, the CDF can be expressed as

F(x;a,Ad) :%[B(D(x— D+ (C+2ad-B)D(x+ )

+ag(d + ) [+ x) - 2] + (-2 + x + 2)} |, (2.3)

where
B=a*>+1)-2ad+2.

Starting from the definition

F(x;a,/l):fx f(t;a,/l)dt:éfx (1 = ar)* + 1) g(r; M) dt,

the integral can be decomposed as

F(x;a,/l):é[fx g(t;/l)dt—2afx tg(t;/l)dt+a2fx tzg(t;/l)dt]

o0 —00 —00

1
= E[]O(x) - 2al(x) + 01212(36)]»

where Iy(x) represents the CDF of the TPN distribution introduced by [32], and the other terms are
given by

Ii(x) = fx tg(t; ) dt = %[Q)(x— ) —-0O(x+ )]+ %¢(x+ D+ 1),

(o)
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L(x) = f £ g(t; D) dt = %(12 + D[®(x =) + D(x+ ) — 1]

(59

+ %qﬁ(x + DA - YA+ x) - x] + %(/12 +1).

Substituting these expressions into the above equation yields the closed-form CDF given in Eq (2.3).
The CDF of the NTPN distribution for different parameter combinations of a and A is illustrated in
Figure 2. Figure 2(a) displays the CDF for fixed @ = 0.1 and varying A values, showing how the scale
parameter A influences the steepness and spread of the curve. Figure 2(b) demonstrates the combined
effects of @ and 4, revealing that a primarily controls the skewness and tail behavior of the distribution,
while A governs its location and dispersion. Overall, these plots highlight the flexibility of the NTPN
distribution in modeling both symmetric and asymmetric data structures.

Fx(x;a A)

Fx(x;a A)
1.0 -

= I ¥ 1
-5 5 5

— a-0.1,A>1.33 a-0.1,A-2.39 - a-0.1,A-3.39 — a-9.1,A-0.9 a—3.1,A-0.3 a-2.1,A-0
— a-0.1,A5431 — a-0.1,A155.39 — a-0.1,A-5.09 — a-»0,A50 — a-0,A»4.19 — a—-5.5A1-55.09
(a) (b)

Figure 2. The CDF of the NTPN distribution.

3. Statistical and reliability properties

3.1. Capability to exhibit two modes

To investigate the modality of the NTPN distribution, we analyze the critical points of the density
function f(x; @, 4) given in Eq (2.1). Differentiating the density with respect to x yields

-1+
f'(x;a, ) = ———|A(x) sinh(Ax) — B(x) cosh(4x)|, (3.1
\2rC | ]
where A(x) = A(a?x* — 2ax + 2), and B(x) = 2a + a?x® — 2ax? — 2(a* — 1)x. Since cosh(Ax) > 0 for
all x € R and sinh(Ax) is strictly increasing on R, the zeros of f’(x; @, A) are exactly the solutions of

H(x) = A(x) tanh(Ax) — B(x) = 0. (3.2)

Again, the function tanh(Ax) is strictly increasing and bounded between —1 and 1. Besides, A(x)
is a quadratic polynomial, and B(x) is a cubic polynomial. Thus, A(x)tanh(Ax) is the product of
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a quadratic polynomial and a smooth monotone function, and B(x) is a smooth cubic polynomial.
Hence, H(x) is a smooth function on R, whose curvature is governed by at most cubic behavior.
Differentiating H(x) gives

H'(x) = A’(x) tanh(1x) + A(x)A sech’(1x) — B'(x),
where
A’(x) is linear, B’(x) is quadratic, sech?(Ax) is strictly decreasing for x > 0.

Thus, H'(x) is the sum of at most quadratic polynomial terms and monotone, bounded functions, which
implies that H’(x) can change sign at most twice. Hence, H(x) can have at most three real zeros. Each
zero of H(x) corresponds to a critical point of f(x;a@, ). A smooth density f may have at most as
many local extrema as the number of distinct real zeros of f’. Since f’(x;a, A) has at most three real
zeros, the density f(x; a, 1) can exhibit at most two local maxima. Therefore, the NTPN distribution
can have at most two modes.

3.2. Analysis of moments and key descriptive features: Theoretical and computational perspectives

Theorem 3.1. The r'" order moment of the NTPN distribution is

(1Y = e 25 P (1 (rtl rel 12
EX") = [ﬁarF(—)M(—+1 )+F( 5 ){ZM( EE)

V2rC 2) 2" e 2
312
+ a2+ 1)M(%; > ?)}] (3.3)

where M(a, b,z) = 1F1(a;b; 7) is the confluent hypergeometric function of the first kind [33].

Proof. Using the expression of the PDF given in Eq (2.1), the " order moment of the NTPN
distribution is defined as:

EX") = foo X f(x;a, Ddx

= 1 foo X ((1 = ax)® + 1) g(x; A) dx

C
1 00
= c Ioo x’(2 —2ax + a2x2)g(x; A dx
1 00 00 00
= E[Zf xX'g(x; Ddx — 2af xe(x; Ddx + a? f X e(x; /l)dx]

= é[216(x) - 20517()C) + Q'ZIS(X)J'

It can be easily understood that g is the 7" order moment of the TPN distribution, which was calculated
by [32]. Again, the remaining integrations are calculated as

o 2573 (-1 = 1)1 1 12
L(x) = Im X g(x; Ddx = - « \/;T ) F(% + 1) 1 Fi (5(—1’— 1); 5;—5),
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r+l
2

> 271 (-1 +1 3 12
o = [ g0 - ((ﬁ) * )r(’; )IF1 (—%—1;5;—7).

Using these values, the final expression for moments of the NTPN distribution is evaluated and
obtained as

22

n ((C1) = e T25 r roo 12 r+1 r+l 122
EX") = N [\/EarF(E)M(§+1,E,E)+F( 5 ){QM( 5 ’5’?)
2 r+31/1_2
+a(r+1)M( > ,2,2)}],

Considering r = 1,2, 3,4 in Eq (3.3), the first four moments are calculated and obtained as

2 2 2
E(X):—ZQ(/I +1)’ E(Xz): a“(3A) + 2(4 +1),
C C
3|5¢%B + 2A
E(X3) - _6a/_A’ E(X4) - M
C C

Using the relationship between the raw and central moments, variance, coefficient of skewness (y;),
and coefficient of kurtosis (y,) of the NTPN distribution are obtained as

(Ba?A +2(22 + 1))C — 4a*(2% + 1)?

Var(X) =

C2 :
a[—6AC2 +6(22 + NCBa?A + 222 + 1)) — 162412 + 1)3]
Y1 = C3 o3 s
3BC? — 4802 (2% + DAC? + 240212 + 1)2(302A + 2(A% + 1))C — 48a*(2% + 1)*
Y2 = Cho ’
where

A A0 A
A:?+2/12+1, B:5a2E+/l4+3/12+1)+2(?+2/12+1),

C=a*+1)+2.

Table 1 displays numerical values for the mean, variance, skewness, and kurtosis coefficients of
the NTPN distribution for specified values of @ and A. The results in Table 1 illustrate the considerable
flexibility of the NTPN distribution in capturing diverse data behaviors. For small values of |a],
the distribution exhibits symmetric or nearly symmetric shapes, whereas larger values of |@| produce
strongly skewed distributions in either direction. Across all examined values, the distribution remains
leptokurtic, indicating its ability to model heavy-tailed phenomena effectively. Furthermore, the
analysis of the dispersion index reveals that the NTPN distribution can accommodate both under-
dispersed and over-dispersed data, highlighting its practical utility in modeling a wide range of real-
world datasets.
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Table 1. Some descriptive computations for the NTPN model.

a A Mean Variance (0°) Skewness (y;) Kurtosis (y,)
-2.0 0.5 1.578 1.204 1.862 3.789
-1.5 05 1.211 1.065 1.437 3.562
-1.0 0.5 0.800 0.960 0.975 3.447
-0.5 0.5 0.397 0.933 0.486 3.221

0.5 0.5 -0.397 0.933 -0.486 3.221
1.0 0.5 -0.800 0.960 -0.975 3.447
1.5 05 -1.211 1.065 —1.437 3.562
20 05 -1.578 1.204 —1.862 3.789

3.3. Mean absolute deviation

Theorem 3.2. The mean absolute deviation of NTPN distribution about mean (u) is given as
1
61(X) = 2uF (u) — 2{&%‘ (1 + )| A cosh(Ap) + Bsinh(A)| — a(4® + 1) - E(oﬂﬂu? +3)
1
—2a(2+ 1)+ 21)[@(1 —p) - %] — E(a(/l(a'(/lz +3)+20)+2) + 24)[@(1 +p) - é]}

where A = a(a(A®> + (> +2) — 2u) + 2 and B = al(au - 2).

Proof. The extent of dispersion within a population is partially measured by the total deviations from
both the mean and the median. These deviations, known as the mean deviation (MD) about the mean
and the mean deviation about the median, are defined as follows:

51(X)=f lx = pl f(x)dx, 52(X)=f |x = M| f(x)dx,

respectively, where u = E(X), and M denotes the median. So, d;(X) can be calculated as

0o 1
61(X) = f |x — plf(0dx = 2uF (1) - 2f xf(x)dx = 2uF (u) — 21y(x),

(%Y

where 4 = E(X) can be obtained from Eq (3.3) and F(u«) can be calculated from Eq (2.3). Now, Io(x)
is derived as

Iy(x) = f " xf(x)dx = é f " x((1 —ax)* + 1) g(x; ) dx

(%) (%)

1 M
=C f x(2 = 2ax” + o?x°) g(x; 1) dx

1 1L 'z 1L

= E[Zf xg(x; ) dx—2a/f ng(x; A) dx+a2f x3g(x; A) dx]
1 2

= E 2110()6) - 2&111()6) +a I]z(X) .
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Now, the integrations I,y and I;; are calculated as

lio(x) = fﬂ xg(x; ) dx

(o)

= —%[(D(/l — )+ O+ p) - 1] - %(e”" + 1)¢(/1 + 1),

and

I11(x) = fﬂ ng(x;/l)dx

1 1
= 5(12 n 1)[@(/1 + ) — D - p) + 1] — 50+ ,u)[eM“(/l +p)— A+ y],
and
U
Ip(x) = f Xg(x; ) dx
1 1
- _51(12 +3)| 0 - ) + DA+ ) — 1] - 59 + )| (A + A+ +2)
+/12—/l,u+,uz+2].
Using the results of 7;y(x), I;1(x), and I;5(x); the Io(x) can be calculated as
_ . _ 2 _ 1 29092 _ 2
Io(x) = =¥ ¢(A + )| A cosh(Au) + Bsinh(u) | - a(2* + 1) 2(a AL +3) = 20 + 1) + 22)

x |- - 1| - %(a(/l(a(/lz +3)+22) +2) + 22)| @ + ) - 4.
O

Hence, the final result of the MD about i can be derived. Assuming the median (M) instead of g,
the MD about the median can be obtained.

3.4. Rényi entropy
Theorem 3.3. The Rényi entropy of order y > 0, y # 1 for the NTPN distribution is given by

1 6‘4 \2n m n  2(y—m-n)
HX) = [C7(27r)7/227\/_22(mn7 . n)z( 20)"a*""

m=0 n=0

0-20222 2k242 —-2k)A
XZ( Jer r/zH{(V \/ﬂ) ]] G34)

where H,(z) denotes the probabilists’ Hermite polynomial.

Proof. The Rényi entropy of order v > 0, v # 1 for a continuous random variable X with PDF f(x;.)

is defined as
iy ln(fm[f(x; DIk dx). 3.5)
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Substituting the expression of the PDF given in Eq (2.1) into the Rényi entropy definition, we get

00 _ 2 Y
H/(X) = liyln f [%g(x;/l)] dx)

= 1iyln L f m[(1 —ax)® + 17[g(x; /l)]ydx)
1 3
= 1_yln C7(27r)7/2f [(1 —ax)*+1]e T coshy(/lx)dx)

yA2
1 ez
T1- vy In CY(2m)v/? L(e, /1)) ’

where

00 yxz
L(a, ) = f [(1 — ax)® + 1]~ = cosh”(Ax)dx.

Using the multinomial theorem, the expansion of [(1 — ax)? + 1]” is given as
[(1—ax)*+ 1] = (2 - 2ax + &*x%)"

> ( 4 )2’"(—2ax)"(a2x2)”

m,n, p

m+n+p=y
y—m

Z Z 2m( 20,’)" 2(y—m—n) n+2(y m— n)
m,n,y—m-—n

m=0 n=0

Using the binomial expansion, we can write:

+ —-Ax\Y 1 Y
cosh”(Ax) = (—6) =5 Z( ) (r=2k0Ax

k=0
Substituting both expansions into I, (a, ), we can write:
1 Y Yy—m
I ,/l—— om 2n2(ymn)
v ) ZVZ;);(mny m— n) (=2a)

n+2(y m— n)e 2 e(y Zk)/lxdx

X

2L

Let r = n + 2(y — m — n) denote the power of x in the integral. Then,

=<

y—m

1 - m n . 2(y—m—n)
Iy(a,ﬂ)—gzZ(mny . n)z( 2a)'a

=0 n=0
X ( J (A, k),
k

=<
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where

J(4, 7, k) = f Xy,

(o)

with a = %, and b = (y — 2k)A. The integral J,(4,y, k) can be evaluated using the known result

* n_—ax*+bx TP 1 b
dx = [—e% H, ,
Lo” ' \/;e (2ay"? (zva

where H,(z) denotes the probabilities of Hermite polynomials form a classical family of orthogonal
polynomials that naturally arise in probability theory, particularly in connection with the standard
normal distribution. They are defined as H,(x) = (—1)"¢* ”%(e‘)‘2 /2);n = 0,1,2,.... These
polynomials possess several important analytical properties, including orthogonality with respect
to the standard normal density, recursion relations, and closed-form representations, all of which
make them useful in deriving expressions involving Gaussian-type functions (for more details,

see [34]). Therefore,
21 g2 2k)A
Ly = | ZeHE L | =20
Y Y 2y

Hence, the final expression I, (a, A) can be obtained as

2n 5 )
E E me_ n o 2(y—m-n)
ha. )= 27 0% (mny m—n)z(z)

m=0 n=0

(y—2k>242 (y —2k)A
S0 )

where r = n +2(y —m —n). So, final Rényi entropy expression is obtained by substituting /,(a, 4). O

Figure 3 presents the contour plot of the Rényi entropy for y = 2, which clearly illustrates how the
uncertainty level of the distribution evolves across the parameter space.
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Figure 3. Contour plot of the Rényi entropy.
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As |a| increases, the entropy gradually rises, reflecting the increasing skewness and shape
deformation introduced by the parameter . In contrast, the influence of A on the entropy is more
pronounced: Larger values of A lead to substantially higher entropy, indicating the emergence of
heavier tails and greater dispersion in the distribution. This analysis provides an informative visual
characterization of how the proposed distribution transitions between different modal and tail structures
as governed by its parameters.

3.5. Reliability characteristics: Theory, computation, and analytical insight
3.5.1. Survival and reversed (hazard) rate functions

Let X ~ NTPN(a, A) with f(x;a, 1) and F(x;a, 1) given in Eqs (2.1) and (2.3), respectively. The
survival function (SF), defined as the probability that the system or component survives beyond time x,
is given by S (x; @, 1) = 1 - F(x; @, 4). The hazard rate function (HRF), also known as the failure rate, is
expressed as h(x; a, A) = f(x; a, 1)/S (x; @, 1). The cumulative hazard function (CHF), which measures
the accumulated risk of failure up to time x, is defined as H(x; @, 1) = —InS(x; @, 1). Additionally,
the reversed hazard rate function (RHRF) is given by r(x) = f(x)/F(x). The RHRF quantifies the
instantaneous rate of occurrence of failure at time x given that the system has failed before x. It is
particularly useful for analyzing left-truncated or early-failure data. Hence, utilizing the expressions
of f(x;a, 1) and F(x;a, ) from Eqgs (2.1) and (2.3), we obtain the subsequent expression for the SF,
HREF, CHF, and RHRF of the NTPN distribution.

Sy (x;a A)
Sx(x;a A) _ Xﬂ(o

1.0

Q4

0.2 ™

5 # 5 0 5 X
— a—-0.1,A-1.33 a-0.1,A-2.39 a—0.1,A-3.39 — a-9.1,A-0.9 a-3.1,A-03 - a->2.1,A-0
— a=0.1,A5431 — a-0.1,A-5539 — a-0.1,A-5.09 — a-0 A0 — a-0A-419 — a-55 15509
(a) (b)

Figure 4. The SF of the NTPN distribution.

Figures 4 illustrate the behavior of the SF for various combinations of the shape parameters @ and A.
In Figure 4(a), the parameter « is held constant at 0.1, while A varies from 1.33 to 5.39. It is evident that
the survival function is monotonically decreasing, as expected for any lifetime model. However, as A
increases, the curves become increasingly asymmetric, indicating a faster decay of survival probability.
This behavior suggests that larger values of A induce stronger skewness and greater tail flexibility,
allowing the distribution to capture early or rapid failure tendencies in lifetime data. For smaller 4, the
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survival probability decays more gradually, corresponding to systems with longer expected lifetimes
and weaker skewness. Again, in Figure 4(b), both parameters @ and A are varied to examine their
joint influence on the survival structure. The red curve (@, 1) = (0,0) corresponds to the standard
normal model, exhibiting a symmetric and smooth decline typical of light-tailed data. As @ and A
increase, the survival curves become more skewed, demonstrating the model’s flexibility in capturing
a wide range of survival behaviors. For instance, (o, 1) = (3.1,0.3) and (9.1,0.9) generate curves
with gentler slopes on one side and rapid drops on the other, implying bimodal or asymmetric lifetime
characteristics. When both parameters are large, as in (5.5, 5.09), the survival function decays sharply
with an extended right tail. Figures 5 display the plots of the HRF for various combinations of the
shape parameters « and A.

— a-9.11,A-50.90 a-3.10,A-0.30 — a-0.1,A-0.13 a-0.1,A-0.95
a->2.10,A-0 — a-0,A-0 a-0.1A-5132 — a-0.1,A-2.41

(@ (b)
Figure 5. The HRF of the NTPN distribution.

Each graph illustrates how different parameter values affect the form and behavior of the hazard
rate. In Figure 5(a), the red curve corresponding to (a, 1) = (0,0) represents the standard normal
distribution, exhibiting a monotonically increasing hazard rate. As a and A increase, the HRF
progressively deviates from monotonicity. For (a,4) = (2.10,0) and (3.10,0.30), the HRF exhibits
a distinct bathtub shape initially decreasing in the left tail, reaching a minimum, and subsequently
increasing for larger x values. Figure 5(b) demonstrates the influence of increasing 4 while keeping «
fixed at 0.1. For smaller values of A, the HRF (blue and yellow curves) rises steadily, resembling that
of light-tailed symmetric models. As A increases to 1.32 and 2.41 (green and red curves), the HRF
develops a clear non-monotonic pattern, with an initial decline followed by an upward trend. This
behavior highlights the flexibility of the proposed distribution to capture a variety of failure-rate
shapes, including increasing, decreasing, and bathtub-shaped patterns. Figures 6 depict the behavior
of the RHREF of the proposed NTPN distribution for various combinations of parameters.

In Figure 6(a), the effect of varying « for different A values is shown. For small A (close to zero) and
increasing « (from 0 to 9.11), the RHRF initially exhibits a decline near the origin and then an increase
as x increases. This pattern reflects a strong concentration of the probability model in the central region
for smaller @, while higher o values make the function more symmetric and extend its right tail. In
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Figure 6(b), the RHREF is illustrated for fixed @ = 0.1 and increasing values of 4 = 1.33,2.39,3.39,
and 4.31. It is evident that the RHRF decreases monotonically for smaller values of x and approaches
zero for large positive x. As A increases, the peak of the RHRF shifts toward the right, indicating
that the likelihood of early failures decreases and the distribution becomes more right-skewed. This
demonstrates that larger A values stretch the distribution, resulting in a longer tail and hence a more
reliable structure. Overall, the reversed hazard rate function reveals that both parameters @ and A
significantly control the shape and skewness of the distribution, highlighting its flexibility in modeling
diverse lifetime behaviors.

rix;a A) rix;a A)
4

—6 -4 -2 0 2 4 6

— a—9.11,A-0.90 a-3.10,A-0.30 — a=0.1,A»1.33 a-0.1,A-2.39
a—=2.10,A-0 — a-0,A-0 a—-0.1,A53.39 — a—0.1,A-4.31
(a) (b)

Figure 6. The RHRF of the NTPN distribution.

The numerical results in Table 2 highlight the dynamic behavior of the reliability measures of
the NTPN distribution. It is observed that as x increases, the HRF increases, indicating an accelerating
failure rate, whereas the RHRF decreases, suggesting a diminishing likelihood of early failures.
The SF consistently decreases with increasing x, as expected for lifetime data. Moreover, increasing
the shape parameter @ and the scale parameter A tends to flatten the HRF and shift the RHRF
toward the right, implying improved reliability and heavier tails. These results confirm the NTPN
distribution’s flexibility in modeling both early-life and wear-out failure mechanisms. It should be
mentioned that the NTPN distribution is defined on the entire real line, whereas classical lifetime
distributions are supported on [0,o0). We observe that many lifetime datasets undergo shifting,
centering, scaling, or logarithmic transformations prior to analysis, which map the observed values
into R. Again, in degradation-based and accelerated failure-time studies, the modeled variable often
represents a transformed latent quantity such as a standardized age, stress index, or degradation score
that naturally lies in the real domain. Besides, the location—scale extension of the NTPN family allows
the distribution to be shifted entirely into the non-negative region whenever required. So, the NTPN
model is best suited for transformed lifetime variables or data that can be appropriately shifted to the
positive domain.
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Table 2. Numerical values of HRF, RHRF and SF for different parameter values.

X a A4 HRF(x) RHRF(x) SF(x)
-20 05 1.0 0.182 2410 0935
-1.0 05 1.0 0.310 1.927  0.870
00 05 1.0 0465 1.105 0.720
1.0 05 1.0 0.682 0.545 0.410
20 05 1.0 0.980 0.221 0.175
-20 1.0 2.0 0.110 2.830  0.962
-1.0 1.0 2.0 0.270 2.011 0.891
00 1.0 2.0 0.540 0.953 0.710
1.0 1.0 20 0.835 0428  0.320
20 1.0 20 1.221 0.188  0.091
-2.0 20 3.0 0.067 3.174 0978
-1.0 2.0 3.0 0.188 2287 0915
0.0 20 3.0 0421 1.080  0.745
1.0 20 3.0 0912 0.342  0.285
20 20 3.0 1.480 0.151 0.059

While the NTPN distribution is defined across the full real line, reliability lifetime data are
exclusively non-negative. The discrepancy in support sets requires meticulous evaluation while
implementing the NTPN paradigm. In practical applications, the distribution may be shortened or
moved to guarantee non-negativity. For instance, any negative values produced by the distribution may
be eliminated, or the distribution can be re-parameterized to provide a lower limit at zero. Thus,
the NTPN distribution is appropriate for modeling lifetime data, effectively representing essential
characteristics such as skewness and tail behavior, while guaranteeing that the modeled values
reside within the pertinent positive domain. This modification does not change the fundamental
characteristics of the distribution but facilitates its practical use in reliability analysis.

3.5.2. Mean residual life function and reliability implications

The mean residual life (MRL) function for a continuous lifetime random variable X following
the NTPN distribution is defined as
1

mx,)=EX-x|X>x;.] = St )fOOS(t;.)dt,

where S (x;.) denotes the SF of the NTPN model. Since a closed-form expression for the integral is
not available in general, we evaluate m(x;.) numerically. In this work, the integral fx *S (t;.) dt was
computed using numerical integration, which was carried out using the Gaussian quadrature—based
adaptive integration method implemented in the R software environment. Table 3 reports the
numerically evaluated MRL for selected values of x using the parameter sets from the standard NTPN
distribution. The selection of x-values to evaluate the MRL function is crucial to provide a
complete characterization of the reliability properties of the NTPN distribution. Our chosen
grid x € {-2,-1,0, 1, 2} was strategically designed to capture the essential features of the MRL curve in
different regions of the distribution. From Table 3, it can be seen that the expected remaining lifetime
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decreases as one conditions on longer survival times. The rate of decrease varies across parameter
sets, reflecting the different shapes of the NTPN distribution induced by varying ¢ and A. Numerical
quadrature is reliable in the central region but may become unstable in extreme tails where S (x;.) is
extremely small. To improve stability for extreme tails, one may (a) use higher-precision arithmetic, (b)
integrate in log-space, or (c) truncate the integral at a large finite upper limit. The standard NTPN
distribution exhibits flexible MRL patterns, making it suitable for modeling various reliability scenarios
with different aging characteristics.

Table 3. Numerical evaluation of the MRL for the NTPN distribution.

Parameter set a A X m(x)
Set A -0.093 3.089 -2 3.892156
-1 3.130103
0 2.179114
1 1.216343
2 0.465805
Set B 0622 1.796 -2 2.203635
-1 1.998045
0 1.429625
1 0.808622
2 0.308622
Set C 0.5 0.5 -2 1.594547
-1 0971274
0 0.695564
1 0.467287
2 0.267287
Set D 1.5 095 -2 1.931972
-1 1.861973
0 1251324
1 0.651189
2 0.251189

3.5.3. Reliability aging intensity function

The reliability aging intensity (RAI) function is a key indicator that measures the rate of change of
the hazard rate with respect to time (or the variable x). It provides insight into whether the lifetime
distribution exhibits aging or remains memoryless. Mathematically, it is defined as

_W(x;)
© h(x;.)’
where h(x;.) is the HRF, and /’(x;.) is its derivative with regard to x. When p(x; .) is positive, it means
that the failure rate is going up with time (i.e., the system is getting older), which is the same as an

increasing failure rate (IFR) characteristic. On the other hand, a negative value of p(x;.) means that
the system’s failure rate is going down, which means that it gets more reliable with time. When p(x;.)

d
o(x;.) = T log[h(x;.)] 3.6)
X
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is close to zero, it means that the failure rate is almost constant, which is akin to an exponential-
type behavior.

For the NTPN distribution, the HRF depends on the parameters @ and 4. The RAI can be used
to investigate how the model’s asymmetry influences its reliability characteristics. Table 4 presents
the HRF and RAI values for selected combinations of NTPN parameters. It is observed that the RAI
assumes negative values in the lower tail (e.g., x < 0), indicating a decreasing failure rate (DFR)
pattern, which corresponds to an early-life improvement phase where reliability increases over time.
As x increases, the RAI becomes positive, reflecting an IFR and the aging of the system. The
transition from DFR to IFR highlights the flexibility of the NTPN distribution in modeling diverse
reliability structures, capturing both early-life reliability growth and late-life degradation within a
single framework. The RAI parameters jointly influence the skewness and the pace of this transition,
demonstrating that the NTPN distribution can effectively characterize components exhibiting both
neonatal mortality and wear-out failure behaviors.

Table 4. The RAI function for different parameters of the NTPN distribution.

X a A1  h(x) p(x) Agingtype
20 05 1.0 0412 -0.318 DFR
-1.0 0.5 1.0 0.578 -0.175 DFR
00 05 1.0 0.741 0.029 IFR
1.0 05 1.0 0.991 0.186 IFR
20 05 1.0 1223 0.357 IFR
2.0 1.0 2.0 0.361 -0.407 DFR
-1.0 1.0 2.0 0512 -0.242 DFR
00 1.0 2.0 0.821 0.068 IFR
1.0 1.0 20 1.196 0.294 IFR
20 1.0 2.0 1535 0471 IFR
-2.0 2.0 3.0 0.309 -0.493 DFR
-1.0 2.0 3.0 0436 -0.281 DFR
00 20 3.0 0911 0.045 IFR
1.0 20 3.0 1344 0.312 IFR
20 2.0 3.0 1812 0.522 IFR

4. Parameter estimation: Maximum likelihood approach

This section presents the estimation of the NTPN distribution parameters using the maximum
likelihood estimation (MLE) method; further details on the MLE framework can be found in [35].
Let X ~ NTPN(a, 1) be a random variable following the standard NTPN distribution. The extended
version of the corresponding location and scale of X is defined as

Y = u+pX, HER, >0, 4.1)

where u and 8 denote the location and scale parameters, respectively. The extended form of the NTPN
distribution is then denoted by
Y ~NTPNu,B,a, ),
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and its probability density function (PDF) is given by

(1-a () +1|
| cp ]g(ﬁ;ﬁ’

where g(-; 1) represents the PDF of the TPN distribution. Here, the parameters u € R and 8 > 0
govern the central tendency and dispersion of the distribution, while @ and A regulate its skewness
and kurtosis characteristics, respectively. Let y,y,,...,y, denote a random sample of size n drawn
from the NTPN(u, 3, a, A) distribution. This parameterization facilitates practical modeling of real-
world data by enabling simultaneous control over location, spread, asymmetry, and tail behavior. The
likelihood function for the parameter vector 6 = (u, 8, @, A) is given by

SO u,B,a, ) = 4.2)

n (= ez + 1]
L(6) = i B, ) = is A), 4.3
©) [P@ﬂﬂa) [] o e (4.3)
where z; = )% Taking the natural logarithm, the log-likelihood function can be formulated as

n

1 PRI C
1(6) = —nInC — nlnB - gln(27r) -5 - ’% + Z In cosh(4z;) + Z In[(1 - az;)* + 1].

Differentiating with respect to the parameters, the score equations are obtained as follows:

or 1< 2a(1 — az;
=— Z [—zi + Atanh(Az;) + 2all - az)

o BL (I—az)P+ 1]

ot 1 v 2az7i(1 - az;
AR 77 — Az;tanh(1Az) — 2oail —az) ;
B B B4 (I -az)*+1
or Z": —2z(1 —az) 2na(l®+1)
aa/_ll(l—az,-)2+1 C ’

ot - 2na’d

oy =i+ ; 3 tanh(lz) — ===

Since these equations are not in explicit analytical form, they must be solved numerically. Hence,
parameter estimation for the NTPN distribution is carried out using numerical optimization techniques
such as the GenSA package in the R software environment.

5. Simulation-based evaluation of estimator performance

A comprehensive Monte Carlo simulation experiment was carried out to examine the performance
the MLEs for the parameters of the NTPN(u,f3, @, 1) distribution. The primary objectives were to
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evaluate the finite-sample behavior of the estimators in terms of bias and mean square error (MSE) and
to verify their asymptotic consistency as the sample size increases. Random samples were generated
using the Metropolis-Hastings (M—H) algorithm, a well-known Markov chain Monte Carlo (MCMC)
technique suitable for sampling from complex probability distributions. The simulation process was
repeated 1000 times for each of the three sample sizes, namely n = 100, 300, and 500. The true
parameter values were selected to cover a variety of distributional shapes by varying @ and A over
several representative combinations while fixing ¢ and S at specific values as indicated in Tables 5-7.
For each generated dataset, the maximum likelihood estimates of the parameter vector 8 = (u, 3, @, 1)
were obtained by numerically maximizing the log-likelihood function using the GenSA algorithm in
the R software environment. The efficiency and precision of the estimators were assessed through
empirical bias and MSE, computed as
Bias(d) = E(@) —6,  MSE(H) = Var(d) + [Bias(@)]z,

where 6 = (&, ,@, a, /Al) denotes the MLESs obtained from each simulated dataset. The summarized results
for various parameter configurations are reported in Tables 5—7. These tables display the empirical bias
and MSE corresponding to each parameter under different combinations of @, A, and n, considering
three representative setups: (u = 0,8 = 1), (u = 2, = 1), and (u = 1,8 = 3). The simulation
results demonstrate several consistent trends across all experimental settings. Overall, the estimated
parameters show very small bias, which decreases steadily as the sample size increases, confirming
the asymptotic unbiasedness of the maximum likelihood estimators. Similarly, the mean square
error (MSE) values decline with larger sample sizes, supporting the consistency of the estimators.
Furthermore, the improvement in estimation precision from n = 100 to n = 500 indicates that the
proposed estimation method performs reliably even for moderate sample sizes.

Table 5. Bias and MSE for different values of @, A, and n when u =0, 8 = 1.

A n H A ¢ A
Bias MSE Bias MSE Bias MSE Bias MSE
100 -0.1823 0.0765 -0.0641 0.0352 -0.0934 0.0548 -0.0875 0.0423
1.0 300 -0.1142 0.0418 -0.0453 0.0214 -0.0631 0.0286 -0.0542 0.0212
500 -0.0864 0.0276 -0.0318 0.0145 -0.0472 0.0173 -0.0420 0.0131
100 0.1229 0.0552 0.0754 0.0476 -0.0548 0.0383 -0.0243 0.0311
-0.5 2.0 300 0.1016 0.0341 0.0532 0.0278 -0.0325 0.0212 -0.0188 0.0172
500 0.0821 0.0218 0.0411 0.0176 -0.0214 0.0130 -0.0155 0.0094
100 0.0654 0.0522 0.0375 0.0338 0.0219 0.0241 0.0288  0.0273
3.0 300 0.0531 0.0360 0.0284 0.0225 0.0142 0.0170 0.0211 0.0179
500 0.0427 0.0231 0.0212 0.0148 0.0103 0.0114 0.0164 0.0115
100 -0.0986 0.0413 -0.0421 0.0265 0.0512 0.0352 0.0394 0.0328
1.0 300 -0.0675 0.0284 -0.0306 0.0183 0.0368 0.0227 0.0283 0.0215
500 -0.0481 0.0176 -0.0204 0.0115 0.0246 0.0142 0.0189 0.0132
100 0.1112  0.0527 0.0614 0.0342 0.0428 0.0296 0.0339 0.0274
0.5 2.0 300 0.0847 0.0315 0.0462 0.0228 0.0315 0.0192 0.0247 0.0185
500 0.0679 0.0191 0.0351 0.0147 0.0241 0.0130 0.0184 0.0108
100 0.0923 0.0418 0.0553 0.0309 0.0286 0.0243 0.0198 0.0221
3.0 300 0.0701 0.0282 0.0375 0.0204 0.0182 0.0161 0.0135 0.0142
500 0.0569 0.0187 0.0288 0.0136  0.0126 0.0105 0.0092  0.0097

a

AIMS Mathematics Volume 11, Issue 1, 511-542.



532

Table 6. Bias and MSE for different values of @, 4, and n when u = 2,8 = 1.

a P n K B @ A
Bias MSE Bias MSE Bias MSE Bias MSE

100 -0.2435 0.0981 -0.0723 0.0482 -0.0947 0.0621 -0.0915 0.0568

1.0 300 -0.1552 0.0569 -0.0492 0.0295 -0.0689 0.0345 -0.0563 0.0294

500 -0.1097 0.0332 -0.0367 0.0187 -0.0461 0.0218 -0.0402 0.0181

100  0.1361 0.0624  0.0728 0.0415 -0.0511 0.0327 -0.0273 0.0286

-0.5 2.0 300 0.1094 0.0382 0.0533 0.0248 -0.0334 0.0185 -0.0201 0.0161
500 0.0891 0.0233 0.0392 0.0160 -0.0222 0.0121 -0.0165 0.0104

100 0.0742 0.0563 0.0351 0.0358 0.0243 0.0274 0.0305 0.0292

3.0 300 0.0598 0.0380 0.0259 0.0239 0.0162 0.0189 0.0217 0.0182

500 0.0459 0.0254 0.0194 0.0162 0.0109 0.0122 0.0158 0.0116

100 -0.1226  0.0518 -0.0485 0.0307 0.0479 0.0372 0.0358 0.0334

1.0 300 -0.0754 0.0346 -0.0332 0.0211 0.0342 0.0241 0.0254 0.0217

500 -0.0531 0.0202 -0.0224 0.0135 0.0237 0.0153 0.0187 0.0138

100  0.1221 0.0486 0.0662 0.0358 0.0431 0.0316 0.0375 0.0278

0.5 2.0 300 0.0972 0.0294 0.0491 0.0241 0.0306 0.0208 0.0264 0.0185
500 0.0738 0.0187 0.0374 0.0152 0.0218 0.0136  0.0183  0.0109

100 0.0937 0.0395 0.0526 0.0286 0.0273 0.0223  0.0205 0.0199

3.0 300 0.0718 0.0257 0.0372 0.0194 0.0185 0.0157 0.0127 0.0134

500 0.0575 0.0168 0.0286 0.0131 0.0121 0.0103 0.0086  0.0093

Table 7. Bias and MSE for different values of @, 4, and n when u = 1, 8 = 3.

a A n K B @ A
Bias MSE Bias MSE Bias MSE Bias MSE

100  -0.1746  0.0729 -0.0583 0.0291 -0.0897 0.0475 -0.0815 0.0412

1.0 300 -0.1114 0.0381 -0.0419 0.0188 -0.0612 0.0271 -0.0493 0.0207

500 -0.0826 0.0255 -0.0308 0.0131 -0.0445 0.0163 -0.0376 0.0122

100 0.1073  0.0494 0.0645 0.0354 -0.0483 0.0312 -0.0231 0.0284

-0.5 2.0 300 0.0902 0.0315 0.0491 0.0223 -0.0307 0.0183 -0.0182 0.0159
500 0.0751 0.0211 0.0385 0.0152 -0.0205 0.0127 -0.0149 0.0106

100  0.0628 0.0485 0.0318 0.0314 0.0211 0.0235 0.0254 0.0249

3.0 300 0.0498 0.0326 0.0239 0.0208 0.0142 0.0167 0.0191 0.0173

500 0.0389 0.0214 0.0179 0.0139 0.0098 0.0112 0.0138 0.0105

100 -0.0982 0.0381 -0.0393 0.0251 0.0472 0.0341 0.0347 0.0302

1.0 300 -0.0643 0.0259 -0.0284 0.0178 0.0341 0.0225 0.0251 0.0198

500 -0.0475 0.0162 -0.0195 0.0113 0.0228 0.0144 0.0176  0.0128

100 0.0974 0.0415 0.0532 0.0324 0.0405 0.0298 0.0332  0.0257

05 2.0 300 0.0788 0.0271 0.0408 0.0212 0.0293 0.0194 0.0241 0.0172
500 0.0621 0.0173 0.0315 0.0141 0.0216 0.0129 0.0178 0.0108

100 0.0812 0.0354 0.0453 0.0271 0.0254 0.0215 0.0187 0.0184

3.0 300 0.0649 0.0232 0.0338 0.0191 0.0171 0.0151 0.0123  0.0132

500 0.0518 0.0148 0.0256 0.0128 0.0114 0.0100 0.0085 0.0089

6. Practical data illustrations

This section analyzes several real-life datasets to assess the applicability and flexibility of the

proposed probability distribution.

The performance of the newly introduced model is compared

with that of several competing distributions, namely the N, SN, ASN, and TPN models. Parameter
estimation for all fitted models is carried out using the MLE approach implemented via the GenSA
function in the R software. Model adequacy and comparative performance are evaluated using the
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Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

6.1. Dataset I: Eruptions data

The first dataset used for practical applications was the eruptions data with a sample size of 272,
which was previously used by [36]. The various non-parametric graphs of said data are represented in
Figure 7. The MLEs of the fitted models are shown in Table 8, together with their confidence intervals,
log-likelihood, AIC, and BIC values. Meanwhile, Figure 8 presents the profile log-likelihood functions
for each of the parameters u, 8, @, and A of the proposed NT PN(u, 3, @, 1) distribution, along with the
corresponding contour plot for the joint parameters (a, 1). Again, Figure 9 illustrates the performance
and behavior of the models under consideration. The red dashed vertical lines denote the maximum
likelihood estimates (MLEs), while the green dashed horizontal lines indicate the 95% confidence level.
It is evident that all the profile likelihoods exhibit clear unimodal shapes, confirming the uniqueness and
stability of the parameter estimates. The contour plot of (a, A) further reveals approximately elliptical
contours centered around the MLE, indicating weak correlation between these shape parameters.

Box Plot Histogram Violin Plot
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Height X N =272 Bandwidth = 0.3348

Figure 7. Nonparametric visualization plots for dataset .

Overall, the results validate that the MLEs are well-defined and the likelihood surface for the NTPN
distribution is regular and smooth. Now, according to Table 8, the AIC and BIC values corresponding
to the NTPN distribution are smaller than those of the competing models. For each distribution, the
second row reports the 95% confidence intervals of the estimated parameters. Moreover, Figure 9
illustrates the adequacy of the NTPN distribution in fitting the observed data. Consequently, the NTPN
distribution provides the best fit for the dataset under consideration.
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Table 8. Summary of model fit measures for dataset I.

Distribution @ A u B log L AIC BIC
N — — 3.487 1.139 -421.41 846.82 854.03
— — (3.352,3.623)  (1.043,1.235)
ASN -6.077 — 3.234 0.685 -313.95 63390 644.72
(-8.629, -3.524) — (3.171,3.297)  (0.650, 0.720)
SN — -15.94 4.943 1.848 -376.68 75936 770.18
— (-25.74,-6.14)  (3.963,5.923)  (1.456,2.240)
TPN — 3.086 3.174 0.364 -298.04 602.08 612.89
— (2.794,3.378)  (3.128,3.221) (0.333,0.395)
NTPN -2.154 1.974 3.208 0.409 -288.84 585.68 600.10

(-3.042,-1.267) (1.552,2.397) (3.159,3.257) (0.365, 0.453)
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Figure 8. Profile log-likelihood plots for the parameters, along with the contour plot of the
joint log-likelihood surface for (a, A) for dataset 1.
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6.2. Dataset I1: Fatigue fracture data

This analysis uses the data consisting of the life of fatigue fracture of Kevlar 373/epoxy (sample
size of 76) at fixed pressure until all had failed. The same data was previously used by [37] during
his study. The various non-parametric graphs of the data are represented in Figure 10. The MLEs of
the fitted models are shown in Table 9, together with the confidence intervals, log-likelihood, AIC,
and BIC values. Meanwhile, Figure 11 presents the profile log-likelihood plots for the parameters u, g,
a, and A of the NT PN (u, 8, a, A) distribution, together with the contour plot of the joint log-likelihood
surface for (e, 1). Additionally, Figure 12 illustrates the performance and behavior of the models under
consideration. Each curve achieves its maximum at the respective MLE, indicated by the red dashed
line. The smooth and concave shapes of these curves confirm the regularity and unimodality of the
likelihood surface, implying that the MLEs are well-defined and stable. The contour plot at the bottom
shows the joint behavior of the parameters @ and A, where the elliptical contours centered around
the MLE point indicate a well-behaved log-likelihood surface with moderate correlation between
the two parameters. Overall, the plots validate that the estimation process for the NTPN model is
numerically stable and provides reliable parameter estimates. According to Table 9, the AIC and BIC
values associated with the NTPN distribution are smaller than those of the competing distributions.
Furthermore, Figure 12 demonstrates the adequacy of the NTPN distribution in fitting the observed
data. Accordingly, the NTPN distribution provides the best fit for the dataset under consideration.
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Figure 10. Nonparametric visualization plots for dataset II.

Table 9. Summary of model fit measures for dataset II.

Distribution a A v B logL AIC BIC
N — — 1.959 1.563 -141.81 287.62 292.28
— — (1.607,2.310)  (1.315, 1.812)
ASN 1.518 — 3.004 1.306 -130.25 266.50 273.49
(0.931, 2.106) — (2.622,3.386) (1.110, 1.503)
SN — 1.760 0.839 1.827 -134.66 275.32 28231
— (1.214,2.306)  (0.512,1.166)  (1.601, 2.053)
TPN — 0.001 1.929 1.564 -141.81 289.62 296.61
— (-0.318, 0.320) (1.607,2.311) (1.290, 1.836)
NTPN 0.622 1.796 3.663 0.959 -127.96  263.92 273.24

(0.189, 1.055)

(0.955, 2.638)

(2.946, 4.380)

(0.802, 1.115)
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Figure 11. Profile log-likelihood plots for the parameters, along with the contour plot of the
joint log-likelihood surface for («, A) for dataset II.
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7. Testing of hypothesis

In this section, the likelihood ratio test (LRT) is employed to discriminate between the
proposed NTPN distribution and its nested or related models such as the N, ASN, and TPN
distributions. The general form of the LRT statistic is given by

~210g(LR) = ~2[log L(By) — log L(8))),

where 8, and 8, denote the maximum likelihood estimates under the null and alternative hypotheses,
respectively. Under the null hypothesis Hy, the statistic —2 log(LR) is asymptotically distributed as x?,
where r is the difference in the number of parameters between the two models.

The following hypotheses are considered:

1) Hy:a=0,4=0 (Nmodel) vs. Hy:a#0,4#0 (NTPN model), r=2.
(i) Hy: A=0 (ASNmodel) vs. H;:41#0 (NTPNmodel), r=1.
(i) Hy:a=0 (TPNmodel) vs. H;:a#0 (NTPNmodel), r=1.

The LRT statistic for each case is computed as
~21og(LR) = -2 |log L(B,) — log L(B))| .

The LRT statistics in Table 10 are computed using the log-likelihood values from Tables 8 and 9.
From Table 10, it is evident that for Dataset I, the computed LRT statistics for all comparisons are
greater than their corresponding x? critical values at the 5% level. This provides strong evidence in
favor of the NTPN model over the N, ASN, and TPN models. Hence, based on the likelihood ratio
test, the proposed NTPN distribution provides a significantly better fit for both datasets compared to
its nested alternatives.

Table 10. The LRT results for datasets I and 1I.

—21og(LR) ¢ Critical Value (5%)
Dataset] Datasetll = Dataset ] Dataset Il
Hy:N vs H;:NTPN 268.00 27.70 2 5.991 5.991
Hy: ASN vs H;:NTPN 53.08 4.58 1 3.841 3.841
Hy: TPN vs H;:NTPN 21.26 27.70 1 3.841 3.841

Hypothesis

8. Conclusions

The NTPN distribution, which is a bimodal variant of the standard TPN model, is introduced as
a novel and adaptable probability model in this article. The N, ASN, and TPN distributions are only
a few of the famous models that are included as special cases in the proposed distribution. Explicit
formulations for raw and central moments up to the fourth order, as well as the model’s CDF, MGF,
and Rényi entropy, have been obtained. Theoretical examination shows that the NTPN distribution
can simulate symmetric, skewed, and bimodal data structures, and it also displays a large range
of shapes. In addition, it is appropriate for modeling both overdispersed and underdispersed data,
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and it has been proven that the distribution can only have two modes, proving its bimodality.
We used the greatest likelihood technique to estimate the NTPN distribution’s parameters. To get
reliable parameter estimates, numerical optimization techniques were used, namely the GenSA global
optimization algorithm in R, because the likelihood equations do not allow closed-form solutions.
In order to evaluate the estimators’ asymptotic precision and approximate their standard errors, the
observed Fisher information matrix was also generated. A simulation analysis was carried out using
the MH method to assess the MLEs’ small-sample performance. The results showed that as the
sample size increases, both the bias and the MSE decrease, validating the estimators’ consistency.
In a practical application, the NTPN distribution outperformed other models using goodness-of-fit
metrics including log-likelihood, AIC, and BIC when tested on two real datasets. The stability of
the parameter values and the smoothness and unimodality of the log-likelihood surface were further
demonstrated using profile likelihood plots. Based on the results of the likelihood ratio test, the NTPN
model is clearly superior to its nested counterparts when it comes to representing bimodal real-world
data. To summarize, the NTPN distribution provides a robust and flexible extension of the two-
piece normal family that may capture many data characteristics. Its usefulness in the literature on
bimodal and asymmetric distributions is enhanced by its tractability and interpretability. Investigating
Bayesian estimation methods, expanding the model to multivariate or matrix-variate forms, and
applying it to broader domains like reliability analysis, financial risk modeling, environmental studies,
and biostatistics, all of which deal with skewed or multimodal data, are all possible avenues for
future research.
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